(19)
(11)EP 3 309 432 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
17.06.2020 Bulletin 2020/25

(21)Application number: 16791961.2

(22)Date of filing:  07.04.2016
(51)International Patent Classification (IPC): 
F16K 11/00(2006.01)
F25B 41/04(2006.01)
F16K 11/07(2006.01)
(86)International application number:
PCT/CN2016/078690
(87)International publication number:
WO 2016/180111 (17.11.2016 Gazette  2016/46)

(54)

REVERSING VALVE AND COOLING SYSTEM HAVING SAME

UMKEHRVENTIL UND KÜHLSYSTEM DAMIT

SOUPAPE D'INVERSION ET SYSTÈME DE REFROIDISSEMENT DOTÉ DE CELLE-CI


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 14.05.2015 CN 201510250159
27.11.2015 CN 201510893338

(43)Date of publication of application:
18.04.2018 Bulletin 2018/16

(73)Proprietor: Zhejiang Sanhua Climate and Appliance Controls Group Co. Ltd.
Shaoxing, Zhejiang 312500 (CN)

(72)Inventors:
  • HUANG, Songyan
    Shaoxing Zhejiang 312500 (CN)
  • WANG, Qingyong
    Shaoxing Zhejiang 312500 (CN)

(74)Representative: Barker Brettell LLP 
100 Hagley Road Edgbaston
Birmingham B16 8QQ
Birmingham B16 8QQ (GB)


(56)References cited: : 
EP-A2- 0 840 018
CN-A- 104 180 020
CN-A- 104 214 369
JP-A- H08 170 865
US-A- 3 867 960
CN-A- 1 181 474
CN-A- 104 180 020
GB-A- 966 836
JP-A- 2000 046 213
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    Technical Field



    [0001] The present invention relates to the field of valves, in particular to a reversing valve and a refrigerating system with the same.

    Background



    [0002] A reversing valve applied to a refrigerating system is mainly composed of a pilot valve and a main valve. In the process of control, reversing of the main valve is realized by means of the pilot valve to switch a circulation direction of a cooling medium, in such a manner, a heat pump refrigerating system can switch between a cooling working state and a heating working state, thus achieving the intention of one machine two uses, namely cooling in summer and heating in winter.

    [0003] Fig. 1 is a structure diagram of a typical reversing valve applied to a refrigerating system. As shown in Fig. 1, the reversing valve comprises a main valve 100 and a pilot valve 200. A sliding valve core 104 of the main valve 100 is set in a valve chamber 107, and the sliding valve core 104 relatively slides abutting against a valve seat 105. A connecting pipe 106c, a connecting pipe 106s and a connecting pipe 106e are welded on the valve seat 105 and communicated with the valve chamber 107; a connecting pipe 106d is welded on the valve body and communicated with the valve chamber 107.

    [0004] The connecting pipe 106d is communicated with a vent port of a compressor 110, the connecting pipe 106s is communicated with a suction port of the compressor 110, the connecting pipe 106e is communicated with an indoor heat exchanger 140, and the connecting pipe 106c is communicated with an outdoor heat exchanger 120. A piston component 101 in the main valve 100 drives the valve core to slide relative to the valve seat 105, in such a manner, switching between the cooling working state and the heating working state is realized. When the system needs to switch to the cooling working state, a connecting rod 103 drives the sliding valve core 104 to slide to the left side, the piston component 101 at the left end abuts against an end cap of the left end, the connecting pipe 106e is communicated with the connecting pipe 106s, and the connecting pipe 106d is communicated with the connecting pipe 106c; at this point, a flow path of refrigerant in the system is: the compressor 110→the connecting pipe 106d→the connecting pipe 106c→the outdoor heat exchanger 120→a throttling element 130→the indoor heat exchanger 140→the connecting pipe 106e→the connecting pipe 106s→the compressor 110. When the system needs to switch to the heating working state, the sliding valve core 104 slides to the right side, the piston component 101 at the right end abuts against the end cap of the right end, the connecting pipe 106c is communicated with the connecting pipe 106s, and the connecting pipe 106d is connected with the connecting pipe 106e; at this point, the flow path of refrigerant is: the compressor 110→the connecting pipe 106d→the connecting pipe 106e>the indoor heat exchanger 140→the throttling element 130→ the outdoor heat exchanger 120→the connecting pipe 106c→the connecting pipe 106s→the compressor 110.

    [0005] In the refrigerating system adopting the prior art, the working process of the whole system is: the compressor 110→the connecting pipe 106d→the connecting pipe 106c→the outdoor heat exchanger 120→the throttling element 130→the indoor heat exchanger 140→ the connecting pipe 106e→the connecting pipe 106s→the compressor 110. The above process is a working cycle, and the existing air conditioner will repeat the working cycle in practical work.

    [0006] In the refrigerating system adopting the prior art, a high pressure medium at an outlet end of the compressor enters the valve chamber 107 through the connecting pipe 106d, and forms a channel through the connecting pipe 106e or the connecting pipe 106e, so the valve chamber 107 serves as a part of a refrigerant switching channel; in the valve chamber 107, the sliding valve core 104 abuts against the valve seat 105 through an elastic flake; in the switching process of the system, the pressure in the valve chamber 107 is in an unstable state, which influences the sliding valve core 104 to abut against the valve seat 105, and then causes the instability of reversing. So, how to improve the structure of the reversing valve and adjust the flow layout of the refrigerating system to optimize design is the problem to be solved by the skilled in the art.

    [0007] Moreover, it can be seen from the above working process that there is only one connecting pipe is matched with the vent port of the compressor in the reversing valve, so the refrigerating system that the reversing valve can adapt contains little variety, namely only the refrigerating system having one indoor heat exchanger and one outdoor heat exchanger. After the refrigerating system is changed, for example, it is changed to having one indoor heat exchanger and two outdoor heat exchangers, the reversing valve cannot adapt.

    [0008] JP2000046213A discloses a reversing valve with five valve ports according to the preamble of claim 1. This document shows a flow path switching valve capable of controlling a large number of flow paths without increasing the number of control valves, and having the degree of freedom in the fitting angle of a connection pipe. This flow path switching valve is provided with a body connected with six pipes, a slide part slidable in the body provided with a pair of disk-like valves to be brought into slidable contact with an inner surface of the body, a slide member to connect the valves, and a flow path switching slide valve to be fitted to the slide member and switch the communication condition of each pipe, a valve seat on which a valve mouth to be communicated with each pipe is formed, and the flow path switching slide valve slides along the surface of the valve seat, equalizing pipes to be respectively communicated with spaces on both sides of the slide part and a low-pressure pipe, and a pilot valve to control the communication condition of each equalizing pipe. The surface of the valve seat is recessed, and the dimension in the circumferential direction of an outer opening of the valve mouth is set to be larger than the dimension in the axial direction.

    [0009] US3867960A discloses a five-way reversing valve. The five-way reversing valve is of the type whereby the flowing directions of two pressurized fluids can be changed at the same time and in which the valve function is performed by utilizing the pressure difference between the two pressurized fluids. According to the present invention, the flows of pressurized fluids are changed by combined operations of elastic pressing means in the form of a coil spring or its equivalent and valve adjusting means having a valve opening and closing function. Thus, there is provided according to the present invention an improved valve device which is extremely low in cost and operates surely with high reliability.

    Summary



    [0010] According to the present invention the above objective is solved by the features of claim 1. The present invention is mainly intended to provide a reversing valve and a refrigerating system with the same, for solving the problem in the prior art that the pressure of high pressure fluid in a valve chamber of a reversing valve is unstable in the switching process or the problem that a reversing cannot adapt to other types of refrigerating systems.

    [0011] To this end, according to an aspect of the present invention, a reversing valve is provided, which comprises a pilot valve and a main valve; the main valve comprises: a valve body with a valve chamber, wherein the valve chamber is provided with a valve seat therein, and the valve seat is provided with a plurality of valve ports thereon; a plurality of flow path ports are correspondingly communicated with the plurality of valve ports; a sliding valve core is matched with the valve seat; and a drive component driving the sliding valve core to selectively open or close the valve ports; the plurality of valve ports comprise a first valve port, a second valve port, a third valve port, a fourth valve port, and a fifth valve port; the plurality of flow path ports comprise an S port which is communicated with the first valve port, an E port is communicated with the second valve port, a C port is communicated with the third valve port, a D1 port is communicated with the fourth valve port and a D2 port is communicated with the fifth valve port; when the sliding valve core slides to a first preset position, the D1 port is communicated with the E port, and the S port is communicated with the C port; when the sliding valve core slides to a second preset position, the D2 port is communicated with the C port, and the S port is communicated with the E port.

    [0012] Furthermore, when the sliding valve core is at the first preset position, the D2 port is hermetically communicated with the valve chamber; when the sliding valve core is at the second preset position, the D1 port is hermetically communicated with the valve chamber.

    [0013] Furthermore, the sliding valve core is separately provided with a first channel and a second channel thereon; when the sliding valve core is at the first preset position, the D1 port and the E port are communicated through the first channel, and the S port and the C port are communicated through the second channel; when the valve core is at the second preset position, the D2 port and the C port are communicated through the second channel, and the S port and the E port are communicated through the first channel.

    [0014] Furthermore, the reversing valve further comprises a spring pressing flake pressing the sliding valve core against the valve seat; the spring pressing flake is provided with first elastic pressing units which are symmetrically arranged at two sides of the length direction of the spring pressing flake; the sliding valve core is an integrated structure, and there are first pressing slots are matched with the first elastic pressing units at two sides of the length direction of the sliding valve core.

    [0015] Furthermore, the spring pressing flake is further provided with a second elastic pressing unit which is arranged along the width direction of the spring pressing flake; there is also a second pressing slot is matched with the second elastic pressing unit at the width direction of the approximately central part of the sliding valve core.

    [0016] Furthermore, the reversing valve further comprises the spring pressing flake pressing the sliding valve core against the valve seat, wherein the sliding valve core comprises a first valve core provided with the first channel and a second valve core provided with the second channel; the spring pressing flake comprises a first spring pressing flake is matched with the first valve core and a second spring pressing flake is matched with the second valve core.

    [0017] Furthermore, the valve chamber is isolated from the first channel and the second channel hermetically.

    [0018] Furthermore, the sliding valve core comprises a first valve core unit and a second valve core unit which are set at interval and move synchronously; the first valve core unit is matched with the first valve port, the second valve port and the third valve port; the second valve core unit is matched with the fourth valve port and the fifth valve port; when the sliding valve core is at the first preset position, the first valve port and the third valve port are communicated through an internal channel of the first valve core unit, the second valve port and the fourth valve port are communicated through the valve chamber, and the second valve core unit blocks the fifth valve port; when the sliding valve core is at the second preset position, the first valve port and the second valve port are communicated through the internal channel in the first valve core unit, the third valve port and the fifth valve port are communicated through the valve chamber, and the second valve core unit blocks the fourth valve port.

    [0019] Furthermore, the drive component comprises a connecting rod; the first valve core unit and the second valve core unit are installed on the connecting rod; the connecting rod is provided with a first installing hole for installing the first valve core unit and a second installing hole for installing the second valve core unit.

    [0020] Furthermore, the second valve core unit has a valve core body and a connecting unit; the radial dimension of the connecting unit is less than the radial dimension of the valve core body.

    [0021] Furthermore, a pressure spring is set between the connecting rod and the second valve core unit.

    [0022] Furthermore, a surface, facing the valve seat, of the second valve core unit has a recess.

    [0023] Furthermore, the valve chamber is cylinder-shaped; the first valve port, the second valve port, the third valve port, the fourth valve port and the fifth valve port are set at one side of the valve chamber, and are linearly distributed in the axis direction of the valve chamber.

    [0024] According to another aspect of the present invention, a refrigerating system is provided, which comprises: a compressor, a first heat exchanger, a second heat exchanger, and a throttle valve the throttle valve makes the first heat exchanger communicating with the second heat exchanger; the refrigerating system further comprises an auxiliary heat exchanger and the reversing valve; an inlet end of the compressor is communicated with the first valve port of the reversing valve; an outlet end of the compressor is communicated with the fourth valve port and the fifth valve port of the reversing valve respectively; the first heat exchanger is communicated with the third valve port of the reversing valve; the second heat exchanger is communicated with the second valve port of the reversing valve; the auxiliary heat exchanger is set between the outlet end of the compressor and the fourth valve port or between the outlet end of the compressor and the fifth valve port.

    [0025] According to the reversing valve and the refrigerating system using the reversing valve disclosed in the present invention, two independent output pipes of the compressor are set, one of which is used as a part of cooling flow path, and the other is directly communicated with the valve chamber, and the valve chamber does not serve as a part of the cooling flow path; in such a manner, in the switching process of the refrigerating system, the valve chamber can keep the stability of pressure, and the reliability of reversing of the refrigerating system is improved greatly.

    [0026] By using the technical solution of the present invention, the sliding valve core is set in the valve chamber, and the sliding valve core comprises the first valve core unit and the second valve core unit which are set at interval and move synchronously; the first valve core unit is matched with the first valve port, the second valve port and the third valve port; the second valve core unit is matched with the fourth valve port and the fifth valve port. When the reversing valve works, the sliding valve core has to working positions, namely the first preset position and the second preset position. When the sliding valve core is at the first preset position, the first valve port and the third valve port are communicated through the internal channel in the first valve core unit, the second valve port and the fourth valve port are communicated through the valve chamber, and the second valve core unit blocks the fifth valve port; when the sliding valve core is at the second preset position, the first valve port and the second valve port are communicated through the internal channel in the first valve core unit, the third valve port and the fifth valve port are communicated through the valve chamber, and the second valve core unit blocks the fourth valve port. In the technical solution of the application, it is possible to make both the fourth valve port and the fifth valve port are communicated with the vent port of the compressor, so that the reversing valve can adapt to other types of refrigerating systems, and the application scope is expanded.

    [0027] The technical solution of the reversing valve and the refrigerating system using the reversing valve provided in the present invention is advantaged in that: by using the setting of two independent output pipes of the compressor, whether the reversing valve is at the first preset position or the second preset position, the valve chamber keeps stable and sealed high pressure fluid therein, thus enabling the sliding valve core to effectively press against the valve seat, avoiding a fluid interference phenomenon, and ensuring stationarity of reversing of the refrigerating system and working reliability.

    [0028] The reversing valve and the refrigerating system using the reversing valve provided in the present invention is further advantaged in that: by using the setting of two independent output pipes of the compressor, an auxiliary heat exchanger can be serially connected on one of the two output pipes, so when an air conditioning system works, high-temperature and high-pressure gas output from the outlet of the compressor goes through the auxiliary heat exchanger and releases heat. The heat released from the gas can be used for heating other substances, which can further save energy and reduce emission, thus achieving the effect of saving energy and reducing emission.

    Brief Description of the Drawings



    [0029] The accompanying drawings constituting a part of the application are used for providing a deeper understanding of the present invention; schematic embodiments of the present invention and description thereof are used for illustrating the present invention and not intended to form an improper limit to the present invention. In the accompanying drawings:

    Fig. 1 is a structure diagram of a reversing valve used in a refrigerating system according to the prior art;

    Fig. 2 is a structure diagram of embodiment 1 of a reversing valve used in a refrigerating system according to the present invention;

    Fig. 3 is a partial structure diagram of a valve body and a valve seat of the reversing valve in Fig. 2;

    Fig. 4a is a front view of the structure of a sliding valve core of the reversing valve in Fig. 2;

    Fig. 4b is a top view of the structure of a sliding valve core of the reversing valve in Fig. 2;

    Fig. 5a is a front view of the structure of a spring pressing flake of the reversing valve in Fig. 2;

    Fig. 5b is a bottom view of the structure of a spring pressing flake of the reversing valve in Fig. 2;

    Fig. 6 is a structure diagram of embodiment 2 of a reversing valve according to the present invention;

    Fig. 7 is a longitudinal section structure diagram of a second valve core unit of the reversing valve in Fig. 6;

    Fig. 8 is a top view of the second valve core unit in Fig. 7;

    Fig. 9 is a length direction section structure diagram of a valve body of the reversing valve in Fig. 6;

    Fig. 10 is a side view of the valve body in Fig. 9;

    Fig. 11 is a length direction section structure diagram of a valve seat of the reversing valve in Fig. 6;

    Fig. 12 is a side view of the valve seat in Fig. 11;

    Fig. 13 is a length direction section structure diagram of a connecting rod of the reversing valve in Fig. 6;

    Fig. 14 is a side view of the connecting rod in Fig. 13;

    Fig. 15 is a length direction section structure diagram of a pressure spring of the reversing valve in Fig. 6; and

    Fig. 16 is a side view of the pressure spring in Fig. 15.



    [0030] Signs in Fig. 2 to Fig. 5b are explained as follows:
    1000 represents a reversing valve; 1100 represents a main valve; 1200 represents a pilot valve; 10 represents a valve body; 11 represents an end cap; 20 represents a valve chamber; 30 represents a valve seat; 40 represents a valve port; 41 represents a first valve port; 42 represents a second valve port; 43 represents a third valve port; 44 represents a fourth valve port; 45 represents a fifth valve port; 50 represents a flow path port; S represents an S port; E represents an E port; C represents a C port; D1 represents a D1 port; D2 represents a D2 port; 60 represents a sliding valve core; 61 represents a first channel; 62 represents a second channel; 63 represents a first pressing slot; 64 represents a second pressing slot; 70 represents a drive component; 71 represents a connecting rod; 72 represents a piston; 80 represents a spring pressing flake; 81 represents an opening; 82 represents a first elastic pressing unit; 83 represents a second elastic pressing unit; 1 represents a compressor; 2 represents a throttle valve; 3 represents a first heat exchanger; 4 represents a second heat exchanger; and 6 represents an auxiliary heat exchanger.

    [0031] Signs in Fig. 6 to Fig. 16 are explained as follows:
    1 represents a compressor; 2 represents a throttle valve; 3 represents a first heat exchanger; 4 represents a second heat exchanger; 6 represents an auxiliary heat exchanger; 20 represents a valve body; 30 represents a valve seat; 31 represents a third valve port; 32 represents a first valve port; 33 represents a second valve port; 34 represents a fifth valve port; 35 represents a fourth valve port; 41 represents a first valve core unit; 42 represents a second valve core unit; 421 represents a valve core body; 422 represents a connecting unit; 51 represents a C port; 52 represents an S port; 53 represents an E port; 54 represents a D2 port; 55 represents a D1 port; 60 represents a connecting rod; 61 represents a first installing hole; 62 represents a second installing hole; and 70 represents a pressure spring.

    Detailed Description of the Embodiments



    [0032] Note that, the embodiments of the present invention and the characteristics in the embodiments can be combined under the condition of no conflicts. The present invention is elaborated below with reference to the accompanying drawings and embodiment.

    [0033] The accompanying drawings Fig. 2 to Fig. 5b show a structure diagram of embodiment 1 of a reversing valve used in a refrigerating system according to the present invention.

    [0034] As shown in Fig. 2, the reversing valve 1000 of embodiment 1 comprises a main valve 1100 and a pilot valve 1200. A valve chamber 20 of the main valve 1100 is cylinder-shaped and formed by respectively welding an end cap 11 at two ends of a metal-tube-shaped valve body 10. The valve chamber 20 is provided with a drive component 70 therein, and the drive component 70 is composed of a connecting rod 71 and two pistons 72 fixed at two ends of the connecting rod 71. The two pistons 72 separate the valve chamber 20 of the valve body 10 into a main chamber and left or right chambers. A valve seat 30 is welded on the valve body 10, and a sliding valve core 60 relatively slides pressing against the valve seat 30. There are a plurality of valve ports 40 set on the valve seat 30, and the plurality of valve ports comprise a fourth valve port 44, a second valve port 42, a first valve port 41, a third valve port 43 and a fifth valve port 45 in sequence. There are a plurality of ports welded on the valve seat 30 as flow path ports, and the flow path ports comprise a D1 port, an E port, an S port, a C port and a D2 port which are communicated with the fourth valve port 44, the second valve port 42, the first valve port 41, the third valve port 43 and the fifth valve port 45 respectively.

    [0035] On the configuration of the refrigerating system, the D1 port and the D2 port are communicated with a vent port of the compressor 1 (in the present embodiment, the D2 port is communicated with the vent port of the compressor 1 through an auxiliary heat exchanger 6), the S port is communicated with a suction port of the compressor 1; the E port is communicated with a first heat exchanger 3, and the C port is communicated with a second heat exchanger 4. The sliding valve core 60 is separately provided with a first channel 61 and a second channel 62 thereon; the sliding valve core 60 presses against the valve seat 30 to isolate and seal the first channel 61 and the second channel 62 from the valve chamber 20.

    [0036] When the system switches to a working state (a first preset position) as shown in Fig. 2, a flow path of refrigerant in the system is: a high pressure fluid medium compressed by the compressor→the D1 port→the first channel 61→the E port→the first heat exchanger 3→the throttle valve 2→the second heat exchanger 4→the C port→the second channel 62→the S port→the inlet port of the compressor 1; at the same time, the other high pressure fluid medium compressed by the compressor→the auxiliary heat exchanger 6→the D1 port→the valve chamber 20.

    [0037] When the system needs to switch to the working state (a second preset position), the reversing of capillary pressure of the pilot valve 1200 switches the pressure difference of the left and right chambers of the valve chamber 20, and the drive component 70 drives the sliding valve core 60 to slide to the right side (not shown in the figures), at this point, the flow path of refrigerant in the system is: the high pressure fluid medium compressed by the compressor→the D2 port→the second channel 62→the C port→the second heat exchanger 4→the throttle valve 2→the first heat exchanger 3→the E port→the first channel 61→the S port→the compressor 1; at the same time, the other high pressure fluid medium compressed by the compressor→the D1 port→the valve chamber 20.

    [0038] It can be seen from the above path of fluid medium that whether the reversing valve is at the first preset position or the second preset position, the valve chamber 20 has stable and sealed high pressure fluid, thus enabling the sliding valve core 60 to press against the valve seat 30 in coordination with the pressure of the pressing flake, avoiding a fluid interference phenomenon in the reversing process, and ensuring stationarity of reversing of the refrigerating system and working reliability.

    [0039] Furthermore, because two independent output pipes D1 and D2 of the compressor are set, and the auxiliary heat exchanger 6 is serially connected on one output pipe, when working, the refrigerating system can be set at the first preset position or the second preset position (usually in a cooling environment). The high-temperature and high-pressure gas output from the outlet of the compressor goes through the auxiliary heat exchanger and releases heat. The heat released from the gas can be used for heating other substances, which can further save energy and reduce emission, thus achieving the effect of saving energy and reducing emission.

    [0040] Fig. 3 is a partial structure diagram of a valve body and a valve seat of the reversing valve in Fig. 2; Fig. 4a and Fig. 4b are a front view and a top view of the structure of a sliding valve core of the reversing valve in Fig. 2; and Fig. 5a and Fig. 5b are a front view and a bottom view of the structure of a spring pressing flake of the reversing valve in Fig. 2.

    [0041] As shown in Fig. 3, Fig. 4a, Fig. 4b, Fig. 5a and Fig. 5b, in the present embodiment, the five valve ports (the first valve port 41, the second valve port 42, the third valve port 43, the fourth valve port 44 and the fifth valve port 45) on the valve seat 30 are set at one side of the valve chamber 20 and linearly arranged in the axis direction of the valve chamber 20. The D1 port, the E port, the S port, the C port and the D2 port are directly welded on the valve seat 30, and are communicated with the five valve ports respectively. So the five ports can be welded with the valve seat 30 and the valve body 10 once, it is convenient for the switching of the sliding valve core 60, and the processing technology is convenient.

    [0042] In the present embodiment, as a preferred embodiment, the sliding valve core 60 adopts an integrated structure, as shown in Fig. 4a to Fig. 5b; the sliding valve core 60 is provided with two bowl-shaped structures in the axis of the length direction as the first channel 61 and the second channel 62. At the side contrary to the bowl-shaped structures, there are first slots 63 at two sides in the axis of the length direction; and there are second slots 64 between the first channel 61 and the second channel 62 in the width direction at the approximately central part of the sliding valve core 60.

    [0043] A spring pressing flake 80 is usually made of elastic metal, for example, a stainless steel flake. The spring pressing flake 80 is approximately of rectangular structure, and is set between the connecting rod 71 of the drive component 70 and the sliding valve core 60; there are two openings 81 set in parallel in the length direction of the spring pressing flake, and the two openings 81 correspond to the bowl-shaped structures of the sliding valve core 60, which is convenient to clamp the sliding valve core 60 with the spring pressing flake 80.

    [0044] There are first elastic pressing units 82 set at two sides in the axis of the length direction of the spring pressing flake 80, and the first elastic pressing units 82 press the first pressing slots 63 of the sliding valve core 60. There is a second elastic pressing unit 83 set between the two openings 81 on the spring pressing flake 80, and the elastic pressing unit 83 presses the second pressing slot 64 of the sliding valve core 60. Such a matching way can enable the sliding valve core 60 to press against the valve seat 30 reliably.

    [0045] Certainly, the ordinary skilled in the art can also make some extensions on the basis of the above embodiment; for example, on the configuration of the refrigerating system, the D1 port and the D2 port are directly communicated with the vent port of the compressor 1; for another example, the sliding valve core adopts a separate structure, comprising a first valve core and a second valve core which have the same structure, and the first valve core and the second valve core respectively press through an independent spring. The above solution can also solve the problem to be solved by the present invention, which will not be repeated here.

    [0046] Fig. 6 to Fig. 16 show a structure diagram of a reversing valve of embodiment 2.

    [0047] As shown in Fig. 6, the reversing valve of the embodiment 2 comprises the valve body 20 with the valve chamber and the sliding valve core; wherein the valve chamber is provided with the valve seat 30 therein, and the valve seat 30 is provided with a plurality of valve ports thereon; the plurality of valve ports comprise the first valve port 32, the second valve port 33, the third valve port 31, the fourth valve port 35, and the fifth valve port 34. The third valve port 31, the first valve port 32, the second valve port 33, the fifth valve port 34 and the fourth valve port 35 are arranged in sequence along the axis direction of the valve body 20.

    [0048] The sliding valve core is set in the valve chamber and is matched with the valve seat 30; the sliding valve core comprises a first valve core unit 41 and a second valve core unit 42 which are set at interval and move synchronously; the first valve core unit 41 is matched with the first valve port 32, the second valve port 33 and the third valve port 31; the second valve core unit 42 is matched with the fourth valve port 35 and the fifth valve port 34. Wherein, the sliding valve core has the first preset position and the second preset position; when the sliding valve core is at the first preset position (not shown in the figures), the first valve port 32 and the third valve port 31 are communicated through the internal channel of the first valve core unit 41, the second valve port 33 and the fourth valve port 35 are communicated through the valve chamber, and the second valve core unit 42 blocks the fifth valve port 34; when the sliding valve core is at the second preset position (shown in Fig. 6), the first valve port 32 and the second valve port 33 are communicated through the internal channel in the first valve core unit 41, the third valve port 31 and the fifth valve port 34 are communicated through the valve chamber, and the second valve core unit 42 blocks the fourth valve port 35.

    [0049] By using the technical solution of the present invention, the sliding valve core is set in the valve chamber, and the sliding valve core comprises the first valve core unit 41 and the second valve core unit 42 which are set at interval and move synchronously, and each valve core unit is matched with the corresponding valve port on the valve seat 30. When the reversing valve works, the sliding valve core has two working positions. When the sliding valve core is at the first preset position, the first valve port 32 and the third valve port 31 are communicated through the internal channel of the first valve core unit 41, the second valve port 33 and the fourth valve port 35 are communicated through the valve chamber, and the second valve core unit 42 blocks the fifth valve port 34. When the sliding valve core is at the second preset position, the first valve port 32 and the second valve port 33 are communicated through the internal channel in the first valve core unit 41, the third valve port 31 and the fifth valve port 34 are communicated through the valve chamber, and the second valve core unit 42 blocks the fourth valve port 35. In the technical solution of the present invention, it is possible to make both the fourth valve port and the fifth valve port are communicated with the vent port of the compressor, so that the reversing valve can adapt to other types of refrigerating systems, and the application scope is expanded.

    [0050] Preferably, as shown in Fig. 9 and Fig. 10, the valve body 20 adopts a metal tube material, on which five holes are processed at the same circumferential position by punching, lathing, drilling and other techniques according to designed axial gap.

    [0051] Preferably, as shown in Fig. 11 and Fig. 12, the valve seat 30 adopts a drawn or rolled D-shaped metal bar (or replaced with a semi-finished product obtained by casting, forging or other techniques), on which five stepped holes are processed at the same circumferential position by lathing, drilling and other techniques according to designed axial gap. The moving plane between the valve seat 30 and the sliding valve core can adopt different processing technologies and flows according to the different materials of the valve seat 30. Specifically, if the valve seat 30 adopts brass, the moving plane is broached after being welded with other parts; if the valve seat 30 adopts stainless steel, the moving plane is ground before being welded, namely in a part state. By processing the moving plane between the valve seat 30 and the sliding valve core, dynamic sealing between the valve seat 30 and the sliding valve core is ensured, and then frictional resistance between the valve seat 30 and the sliding valve core is reduced.

    [0052] Preferably, as shown in Fig. 7 and Fig. 8, the sliding valve core is made of high polymer materials like nylon or PPS, and adopts the techniques like injection molding or processing by a bar turning machine. The moving plane between the sliding valve core and the valve seat 30 needs to be processed by cutting, so as to ensure its flatness and surface roughness, ensure the dynamic sealing, and reduce the frictional resistance between the valve seat 30 and the sliding valve core.

    [0053] As shown in Fig. 6, Fig. 9 and Fig. 10, in the present embodiment, the third valve port 31, the first valve port 32, the second valve port 33, the fifth valve port 34 and the fourth valve port 35 are set at one side of the valve chamber and linearly arranged in the axis direction of the valve chamber. The above setting enables the sliding valve core to realize the switching between the first preset position and the second preset position by only moving along the axis direction of the valve chamber. The above structure is simple in structure, space-saving, and easy to be realized.

    [0054] As shown in Fig. 6, in the present embodiment, the reversing valve further comprises a drive component for driving the sliding valve core to move. The above setting enables the sliding valve core to switch between the first preset position and the second preset position.

    [0055] As shown in Fig. 6, Fig. 13 and Fig. 14, in the present embodiment, the drive component comprises the connecting rod 60, on which the first valve core unit 41 and the second valve core unit 42 are installed. The above structure makes the drive component drive the connecting rod 60 to move in the axis direction of the valve chamber, so that the first valve core unit 41 and the second valve core unit 42 can move in the axis direction of the valve chamber. Preferably, the connecting rod 60 is provided with a first installing hole 61 for installing the first valve core unit 41 and a second installing hole 62 for installing the second valve core unit 42 thereon, and the first valve core unit 41 and the second valve core unit 42 are freely embedded, through its own structural step, in the first installing hole and the second installing hole of the connecting rod 60. The above installation mode makes a certain matching gap exist between the first valve core unit and the second valve core unit and the connecting rod, and the gap can enable both the first valve core unit 41 and the second valve core unit 42 to keep joint sealing with the valve seat 30. Note that, the connecting rod 60 is made of panel veneer and formed by blanking.

    [0056] As shown in Fig. 7 and Fig. 8, in the present embodiment, the second valve core unit 42 has a valve core body 421 and a connecting unit 422, and the radial dimension of the connecting unit 422 is less than that of the valve core body 421. The connecting unit 422 is used for matching the second installing hole 62; and the size makes it easy to realize compression.

    [0057] As shown in Fig. 15 and Fig. 16, in the present embodiment, a pressure spring 70 is set between the connecting rod 60 and the second valve core unit 42. Because the pressure difference between the two sides of the second valve core unit 42 is very small, for ensuring its sealing performance, a disc-shaped leaf spring is added between the second valve core unit 42 and the connecting rod 60, so that the second valve core unit 42 can cling to the valve seat 30 to keep tight. Preferably, the spring is made of panel veneer and formed by blanking; for preventing a sharp edge from damaging the second valve core unit 42 and enabling the second valve core unit 42 and the connecting rod 60 to contact and fit better, the upper and under the spring are provided with edge folds.

    [0058] In the embodiment 2, a surface, facing the valve seat 30, of the second valve core unit 42 has a recess. The above structure reduces a contact area between the second valve core unit 42 and the valve seat 30, so that the moving frictional resistance of the second valve core unit 42 is reduced.

    [0059] As shown in Fig. 6, in the present embodiment, the reversing valve further comprises: a plurality of flow path ports correspondingly are communicated with the plurality of valve ports; the plurality of flow path ports comprise the C port 51 is communicated with the third valve port 31, the S port 52 is communicated with the first valve port 32, the E port 53 is communicated with the second valve port 33, the D2 port 54 is communicated with the fifth valve port 34 and the D1 port 55 is communicated with the fourth valve port 35. Each of above ports is matched with its corresponding valve ports, so as to enable the connecting pipes are matched with the reversing valve to be connected to the ports, thus facilitating the connecting pipes.

    [0060] Preferably, the valve chamber, the valve seat 30 and the flow path ports are first assembled with other needed parts, and then welded as a body by adopting a welding technology (flaming welding or brazing through a tunnel kiln).

    [0061] The application also provides a refrigerating system; as shown in Fig. 6, the embodiment of the refrigerating system according to the application comprises a compressor 1, a first heat exchanger 3, a second heat exchanger 4, a throttle valve 2 is commuicated with the first heat exchanger 3 with the second heat exchanger 4, and a reversing valve. The reversing valve is that mentioned above; an inlet end of the compressor 1 is communicated with the first valve port 32 of the reversing valve; an outlet end of the compressor 1 is communicated with the fourth valve port 35 and the fifth valve port 34 of the reversing valve respectively; the first heat exchanger 3 is communicated with the third valve port 31 of the reversing valve; the second heat exchanger 4 is communicated with the second valve port 33 of the reversing valve.

    [0062] The specific working process of the refrigerating system is elaborated blow by taking that the first heat exchanger 3 is an outdoor heat exchanger, and the second heat exchanger 4 is an indoor heat exchanger for example:
    When the refrigerating system runs, as shown in Fig. 6, the reversing valve is at the second preset position, the E port 53 and the S port 52 are communicated, the D2 port 54 and the C port 51 are communicated, and the D1 port 55 is shielded by the second valve core unit 42 to close. The refrigerant in the system flows according to a full line path in the figure. Specifically, the gas output from the compressor 1 enters the valve chamber from the D2 port 54, then is output from the C port 51 communicated with the D2 port 54, and goes through the first heat exchanger 3, the throttle valve 2 and the second heat exchanger 4 in sequence; the refrigerant output from the second heat exchanger 4 enters the E port 53, then is output from the S port 52 communicated with the E port 53, and finally returns to the compressor 1. The above working process is a working cycle of the refrigerating system.

    [0063] As shown in Fig. 6, in the present embodiment, the refrigerating system further comprises an auxiliary heat exchanger 6, and the auxiliary heat exchanger 6 can be set between the outlet end of the compressor 1 and the fifth valve port 34. The above structure makes the high-temperature and the high-pressure gas output from the compressor 1 first go through the auxiliary heat exchanger 6 to perform heat exchange; the refrigerant output from the auxiliary heat exchanger 6 enters the valve chamber from the D2 port 54, then is output from the C port 51 communicated with the D2 port 54, and go through the first heat exchanger 3, the throttle valve 2 and the second heat exchanger 4 in sequence; the refrigerant output from the second heat exchanger 4 enters the E port 53, then is output from the S port 52 communicated with the E port 53, and finally returns to the compressor 1. The high-temperature and the high-pressure gas output from the compressor 1 goes through the auxiliary heat exchanger 6 and releases heat. The heat released from the gas can be used for heating other substances, which can further save energy and reduce emission, thus achieving the effect of saving energy and reducing emission.

    [0064] When the air conditioner needs to heat in running, an electromagnetic system functions to make the connecting rod 60 drive the first valve core unit 41 and the second valve core unit 42 to move to the first preset position (not shown in the figure), at this point, the C port 51 is communicated with the S port 52, the D1 port 55 is communicated with the E port 53, and the D2 port 54 is shielded by the second valve core unit 42 to close; the refrigerant in the system flows according to a dotted line path. Specifically, the gas output from the compressor 1 directly enters the D1 port 55 without going through the auxiliary heat exchanger 6, that is, the auxiliary heat exchanger 6 does not exchanger heat, but only functions in storing a part of refrigerant, at this point, this part of refrigerant does not participate in the cycling working. The refrigerant entering the valve chamber from the D1 port 55 is output from the E port 53, and goes through the second heat exchanger 4, the throttle valve 2, and the first heat exchanger 3 in sequence; the refrigerant output from the first heat exchanger 3 enters the C port 51, then is output from the S port 52 communicated with the C port 51, and finally returns to the compressor 1. The above working process is a working cycle of a heating system. Note that, the electromagnetic system mainly functions in moving the valve core part in the valve chamber, so as to achieve the intention of reversing the valve chamber, namely being the same as a four-way valve in the prior art.

    [0065] Certainly, when the first heat exchanger 3 is the indoor heat exchanger, the second heat exchanger 4 is the outdoor heat exchanger, the auxiliary heat exchanger 6 is set between the outlet end of the compressor 1 and the fourth valve port 35; at this point, the working principle is the same as that when the first heat exchanger 3 is the outdoor heat exchanger, the second heat exchanger 4 is the indoor heat exchanger, which will not be repeated.

    [0066] The skilled in the art should know that when the first heat exchanger 3 is the indoor heat exchanger, the second heat exchanger 4 is the outdoor heat exchanger, the cooling mode and the heating mode are just contrary to the above description. Moreover, as a feasible embodiment, the auxiliary heat exchanger 6 can also be communicated with the fourth valve port 35.


    Claims

    1. A reversing valve (1000), comprising a pilot valve (1200) and a main valve (1100); the main valve comprises:

    a valve body (10) with a valve chamber (107), wherein the valve chamber is provided with a valve seat (105) therein, and the valve seat is provided with five valve ports (40) thereon;

    five flow path ports (51-55)are correspondingly communicated with the five valve ports, characterised in that the valve chamber (107) is cylinder-shaped; the first valve port (41), the second valve port (42), the third valve port (43), the fourth valve port (44) and the fifth valve port (45) are set at one side of the valve chamber, and are linearly distributed in the axis direction of the valve chamber (107);

    a sliding valve core (104) is matched with the valve seat (105); and

    a drive component (70) driving the sliding valve core to selectively open or close the valve ports, wherein,

    the five valve ports (40) comprise a first valve port (41), a second valve port (42), a third valve port (43), a fourth valve port (44), and a fifth valve port (45); the five flow path ports (51-55) comprise an S port (52) which is communicated with the first valve port (41), an E port (53) is communicated with the second valve port (42), a C port (51) is communicated with the third valve port (43), a D1 port (55) is communicated with the fourth valve port (44) and a D2 port (54) is communicated with the fifth valve port (45);

    when the sliding valve core (104) slides to a first preset position, the D1 port (55) is communicated with the E port (53), and the S port is communicated with the C port, a medium entering through the D2 port (54) is enclosed in the valve chamber (107); when the sliding valve core (104) slides to a second preset position, the D2 port (54) is communicated with the C port, and the S port (52) is communicated with the E port, a medium entering through the D1 port (55) is enclosed in the valve chamber (107).


     
    2. The reversing valve (1000) of claim 1, wherein the sliding valve core (104) is separately provided with a first channel (61) and a second channel (62) thereon; when the sliding valve core is at the first preset position, the D1 port (55) and the E port (52) are communicated through the first channel, and the S port (52) and the C port are communicated through the second channel; when the valve core is at the second preset position, the D2 port (54) and the C port (51) are communicated through the second channel, and the S port and the E port are communicated through the first channel.
     
    3. The reversing valve (1000) of claim 2, wherein the reversing valve further comprising a spring pressing flake (80) pressing the sliding valve core (104) against the valve seat (105); the spring pressing flake is provided with first elastic pressing units (82) which are symmetrically arranged at two sides of the length direction of the spring pressing flake; the sliding valve core is an integrated structure, and there are first pressing slots (63) are matched with the first elastic pressing units (82) at two sides of the length direction of the sliding valve core.
     
    4. The reversing valve (1000) of claim 3, wherein the spring pressing flake (80) is further provided with a second elastic pressing unit (83) which is arranged along the width direction of the spring pressing flake; a second pressing slots corresponding to the second elastic pressing unit in a transverse direction between the first channel (61) and the second channel.
     
    5. The reversing valve (1000) of claim 2, wherein the reversing valve further comprising the spring pressing flake (80) pressing the sliding valve core (104) against the valve seat (105), wherein the sliding valve core comprises a first valve core provided with the first channel (61) and a second valve core provided with the second channel; the spring pressing flake comprises a first spring pressing flake is matched with the first valve core and a second spring pressing flake (80) is matched with the second valve core.
     
    6. The reversing valve (1000) of claim 2, wherein the valve chamber (107) is isolated from the first channel (61) and the second channel (62) hermetically.
     
    7. The reversing valve (1000) of claim 1, wherein the sliding valve core (104) comprises a first valve core unit (41) and a second valve core unit (42) which are set at interval and move synchronously; the first valve core unit is matched with the first valve port (41), the second valve port (42) and the third valve port (43); the second valve core unit is matched with the fourth valve port (44) and the fifth valve port (45); when the sliding valve core is at the first preset position, the first valve port and the third valve port are communicated through an internal channel of the first valve core unit (41), the second valve port (42) and the fourth valve port (44) are communicated through the valve chamber (107), and the second valve core unit blocks the fifth valve port (45); when the sliding valve core (104) is at the second preset position, the first valve port (41) and the second valve port (42) are communicated through the internal channel in the first valve core unit (41), the third valve port (43) and the fifth valve port (45) are communicated through the valve chamber, and the second valve core unit (42) blocks the fourth valve port (44).
     
    8. The reversing valve (1000) of claim 7, wherein the drive component (70) comprises a connecting rod (71); the first valve core unit (41) and the second valve core unit (42) are installed on the connecting rod; the connecting rod is provided with a first installing hole for installing the first valve core unit (41) and a second installing hole for installing the second valve core unit.
     
    9. The reversing valve (1000) of claim 8, wherein the second valve core unit (42) has a valve core body and a connecting unit; the radial dimension of the connecting unit is less than the radial dimension of the valve core body.
     
    10. The reversing valve (1000) of claim 8, wherein a pressure spring is set between the connecting rod (71) and the second valve core unit (42).
     
    11. The reversing valve (1000) of claim 7, wherein a surface, facing the valve seat (105), of the second valve core unit (42) has a recess.
     
    12. A refrigerating system, comprising: a compressor, a first heat exchanger (3), a second heat exchanger (4) and a throttle valve (2), the throttle valve makes the first heat exchanger communicating with the second heat exchanger; wherein the refrigerating system further comprises an auxiliary heat exchanger (6) and a reversing valve (1000) as claimed in any one of claims 1 to 11; an inlet end of the compressor is communicated with a first valve port (41) of the reversing valve; an outlet end of the compressor is communicated with a fourth valve port (44) and a fifth valve port (45) of the reversing valve respectively; the first heat exchanger (3) is communicated with a third valve port (43) of the reversing valve; the second heat exchanger (4) is communicated with a second valve port (42) of the reversing valve (1000); the auxiliary heat exchanger (6) is set between the outlet end of the compressor and the fourth valve port (44) or between the outlet end of the compressor and the fifth valve port (45).
     


    Ansprüche

    1. Umsteuerventil (1000), umfassend ein Vorsteuerventil (1200) und ein Hauptventil (1100); wobei das Hauptventil umfasst:

    einen Ventilkörper (10) mit einer Ventilkammer (107), wobei die Ventilkammer mit einem Ventilsitz (105) darin bereitgestellt ist und der Ventilsitz mit fünf Ventilanschlüssen (40) darauf bereitgestellt ist;

    fünf Durchflussweganschlüsse (51-55), die entsprechend mit den fünf Ventilanschlüssen kommunizierend verbunden sind, dadurch gekennzeichnet, dass

    die Ventilkammer (107) zylinderförmig ist; der erste Ventilanschluss (41), der zweite Ventilanschluss (42), der dritte Ventilanschluss (43), der vierte Ventilanschluss (44) und der fünfte Ventilanschluss (45) auf einer Seite der Ventilkammer angeordnet sind und in der Achsenrichtung der Ventilkammer (107) linear verteilt sind;

    einen Schiebeventileinsatz (104), der mit dem Ventilsitz (105) zusammenpasst; und

    eine Antriebskomponente (70), die den Schiebeventileinsatz antreibt, um die Ventilanschlüsse selektiv zu öffnen oder zu schließen, wobei

    die fünf Ventilanschlüsse (40) einen ersten Ventilanschluss (41), einen zweiten Ventilanschluss (42), einen dritten Ventilanschluss (43), einen vierten Ventilanschluss (44) und einen fünften Ventilanschluss (45) umfassen; die fünf Durchflussweganschlüsse (51-55) einen S-Anschluss (52), der mit dem ersten Ventilanschluss (41) kommunizierend verbunden ist, einen E-Anschluss (53), der mit dem zweiten Ventilanschluss (42) kommunizierend verbunden ist, einen C-Anschluss (51), der mit dem dritten Ventilanschluss (43) kommunizierend verbunden ist, einen D1-Anschluss (55), der mit dem vierten Ventilanschluss (44) kommunizierend verbunden ist, und einen D2-Anschluss (54), der mit dem fünften Ventilanschluss (45) kommunizierend verbunden ist, umfassen;

    wenn der Schiebeventileinsatz (104) in eine erste voreingestellte Position gleitet, der D1-Anschluss (55) mit dem E-Anschluss (53) kommunizierend verbunden ist und der S-Anschluss mit dem C-Anschluss kommunizierend verbunden ist, ein durch den D2-Anschluss (54) eintretendes Medium in der Ventilkammer (107) eingeschlossen wird; wenn der Schiebeventileinsatz (104) in eine zweite voreingestellte Position gleitet, der D2-Anschluss (54) mit dem C-Anschluss kommunizierend verbunden ist und der S-Anschluss (52) mit dem E-Anschluss kommunizierend verbunden ist, ein durch den D1-Anschluss (55) eintretendes Medium in der Ventilkammer (107) eingeschlossen wird.


     
    2. Umsteuerventil (1000) nach Anspruch 1, wobei der Schiebeventileinsatz (104) separat mit einem ersten Kanal (61) und einem zweiten Kanal (62) auf diesem bereitgestellt ist; wenn sich der Schiebeventileinsatz an der ersten voreingestellten Position befindet, der D1-Anschluss (55) und der E-Anschluss (52) durch den ersten Kanal kommunizierend verbunden sind und der S-Anschluss (52) und der C-Anschluss durch den zweiten Kanal kommunizierend verbunden sind; wenn sich der Ventileinsatz an der zweiten voreingestellten Position befindet, der D2-Anschluss (54) und der C-Anschluss (51) durch den zweiten Kanal kommunizierend verbunden sind und der S-Anschluss und der E-Anschluss durch den ersten Kanal kommunizierend verbunden sind.
     
    3. Umsteuerventil (1000) nach Anspruch 2, wobei das Umsteuerventil weiter ein Federdruckblättchen (80) umfasst, das den Schiebeventileinsatz (104) an den Ventilsitz (105) drückt; wobei das Federdruckblättchen mit ersten elastischen Druckeinheiten (82) bereitgestellt ist, die symmetrisch an zwei Seiten der Längsrichtung des Federdruckblättchens angeordnet sind; wobei der Schiebeventileinsatz eine integrierte Struktur ist und erste Druckschlitze (63) vorliegen, die mit den ersten elastischen Druckeinheiten (82) an zwei Seiten der Längsrichtung des Schiebeventileinsatzes zusammenpassen.
     
    4. Umsteuerventil (1000) nach Anspruch 3, wobei das Federdruckblättchen (80) weiter mit einer zweiten elastischen Druckeinheit (83), die entlang der Breitenrichtung des Federdruckblättchens angeordnet ist; der zweiten elastischen Druckeinheit entsprechenden zweiten Druckschlitzen in einer Querrichtung zwischen dem ersten Kanal (61) und dem zweiten Kanal bereitgestellt ist.
     
    5. Umsteuerventil (1000) nach Anspruch 2, wobei das Umsteuerventil weiter das Federdruckblättchen (80) umfasst, das den Schiebeventileinsatz (104) an den Ventilsitz (105) drückt, wobei der Schiebeventileinsatz einen ersten Ventileinsatz, der mit dem ersten Kanal (61) bereitgestellt ist, und einen zweiten Ventileinsatz, der mit dem zweiten Kanal bereitgestellt ist, umfasst; wobei das Federdruckblättchen ein erstes Federdruckblättchen, das mit dem ersten Ventileinsatz zusammenpasst, und ein zweites Federdruckblättchen (80), das mit dem zweiten Ventileinsatz zusammenpasst, umfasst.
     
    6. Umsteuerventil (1000) nach Anspruch 2, wobei die Ventilkammer (107) hermetisch gegenüber dem ersten Kanal (61) und dem zweiten Kanal (62) isoliert ist.
     
    7. Umsteuerventil (1000) nach Anspruch 1, wobei der Schiebeventileinsatz (104) eine erste Ventileinsatzeinheit (41) und eine zweite Ventileinsatzeinheit (42) umfasst, die mit einem Abstand angeordnet sind und sich synchron bewegen; die erste Ventileinsatzeinheit mit dem ersten Ventilanschluss (41), dem zweiten Ventilanschluss (42) und dem dritten Ventilanschluss (43) zusammenpasst; die zweite Ventileinsatzeinheit mit dem vierten Ventilanschluss (44) und dem fünften Ventilanschluss (45) zusammenpasst; wenn sich der Schiebeventileinsatz an der ersten voreingestellten Position befindet, der erste Ventilanschluss und der dritte Ventilanschluss durch einen Innenkanal der ersten Ventileinsatzeinheit (41) kommunizierend verbunden sind, der zweite Ventilanschluss (42) und der vierte Ventilanschluss (44) durch die Ventilkammer (107) kommunizierend verbunden sind und die zweite Ventileinsatzeinheit den fünften Ventilanschluss (45) blockiert; wenn sich der Schiebeventileinsatz (104) an der zweiten voreingestellten Position befindet, der erste Ventilanschluss (41) und der zweite Ventilanschluss (42) durch den Innenkanal in der ersten Ventileinsatzeinheit (41) kommunizierend verbunden sind, der dritte Ventilanschluss (43) und der fünfte Ventilanschluss (45) durch die Ventilkammer kommunizierend verbunden sind und die zweite Ventileinsatzeinheit (42) den vierten Ventilanschluss (44) blockiert.
     
    8. Umsteuerventil (1000) nach Anspruch 7, wobei die Antriebskomponente (70) eine Verbindungsstange (71) umfasst; die erste Ventileinsatzeinheit (41) und die zweite Ventileinsatzeinheit (42) auf der Verbindungsstange installiert sind; die Verbindungsstange mit einem ersten Installationsloch zum Installieren der ersten Ventileinsatzeinheit (41) und einem zweiten Installationsloch zum Installieren der zweiten Ventileinsatzeinheit bereitgestellt ist.
     
    9. Umsteuerventil (1000) nach Anspruch 8, wobei die zweite Ventileinsatzeinheit (42) einen Ventileinsatzkörper und eine Verbindungseinheit aufweist; wobei die radiale Abmessung der Verbindungseinheit kleiner als die radiale Abmessung des Ventileinsatzkörpers ist.
     
    10. Umsteuerventil (1000) nach Anspruch 8, wobei eine Druckfeder zwischen der Verbindungsstange (71) und der zweiten Ventileinsatzeinheit (42) angeordnet ist.
     
    11. Umsteuerventil (1000) nach Anspruch 7, wobei eine dem Ventilsitz (105) zugewandte Fläche der zweiten Ventileinsatzeinheit (42) eine Ausnehmung aufweist.
     
    12. Kühlsystem, umfassend: einen Kompressor, einen ersten Wärmetauscher (3), einen zweiten Wärmetauscher (4) und ein Drosselventil (2), wobei das Drosselventil bewirkt, dass der erste Wärmetauscher mit dem zweiten Wärmetauscher kommunizierend verbunden ist; wobei das Kühlsystem weiter einen Hilfswärmetauscher (6) und ein Umsteuerventil (1000) nach einem der Ansprüche 1 bis 11 umfasst; ein Einlassende des Kompressors mit einem ersten Ventilanschluss (41) des Umsteuerventils kommunizierend verbunden ist; ein Auslassende des Kompressors mit einem vierten Ventilanschluss (44) bzw. einem fünften Ventilanschluss (45) des Umsteuerventils kommunizierend verbunden ist; der erste Wärmetauscher (3) mit einem dritten Ventilanschluss (43) des Umsteuerventils kommunizierend verbunden ist; der zweite Wärmetauscher (4) mit einem zweiten Ventilanschluss (42) des Umsteuerventils (1000) kommunizierend verbunden ist; der Hilfswärmetauscher (6) zwischen dem Auslassende des Kompressors und dem vierten Ventilanschluss (44) oder zwischen dem Auslassende des Kompressors und dem fünften Ventilanschluss (45) angeordnet ist.
     


    Revendications

    1. Soupape d'inversion (1000), comprenant une soupape de guidage (1200) et une soupape principale (1100) ; la soupape principale comprend :

    un corps de soupape (10) avec une cavité de soupape (107), dans laquelle la cavité de soupape est pourvue d'un siège de soupape (105) à l'intérieur de celle-ci, et le siège de soupape est pourvu de cinq orifices de soupape (40) sur celui-ci ;

    cinq orifices de voie d'écoulement (51-55) sont en communication de manière correspondante avec les cinq orifices de soupape, caractérisée en ce que

    la cavité de soupape (107) est de forme cylindrique ; le premier orifice de soupape (41), le deuxième orifice de soupape (42), le troisième orifice de soupape (43), le quatrième orifice de soupape (44) et le cinquième orifice de soupape (45) sont placés d'un côté de la cavité de soupape et sont répartis de manière linéaire dans le sens de l'axe de la cavité de soupape (107) ;

    un noyau de soupape coulissant (104) est en correspondance avec le siège de soupape (105) ; et

    un composant d'entraînement (70) entraînant le noyau de soupape coulissant pour ouvrir ou fermer de manière sélective les orifices de soupape, dans laquelle,

    les cinq orifices de soupape (40) comprennent un premier orifice de soupape (41), un deuxième orifice de soupape (42), un troisième orifice de soupape (43), un quatrième orifice de soupape (44) et un cinquième orifice de soupape (45) ; les cinq orifices de voie d'écoulement (51-55) comprennent un orifice S (52) qui est en communication avec le premier orifice de soupape (41), et un orifice E (53) est en communication avec le deuxième orifice de soupape (42), un orifice C (51) est en communication avec le troisième orifice de soupape (43), un orifice D1 (55) est en communication avec le quatrième orifice de soupape (44) et un orifice D2 (54) est en communication avec le cinquième orifice de soupape (45) ;

    lorsque le noyau de soupape coulissant (104) coulisse dans une première position prédéfinie, l'orifice D1 (55) est en communication avec l'orifice E (53), et l'orifice S est en communication avec l'orifice C, un milieu pénétrant à travers l'orifice D2 (54) est enfermé dans la cavité de soupape (107) ; lorsque le noyau de soupape coulissant (104) coulisse dans une seconde position prédéfinie, l'orifice D2 (54) est en communication avec l'orifice C, et l'orifice S (52) est en communication avec l'orifice E, un milieu pénétrant à travers l'orifice D1 (55) est enfermé dans la cavité de soupape (107).


     
    2. Soupape d'inversion (1000) selon la revendication 1, dans laquelle le noyau de soupape coulissant (104) est pourvu séparément d'un premier canal (61) et d'un second canal (62) sur celui-ci ; lorsque le noyau de soupape coulissant est dans la première position prédéfinie, l'orifice D1 (55) et l'orifice E (52) sont en communication à travers le premier canal, et l'orifice S (52) et l'orifice C sont en communication à travers le second canal ; lorsque le noyau de soupape est dans la seconde position prédéfinie, l'orifice D2 (54) et l'orifice C (51) sont en communication à travers le second canal, et l'orifice S et l'orifice E sont en communication à travers le premier canal.
     
    3. Soupape d'inversion (1000) selon la revendication 2, dans laquelle la soupape d'inversion comprend en outre une lamelle de compression de ressort (80) comprimant le noyau de soupape coulissant (104) contre le siège de soupape (105) ; la lamelle de compression de ressort est pourvue de premières unités de compression élastiques (82) qui sont agencées symétriquement des deux côtés du sens longitudinal de la lamelle de compression de ressort; le noyau de soupape coulissant est une structure intégrée, et il existe des premières fentes de compression (63) en correspondance avec les premières unités de compression élastiques (82) des deux côtés du sens longitudinal du noyau de soupape coulissant.
     
    4. Soupape d'inversion (1000) selon la revendication 3, dans laquelle la lamelle de compression de ressort (80) est pourvue en outre d'une seconde unité de compression élastique (83) qui est agencée le long du sens de la largeur de la lamelle de compression de ressort; une seconde fente de compression correspondant à la seconde unité de compression élastique dans un sens transversal entre le premier canal (61) et le second canal.
     
    5. Soupape d'inversion (1000) selon la revendication 2, dans laquelle la soupape d'inversion comprend en outre la lamelle de compression de ressort (80) comprimant le noyau de soupape coulissant (104) contre le siège de soupape (105), dans laquelle le noyau de soupape coulissant comprend un premier noyau de soupape pourvu du premier canal (61) et un second noyau de soupape pourvu du second canal ; la lamelle de compression de ressort comprend une première lamelle de compression de ressort en correspondance avec le premier noyau de soupape et une seconde lamelle de compression de ressort (80) en correspondance avec le second noyau de soupape.
     
    6. Soupape d'inversion (1000) selon la revendication 2, dans laquelle la cavité de soupape (107) est isolée hermétiquement du premier canal (61) et du second canal (62).
     
    7. Soupape d'inversion (1000) selon la revendication 1, dans laquelle le noyau de soupape coulissant (104) comprend une première unité de noyau de soupape (41) et une seconde unité de noyau de soupape (42) qui sont placées à distance l'une de l'autre et se déplacent de manière synchrone ; la première unité de noyau de soupape est en correspondance avec le premier orifice de soupape (41), le deuxième orifice de soupape (42) et le troisième orifice de soupape (43) ; la deuxième unité de noyau de soupape est en correspondance avec le quatrième orifice de soupape (44) et le cinquième orifice de soupape (45) ; lorsque le noyau de soupape coulissant est dans la première position prédéfinie, le premier orifice de soupape et le troisième orifice de soupape sont en communication à travers un canal interne de la première unité de noyau de soupape (41), le deuxième orifice de soupape (42) et le quatrième orifice de soupape (44) sont en communication à travers la cavité de soupape (107), et la seconde unité de noyau de soupape bloque le cinquième orifice de soupape (45) ; lorsque le noyau de soupape coulissant (104) est dans la seconde position prédéfinie, le premier orifice de soupape (41) et le deuxième orifice de soupape (42) sont en communication à travers le canal interne dans la première unité de noyau de soupape (41), le troisième orifice de soupape (43) et le cinquième orifice de soupape (45) sont en communication à travers la cavité de soupape, et la seconde unité de noyau de soupape (42) bloque le quatrième orifice de soupape (44).
     
    8. Soupape d'inversion (1000) selon la revendication 7, dans laquelle le composant d'entraînement (70) comprend une tige de liaison (71) ; la première unité de noyau de soupape (41) et la seconde unité de noyau de soupape (42) sont installées sur la tige de liaison ; la tige de liaison est pourvue d'un premier trou d'installation pour installer la première unité de noyau de soupape (41) et un second trou d'installation pour installer la seconde unité de noyau de soupape.
     
    9. Soupape d'inversion (1000) selon la revendication 8, dans laquelle la seconde unité de noyau de soupape (42) comporte un corps de noyau de soupape et une unité de liaison ; la dimension radiale de l'unité de liaison est inférieure à la dimension radiale du corps de noyau de soupape.
     
    10. Soupape d'inversion (1000) selon la revendication 8, dans laquelle un ressort de pression est placé entre la tige de liaison (71) et la seconde unité de noyau de soupape (42).
     
    11. Soupape d'inversion (1000) selon la revendication 7, dans laquelle une surface, orientée vers le siège de soupape (105), de la seconde unité de noyau de soupape (42) comporte un évidement.
     
    12. Système de réfrigération, comprenant : un compresseur, un premier échangeur de chaleur (3), un second échangeur de chaleur (4) et une soupape d'étranglement (2), la soupape d'étranglement fait communiquer le premier échangeur de chaleur avec le second échangeur de chaleur; dans lequel le système de réfrigération comprend en outre un échangeur de chaleur auxiliaire (6) et une soupape d'inversion (1000) selon l'une quelconque des revendications 1 à 11 ; une extrémité d'entrée du compresseur est en communication avec un premier orifice de soupape (41) de la soupape d'inversion ; une extrémité de sortie du compresseur est respectivement en communication avec un quatrième orifice de soupape (44) et un cinquième orifice de soupape (45) de la soupape d'inversion; le premier échangeur de chaleur (3) est en communication avec un troisième orifice de soupape (43) de la soupape d'inversion ; le second échangeur de chaleur (4) est en communication avec un deuxième orifice de soupape (42) de la soupape d'inversion (1000) ; l'échangeur de chaleur auxiliaire (6) est placé entre l'extrémité de sortie du compresseur et le quatrième orifice de soupape (44) ou entre l'extrémité de sortie du compresseur et le cinquième orifice de soupape (45).
     




    Drawing


























    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description