(19)
(11)EP 3 308 701 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
03.08.2022 Bulletin 2022/31

(21)Application number: 17172684.7

(22)Date of filing:  24.05.2017
(51)International Patent Classification (IPC): 
A61B 5/021(2006.01)
A61B 5/0245(2006.01)
A61B 5/024(2006.01)
A61B 5/00(2006.01)
(52)Cooperative Patent Classification (CPC):
A61B 5/02125; A61B 2560/0468; A61B 5/681; A61B 5/346

(54)

APPARATUS AND METHOD FOR ESTIMATING BIOMETRIC INFORMATION

VORRICHTUNG UND VERFAHREN ZUR BERECHNUNG VON BIOMETRISCHEN INFORMATIONEN

APPAREIL ET PROCÉDÉ D'ESTIMATION D'INFORMATIONS BIOMÉTRIQUES


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 12.10.2016 KR 20160132228

(43)Date of publication of application:
18.04.2018 Bulletin 2018/16

(73)Proprietor: Samsung Electronics Co., Ltd.
Gyeonggi-do 16677 (KR)

(72)Inventors:
  • YOON, Young Zoon
    Hwaseong-si, Gyeonggi-do (KR)
  • KANG, Jae Min
    Seoul (KR)
  • KWON, Yong Joo
    Yongin-si, Gyeonggi-do (KR)
  • NOH, Seung Woo
    Seongnam-si. Gyeonggi-do (KR)
  • PARK, Sang Yun
    Hwaseong-si, Gyeonggi-do (KR)

(74)Representative: Grünecker Patent- und Rechtsanwälte PartG mbB 
Leopoldstraße 4
80802 München
80802 München (DE)


(56)References cited: : 
WO-A1-2015/129949
DE-A1-102010 014 761
US-A1- 2014 012 146
CN-A- 104 970 781
KR-B1- 101 560 287
US-A1- 2017 049 340
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description


    [0001] Apparatuses and methods consistent with exemplary embodiments relate to estimating biometric information, and more specifically, estimating biometric information on the basis of biometric signals obtained at multiple sites of a subject to be examined.

    [0002] As a general blood pressure measurement method, a pressure cuff method is used. This method is a non-continuous measurement method by which a blood pressure is measured by tightening a cuff around blood vessels to a point to reach the maximum blood pressure and loosening the cuff. Also, the method is not suitable for use in a wristwatch type measurement device due to the structure, such as a pressure pump. Recently, a non-pressure cuffless-type blood pressure measurement method has been studied. A general cuffless blood pressure measurement method uses a correlation between a pulse transit time (PTT) and a blood pressure, for example, a pulse wave or an electrocardiogram (ECG) measured at two different sites.

    [0003] WO 2015/129949 A1 discloses a method of measuring a pulse wave delivery velocity difference by a mobile device.

    [0004] US 2014/0012146 A1 discloses a measurement apparatus including a blood pressure calculation unit configured to calculate a blood pressure value based on electrocardiography information relating to an electrocardiogram of a measurement subject and pulse wave information relating to a pulse wave of the measurement subject.

    [0005] DE 10 2010 014 761 A1 discloses a method for determining heart rate, respiration rate, pulse wave running time and medium blood pressure of a patient.

    [0006] KR101560287B discloses an earphone including bodysignal measuring means and a body signal monitoring system.

    [0007] CN104970781 A discloses an ankle brachial index measuring device and a sphygmomanometer.

    [0008] It is therefore the object of the present invention to provide an improved apparatus for estimating biometric information, and a corresponding method.

    [0009] This object is solved by the subject matter of the independent claims.

    [0010] Preferred embodiments are defined by the dependent claims.

    [0011] According to an aspect of an exemplary embodiment, there is provided an apparatus for estimating biometric information comprising:a sensor comprising an electrocardiogram (ECG) sensor configured to measure an ECG signal of a user and a pulse wave sensor configured to measure two or more pulse wave signals at two or more different measurement sites of the user, the two or more pulse wave signals comprising a first photoplethysmography (PPG) signal and a second PPG signal; and a processor configured to receive the ECG signal and the two or more pulse wave signals from the sensor, to determine a first differential pulse transit time, DPTT, between the ECG signal and the first PPG signal, a second DPTT between the ECG signal and the second PPG signal, and a third DPTT between the first PPG signal and the second PPG signal, and to determine a first biometric information of the user by applying the first DPTT, the second DPTT, and the third DPTT to a first estimation model.

    [0012] The apparatus may further include a main body and a strap connected to the main body and formed to be flexible to wrap around at least one of the two or more measurement sites, wherein the sensor is mounted in the main body or the strap.

    [0013] The two or more measurement sites of the user may include a first measurement site and a second measurement site of the user. The ECG sensor may include a first electrode disposed at a first position of the apparatus to be in contact with the first measurement site of the user and a second electrode disposed at a second position of the apparatus to be in contact with the second measurement site of the user.

    [0014] The pulse wave sensor may include: a first pulse wave sensor configured to emit light to the first measurement site, detect the light returning from the first measurement site, and obtain a first pulse wave signal from the light detected by the first pulse wave sensor; and a second pulse wave sensor configured to emit light to the second measurement site, detect the light returning from the second measurement site, and obtain a second pulse wave signal from the light detected by the second pulse wave sensor.

    [0015] The apparatus may further include a display configured to output the biometric information according to a control signal of the processor.

    [0016] The processor may include a transit time calculator configured to determine at least three pulse transit times (PTTs) based on the received ECG and two or more pulse wave signals, and a first estimator configured to apply the three or more PTTs to a first estimation model to obtain first biometric information.

    [0017] The processor may include a pulse wave analyzer configured to extract, from waveforms of the two or more pulse wave signals, reflected wave characteristic information indicating an impact of reflected waves of the two or more pulse wave signals on a change in waveform of the two or more pulse wave signals, and a second estimator configured to apply the extracted reflected wave characteristic information to a second estimation model to obtain second biometric information.

    [0018] The pulse wave analyzer may be further configured to extract feature points from the two or more pulse wave signals, and extract the reflected wave characteristic information which comprises one or more first PTTs calculated using the feature points of different pulse wave signals of the two or more pulse wave signals and one or more second PTTs calculated using the feature points of a same pulse wave signal of the two or more pulse wave signals.

    [0019] When a result is output by applying the extracted reflected wave characteristic information to the second estimation model, the second estimator is further configured to obtain the second biometric information based on the output result and the first biometric information.

    [0020] The first biometric information may be a diastolic blood pressure and the second biometric information may be a systolic blood pressure.

    [0021] The processor may be further configured to generate an estimation model for estimating the biometric information based on personal information input by the user, and the personal information may include one or more of height, weight, sex, age, and a health condition of the user.

    [0022] The processor may include a calibrator configured to obtain vascular resistance information based on waveforms of the two or more pulse wave signals and calibrate the biometric information based on the vascular resistance information.

    [0023] The apparatus may further include a communication interface configured to receive reference biometric information from an external apparatus. The processor may include a calibrator configured to calibrate the biometric information based on the reference biometric information.

    [0024] The processor may be further configured to obtain the biometric information while the external apparatus obtains the reference biometric information of the user.

    [0025] The calibrator is further configured to calibrate at least one of a value of the biometric information, two or more pulse transit times (PTTs) calculated using the ECG signal and the two or more pulse wave signals, and an estimation model for estimating the biometric information.

    [0026] The external apparatus may include a cuff-type blood pressure estimating apparatus and the reference biometric information includes at least one of a cuff blood pressure estimated by the cuff-type blood pressure estimating apparatus and cuff pressure information.

    [0027] According to an aspect of another exemplary embodiment, there is provided a method of obtaining blood pressure information, the method comprising:detecting, by a plurality of sensors, an electrocardiogram (ECG), signal of a user and detecting a plurality of photoplethysmography (PPG) signals at different measurement sites of the user, the plurality of PPG signals comprising a first PPG signal and a second PPG signal; and determining, by a processor, a first differential pulse transit time, DPTT, between the ECG signal and the first PPG signal, a second DPTT between the ECG signal and the second PPG signal, and a third DPTT between the first PPG signal and the second PPG signal, and determining a biometric information of the user by applying the first DPTT, the second DPTT, and the third DPTT to an estimation model.

    [0028] The obtaining the biometric information may include determining at least three pulse transit times (PTTs) based on the ECG signal and the two or more pulse wave signals and applying the at least three PTTs to a first estimation model to obtain first biometric information.

    [0029] The obtaining the biometric information may include extracting, from waveforms of the two or more pulse wave signals, reflected wave characteristic information indicating an impact of reflected waves of the two or more pulse wave signals on a change in waveform of the two or more pulse wave signals and applying the extracted reflected wave characteristic information to a second estimation model to obtain second biometric information.

    [0030] The extracting the reflected wave characteristic information may include extracting feature points from the two or more pulse wave signals and extracting the reflected wave characteristic information which includes one or more first PTTs calculated using the feature points of different pulse wave signals of the two or more pulse wave signals and one or more second PTTs calculated using the feature points of a same pulse wave signal of the two or more pulse wave signals.

    [0031] When a result is output by applying the extracted reflected wave characteristic information to the second estimation model, the second biometric information may be obtained based on the output result and the first biometric information.

    [0032] The method may further include: receiving personal information input by the user, the personal information including one or more of height, weight, sex, age, and a health condition of the user; and generating an estimation model for estimating the biometric information based on the received personal information.

    [0033] The method may further include: obtaining vascular resistance information based on waveforms of the two or more pulse wave signals; and calibrating the biometric information based on the vascular resistance information to correct an error in the biometric information.

    [0034] The method may further include: receiving reference biometric information from an external apparatus; and calibrating the biometric information based on the received reference biometric information.

    [0035] The calibrating the biometric information may include calibrating at least one of a value of the biometric information, two or more pulse transit times (PTTs) calculated using the ECG signal and the two or more pulse wave signals, and an estimation model for estimating the biometric information.

    [0036] The reference biometric information may include at least one of a cuff blood pressure estimated by a cuff-type blood pressure estimating apparatus included in the external apparatus and cuff pressure information.

    [0037] According to an aspect of another exemplary embodiment, there is provided an apparatus for obtaining blood pressure information including: a plurality of sensors configured to detect an electrocardiogram (ECG) signal of a user and detect a plurality of photoplethysmography (PPG) signals at different measurement sites of the user, the plurality of PPG signals including a first PPG signal and a second PPG signal; and a processor configured to determine a first differential pulse transit time (DPTT) between the ECG signal and the first PPG signal, a second DPTT between the ECG signal and the second PPG signal, and a third DPTT between the first PPG signal and the second PPG signal, and determine a blood pressure level of the user based on the first DPTT, the second DPTT, and the third DPTT.

    [0038] The processor may be further configured to receive information of physical characteristics of the user, set a maximum level and a minimum level for the blood pressure level to be determined, and determine the blood pressure level based on the first DPTT, the second DPTT, the third DPTT, and the physical characteristics of the user.

    [0039] The physical characteristics may include one or more of height, weight, sex and age of the user.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0040] The above and/or other aspects will be more apparent by describing certain exemplary embodiments, with reference to the accompanying drawings, in which:

    FIGS. 1A and 1B are diagrams illustrating the configuration of an apparatus for estimating biometric information according to an exemplary embodiment of the present invention.

    FIG. 2 is a block diagram illustrating an apparatus for estimating biometric information according to an exemplary embodiment.

    FIG. 3 is a block diagram illustrating a sensor of the apparatus for estimating biometric information according to an exemplary embodiment.

    FIG. 4 is a block diagram illustrating a processor of the apparatus for estimating biometric information according to an exemplary embodiment.

    FIGS. 5A and 5B are diagrams for describing an example of biometric information estimation by the processor of FIG. 4.

    FIG. 6 is a block diagram illustrating a processor of an apparatus for measuring biometric information according to another exemplary embodiment.

    FIG. 7 is a block diagram illustrating a processor of an apparatus for estimation biometric information according to still another exemplary embodiment.

    FIG. 8 is a diagram for describing an example in which the processor of FIG. 7 calibrates biometric information.

    FIG. 9 is a block diagram illustrating an apparatus for estimating biometric information according to another exemplary embodiment.

    FIG. 10 is a block diagram illustrating a configuration of a processor according to the exemplary embodiment of FIG. 9.

    FIG. 11 is a diagram for describing an example in which the apparatus of FIG. 9 calibrates biometric information.

    FIG. 12 is a flowchart illustrating a method of estimating biometric information according to an exemplary embodiment.

    FIG. 13 is a flowchart illustrating one embodiment of estimation of biometric information in the method of FIG. 12.

    FIG. 14 is a flowchart illustrating a method of estimating biometric information according to another exemplary embodiment.

    FIG. 15 is a flowchart illustrating a method of estimating biometric information according to still another exemplary embodiment.


    DETAILED DESCRIPTION



    [0041] Exemplary embodiments are described in greater detail below with reference to the accompanying drawings.

    [0042] In the following description, like drawing reference numerals are used for like elements, even in different drawings. The matters defined in the description, such as detailed construction and elements, are provided to assist in a comprehensive understanding of the exemplary embodiments. However, it is apparent that the exemplary embodiments can be practiced without those specifically defined matters. In the following description, a detailed description of known functions and configurations incorporated herein will be omitted when it may obscure the subject matter with unnecessary detail.

    [0043] It will be understood that, although the terms first, second, etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. Also, the singular forms are intended to include the plural forms as well, unless the context clearly indicates otherwise. In the specification, unless explicitly described to the contrary, the words "comprise" and "includes" and their variations such as "comprises," "comprising," "includes," and "including," will be understood to imply the inclusion of stated elements but not the exclusion of any other elements. Terms such as "... unit" and "module" denote units that process at least one function or operation, and they may be implemented by using hardware, software, or a combination of hardware and software.

    [0044] FIGS. 1A and 1B are diagrams illustrating the configuration of an apparatus for estimating biometric information according to an exemplary embodiment.

    [0045] The apparatus 1 for estimating biometric information may be a wearable device which can be worn on a user's body part. In addition, the form of the apparatus may not be particularly limited and may be manufactured in various types, such as a wristwatch type, a bracelet type, a ring type, a glass-type, a hairband type, and the like. However, as shown in FIGS. 1A and 1B, the apparatus 1 will be described as having a wristwatch-type for convenience of description.

    [0046] Referring to FIGS. 1A and 1B, the apparatus 1 for estimating biometric information includes a main body 100 and a strap 150 connected to the main body 100 and formed to be flexible to wrap around a user's wrist.

    [0047] Various modules for performing various functions for estimating biometric information may be mounted in the main body 100. For example, the main body 100 may include a sensor module configured to measure bio-signals at a plurality of measurement sites O1 and O2 and a processing module configured to estimate biometric signal based on the measured biometric signals.

    [0048] From the biometrical signals, the apparatus 1 may acquire biometric information such as blood pressure information including a diastolic blood pressure and a systolic blood pressure. However, the biometric information is not limited to blood pressure information and may include a vascular age, a degree of arterial stiffness, an aortic pressure waveform, a stress index, a degree of fatigue, and the like. In addition, the biometric signals measured at a plurality of sites O1 and O2 of a subject by the sensor module may include an electrocardiogram (ECG) signal, a photoplethysmography (PPG) signal (hereinafter, will be referred to as a "pulse wave signal"), etc.

    [0049] For example, at least a part of the sensor module may be disposed at position S1 of a lower part 110 of the main body 100. Thus, when the user wears the apparatus 1, the lower part 110 of the main body 100 comes into contact with the upper part of the user's wrist (i.e., the back of the user's hand)including a first measurement site O1 so that the sensor module measures a biometric signal at the first measurement site O1 (e.g., an upper part O1 of the wrist through which venous blood or capillary blood passes). In addition, at least a part of the sensor module may be disposed at a specific position S2 of the upper part 120 of the main body 100 so as to measure a biometric signal at a second measurement site O2 (e.g., a finger O2 of the hand on which the apparatus 1 is not worn).

    [0050] In addition, a display module 140 may be mounted in the upper part 120 of the main body 100 so as to display the biometric signal measured by the sensor module or a processing result of the processing module. In this case, the display module 140 may be implemented to allow touch input, in addition to displaying processing result, so that the display module 140 can interact with the user. In addition, a communication module to be connected to an external device using a wired or wireless connection technology to transmit and receive various data necessary for biometric information estimation may be included. However, the embodiment is not limited to the above modules, and various modules for performing various functions may be included.

    [0051] In addition, although the sensor module is described as being mounted in the main body 100, the position of the sensor module is not limited thereto, and at least a part of the sensor module may be placed at the strap 150 so as to acquire a biometric signal at a measurement site at which the radial artery passes. For example, the sensor module for acquiring a biometric signal at the first measurement site may be disposed on one surface of the strap 150 which is in contact with the first measurement site at which the radial artery passes, and the sensor module for acquiring a biometric signal at the second measurement site may be disposed on the other surface of the strap 150 which is in contact with a finger of the other hand that is the second measurement site. Alternatively, the sensor module for acquiring a biometric signal at the first measurement site may be mounted in the strap 150, and the sensor module for acquiring a biometric signal at the second measurement site may be mounted in the upper part 120 of the main body 100.

    [0052] FIG. 2 is a block diagram illustrating an apparatus for estimating biometric information according to an exemplary embodiment. FIG. 3 is a block diagram illustrating a sensor of the apparatus for estimating biometric information according to an exemplary embodiment. The apparatus 200 for estimating biometric information according to the present exemplary embodiment may be one exemplary embodiment of the apparatus 1 illustrated in FIGS. 1A and 1B.

    [0053] Referring to FIGS. 1A, 1B, and 2, the apparatus for estimating biometric information includes a sensor 210, a processor 220, and a display 230.

    [0054] The sensor 210 may include one or more sensors to acquirer biometric signals from a plurality of measurement sites of a user. The sensor 210 may be mounted in the main body 100 or the strap 150. Hereinafter, for convenience of description, the sensor 210 will be described as being mounted in the main body 100. The sensor 210 may include an ECG sensor 310 and a pulse wave sensor 320 to measure pulse wave signals at two or more measurement sites.

    [0055] For example, the ECG sensor 310 may include a first electrode 311 and a second electrode 312. The first electrode 311 may be disposed at a specific position S1 on the lower part 110 of the main body 100 such that the first electrode 311 is in contact with a first measurement site O1 when the lower part 110 of the main body 100 is in close contact with a subject to be measured. In addition, the second electrode 312 may be disposed at a specific position S2 on the upper part 120 of the main body 100 which is in contact with a second measurement site O2 of the subject to be measured. In this case, the first electrode 311 may be a positive (+) electrode and the second electrode 312 may be a negative (-) electrode.

    [0056] The pulse wave sensor 320 may include two or more pulse wave sensors to measure two or more pulse wave signals of the user. For example, referring to FIG. 3, the pulse wave sensor 320 may include a first pulse wave sensor 321 and a second pulse wave sensor 322 to measure pulse wave signals at two sites of the subject. The first pulse wave sensor 321 may be disposed at a specific position S1 on the lower part 110 of the main body 100 which is in contact with the first measurement site O1 and may measure a pulse wave signal from the first measurement site O1. In addition, the second pulse wave sensor 322 may be disposed at a specific position S2 on the upper part 120 of the main body which is in contact with the second measurement site O2 and may measure a pulse wave signal from the second measurement site O2. In this case, the first pulse wave sensor 321 and the second pulse wave sensor 322 each may include a light source configured to emit light and a detector configured to detect light reflected back from the user.

    [0057] When the sensor 210 receives a control signal from the processor 220 and the second measurement site O2 of the user comes in contact with the specific position S2 of the upper part 120 of the main body 100, the ECG sensor 310 is operated to measure an ECG and the first pulse wave sensor 321 and the second pulse wave sensor 322 are operated to measure a first pulse wave signal and a second pulse wave signal at the first measurement site O1 and the second measurement site O2, respectively.

    [0058] The processor 220 may be included in the main body 100 and be electrically connected to the sensor 210. When a user's command or a predetermined condition is satisfied, the processor 220 may generate a control signal for controlling the sensor 210 to measure a biometric signal. In addition, the processor 220 may receive the biometric signals measured by the sensor 210, for example, the ECG, the first pulse wave signal, and the second pulse wave signal, and estimate biometric information using the received biometric signals. In this case, a separate operation unit which receives a user's command may be included in the main body 100, and if the display module has a touch input function, as described above, the user's command may be input through an interface provided by the display module.

    [0059] The display 230 may display and provide information, such as the measured biometric signals, the estimated biometric information, biometric information-related alarming or warning information, and various interface screens, to the user.

    [0060] FIG. 4 is a block diagram illustrating the processor 220 of the apparatus 200 for estimating biometric information according to an exemplary embodiment. FIGS. 5A and 5B are diagrams for describing an example of biometric information estimation by the processor of FIG. 4.

    [0061] One exemplary embodiment of a configuration of the processor 220 of the apparatus 200 for estimating biometric information will be described with reference to FIG. 4 and 5B. As shown in FIG. 4, a processor 400 includes a transit time calculator 411, a first estimator 412, a pulse wave analyzer 421, and a second estimator 422.

    [0062] When an ECG signal and two or more pulse wave signals are received from the sensor 210, the transit time calculator 411 may calculate three or more pulse transit time (PTT) using the received ECG and pulse wave signals. For example, referring to FIG. 5A, an ECG signal, a first pulse wave signal (i.e., Wrist PPG), a second signal (i.e., Finger PPG) are shown. The transit time calculator 411 may calculate a first differential pulse transit time DPTT1 using the ECG signal and the first pulse wave signal, calculate a second differential pulse transit time DPTT2 using the ECG signal and the second pulse wave signal, and calculate a third differential pulse transit time DPTT3 using the first pulse wave signal and the second pulse wave signal.

    [0063] When the transit time calculator 411 has calculated three or more differential pulse transit times (DPTTs) including DPTT1, DPTT2, and DPTT3, the first estimator 412 may estimate first biometric information BI1 by applying the three or more DPTTs to a first estimation model F1, as shown in Equation 1 below. In this case, the first estimation module F1 may be in the form of a mathematical function expression, but the first estimation module is not limited thereto, and may be in the form of a table in which three or more PTT-based values (e.g., PTTs intact, an average thereof, etc.) and values of biometric information to be estimated are mapped to each other. In this case, the first biometric information may be a blood pressure, particularly, a diastolic blood pressure.



    [0064] In general, when biometric information, such as a blood pressure, is estimated, blood pressure estimate error due to pre-ejection period (PEP) exists in estimated blood pressure information because a single PTT calculated based on an ECG and one pulse wave signal is used in estimating. However, according to the present exemplary embodiment, in addition to the ECG and one pulse wave signal, two or more different pulse wave signals are used to calculate PTTs and the PTTs are applied to the estimation of blood pressure, so that the blood pressure estimate error due to the PEP can be reduced.

    [0065] In addition, when the ECG and two or more pulse wave signals are received from the sensor 210, the pulse wave analyzer 421 may analyze degrees of impact of reflected waves on the pulse wave signals on the basis of the waveforms of the two or more pulse wave signals measured at multiple sites. For example, as shown in FIGS. 5A and 5B, the pulse wave analyzer 421 may extract feature points (e.g., inflection points of the waveform) of the waveforms of the pulse waves PW1 and PW2 and extract reflected wave characteristic information using the extracted feature points in order to analyze degrees of impact of the reflected waves RW1 and RW2 on the respective pulse wave signals PW1 and PW2. In this case, the pulse wave analyzer 421 may perform a second-order differentiation on each of the pulse wave signals PW1 and PW2, and extract a position of the pulse wave signal which corresponds to a time position corresponding to a local minimum point of the second-order differential signal as a feature point. Referring to FIG. 5B, it is seen that three feature points f11, f12, and f13 are extracted from the first wave signal PW1, and three feature points f21, f22, and f23 are extracted from the second pulse wave signal PW2.

    [0066] When the feature points are extracted from each pulse wave signal PW1 and PW2, the pulse wave analyzer 421 may extract a first PTT or a second PTT as the reflected wave characteristic information using the feature points of the different pulse wave signals or the feature points of the same pulse wave signal. For example, as shown in FIG. 5B, the pulse wave analyzer 421 may extract three first PTTs SPTT1, SPTT2, and SPTT3 using time differences between the corresponding feature points f11-f21, f12-22, and fl3-f23 between the first pulse wave signal PW1 and the second pulse wave signal PW2, and extract second PTTs PPTT1 and PPTT2 using a time difference between the feature points f11-f13 in the first pulse wave signal PW1 and a time difference between the feature points f21-f23 in the second pulse wave signal PW2.

    [0067] When the reflected wave characteristic information is extracted, the second estimator 422 may extract second biometric information by applying the extracted reflected wave characteristic information to a second estimation model. In addition, the second estimation model may be in the form of a mathematical function expression like the first estimation model, but is not limited thereto. In this case, the second estimator 422 may estimate the second biometric information BI2, as shown in the following Equation 2, by adding the first biometric information BI1, which is estimated by the first estimator 412, to a calculation result obtained by applying the reflected wave characteristic information SPTT1, SPTT2, SPTT3, PPTT1, and PPTT2 to the second estimation model. In this case, the second biometric information may be blood pressure information, particularly, systolic blood pressure information.



    [0068] In general, in the case of a systolic blood pressure, a waveform of the pulse wave signal is considerably affected by a reflected wave. Therefore, according to the present exemplary embodiment, the systolic blood pressure is measured, separately from the measurement of a diastolic blood pressure, by applying the degree of impact of the reflected wave and thereby it is possible to reduce the estimation error.

    [0069] FIG. 6 is a block diagram illustrating a processor of an apparatus for measuring biometric information according to another exemplary embodiment.

    [0070] Referring to FIG. 6, the processor 600 may include a transit time calculator 411, a first estimator 412, a pulse wave analyzer 421, a second estimator 422, and an estimation model generator 610. The transit time calculator 411, the first estimator 412, the pulse wave analyzer 421, and the second estimator 422 are described above and thus detailed descriptions thereof will be omitted.

    [0071] The estimator model generator 610 may generate or update an estimation model necessary for estimating biometric information, that is, the first estimation model and the second estimation model, which are described above, when a user's request or a predetermined condition is satisfied. The estimation model generator 610 may generate an estimation model at the time when the user registers to use the apparatus 200 for estimation biometric information for the first time. In addition, the estimation model generator 610 may generate or update the estimation model at the time point requested by the user or at a predetermined interval.

    [0072] The estimation model generator 610 may receive personal information, such as age, sex, height, weight, health condition, and the like, from the user so that the user's personal characteristics can be applied to the estimation model. The user's personal information may be used as a factor to limit a value of biometric information to be estimated in the estimation model. For example, in estimating a blood pressure, such personal information may be used to limit the range of the maximum value and the minimum value of a blood pressure.

    [0073] The estimation model generator 610 may control the sensor 210 to measure biometric signals for a predetermined time (e.g., 4 hours) at a predetermined interval (e.g., 15 minutes) in response to an estimation model generation request, and collect measured biometric signals as learning data. The estimation model generator 610 may also collect, as learning data, a value of actual biometric information estimated by an external apparatus for estimating biometric information, for example, a blood pressure measured by a cuff-type blood pressure measuring device. However, the exemplary embodiment is not limited to the above examples, and the user's various information of the user, such as a peripheral vascular resistance value, blood viscosity, a stroke volume, and the like, may be collected as learning data.

    [0074] The estimation model generator 610 may generate or update the estimation model using the collected personal information and learning data.

    [0075] FIG. 7 is a block diagram illustrating a processor of an apparatus for estimation biometric information according to still another exemplary embodiment. FIG. 8 is a diagram for describing an example in which the processor of FIG. 7 calibrates biometric information.

    [0076] Referring to FIG. 7, the processor 700 according to the present exemplary embodiment includes a transit time calculator 411, a first estimator 412, a pulse wave analyzer 421, a second estimator 422, and a calibrator 710. The transit time calculator 411, the first estimator 412, the pulse wave analyzer 421, and the second estimator 422 are described above, and hence detailed descriptions thereof will be omitted.

    [0077] The calibrator 710 may estimate additional information using two or more pulse wave signals measured by the sensor 210, and may allow the first estimator 412 and the second estimator 422 to further estimate first biometric information and second biometric information, respectively, by taking into consideration the estimated additional information. Alternatively, when a model that represents a correlation between the first and second biometric information and the additional information is established in advance, the calibrator 710 may directly calibrate the first biometric information and the second biometric information using the additional information. In this case, the additional information includes information, such as a peripheral vascular resistance value, but is not limited thereto.

    [0078] For example, the calibrator 710 may estimate the pattern of blood vessel wave propagation using the waveforms of a first pulse wave signal and a second pulse wave signal measured by the sensor 210, and may obtain information, such as a peripheral vascular resistance value, by applying the estimated propagation pattern to a vascular resistance estimation model. In this case, the vascular resistance estimation model may be generated for which a vascular resistance estimation model representing the pattern of the blood vessel wave propagation from the aorta to the radial artery and the carotid artery is fitted to the propagation patterns of the first pulse wave signal measured at a wrist and the second pulse wave signal measured at a finger.

    [0079] With reference to FIG. 8, waveform R1 indicates a waveform when that is generated when the resistance of a peripheral blood vessel of a hand is 0, and waveform R2 shows a degree of deformation of the waveform R1 that is deformed due to the resistance of the peripheral blood vessel. The waveforms R1 and R2 may be applied to the vascular resistance estimation model to estimate the peripheral vascular resistance value. For example, the calibrator 710 may assume that the waveform of the first pulse wave signal measured at the wrist is a waveform when there is no resistance (e.g., waveform R1) and the waveform of the second pulse wave signal measured at the finger is a waveform when there is a resistance (e.g., waveform R2), and apply a difference between the two waveforms (e.g., waveforms R1 and R2) to the vascular resistance estimation model to estimate the peripheral vascular resistance information.

    [0080] In this case, the first estimator 412 may estimate the first biometric information by applying the PTTs PTT1, PTT2, and PTT3 measured by the transit time calculator 411 and peripheral vascular resistance information TPR to a first estimation model F1, as shown in Equation 3.



    [0081] In the same manner, the second estimator 422 may estimate the second biometric information by applying the reflected wave characteristic information PPTT1, PPTT2, SPTT1, SPTT2, and SPTT3 measured by the pulse wave analyzer 421 and the peripheral vascular resistance information TPR to a second estimation model F2, as shown in Equation 4.



    [0082] FIG. 9 is a block diagram illustrating an apparatus for estimating biometric information according to another exemplary embodiment. FIG. 10 is a block diagram illustrating a configuration of a processor according to the embodiment of FIG. 9. FIG. 11 is a diagram for describing an example in which the apparatus of FIG. 9 calibrates biometric information. The apparatus 900 for estimating biometric information according to the present embodiment may be another exemplary embodiment of the apparatus 1 shown in FIGS. 1A and 1B.

    [0083] Referring to FIG. 9, the apparatus 900 for estimating biometric information includes a sensor 910, a processor 920, and a communicator 930. The communicator 903 may be implemented with a communication interface. The apparatus 900 according to the present exemplary embodiment may receive reference biometric information from an external apparatus for estimating biometric information and calibrate current biometric information using the received reference biometric information. The sensor 910 may include an ECG sensor and two or more pulse wave sensors, as described with reference to FIG. 3, and may measure an ECG and a pulse wave signal at two or more measurement sites. The processor 920 includes a transit time calculator 1011, a first estimator 1012, a pulse wave analyzer 1021, a second estimator 1022, an estimation model 1030, and a calibrator 1040, and estimates biometric information using biometric signals measured by the sensor 910. The sensor 910 and the processor 920 have been described in detail above and thus the following description will focus on functions that are not stated.

    [0084] The processor 920 may communicate with external apparatus 950 for estimating biometric information by controlling the communicator 930 in response to a user's calibration command. In this case, the communication technology may include, but is not limited to, a Bluetooth communication, Bluetooth low energy (BLE) communication, a near-field communication (NFC), a wireless local area network (WLAN) communication, a ZigBee communication, an infrared data association (IrDA) communication, a Wi-Fi direct

    [0085] (WFD) communication, a ultra-wideband (UWB) communication, an Ant+ communication, a Wi-Fi communication, and a mobile communication.

    [0086] When the communication connection to the external apparatus 950 for estimating biometric information is successful, the processor 920 controls the sensor 910 to measure a biometric signal of the user while the external apparatus 950 estimates the biometric information of the user. However, the exemplary embodiment is not limited to the case where the external apparatus 950 is operated at the same time.

    [0087] When the biometric signal is estimated by the sensor 910, the transit time calculator 1011 and the first estimator 1012 may estimate first biometric information and the pulse wave analyzer 1021 and the second estimator 1022 may estimate second biometric information.

    [0088] When the external apparatus 950 for estimating biometric information completes estimating the biometric information, the communicator 930 may receive the estimated biometric information as reference biometric information and forward the biometric information to the calibrator 1040.

    [0089] The calibrator 1040 may calibrate the values of biometric information estimated by the first estimator 1012 and the second estimator 1022 using the received reference biometric information. Alternatively, the calibrator 1040 may calibrate the estimation model 1030 required to estimate the biometric information. In this case, the estimation model 1030 may be stored in a storage module as a first estimation model and a second estimation model. The storage module may include at least one type of memory, such as a flash memory, a hard disk, a micro type multimedia card, and a card type memory (e.g., SD or XD memory), a random access memory (RAM), a static random access memory (SRAM), a read only memory (ROM), an electrically erasable programmable read only memory (EEPROM), a programmable read only memory (PROM), a magnetic memory, a magnetic disk, and an optical disk, but is not limited thereto.

    [0090] Alternatively, the calibrator 1040 may calibrate the PTTs calculated by the transit time calculator 1011 and the reflected wave characteristic information acquired by the pulse wave analyzer 1021. In this case, the external apparatus 950 may be a cuff-type blood pressure measuring device, and the reference biometric information may include measured blood pressure information and cuff pressure information measured at multiple sites.

    [0091] For example, referring to FIG. 11, when the user inputs a calibration command while wearing the wristwatch-type cuffless blood pressure estimating apparatus 1110, the cuffless blood pressure estimating apparatus 1110 may be connected with a cuff-type blood pressure measuring apparatus 1120 to receive blood pressure information or cuff pressure information, and calibrate information related to the blood pressure information estimated by the cuffless blood pressure estimating apparatus 110, using the received blood pressure information or cuff pressure information.

    [0092] FIG. 12 is a flowchart illustrating a method of estimating biometric information according to an exemplary embodiment. FIG. 13 is a flowchart illustrating one embodiment of estimation of biometric information in the method of FIG. 12. The method of FIG. 12 may be one embodiment of a biometric information estimation method performed by the apparatus 200 of FIG. 2. Since the operations have been described in detail above, a brief description will be made in order to minimize redundant description.

    [0093] First, the apparatus 200 for estimating biometric information obtains an ECG signal and two or more pulse wave signals from a user in operation 1210. According to one embodiment, the apparatus 200 may include an ECG sensor and two or more pulse wave sensors to measure biometric signals at a plurality of sites so that biometric information can be estimated using a plurality of biometric signals, for example, an ECG signal and pulse wave signals.

    [0094] Then, when the ECG and the two or more pulse wave signals are measured, the biometric information is estimated using the ECG signal and two or more pulse wave signals measured in operation 1220. The biometric information may be displayed to the user in operation 1230.

    [0095] One exemplary embodiment of operation 1220 of the biometric information estimation will be described in detail with reference to FIG. 13. First, three or more PTTs are calculated using the ECG signal and two or more pulse wave signals measured in operation 1311.

    [0096] Then, first biometric information is estimated by applying the calculated three or more PTTs to a first estimation model, in operation 1312. According to the present exemplary embodiment, the first biometric information, for example, a diastolic blood pressure, is estimated by taking into consideration the PTTs which have been calculated using different pulse wave signals, and thereby it is possible to reduce blood pressure estimation error due to PEP.

    [0097] In addition, when the ECG and two or more pulse wave signals are obtained in operation 1210, reflected wave characteristic information is extracted using the two or more pulse wave signals in operation 1321. For example, feature points may be extracted from a first pulse wave signal and a second pulse wave signal, a PTT may be calculated using feature points of both the first and second pulse wave signals, a PTT may be calculated using the feature points in the first pulse wave signal and the feature points in the second pulse wave signal, and the calculated PTTs may be extracted as the reflected wave characteristic information.

    [0098] Thereafter, second biometric information is estimated by applying the extracted reflected wave characteristic information to a second estimation model in operation 1322. In this case, the second biometric information may be a systolic blood pressure. The systolic blood pressure may be calculated as a value of the second biometric information by adding the value of first biometric information estimated in operation 1312 to a value obtained by applying the extracted reflected wave characteristic information to the second estimation model.

    [0099] Then, it is determined whether it is needed to calibrate the biometric information using additional information in operation 1330. In this case, whether or not the biometric information calibration is necessary may be set in advance based on various types of information, such as a required accuracy of the biometric information estimation, a battery status of the apparatus, a type of biometric information, and the like. For example, in a case where it is necessary to estimate biometric information more accurately even if a relatively long time is required to estimate the biometric information, for example, in the case of a patient having a disease, such as hypertension or hypotension, calibration in consideration of additional information, such as peripheral vascular resistance information, may be necessary.

    [0100] Then, when it is determined that the calibration is necessary, peripheral vascular resistance information is extracted by analyzing waveforms of the two or more pulse wave signals in operation 1340. Then, the first biometric information and the second biometric information are calibrated based on the extracted peripheral vascular resistance information in operation 1350.

    [0101] However, FIG. 13 illustrates that operations 1330, 1340 and 1350 are performed after operations 1312 and 1322 are completed, but the exemplary embodiment is not limited thereto. Operations 1330 and 1340 may be performed before operations 1312 and 1322. In this case, the first biometric information may be estimated based on the extracted peripheral vascular resistance information together with the PTTs in operation 1312 and the second biometric information may be estimated based on the reflected wave characteristic information in operation 1322.

    [0102] FIG. 14 is a flowchart illustrating a method of estimating biometric information according to another exemplary embodiment.

    [0103] The method of FIG. 14 may be one exemplary embodiment of a biometric information estimation method performed by the apparatus 200 to which the exemplary embodiment of the processor 600 of FIG. 6 is applied. FIG. 14 separately shows a process of generating or updating an estimation model for estimating biometric information, but the process may be performed in parallel with or before the operations described with reference to FIGS. 12 and 13.

    [0104] The apparatus 200 for estimating biometric information receives a request signal for generating or updating an estimation model from a user or determines whether to generate or update the estimation model by checking specific conditions set in advance, in operation 1410.

    [0105] Then, personal information for applying personal characteristics is received from the user in operation 1420. In this case, the personal information may be applied to an estimation model so that biometric information can be more accurately estimated in consideration of the health condition and age of the user.

    [0106] Then, biometric signals, such as an ECG and pulse wave signals, are collected as learning data by controlling a sensor for a predetermined time period in operation 1430. In this case, cuff blood pressure information measured by a cuff-type blood pressure measuring device may be additionally collected as learning data. However, the present exemplary embodiment is not limited to the above-described information, and various types of additional information, such as peripheral vascular resistance information, blood viscosity, a stroke volume, and the like, may be collected as learning data.

    [0107] Thereafter, an estimation model is generated or updated using the personal information and the learning data in operation 1440.

    [0108] FIG. 15 is a flowchart illustrating a method of estimating biometric information according to still another exemplary embodiment.

    [0109] The method of FIG. 15 is one exemplary embodiment of a biometric information calibration method performed by the apparatus 900 for estimating biometric information shown in FIG. 9.

    [0110] First, the apparatus 900 receives, from a user, a request for calibration using an external apparatus for estimating biometric information in operation 1510.

    [0111] Then, the apparatus 900 is connected to the external apparatus via wired or wireless communication in operation 1520, and receives reference biometric information measured when the external apparatus completes the measurement in operation 1530. In this case, the external apparatus may be a cuff-type blood pressure measuring apparatus, and the reference biometric information may include a blood pressure and cuff pressure information.

    [0112] Also, when the communication connection with the external apparatus is completed, the apparatus 900 obtains an ECG signal and pulse wave signals by controlling a sensor in operation 1540. At this time, the sensor may obtain two or more pulse wave signals from two measurement sites, e.g., a wrist and a finger.

    [0113] Then, biometric information is estimated on the basis of the ECG signal and two or more pulse wave signals measured in operation 1560. As described above, first biometric information (e.g., a diastolic blood pressure) may be estimated by calculating PTTs using the ECG signal and two or more pulse wave signals, and second biometric information

    [0114] (e.g., a systolic blood pressure) may be estimated using reflected wave characteristics of the two or more pulse wave signals.

    [0115] Then, the first biometric information and the second biometric information, which are estimated on the basis of the reference biometric information received from the external apparatus, are calibrated in operation 1560. In FIG. 5, operation 1560 is described as being performed after operation 1550, but this is merely an example. An estimation model may be calibrated using the reference biometric information before operation 1550 or the biometric information may be estimated in operation 1550 after the PTTs or the reflected wave characteristic information is calibrated.

    [0116] While not restricted thereto, an exemplary embodiment can be implemented as computer readable codes in a computer readable record medium. The computer-readable recording medium is any data storage device that can store data that can be thereafter read by a computer system. The computer readable record medium includes all types of record media in which computer readable data are stored. Examples of the computer readable record medium include a read-only memory (ROM), a random-access memory (RAM), a compact disk ROM (CD-ROM), a magnetic tape, a floppy disk, and an optical data storage. Further, the record medium may be implemented in the form of a carrier wave such as Internet transmission. In addition, the computer readable record medium may be distributed to computer systems over a network, in which computer readable codes may be stored and executed in a distributed manner. Also, an exemplary embodiment may be written as a computer program transmitted over a computer-readable transmission medium, such as a carrier wave, and received and implemented in general-use or special-purpose digital computers that execute the programs. Moreover, it is understood that in exemplary embodiments, one or more units of the above-described apparatuses and devices can include circuitry, a processor, a microprocessor, etc., and may execute a computer program stored in a computer-readable medium.

    [0117] The foregoing exemplary embodiments are merely exemplary and are not to be construed as limiting. The present teaching can be readily applied to other types of apparatuses. Also, the description of the exemplary embodiments is intended to be illustrative, and not to limit the scope of the claims, and many alternatives, modifications, and variations will be apparent to those skilled in the art.


    Claims

    1. An apparatus (200) for estimating biometric information comprising:

    a sensor (210) comprising an electrocardiogram, ECG, sensor configured to measure an ECG signal of a user and a pulse wave sensor configured to measure two or more pulse wave signals at two or more different measurement sites (O1, O2) of the user, the two or more pulse wave signals comprising a first photoplethysmography, PPG, signal and a second PPG signal; and

    a processor (220) configured to receive the ECG signal and the two or more pulse wave signals from the sensor, to determine a first differential pulse transit time, DPTT, between the ECG signal and the first PPG signal, a second DPTT between the ECG signal and the second PPG signal, and a third DPTT between the first PPG signal and the second PPG signal, and to determine a first biometric information of the user by applying the first DPTT, the second DPTT, and the third DPTT to a first estimation model.


     
    2. The apparatus (200) of claim 1, further comprising:

    a main body (100); and

    a strap (150) connected to the main body and formed to be flexible to wrap around at least one of the two or more measurement sites,

    wherein the sensor is mounted in the main body or the strap.


     
    3. The apparatus (200) of claim 1 or 2, wherein the two or more measurement sites of the user comprise a first measurement site and a second measurement site of the user,
    the ECG sensor comprises a first electrode (311) disposed at a first position of the apparatus to be in contact with the first measurement site of the user and a second electrode (312) disposed at a second position of the apparatus to be in contact with the second measurement site of the user.
     
    4. The apparatus (200) of claim 3, wherein the pulse wave sensor comprises:

    a first pulse wave sensor (321) configured to emit light to the first measurement site, detect the light returning from the first measurement site, and obtain a first pulse wave signal from the light detected by the first pulse wave sensor; and

    a second pulse wave sensor (322) configured to emit light to the second measurement site, detect the light returning from the second measurement site, and obtain a second pulse wave signal from the light detected by the second pulse wave sensor.


     
    5. The apparatus (200) of one of claims 1 to 4, further comprising a display (230) configured to output the biometric information of the user according to a control signal of the processor (220).
     
    6. The apparatus (200) of one of claims 1 to 5, wherein the processor (220) comprises a transit time calculator (411) configured to determine at least three pulse transit times, PTTs, based on the received ECG and two or more pulse wave signals, and a first estimator (412) configured to apply the three or more PTTs to said first estimation model to obtain the first biometric information,
    wherein the processor comprises a pulse wave analyzer (421) configured to extract, from waveforms of the two or more pulse wave signals, reflected wave characteristic information indicating an impact of reflected waves of the two or more pulse wave signals on a change in waveform of the two or more pulse wave signals, and a second estimator (422) configured to apply the extracted reflected wave characteristic information to a second estimation model to obtain second biometric information.
     
    7. The apparatus (200) of claim 6, wherein the pulse wave analyzer is further configured to extract feature points (f11, f12, f13, f21, f22, f23) from the two or more pulse wave signals, and extract the reflected wave characteristic information which comprises one or more first PTTs calculated using the feature points of different pulse wave signals of the two or more pulse wave signals and one or more second PTTs calculated using the feature points of a same pulse wave signal of the two or more pulse wave signals, or
    wherein when a result is output by applying the extracted reflected wave characteristic information to the second estimation model, the second estimator is further configured to obtain the second biometric information based on the output result and the first biometric information, wherein the first biometric information is a diastolic blood pressure and the second biometric information is a systolic blood pressure.
     
    8. The apparatus (200) of one of claims 1 to 5, wherein the processor (220) is further configured to generate an estimation model for estimating the biometric information based on personal information input by the user, and the personal information comprises one or more of height, weight, sex, age, and a health condition of the user.
     
    9. The apparatus (200) of one of claims 1 to 8, wherein the processor (220) comprises a calibrator configured to obtain vascular resistance information based on waveforms of the two or more pulse wave signals and calibrate the biometric information based on the vascular resistance information.
     
    10. The apparatus (200) of one of claims 1 to 9, further comprising:

    a communication interface configured to receive reference biometric information from an external apparatus;

    wherein the processor (220) comprises a calibrator configured to calibrate the biometric information based on the reference biometric information.


     
    11. The apparatus (200) of claim 10, wherein the processor (220) is further configured to obtain the biometric information while the external apparatus obtains the reference biometric information of the user.
     
    12. The apparatus (200) of claim 10, wherein the calibrator is further configured to calibrate at least one of a value of the biometric information, two or more pulse transit times, PTTs, calculated using the ECG signal and the two or more pulse wave signals, and an estimation model for estimating the biometric information.
     
    13. The apparatus (200) of claim 10, wherein the external apparatus comprises a cuff-type blood pressure estimating apparatus and the reference biometric information comprises at least one of a cuff blood pressure estimated by the cuff-type blood pressure estimating apparatus and cuff pressure information.
     
    14. A method of obtaining blood pressure information, the method comprising:

    detecting, by a plurality of sensors (210), an electrocardiogram, ECG, signal of a user and detecting a plurality of photoplethysmography, PPG, signals at different measurement sites (O1, O2) of the user, the plurality of PPG signals comprising a first PPG signal and a second PPG signal; and

    determining, by a processor (220), a first differential pulse transit time, DPTT, between the ECG signal and the first PPG signal, a second DPTT between the ECG signal and the second PPG signal, and a third DPTT between the first PPG signal and the second PPG signal, and determining a biometric information of the user by applying the first DPTT, the second DPTT, and the third DPTT to an estimation model.


     
    15. The method of claim 14 further comprising receiving, by the processor (220), information of physical characteristics of the user, setting, by the processor, a maximum level and a minimum level for the biometric information to be determined, wherein the biometric information is a blood pressure level of the user, and determining, by the processor, the blood pressure level based on the first DPTT, the second DPTT, the third DPTT, and the physical characteristics of the user.
     


    Ansprüche

    1. Vorrichtung (200) zur Abschätzung biometrischer Information, mit:

    einem Sensor (210) mit einem Elektrokardiogramm-, ECG-, Sensor, der ausgebildet ist, ein ECG-Signal eines Benutzers zu messen, und mit einem Pulssignalsensor, der ausgebildet ist, zwei oder mehr Pulssignale an zwei oder mehr unterschiedlichen Messstellen (O1, O2) des Benutzers zu messen, wobei die zwei oder mehr Pulssignale ein erstes Photoplethysmographie-, PPG-, Signal und ein zweites PPG-Signal umfassen; und

    einem Prozessor (220), der ausgebildet ist, das ECG-Signal und die zwei oder mehr Pulssignale aus dem Sensor zu empfangen, eine erste Differenzpulslaufzeit, DPTT, zwischen dem ECG-Signal und dem ersten PPG-Signal zu ermitteln, ein zweites DPTT zwischen dem ECG-Signal und dem zweiten PPG-Signal zu ermitteln, und ein drittes DPTT zwischen dem ersten PPG-Signal und dem zweiten PPG-Signal zu ermitteln, und eine erste biometrische Information des Benutzers durch Anwenden der ersten DPTT, der zweiten DPTT und der dritten DPTT auf ein erstes Schätzmodell zu ermitteln.


     
    2. Vorrichtung (200) nach Anspruch 1, die ferner aufweist:

    einen Hauptkörper (100); und

    einen Riemen (150), der mit dem Hauptkörper verbunden und flexibel ausgebildet ist, um mindestens um eine der zwei oder mehr Messstellen herumgeführt zu werden,

    wobei der Sensor in dem Hauptkörper oder dem Riemen angeordnet ist.


     
    3. Vorrichtung (200) nach Anspruch 1 oder 2, wobei die zwei oder mehr Messstellen des Benutzers eine erste Messstelle und eine zweite Messstelle des Benutzers beinhalten,
    der ECG-Sensor eine erste Elektrode (311), die an einer ersten Position der Vorrichtung zur Kontaktierung der ersten Messstelle des Benutzers angeordnet ist, und eine zweite Elektrode (312) aufweist, die an einer zweiten Position der Vorrichtung zur Kontaktierung der zweiten Messstelle des Benutzers angeordnet ist.
     
    4. Vorrichtung (200) nach Anspruch 3, wobei der Pulssignalsensor aufweist:

    einen ersten Pulssignalsensor (321), der ausgebildet ist, Licht zu der ersten Messstelle zu senden, das von der ersten Messstelle zurückkehrende Licht zu erfassen und ein erstes Pulssignal aus dem von dem ersten Pulssignalsensor erfassten Licht zu erhalten; und

    einen zweiten Pulssignalsensor (322), der ausgebildet ist, Licht zu der zweiten Messstelle zu senden, das von der zweiten Messstelle zurückkehrende Licht zu erfassen und ein zweites Pulssignal aus dem von dem zweiten Pulssignalsensor erfassten Licht zu erhalten.


     
    5. Vorrichtung (200) nach einem der Ansprüche 1 bis 4, die ferner eine Anzeige (230) aufweist, die ausgebildet ist, die biometrische Information des Benutzers entsprechend einem Steuersignal des Prozessors (220) auszugeben.
     
    6. Vorrichtung (200) nach einem der Ansprüche 1 bis 5, wobei der Prozessor (220) eine Laufzeitberechnungseinheit (411) aufweist, die ausgebildet ist, mindestens drei Pulssignallaufzeiten, PTTs, auf der Grundlage des empfangenen ECG und zweier oder mehrerer Pulssignale zu ermitteln, und ferner eine erste Schätzeinheit (412) aufweist, die ausgebildet ist, die drei oder mehr PTTs auf das erste Schätzmodell anzuwenden, um die erste biometrische Information zu erhalten,
    wobei der Prozessor eine Pulssignalauswerteeinheit (421) aufweist, die ausgebildet ist, aus Signalen der zwei oder mehr Pulssignale charakteristische Information reflektierter Signale, die einen Einfluss reflektierter Signale der zwei oder mehr Pulssignale auf eine Änderung der Signalform der zwei oder mehr Pulssignale angibt, und ferner eine zweite Schätzeinheit (422) aufweist, die ausgebildet ist, die extrahierte charakteristische Information reflektierter Signale auf ein zweites Schätzmodell anzuwenden, um eine zweite biometrische Information zu erhalten.
     
    7. Vorrichtung (200) nach Anspruch 6, wobei die Pulssignalauswerteeinheit ferner ausgebildet ist, Eigenschaftspunkte (f11, f12, f13, f21, f22, f23) aus den zwei oder mehr Pulssignalen zu extrahieren, und die charakteristische Information reflektierter Signale zu extrahieren, die eine oder mehrere erste PTTs enthält, die unter Anwendung der Eigenschaftspunkte unterschiedlicher Pulssignale der zwei oder mehr Pulssignale berechnet sind, und eine oder mehrere zweite PTTs enthält, die unter Anwendung der Eigenschaftspunkte eines gleichen Pulssignals der zwei oder mehr Pulssignale berechnet sind, oder
    wobei, wenn ein Ergebnis ausgegeben wird durch Anwenden der extrahierten charakteristischen Information reflektierter Signale an das zweite Schätzmodell die zweite Schätzeinheit ferner ausgebildet ist, die zweite biometrische Information auf der Grundlage des ausgegebenen Ergebnisses und der ersten biometrischen Information zu erhalten, wobei die erste biometrische Information ein diastolischer Blutdruck und die zweite biometrische Information ein systolischer Blutdruck ist.
     
    8. Vorrichtung (200) nach einem der Ansprüche 1 bis 5, wobei der Prozessor (220) ferner ausgebildet ist, ein Schätzmodell zum Abschätzen der biometrischen Information auf der Grundlage persönlicher Informationen, die von dem Benutzer eingegeben werden, zu erzeugen, und wobei die persönliche Informationen die Größe und/oder das Gewicht und/oder das Geschlecht und/oder das Alter und/oder den Gesundheitszustand des Benutzers umfassen.
     
    9. Vorrichtung (200) nach einem der Ansprüche 1 bis 8, wobei der Prozessor (220) eine Kalibriereinheit aufweist, die ausgebildet ist, Information über den vaskulären Widerstand auf der Grundlage von Signalen der zwei oder mehr Pulssignale zu erhalten und die biometrische Information auf der Grundlage der Information über den vaskulären Widerstand zu kalibrieren.
     
    10. Vorrichtung (200) nach einem der Ansprüche 1 bis 9, die ferner aufweist:

    eine Kommunikationsschnittstelle, die ausgebildet ist, biometrische Referenzinformation aus einer externen Vorrichtung zu empfangen;

    wobei der Prozessor (220) eine Kalibriereinheit aufweist, die ausgebildet ist, die biometrische Information auf der Grundlage der biometrischen Referenzinformation zu kalibrieren.


     
    11. Vorrichtung (200) nach Anspruch 10, wobei der Prozessor (220) ferner ausgebildet ist, die biometrische Information zu erhalten, während die externe Vorrichtung die biometrische Referenzinformation des Benutzers erhält.
     
    12. Vorrichtung (200) nach Anspruch 10, wobei die Kalibriereinheit ferner ausgebildet ist, einen Wert der biometrischen Information und/oder zwei oder mehr Pulssignallaufzeiten, PTTs, die unter Anwendung des ECG-Signals und der zwei oder mehr Pulssignale berechnet sind, und/oder ein Schätzmodell zum Abschätzen der biometrischen Information zu kalibrieren.
     
    13. Vorrichtung (200) nach Anspruch 10, wobei die externe Vorrichtung eine Blutdruckschätzeinrichtung mit Manschette aufweist und die biometrische Referenzinformation einen manschettenermittelten Blutdruck, der durch die Blutdruckschätzvorrichtung mit Manschette abgeschätzt ist, und/oder eine Information über den Manschettendruck umfasst.
     
    14. Verfahren zum Erhalten einer Blutdruckinformation, wobei das Verfahren umfasst:

    Erfassen, durch mehrere Sensoren (210), eines Elektrokardiogramm-, ECG-, Signals eines Benutzers und Erfassen mehrerer Photoplethysmographie-, PPG-, Signale an unterschiedlichen Messstellen (O1, O2) des Benutzers, wobei die mehreren PPG-Signale ein erstes PPG-Signal und ein zweites PPG-Signal umfassen; und

    Ermitteln, durch einen Prozessor (220), einer ersten Differenzpulssignallaufzeit, DPTT, zwischen dem ECG-Signal und dem ersten PPG-Signal, einer zweiten DPTT zwischen dem ECG-Signal und dem zweiten PPG-Signal und einer dritten DPTT zwischen dem ersten PPG-Signal und dem zweiten PPG-Signal, und Ermitteln einer biometrischen Information des Benutzers durch Anwenden der ersten DPTT, der zweiten DPTT und der dritten DPTT auf ein Schätzmodell.


     
    15. Verfahren nach Anspruch 14, das ferner umfasst: Empfangen, durch den Prozessor (220), von Information über physische Eigenschaften des Benutzers, Festlegen, durch den Prozessor, eines maximalen Pegels und eines minimalen Pegels für die zu bestimmende biometrische Information, wobei die biometrische Information ein Blutdruckpegel des Benutzers ist, und Ermitteln, durch den Prozessor, des Blutdruckpegels auf der Grundlage der ersten DPTT, der zweiten DPTT, der dritten DPTT und der physischen Eigenschaften des Benutzers.
     


    Revendications

    1. Appareil (200) pour estimer des informations biométriques comprenant :

    un capteur (210) comprenant un capteur d'électrocardiogramme, ECG, configuré pour mesurer un signal ECG d'un utilisateur et un capteur d'ondes d'impulsion configuré pour mesurer deux ou plusieurs signaux d'onde d'impulsion à deux ou plusieurs sites de mesure différents (O1, O2) de l'utilisateur, les deux ou plusieurs signaux d'onde d'impulsion comprenant un premier signal de photopléthysmographie, PPG, et un deuxième signal PPG ; et

    un processeur (220) configuré pour recevoir le signal ECG et les deux ou plusieurs signaux d'onde d'impulsion du capteur, afin de déterminer un temps de transit de la première impulsion différentielle, DPTT, entre le signal ECG et le premier signal PPG, un second DPTT entre le signal ECG et le second signal PPG, et un troisième DPTT entre le premier signal PPG et le deuxième signal PPG, et pour déterminer des premières informations biométriques de l'utilisateur en appliquant le premier DPTT, le deuxième DPTT et le troisième DPTT à un premier modèle d'estimation.


     
    2. Appareil selon la revendication 1, comprenant en outre :

    un corps principal (100) ; et

    une sangle (150) reliée au corps principal et formée pour être flexible afin de s'enrouler autour d'au moins un des deux ou plusieurs sites de mesure,

    dans lequel le capteur est monté dans le corps principal ou la sangle.


     
    3. Appareil (200) selon la revendication 1 ou 2, dans lequel les deux ou plusieurs sites de mesure de l'utilisateur comprennent un premier site de mesure et un second site de mesure de l'utilisateur,
    le capteur ECG comprend une première électrode (311) disposée au niveau d'une première position de l'appareil en contact avec le premier site de mesure de l'utilisateur et une deuxième électrode (312) disposée au niveau d'une deuxième position de l'appareil en contact avec le second site de mesure de l'utilisateur.
     
    4. Appareil (200) selon la revendication 3, dans lequel le capteur d'ondes d'impulsion comprend :

    un premier capteur d'ondes d'impulsion (321) configuré pour émettre de la lumière vers le premier site de mesure, détecter la lumière revenant du premier site de mesure et obtenir un premier signal d'ondes d'impulsion à partir de la lumière détectée par le premier capteur d'ondes d'impulsion ; et

    un second capteur d'onde d'impulsion (322) configuré pour émettre de la lumière vers le second site de mesure, détecter la lumière revenant du deuxième site de mesure et obtenir un second signal d'ondes d'impulsion de la lumière détectée par le deuxième capteur d'ondes d'impulsion.


     
    5. Appareil (200) selon l'une des revendications 1 à 4, comprenant en outre un affichage (230) configuré pour la sortie des informations biométriques de l'utilisateur selon un signal de commande du processeur (220).
     
    6. Appareil (200) selon l'une des revendications 1 à 5, dans lequel le processeur (220) comprend un calculateur de temps de transit (411) configuré pour déterminer au moins trois temps de transit d'impulsions, PTT, basé sur l'ECG reçu et deux signaux d'onde d'impulsion ou plus, et un premier estimateur (412) configuré pour appliquer les trois PTT ou plus audit premier modèle d'estimation afin d'obtenir les premières informations biométriques,
    dans lequel le processeur comprend un analyseur d'ondes d'impulsion (421) configuré pour extraire, à partir des formes d'onde des deux signaux d'ondes d'impulsion ou plus, des informations caractéristiques des ondes réfléchies indiquant un impact d'ondes réfléchies des deux signaux d'onde d'impulsion ou plus sur un changement de forme d'onde des deux signaux d'onde d'impulsion ou plus, et un deuxième estimateur (422) configuré pour appliquer les informations caractéristiques d'onde réfléchie extraite à un deuxième modèle d'estimation afin d'obtenir des deuxièmes informations biométriques.
     
    7. Appareil (200) selon la revendication 6, dans lequel l'analyseur d'ondes d'impulsions est en outre configuré pour extraire des points caractéristiques (F11, F12, F13, F21, F22, f23) des deux signaux d'onde d'impulsion ou plus, Et extraire les informations caractéristiques de l'onde réfléchie qui comprennent un ou plusieurs premiers PTT calculés à l'aide des points caractéristiques de différents signaux d'onde d'impulsion des deux ou plusieurs signaux d'onde d'impulsion et d'un ou plusieurs deuxièmes PTT calculés à l'aide des points caractéristiques d'un même signal d'onde d'impulsion des deux signaux d'onde d'impulsion, ou
    dans lequel, lorsqu'un résultat est produit en appliquant les informations caractéristiques d'ondes réfléchies extraites au deuxième modèle d'estimation, le deuxième estimateur est configuré en outre pour obtenir les secondes informations biométriques basées sur le résultat de sortie et des premières informations biométriques, dans lequel les premières informations biométriques sont une pression artérielle diastolique et les deuxièmes informations biométriques sont une pression artérielle systolique.
     
    8. Appareil (200) selon l'une des revendications 1 à 5, dans lequel le processeur (220) est configuré en outre pour générer un modèle d'estimation pour estimer les informations biométriques basées sur des informations personnelles saisies par l'utilisateur, et les informations personnelles comprennent l'un ou plusieurs parmi une taille, un poids, un sexe, un âge, et un état de santé de l'utilisateur.
     
    9. Appareil (200) selon l'une des revendications 1 à 8, dans lequel le processeur (220) comprend un étalonneur configuré pour obtenir des informations sur la résistance vasculaire basées sur les formes d'onde des deux signaux d'onde d'impulsion ou plus et pour étalonner les informations biométriques basées sur les informations sur la résistance vasculaire.
     
    10. Appareil selon l'une des revendications 1 à 9, comprenant en outre :

    une interface de communication configurée pour recevoir des informations biométriques de référence provenant d'un appareil externe ;

    dans lequel le processeur (220) comprend un étalonneur configuré pour étalonner les informations biométriques basées sur les informations biométriques de référence.


     
    11. Appareil (200) selon la revendication 10, dans lequel le processeur (220) est configuré en outre pour obtenir les informations biométriques tandis que l'appareil externe obtient les informations biométriques de référence de l'utilisateur.
     
    12. Appareil (200) selon la revendication 10, dans lequel l'étalonneur est configuré en outre pour étalonner au moins une des valeurs des informations biométriques, deux temps de transit d'impulsions ou plus, PTT, calculés à l'aide du signal ECG et des deux signaux d'ondes d'impulsions ou plus, et un modèle d'estimation des informations biométriques.
     
    13. Appareil (200) selon la revendication 10, dans lequel l'appareil externe comprend un appareil d'estimation de la pression artérielle de type brassard et les informations biométriques de référence comprennent au moins l'un parmi une pression artérielle au brassard estimée par l'appareil d'estimation de pression artérielle de type brassard et des informations relatives à la pression au brassard.
     
    14. Procédé d'obtention d'informations sur la pression artérielle, le procédé comprenant :

    la détection, par une pluralité de capteurs (210), d'un électrocardiogramme, ECG, d'un signal d'un utilisateur et la détection d'une pluralité de signaux de photopléthysmographie, PPG, à différents sites de mesure (O1, O2) de l'utilisateur, la pluralité de signaux PPG comprenant un premier signal PPG et un second signal PPG ; et

    la détermination, par un processeur (220), d'un temps de transit de la première impulsion différentielle, DPTT, entre le signal ECG et le premier signal PPG, d'un second DPTT entre le signal ECG et le second signal PPG, et d'un troisième DPTT entre le premier signal PPG et le second signal PPG, et la détermination d'informations biométriques de l'utilisateur en appliquant le premier DPTT, le deuxième DPTT et le troisième DPTT à un modèle d'estimation.


     
    15. Procédé selon la revendication 14 comprenant en outre la réception, par le processeur (220), d'informations sur des caractéristiques physiques de l'utilisateur, le réglage, par le processeur, d'un niveau maximal et d'un niveau minimal pour les informations biométriques à déterminer, dans lequel les informations biométriques sont un niveau de pression artérielle de l'utilisateur, et la détermination, par le processeur, du niveau de pression artérielle basé sur le premier DPTT, le second DPTT, le troisième DPTT et les caractéristiques physiques de l'utilisateur.
     




    Drawing
























































    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description