(19)
(11)EP 3 309 609 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
29.07.2020 Bulletin 2020/31

(21)Application number: 16899205.5

(22)Date of filing:  12.10.2016
(51)International Patent Classification (IPC): 
G02F 1/15(2019.01)
G02F 1/163(2006.01)
B60R 1/12(2006.01)
B60R 1/00(2006.01)
G02F 1/155(2006.01)
G02F 1/1335(2006.01)
H01M 10/08(2006.01)
G02F 1/1523(2019.01)
G02F 1/157(2006.01)
B60R 1/08(2006.01)
B60R 1/04(2006.01)
G02F 1/153(2006.01)
G02F 1/1333(2006.01)
H01M 6/18(2006.01)
G02F 1/1506(2019.01)
(86)International application number:
PCT/CN2016/101863
(87)International publication number:
WO 2017/181621 (26.10.2017 Gazette  2017/43)

(54)

DISPLAY DEVICE CAPABLE OF SWITCHING BETWEEN DISPLAY STATE AND MIRROR SURFACE STATE

ANZEIGEVORRICHTUNG ZUM UMSCHALTEN ZWISCHEN EINEM ANZEIGESTATUS UND SPIEGELFLÄCHENSTATUS

DISPOSITIF D'AFFICHAGE CAPABLE DE COMMUTER ENTRE UN ÉTAT D'AFFICHAGE ET UN ÉTAT DE SURFACE MIROIR


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 18.04.2016 CN 201610243719

(43)Date of publication of application:
18.04.2018 Bulletin 2018/16

(73)Proprietors:
  • BOE Technology Group Co., Ltd.
    Beijing 100015 (CN)
  • Beijing BOE Optoelectronics Technology Co., Ltd.
    Beijing 100176 (CN)

(72)Inventors:
  • FENG, Zhipeng
    Beijing 100176 (CN)
  • SU, Dan
    Beijing 100176 (CN)
  • HE, Zongze
    Beijing 100176 (CN)
  • LI, Shuo
    Beijing 100176 (CN)
  • YANG, Jianguang
    Beijing 100176 (CN)
  • ZHANG, Liang
    Beijing 100176 (CN)

(74)Representative: AWA Sweden AB 
P.O. Box 45086
104 30 Stockholm
104 30 Stockholm (SE)


(56)References cited: : 
CN-A- 1 542 705
CN-A- 105 807 526
CN-Y- 201 273 979
US-A1- 2014 218 781
US-A1- 2016 054 632
CN-A- 104 614 913
CN-U- 203 732 850
US-A1- 2012 281 268
US-A1- 2015 146 276
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    Technical Field



    [0001] The disclosure generally relates to the field of display apparatus, in particular, to a display apparatus switchable between a display state and a mirror state.

    Background Art



    [0002] In some cases, a display apparatus switchable between a display state and a mirror state is needed. In other words, it is needed that an image-displaying surface of a display apparatus can, in some cases, turn to a mirror having reflecting function.

    [0003] A typical one in these cases is an interior rearview mirror in a vehicle. A conventional interior rearview mirror is made of a mirror, by which the driver observes the environment behind the vehicle. However, it is common that passengers, luggage or the like hinder the rear windscreen so that the driver cannot observe the environment behind the vehicle via the interior rearview mirror. This results in inconvenience or even safe problems. Therefore, more and more attention is given to replacement of traditional interior rearview mirrors by display-type interior rearview mirrors.

    [0004] Generally, observing the environment behind the vehicle by a display-type interior rearview mirror comes into practice by a camera installed at rear of the vehicle. The camera can be installed outside the rear windscreen, so that the field of the vision of the camera will not be blocked.

    [0005] However, in some cases, a traditional interior rearview mirror is still needed. For instance, when the driver wishes to observe the situation on the back seats via the interior rearview mirror, an interior rearview camera installed outside the vehicle is insufficient to provide this function.

    [0006] Therefore, for an interior rearview mirror, a display apparatus switchable freely between a mirror state (mirror mode) and a display state is needed. In particular, the mirror mode should have low power consumption. Currently, in commercially available apparatuses, which can achieve that function, a technique using translucent reflective mirror or a technique adding a polarized light-selecting unit and a polarization axis-changeable unit is typically used. These two techniques can hardly achieve bright image and bright mirror, and the power consumption at the mirror state is relatively high.

    [0007] In the field of the architecture, electrochromic smart windows, which can change the color thereof according to the user's requirement and thus further adjust the sunlight irradiation level smartly, in order to decrease the energy consumption for controlling temperature indoors, have been developed. For example, the patent application CN104614913A discloses a flexible stickable electrochromic device switchable between a mirror state and a transparent state. That device is applied in portholes of an airplane, glass for daylighting, walls of a building, etc.

    [0008] There is still a need for a display apparatus switchable between a display state and a mirror state.

    [0009] US 2012/281268 A1 discloses an interior rearview mirror system for a vehicle including an interior rearview mirror assembly including an electrochromic reflective element.

    [0010] US 2016/054632 A1 discloses an electrodeposition element which includes a first substrate including a first member and an electrode arranged above the first member, a second substrate arranged opposite to the first substrate and including an electrode, and an electrolyte layer arranged between the electrodes of the first substrate and the second substrate, and including an electrodeposition material that contains silver. When a voltage is applied between the electrodes of the first substrate and the second substrate such that the first substrate side is negative and the second substrate side is positive, a reflective surface made of a silver thin film and reflecting light, which is incident from a direction normal to the first and second substrates, in a direction not parallel to the incident direction of the light is formed above the electrode of the first substrate.

    [0011] US2015/146276 A1 discloses a switchable infrared ray-visible ray reflection electrochemical mirror having high electrochemical stability and bistability, in which a stripping phenomenon of a metal thin film can be prevented and bistability can be improved through a process of increasing electrochemical stability of a reflective film from an electrode composition and an ionic liquid electrolyte composition having various compositions. In the proposed electrochemical mirror apparatus, since the metal thin film formed by electric reduction is not stripped from a transparent electrode through a surface treatment process, a more stable apparatus can be provided, and even though a voltage is not applied to the metal thin film, the thin film is prevented from being oxidized by using an optimized ionic liquid electrolyte, thus providing the effective electrochemical mirror apparatus where the metal thin film is continuously maintained.

    Summary



    [0012] Followings are provided for solving the above-mentioned problem.

    [0013] The invention as such is defined in the appended independent claim. Further embodiments are recited in the dependent claims.

    [0014] The following embodiments and drawings are not all claimed, they are included to help understanding the context of the invention. While the description often refers to embodiments and to the invention, the embodiments of the invention are those which comprise at least all the features of the independent claim. Any embodiment which does not fall within the scope of the claims does not form part of the invention, but rather represents background art in form of an illustrative example that is useful for understanding the invention. In the following description, although numerous features are designated as optionally, e.g. by being introduced by "may" or "can", it is nevertheless acknowledged that all features comprised in the independent claim are not to be read as optional.

    [0015] In the present disclosure, a display apparatus is provided. The display apparatus comprises a display; and a field-induced visibility-controlling layer provided on light-outgoing side of the display, wherein the field-induced visibility-controlling layer can be switched between a transparent state and a mirror state by adjusting voltage applied, such that when the field-induced visibility-controlling layer is in the transparent state, the display is visible through the field-induced visibility-controlling layer; and when the field-induced visibility-controlling layer is in the mirror state, the display is shielded by the mirror formed of the field-induced visibility-controlling layer.

    [0016] By means of combining a display and a field-induced visibility-controlling layer which can be electrically switched between a transparent state and a mirror state, a display apparatus switchable freely between a function of displaying an image and a function of mirror is provided. The rapid switch between two states of the field-induced visibility-controlling layer can be achieved by applying an electrical field to a transparent composition to form a mirror layer, and applying a reversed electrical field to the mirror layer to form the transparent composition.

    [0017] In the invention, the field-induced visibility-controlling layer comprises two transparent conductive layers and an electrolyte layer sandwiched therebetween; in an embodiment, a transparent insulating layer is provided between the display and the field-induced visibility-controlling layer; wherein different voltages are applied through the two transparent conductive layers to the electrolyte layer, such that the field-induced visibility-controlling layer is switched between a transparent state and a mirror state.

    [0018] Here, the display may be formed by a liquid crystal display panel and a back lighting module. The display may also be other displays applicable for the structure of the present disclosure.

    [0019] In one embodiment, the transparent insulating layer has a thickness of 100-300 µm. More preferably, the transparent insulating layer has a thickness of about 200 µm. Such a thickness not only ensures that there is no interference between the field-induced visibility-controlling layer and the display, but also does not weaken displaying brightness and performance apparently.

    [0020] In one embodiment, the transparent insulating layer is made of polymethyl methacrylate (PMMA).

    [0021] In the invention, the electrolyte layer is a sol formed by dissolving a silver ion-containing inorganic salt, a brominating agent and a catalyst in an organic solvent. More preferably, the silver ion-containing inorganic salt is AgNO3, the brominating agent is tetra-n-butylammonium bromide (TBABr), sodium bromide, potassium bromide or dimethylbromosulfonium bromide, preferably TBABr, the catalyst is CuCl2, and the organic solvent is DSMO. More preferably, the concentration ranges thereof are as follows. AgNO3 concentration is 40-60 mM, TBABr concentration is 200-300 mM, and CuCl2 concentration is 8-12 mM. More preferably, AgNO3 concentration is about 50 mM, TBABr concentration is about 250 mM, and CuCl2 concentration is about 10 mM.

    [0022] In one embodiment, the thicknesses of the layers are as follows. The thickness of the transparent conductive layer is 80-120 nm, the thickness of the electrolyte layer is 400-600 µm. And more preferably, the thickness of the transparent conductive layer is about 100 nm, the thickness of the electrolyte layer is about 500 µm. Such configuration of layer thicknesses achieves good performance either in the transparent state or in the mirror state.

    [0023] In one embodiment, the voltage for switching from the transparent state to the mirror state is 1 V to 4 V and the switch time is 2 s or less; and the voltage for switching from the mirror state to the transparent state is -1 V to -4 V and the switch time is 2 s or less. The switch time herein represents the response time required from the beginning of applying voltage to the accomplishment of the switch between the transparent state and the mirror state. Such a combination of the voltage and the switch rate can meet the requirements for rapid switching and for low energy consumption at the same time.

    [0024] In the invention, the display apparatus has a control means allowing the on/off state of the display correspondingly matching the transparent/mirror state of the field-induced visibility-controlling layer. One of the advantages of this kind of control means, which allows the turn-on state of the display matching the transparent state of the field-induced visibility-controlling layer and the turn-off state of the display matching the mirror state of the field-induced visibility-controlling layer, is that energy may be saved.

    [0025] In one embodiment, the control means allowing the on/off state of the display correspondingly matching the transparent/mirror state of the field-induced visibility-controlling layer includes: a control device automatically turning off or turning on the display according to the mirror state or the transparent state of the field-induced visibility-controlling layer; or, a control device automatically applying an appropriate voltage to change the field-induced visibility-controlling layer into the mirror state or the transparent state when the display is turned off or turned on; or, a circuit, which can manually switch the states of the display and the field-induced visibility-controlling layer at the same time by same switch in a one-touch manner.

    [0026] In one embodiment, the control means comprises a control module for field-induced visibility-controlling layer and a sensing module, and the control module and a circuit driver of a liquid crystal display module are connected by the sensing module.

    [0027] In one embodiment, the display apparatus is an interior rearview mirror, which displays an image coming from a camera shooting the environment behind the vehicle or displays a mirror. Preferably, in the interior rearview mirror, the mirror is not parallel to the light-outgoing surface of the display, such that when the interior rearview mirror is installed in a vehicle, the light-outgoing surface of the display substantially right against a driver, and the mirror is positioned to enable the driver to observe an environment behind the vehicle via the mirror.

    Brief Description of Drawings



    [0028] 

    Fig. 1 shows a structure of an example of a display apparatus of the disclosure.

    Fig. 2 shows a structure of an example of a display apparatus of the disclosure, which is in a mirror state.

    Fig. 3 shows a structure of an example of a display apparatus of the disclosure, which is in a transparent state.

    Fig. 4 is a schematic drawing of an example of a display apparatus of the disclosure, in which the light-outgoing surface of the display is not parallel to the mirror.


    Detailed Description



    [0029] The disclosure provides a display apparatus, which comprises a display and a field-induced visibility-controlling layer provided on light-outgoing side of the display, wherein the field-induced visibility-controlling layer can be switched between a transparent state and a mirror state by adjusting the applied voltage. When the field-induced visibility-controlling layer is in the transparent state, the observer can watch the image displayed by the display through the transparent field-induced visibility-controlling layer, and the brightness of the image seen is substantially not influenced by the field-induced visibility-controlling layer. Further, when the field-induced visibility-controlling layer is in the mirror state, it forms a bright mirror between the observer and the display, such that the display apparatus serves as a reflective mirror. At this time, the display is invisible for the observer.

    [0030] One specific configuration of the display apparatus is as follows. In this exemplary configuration, the display is a liquid crystal display. Those skilled in the art can understand that other displays that do not negatively affect the function of the disclosure can also be used. As shown in Fig. 1, the display comprises a liquid crystal display panel and a back lighting module 9, wherein the liquid crystal display panel comprises a first substrate 6, a second substrate 8 provided oppositely thereto, and a liquid crystal layer 7 sandwiched between the first substrate and the second substrate, and wherein a field-induced visibility-controlling layer is provided on the first substrate (upper substrate) 6, i.e. on the light-outgoing side of the display. It should be noticed that the relative size relationship and relative position relationship for respective layers in the drawings are only schematic, not for purpose of limitation.

    [0031] The relative position of the field-induced visibility-controlling layer with respect to the light-outgoing surface of the display is not limited, as long as the field-induced visibility-controlling layer, when it is in the mirror state, can shield the display. For instance, when the field-induced visibility-controlling layer is used for a switchable interior rearview mirror, the position of the layer should be adjusted, such that it enables the driver to observe the environment behind the vehicle clearly when it is in the mirror state. At this time, the mirror of the field-induced visibility-controlling layer will not be right against the driver. However, the light-outgoing surface of the display behind the field-induced visibility-controlling layer should be substantially right against the driver, so as to provide an optimal display effect to the driver, in particular, for those display types having a limited angle of view for observation. In other words, for the use in an interior rearview mirror, the field-induced visibility-controlling layer is preferably not completely parallel to the light-outgoing surface of the display, as shown in Fig. 4. By "substantially right against a driver" herein, it means that the driver can watch the display normally. As often occurred in driving practice, the driver may adjust the angle of the mirror slightly, in order to observe better the environment behind the vehicle. At this time, although the angle of the display with respect to the driver may be changed slightly, the display is still substantially right against the driver, as long as the driver can watch the display normally. Of course, the field-induced visibility-controlling layer may also be parallel to the light-outgoing surface of the display, in particular in other uses. Those skilled in the art can adjust the specific relative position of the field-induced visibility-controlling layer with respect to the display, according to requirements. Additionally, of course, the relative size of the field-induced visibility-controlling layer with respect to the display may also be adjusted specifically, according to the practical requirements for the mirror state and the display state (the transparent state). The field-induced visibility-controlling layer can be fixed to the display by known mechanical connection. The fixing manner is not limited, as long as it does not adversely influence the effect of the present disclosure.

    [0032] Still as shown in Fig. 1, the field-induced visibility-controlling layer comprises three main parts, i.e. an upper transparent conductive layer 2 and a lower transparent conductive layer 4, and an electrolyte layer 3 sandwiched between the upper transparent conductive layer 2 and the lower transparent conductive layer 4. A transparent insulating layer 5 may be further provided between the liquid crystal display panel and the transparent conductive layer 4. The transparent conductive layer 2 may be covered by a glass substrate 1 thereon. The transparent conductive layers 2 and 4 as well as the transparent insulating layer 5 may be formed by physical vapor deposition, such as magnetron sputtering, or by low temperature deposition in CVD manner. The side of the transparent conductive layer 4 against the electrolyte is smooth and intact, so as to facilitate the formation of good mirror thereon. The material of the electrolyte layer 3 may be a sol formed by mixing and dissolving a silver ion-containing inorganic salt (e.g. AgNO3), a brominating agent (e.g. TBABr) and a catalyst (e.g. CuCl2) in an organic solvent (e.g. DMSO, etc.) homogeneously. The periphery of the material of the electrolyte layer is sealed by a sealant. When mixing to form the sol of the visibility-controlling layer, an additive in an appropriate amount may be incorporated, as long as it does not adversely influence the function of the field-induced visibility-controlling layer of the present disclosure. For example, PVB (polyvinyl butyral) may be added optionally, which has the function of semi-curing and makes the electrolyte exhibit a gel state.

    [0033] As described above, the display may be an ordinary display. When it is necessary to save space, a flat panel display is preferred. A preferable example of the display is a liquid crystal display panel having a back lighting module 9.

    [0034] The field-induced visibility-controlling layer switches the displaying states by using an electrical field. In order to prevent electrical interference between the display and the field-induced visibility-controlling layer, a transparent insulating layer 5 may be provided between the field-induced visibility-controlling layer and the display. As shown in Fig. 1, the transparent insulating layer 5 separates the transparent conductive layer 4 of the field-induced visibility-controlling layer from the surface of the display, so that the current on the transparent conductive layer 4 is not influenced by the surface of the display, and does not influence the surface of the display. Thereby a conventional component (such as a glass insulating cover plate) on the surface of the display may be further omitted, so that the size may be reduced, the manufacture may be simplified, and the costs may be saved. The material of the transparent insulating layer 5 may be an organic transparent insulating material, in particular, preferably PMMA. The thickness range is 100-300 µm, more preferably about 200 µm. PMMA has very excellent transmittance for light, has almost no influence on the transmission of the light of the display. Further, it also has relatively low cost, good insulating ability, mechanical strength, corrosion resistance and workability, and is very suitable for being used as the material for the transparent insulating layer of the present disclosure.

    [0035] The field-induced visibility-controlling layer consists of two transparent conductive layers 2 and 4 and an electrolyte layer 3 sandwiched therebetween.

    [0036] The transparent conductive layer 2 or 4 serves as the wall of the container containing the electrolyte, and meanwhile it is connected to a voltage source and serves as an electrode plate. The transparent conductive layer 4 may also serves as a substrate for forming the mirror layer. The transparent conductive layer 2 or 4 may be made of ITO (indium tin oxide), FTO (fluorine-doped tin oxide), AZO (aluminum zinc oxide), silver nanowires, etc. Among them, ITO is preferred.

    [0037] The chemical composition of the electrolyte layer 3 provides the function of switching the state. In the electrolyte layer 3, silver nitrate may be used as the silver ion-containing inorganic salt. Addition to tetra-n-butylammonium bromide, sodium bromide, potassium bromide and dimethylbromosulfonium bromide may also be used as the brominating agent. Copper chloride may be used as the catalyst. Dimethyl sulfoxide (DMSO) may be used as the organic solvent.

    [0038] Preferably, the composition of the electrolyte layer 3 is as follows. AgNO3 has a concentration of 40-60 mM, TBABr has a concentration of 200-300 mM, and CuCl2 has a concentration of 8-12 mM. A preferable method for formulating the electrolyte is dissolving 2.5 mmol TBABr, 0.1 mmol CuCl2 and 0.5 mmol AgNO3 in 10 mL DMSO. PVB may also be added to the above-mentioned mixture. This formulation meets the following requirements at the same time: relatively low voltage, sufficient transparency in the transparent state, sufficient reflecting ability in the mirror state, sufficiently short switch time, etc.

    [0039] The periphery of the electrolyte layer 3 and the gap between the transparent conductive layers 2 and 4 are sealed by a sealant. The sealant may be a resin, or the like.

    [0040] In the configuration of the above-mentioned embodiment, preferred thicknesses of the respective layers are as follows. The transparent conductive layer 2 or 4 has a thickness of 80-120 nm, more preferably about 100 nm, and the electrolyte layer 3 has a thickness of 400-600 µm, more preferably about 500 µm.

    [0041] The operating principle of the above-mentioned display apparatus is illustrated as follows. As shown in Fig. 2 and Fig. 3, the transparent conductive layer 4 (or transparent conductive layer A) is electrical grounded, and when a positive voltage is applied to the transparent conductive layer 2 (or transparent conductive layer B), the silver ion-containing inorganic salt in the sol electrolyte layer is subjected to the reduction reactions as shown in formulae (1) and (2), under the action of the electrical field:





    [0042] The external power provides the electron (e-), and the brominating agent provides Br-, and the Ag+ therein is reduced to metal Ag nanoparticles, which are deposited on the flat inner side of the transparent conductive layer 4 and form a smooth mirror 10, which has high reflectivity against light, as shown in Fig. 2. At the same time, the light of the liquid crystal display cannot pass the field-induced visibility-controlling layer. Now the field-induced visibility-controlling layer is in the mirror state.

    [0043] When the voltage applied on the transparent conductive layer B is negative, the electrical field is reversed. Metal Ag is subjected to oxidation reaction, and loses electrons (e-). The metal Ag layer formed by electrodeposition is decomposed and forms Ag+ dispersed into the sol electrolyte. At this time, the field-induced visibility-controlling layer turns back to the transparent state, which has high transmittance and allows light to pass, as shown in Fig. 3.

    [0044] The state of the field-induced visibility-controlling layer is controlled by voltage. In the case that no voltage is applied, the field-induced visibility-controlling layer is in the stable transparent state. In order to keep the field-induced visibility-controlling layer in a mirror state, a sustained positive voltage is needed to be applied. When the positive voltage is removed, the field-induced visibility-controlling layer will gradually turn back to the transparent state from the mirror state. In order to switch the mirror state to the transparent state more rapidly, a negative voltage can be applied appropriately, so that the field-induced visibility-controlling layer becomes transparent more rapidly.

    [0045] The voltage during the time period of switching the states (for example, switching from the transparent state to the mirror state) and the voltage during the time period of keeping the state (for example, keeping in the mirror state) may be different. When switching to the mirror state, a relatively high voltage is applied, so that the deposited silver layer continuously becomes thicker. Once the silver layer is thick enough for a reflective mirror, it is not necessary to apply said relatively high voltage, and a relatively lower voltage may be applied instead, to keep the deposition balance of silver, thereby saving energy.

    [0046] Additionally, when the mirror state is switched to the transparent state, if a negative voltage is applied, once the silver layer has been ionized, further application of the negative voltage will result in the formation of silver layer on the other transparent conductive layer. Therefore, it is needed to control the negative voltage.

    [0047] No matter which kind of voltage control is used, the applied voltage should not be too high, and meanwhile, for applicability purpose, it should be ensured that it takes relatively short time for the switch between the states of the field-induced visibility-controlling layer. Preferably, the voltage during the switch from the transparent state to the mirror state is 1-4 V, and the switch time is 2 s or less; and the voltage during the switch from the mirror state to the transparent state is -1 - -4 V, and the switch time is 2 s or less. More preferably, the absolute value of the switch voltage is less than 2V. Then, the energy required during the switch is relatively low, the current required for keeping the transparent state or the mirror state is relatively small, and the power consumption is relatively low.

    [0048] Advantageously, the display apparatus has a control means allowing the on/off state of the display correspondingly match the transparent/mirror state of the field-induced visibility-controlling layer.

    [0049] This purpose may be achieved by various manual or automatic control devices, for example, a control device automatically turning off or turning on the display according to the mirror state or the transparent state of the field-induced visibility-controlling layer; or a control device automatically applying an appropriate voltage to change the field-induced visibility-controlling layer into the mirror state or the transparent state when the display is turned off or turned on; or a circuit, which is designed to manually switch the states of the display and the field-induced visibility-controlling layer at the same time by same switch in a one-touch manner. It should be understood that the above examples of the manual or automatic control device are only for illustration, but not for purpose of limitation.

    [0050] For example, when the state is switched to the mirror-displaying state, the liquid crystal display panel and the backlighting module may be shut down, and only the field-induced visibility-controlling part is turned on. This can save energy.

    [0051] The state of the field-induced visibility-controlling layer can be automatically adjusted by controlling the voltage, by means of a combination of a sensor, a data processor and the like.

    [0052] A specific exemplary embodiment is as follows. A control module for field-induced visibility-controlling layer is set, which module may control the field-induced visibility-controlling layer according to an input signal. The control module for field-induced visibility-controlling layer and a circuit driver of a liquid crystal display module is connected by a sensing module, which can sense the working voltage of the liquid crystal display module, and input it as the input signal to the control module for field-induced visibility-controlling layer. When the working voltage VDD of the liquid crystal display module is a normal working voltage (2.3V-6V), the input to the control module produces a corresponding signal 0; and when the liquid crystal display module stop working, i.e. when VDD is 0, the input to the control module produces a corresponding signal 1. The control module for field-induced visibility-controlling layer sends the turn-on signal 1 and the turn-off signal 0 (corresponding to turning on the mirror state and returning to the transparent state respectively) to the power-controlling part of the field-induced visibility-controlling layer. Thus, when the liquid crystal display module is shut down, the mirror state of the field-induced visibility-controlling layer is automatically turned on by the sensing apparatus; and when the liquid crystal display module is turned on, the transparent state of the field-induced visibility-controlling layer automatically comes back by the sensing apparatus.

    [0053] On example of the display apparatus of the disclosure is an interior rearview mirror in a vehicle. As an interior rearview mirror, the display in the display apparatus displays image coming from the camera, which is installed at rear of the vehicle, for example, outside the rear windscreen. For the application of interior rearview mirror, it is advantageous that when the field-induced visibility-controlling layer of the display apparatus is in the mirror state, the camera and the circuit associated with the display are shut off meanwhile, to save electric energy.

    [0054] The present disclosure is illustrated in more details by the following examples.

    Example 1 - Production of Display Apparatus



    [0055] A display apparatus was produced by steps of:
    1. 1) covering a glass substrate on a liquid crystal display module having a size of 7-8 inches with a layer of PMMA insulating layer 5 of 200 µm, by a sol-gel process;
    2. 2) producing two ITO transparent conductive layers (transparent conductive layer 2 and transparent conductive layer 4) each having a thickness of 400-600 nm on the PMMA insulating layer 5 and on the upper substrate 1 by magnetron sputtering respectively, and extracting out electrodes;
    3. 3) dissolving 2.5 mmol TBABr, 0.1 mmol CuCl2 and 0.5 mmol AgNO3 in 10 mL DMSO, and adding PVB having a mass fraction of 10% into the formulated electrolyte, to make it come to a gel state;
    4. 4) assembling the upper substrate 1 coated with ITO transparent conductive layer 2, the display module coated with PMMA insulating layer 5 and ITO transparent conductive layer 4, and DMSO-based electrolyte in the gel state, to form a field-induced visibility-controlling layer having a sandwich structure.


    [0056] A display apparatus switchable freely between a display state and the mirror state was formed by the above-mentioned steps.

    Example 2 - Use Example



    [0057] The display apparatus produced in Example 1 was used. When no voltage was applied, the field-induced visibility-controlling layer is in the stable transparent state. The transparent conductive layer 4 (or transparent conductive layer A) was grounded, and a positive voltage of 1-3 V was applied to the transparent conductive layer 2 (or electrode B), and after a time of less than 2 s, the field-induced visibility-controlling layer was in the mirror state, as shown in Fig. 2. At that time, the display apparatus was a mirror for an observer, and the display behind the field-induced visibility-controlling layer could not be observed.

    [0058] When the positive voltage was removed, the field-induced visibility-controlling layer gradually and slowly turned back to the transparent state from the mirror state, as shown in Fig. 3.

    [0059] In order to keep the mirror state, a positive voltage of 1-3 V was needed to be applied.

    [0060] In order to make the mirror state turn to the transparent state more rapidly, a negative voltage of -1 - -3 V was applied, and after a time of less than 2 s, the field-induced visibility-controlling layer was in the transparent state again. Once the field-induced visibility-controlling layer was in the transparent state, the application of voltage was stopped immediately, in order to prevent deposition of silver on the transparent conductive layer 2 (the B side).


    Claims

    1. A display apparatus, comprising:

    a display; and

    a field-induced visibility-controlling layer provided on light-outgoing side of the display, wherein the field-induced visibility-controlling layer comprises two transparent conductive layers (2, 4) and an electrolyte layer (3) sandwiched therebetween, wherein the electrolyte layer (3) is a sol formed by dissolving a silver ion-containing inorganic salt, a brominating agent and a catalyst in an organic solvent,

    wherein the field-induced visibility-controlling layer is switchable between a transparent state and a mirror state by applying different voltages to the electrolyte layer (3) through the two transparent conductive layers (2, 4), such that when the field-induced visibility-controlling layer is in the transparent state, the display is visible through the field-induced visibility-controlling layer; and when the field-induced visibility-controlling layer is in the mirror state, the display is shielded by the mirror formed of the field-induced visibility-controlling layer; and

    wherein the display apparatus further comprises a control means configured to enable the state of the display match the transparent state of the field-induced visibility-controlling layer and the off state of the display match the mirror state of the field-induced visibility-controlling layer.


     
    2. The display apparatus according to claim 1, wherein the display apparatus further comprises a transparent insulating layer (5) provided between the display and the field-induced visibility-controlling layer.
     
    3. The display apparatus according to claim 2, wherein the transparent insulating layer (5) has a thickness of 100-300 µm.
     
    4. The display apparatus according to claim 2 or 3, wherein the transparent insulating layer (5) is made of polymethyl methacrylate.
     
    5. The display apparatus according to claim 1, wherein the silver ion-containing inorganic salt is AgNO3, the brominating agent is tetra-n-butylammonium bromide, sodium bromide, potassium bromide or dimethylbromosulfonium bromide, the catalyst is CuCl2, and the organic solvent is DMSO; preferably, AgNO3 has a concentration of 40-60 mM, the brominating agent has a concentration of 200-300 mM, and CuCl2 has a concentration of 8-12 mM.
     
    6. The display apparatus according to claim 1, wherein the electrolyte layer (3) further comprises polyvinyl butyral.
     
    7. The display apparatus according to any one of claims 1 to 6, wherein the electrolyte layer (3) has a thickness of 400-600 µm.
     
    8. The display apparatus according to any one of claims 1 to 7, wherein any one of the transparent conductive layers (2, 4) is made of tin indium oxide, fluorine-doped tin oxide, aluminum zinc oxide or silver nanowires; preferably, any one of the transparent conductive layers (2, 4) has a thickness of 80-120 nm.
     
    9. The display apparatus according to claim 1, wherein the control means includes: a control device configured to automatically turning off or turning on the display according to the mirror state or the transparent state of the field-induced visibility-controlling layer, respectively;
    or, a control device configured to automatically applying an appropriate voltage to change the field-induced visibility-controlling layer into the mirror state or the transparent state when the display is turned off or turned on, respectively; or, a circuit, which is configured to enable manually swiching of the states of the display and the field-induced visibility-controlling layer at the same time by the same switch.
     
    10. The display apparatus according to claim 1, wherein the control means comprises a control module for the field-induced visibility-controlling layer which is configured to control the field-induced visibility-controlling layer according to an input signal and a sensing module which is configured to sense a working voltage of liquid crystal display module, and to input it as the input signal to the control module for the field-induced visibility-controlling layer, and the control module for the field-induced visibility-controlling layer and a circuit driver of the liquid crystal display module are connected by the sensing module.
     
    11. The display apparatus according to any one of claims 1 to 10, wherein the display apparatus is an interior rearview mirror for a vehicle; preferably, in the interior rearview mirror, the field-induced visibility-controlling layer is not parallel to the light-outgoing surface of the display, such that a driver can observe an environment behind the vehicle in the mirror state of the field-induced visibility-controlling layer.
     


    Ansprüche

    1. Anzeigevorrichtung, aufweisend:

    eine Anzeige; und

    eine feldinduzierte Sichtbarkeitssteuerschicht, die auf der Lichtaustrittsseite der Anzeige vorgesehen ist,

    wobei die feldinduzierte Sichtbarkeitssteuerschicht zwei transparente leitfähige Schichten (2, 4) und eine sandwichartig dazwischen angeordnete Elektrolytschicht (3) aufweist, wobei die Elektrolytschicht (3) eine Sole ist, die durch Lösen eines silberionenhaltigen anorganischen Salzes, eines Bromierungsmittels und eines Katalysators in einem organischen Lösungsmittel gebildet ist,

    wobei die feldinduzierte Sichtbarkeitssteuerschicht durch Anlegen unterschiedlicher Spannungen an die Elektrolytschicht (3) durch die zwei transparenten leitfähigen Schichten (2, 4) zwischen einem transparenten Zustand und einem Spiegelstatus schaltbar ist, so dass: wenn sich die feldinduzierte Sichtbarkeitssteuerschicht in dem transparenten Zustand befindet, die Anzeige durch die feldinduzierte Sichtbarkeitssteuerschicht hindurch sichtbar ist; und wenn sich die feldinduzierte Sichtbarkeitssteuerschicht in dem Spiegelstatus befindet, die Anzeige durch den Spiegel, der aus der feldinduzierten Sichtbarkeitssteuerschicht gebildet ist, abgeschirmt ist; und
    wobei die Anzeigevorrichtung ferner ein Steuermittel umfasst, das so konfiguriert ist, dass der Ein-Status der Anzeige mit dem transparenten Zustand der feldinduzierten Sichtbarkeitssteuerschicht übereinstimmt und der Aus-Status der Anzeige mit dem Spiegelstatus der feldinduzierten Sichtbarkeitssteuerschicht übereinstimmt.


     
    2. Anzeigevorrichtung nach Anspruch 1, wobei die Anzeigevorrichtung ferner eine transparente Isolierschicht (5) aufweist, die zwischen der Anzeige und der feldinduzierten Sichtbarkeitssteuerschicht vorgesehen ist.
     
    3. Anzeigevorrichtung nach Anspruch 2, wobei die transparente Isolierschicht (5) eine Dicke von 100-300 µm aufweist.
     
    4. Anzeigevorrichtung nach Anspruch 2 oder 3, wobei die transparente Isolierschicht (5) aus Polymethylmethacrylat hergestellt ist.
     
    5. Anzeigevorrichtung nach Anspruch 1, wobei
    das silberionenhaltige anorganische Salz AgNO3 ist, das Bromierungsmittel Tetra-n-Butylammoniumbromid, Natriumbromid, Kaliumbromid oder Dimethylbromosulfoniumbromid ist, der Katalysator CuCl2 ist, und das organische Lösungsmittel DMSO ist;
    vorzugsweise AgNO3 eine Konzentration von 40-60 mM aufweist, das Bromierungsmittel eine Konzentration von 200-300 mM aufweist, und CuCl2 eine Konzentration von 8-12 mM aufweist.
     
    6. Anzeigevorrichtung nach Anspruch 1, wobei die Elektrolytschicht (3) ferner aus Polyvinylbutyral hergestellt ist.
     
    7. Anzeigevorrichtung nach einem der Ansprüche 1 bis 6, wobei die Elektrolytschicht (3) eine Dicke von 400-600 µm aufweist.
     
    8. Anzeigevorrichtung nach einem der Ansprüche 1 bis 7, wobei
    eine der transparenten leitfähigen Schichten (2, 4) aus Zinn-Indiumoxid, mit Fluor dotiertem Zinnoxid, Aluminium-Zinkoxid oder Silber-Nanodrähten hergestellt ist;
    vorzugsweise eine der transparenten leitfähigen Schichten (2, 4) eine Dicke von 80-120 nm aufweist.
     
    9. Anzeigevorrichtung nach Anspruch 1, wobei
    das Steuermittel beinhaltet: eine Steuervorrichtung, die so konfiguriert ist, dass sie die Anzeige entsprechend dem Spiegelstatus oder dem transparenten Zustand der feldinduzierten Sichtbarkeitssteuerschichten automatisch ausschaltet bzw. einschaltet;
    oder eine Steuervorrichtung, die so konfiguriert ist, dass sie automatisch eine geeignete Spannung anlegt, um die feldinduzierte Sichtbarkeitssteuerschicht in den Spiegelstatus oder in den transparenten Status zu versetzen, wenn die Anzeige ausgeschaltet bzw. eingeschaltet wird; oder eine Schaltung, die so konfiguriert ist, dass sie ein manuelles Umschalten der Zustände der Anzeige und der feldinduzierten Sichtbarkeitssteuerschicht gleichzeitig durch denselben Schalter ermöglicht.
     
    10. Anzeigevorrichtung nach Anspruch 1, wobei
    das Steuermittel ein Steuermodul für die Sichtbarkeitssteuerschicht, das so konfiguriert ist, dass es die feldinduzierte Sichtbarkeitssteuerschicht gemäß einem Eingangssignal steuert, und ein Erfassungsmodul, das so konfiguriert ist, dass es eine Arbeitsspannung des Flüssigkristallanzeigemoduls erfasst und sie als das Eingangssignal in das Steuermodul für die feldinduzierte Sichtbarkeitssteuerschicht eingibt, aufweist und das Steuermodul für die feldinduzierte Sichtbarkeitssteuerschicht und ein Schaltungstreiber des Flüssigkristallanzeigemoduls durch das Erfassungsmodul verbunden sind.
     
    11. Anzeigevorrichtung nach einem der Ansprüche 1 bis 10, wobei
    die Anzeigevorrichtung ein Innenrückspiegel für ein Fahrzeug ist;
    vorzugsweise die feldinduzierte Sichtbarkeitssteuerschicht in dem Innenrückspiegel nicht parallel zu der Lichtaustrittsfläche der Anzeige ist, so dass ein Fahrer in dem Spiegelstatus der feldinduzierten Sichtbarkeitssteuerschicht in der Lage ist, eine Umgebung hinter dem Fahrzeug zu beobachten.
     


    Revendications

    1. Appareil d'affichage, comprenant :

    un afficheur ; et

    une couche de contrôle de visibilité induite par champ prévue sur le côté sortie de lumière de l'afficheur,

    la couche de contrôle de visibilité induite par champ comprenant deux couches conductrices transparentes (2, 4) et une couche d'électrolyte (3) prise en sandwich entre elles, la couche d'électrolyte (3) étant une solution obtenue en dissolvant un sel d'argent inorganique contenant des ions, un agent de bromuration et un catalyseur dans un solvant organique,

    la couche de contrôle de visibilité induite par champ étant commutable entre un état transparent et un état de surface miroir en appliquant différentes tensions à la couche d'électrolyte (3) à travers les deux couches conductrices transparentes (2, 4) de sorte que, lorsque la couche de contrôle de visibilité induite par champ est dans l'état transparent, l'affichage est visible à travers la couche de contrôle de visibilité induite par champ ; et que, lorsque la couche de contrôle de visibilité induite par champ est dans l'état de surface miroir, l'affichage est abrité par le miroir formé de la couche de contrôle de visibilité induite par champ ; et

    l'appareil d'affichage comprenant en outre un moyen de commande conçu pour permettre à l'état de marche de l'afficheur de correspondre avec l'état transparent de la couche de contrôle de visibilité induite par champ et à l'état d'arrêt de l'affichage de correspondre avec l'état de surface miroir de la couche de contrôle de visibilité induite par champ.


     
    2. Appareil d'affichage selon la revendication 1, dans lequel l'appareil d'affichage comprend en outre une couche isolante transparente (5) prévue entre l'afficheur et la couche de contrôle de visibilité induite par champ.
     
    3. Appareil d'affichage selon la revendication 2, dans lequel la couche isolante transparente (5) a une épaisseur de 100 à 300 µm.
     
    4. Appareil d'affichage selon la revendication 2 ou 3, dans lequel la couche isolante transparente (5) est composée de polyméthyle méthylmétacrylate.
     
    5. Appareil d'affichage selon la revendication 1, dans lequel le sel inorganique contenant des ions est de l'AgNO3, l'agent de bromuration est du bromure de tétra-n-butylammonium, du bromure de sodium, du bromure de potassium, du bromure de diméthylbromosulfonium, le catalyseur est du CuCl2, et le solvant organique est du DMSO ;
    l'AgNO3 ayant une concentration de 40 à 60 mM, l'agent de bromuration ayant une concentration de 200 à 300 mM, et le CuCl2 ayant une concentration de 8 à 12 mM de préférence.
     
    6. Appareil d'affichage selon la revendication 1, dans lequel la couche d'électrolyte (3) comprend en outre du butyral de polyvinyle.
     
    7. Appareil d'affichage selon l'une quelconque des revendications 1 à 6, dans lequel la couche d'électrolyte (3) a une épaisseur de 400 à 600 µm.
     
    8. Appareil d'affichage selon l'une quelconque des revendications 1 à 7, dans lequel
    l'une quelconque des couches conductrices transparentes (2, 4) est composée d'oxyde d'étain indium dopé au fluorure, d'oxyde de zinc aluminium ou de nanofils d'argent ;
    l'une quelconque des couches conductrices transparentes (2, 4) a de préférence une épaisseur de 80 à 120 nm.
     
    9. Appareil d'affichage selon la revendication 1, dans lequel
    le moyen de commande inclut : un dispositif de commande conçu pour éteindre ou allumer automatiquement l'afficheur en fonction de l'état de surface miroir ou de l'état transparent de la couche de contrôle de visibilité induite par champ respectivement ; ou
    un dispositif de commande conçu pour appliquer automatiquement une tension appropriée pour passer la couche de contrôle de visibilité induite par champ dans l'état de surface miroir ou dans l'état transparent lorsque l'afficheur est éteint ou allumé respectivement ; ou
    un circuit qui est conçu pour permettre la commutation manuelle des états de l'afficheur et de la couche de contrôle de visibilité induite par champ en même temps par le même interrupteur.
     
    10. Appareil d'affichage selon la revendication 1, dans lequel
    le moyen de commande comprend pour la couche de contrôle de visibilité induite par champ un module de commande qui est conçu pour contrôler la couche de contrôle de visibilité induite par champ en fonction d'un signal d'entrée et un module de détection qui est conçu pour détecter une tension de fonctionnement du module d'affichage à cristaux liquides, et pour l'entrer comme signal d'entrée dans le module de commande pour la couche de contrôle de visibilité induite par champ, et le module de commande pour la couche de contrôle de visibilité induite par champ et un circuit pilote du module d'affichage à cristaux liquide sont connectés par le module de détection.
     
    11. Appareil d'affichage selon l'une quelconque des revendications 1 à 10, dans lequel
    l'appareil d'affichage est un rétroviseur intérieur pour véhicule ;
    dans le rétroviseur intérieur, la couche de contrôle de visibilité induite par champ n'est de préférence pas parallèle à la surface de sortie de lumière de l'afficheur, de sorte qu'un pilote peut observer un environnement dernière le véhicule dans l'état de surface miroir de la couche de contrôle de visibilité induite par champ.
     




    Drawing











    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description