(19)
(11)EP 3 315 778 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
06.05.2020 Bulletin 2020/19

(21)Application number: 16196232.9

(22)Date of filing:  28.10.2016
(51)International Patent Classification (IPC): 
F04C 18/16(2006.01)
F04C 23/00(2006.01)
F04C 29/04(2006.01)

(54)

OIL-INJECTED SCREW AIR COMPRESSOR

ÖLEINGESPRITZTER SCHRAUBENLUFTVERDICHTER

COMPRESSEUR D'AIR À VIS À INJECTION D'HUILE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(43)Date of publication of application:
02.05.2018 Bulletin 2018/18

(73)Proprietors:
  • ALMiG Kompressoren GmbH
    73257 Köngen (DE)
  • FU SHENG INDUSTRIAL (SHANGHAI) CO., LTD
    201600 Shanghai (CN)

(72)Inventors:
  • LU, Ming-Te
    234 New Taipei City (TW)
  • WEBER, Viktor
    79341 Kenzingen (DE)
  • CHEN, Sheng-Kun
    Shanghai, 201100 (CN)
  • LIN, Feng-Yung
    231 New Taipei City (TW)

(74)Representative: HGF Europe LLP 
Neumarkter Str. 18
81673 München
81673 München (DE)


(56)References cited: : 
EP-A2- 1 475 586
US-A1- 2008 152 524
WO-A1-2007/045052
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    Technical Field



    [0001] The present disclosure generally relates to a screw air compressor. More particularly, the present disclosure relates to an oil-injected screw air compressor.

    Background



    [0002] Screw air compressors have been widely used to provide compressed air in industry. The screw air compressor includes two rotors mounted in a working room. Each rotor is provided with helically extending lobes and grooves which are intermeshed to establish compression cavities. In these cavities, a gaseous fluid is displaced and compressed from an inlet channel to an outlet channel by way of the screw compressor.

    [0003] Each compression cavity during a filling phase communicates with the inlet, during a compression phase undergoes a continued reduction in volume, and during a discharge phase communicates with an outlet. Screw air compressors are often provided with valves for regulating the built-in volume ratio for the capacity of the compressor.

    [0004] The efficiency of the screw air compressors plays an important role in the energy consumed at the entire factory. For the effective use of the screw air compressors to reduce the energy consumption, there is a need to provide a more efficient, safe, and reliable screw air compressor.

    [0005] US2008152524 (A1) discloses a method of supplying lubrication oil to a two-stage screw compressor in which a low-pressure stage screw compressor and a high-pressure stage screw compressor are integrally constructed.

    [0006] EP1475586 (A2) discloses a temperature control system for compressor exhaust including a data sampling unit, an exhaust sensor, a control unit, and a temperature adjusting unit.

    [0007] WO2007045052 (A1) discloses a device to prevent the formation of condensate in compressed gas coming from an oil-injected compressor element which is connected to an oil separator which is connected to the above-mentioned compressor element by means of an injection pipe, and whereby a cooler is provided in the above-mentioned injection pipe which can be bridged by means of a bypass, characterised in that it is provided with a controlled mixing valve which is connected to the above-mentioned injection pipe and to the above-mentioned bypass, and with a control device for controlling said mixing valve for the adjustment of the compressed air temperature by adjusting the flow distribution through the mixing valve.

    Summary



    [0008] One objective of the embodiments of the present invention is to provide an oil-injected screw air compressor having a control unit to dynamically control the flow rate of the lubricating oil to maintain the outlet temperature of the compressed air higher than pressure dew point according to the measured temperature, humidity and pressure data. To achieve these and other advantages and in accordance with the objective of the embodiments of the present invention, as the embodiment broadly describes herein, the embodiments of the present invention comprise the features according to claim 1. The present invention provides an oil-injected screw air compressor having a first stage compression chamber, an air buffering chamber coupled to the first stage compression chamber, a second stage compression chamber coupled to the air buffering chamber, an oil cooling device for cooling lubricating oil for the first stage compression chamber, the air buffering chamber and the second stage compression chamber, a plurality of sensors respectively located at the first stage compression chamber, the air buffering chamber and the second stage compression chamber, and a control unit respectively and dynamically controlling flow rates of the lubricating oil entering into the first stage compression chamber, the air buffering chamber and the second stage compression chamber according to preset pressure or pressure data and temperature data measured by the sensors and temperature data and humidity data of an environment.

    [0009] The oil-injected screw air compressor further has a plurality of control valves and a plurality of oil pipes respectively coupled between the oil cooling device and the first stage compression chamber, the oil cooling device and the air buffering chamber, and the oil cooling device and the second stage compression chamber.

    [0010] The oil pipes are connected to the oil cooling device at different positions to allow a temperature of the lubricating oil for the first stage compression chamber and the air buffering chamber is lower than a temperature of the lubricating oil for the second stage compression chamber.

    [0011] In one embodiment, the valves are controlled by the control unit to respectively and dynamically control the flow rates of the lubricating oil entering into the first stage compression chamber, the air buffering chamber and the second stage compression chamber according to the preset pressure or pressure data measured by the sensors and temperature data measured by the sensors and the temperature data and the humidity data of the environment to maintain the outlet temperatures of compressed air of the first stage chamber, the air buffering chamber and the second stage chamber having outlet temperatures higher than pressure dew point temperatures thereof, preferably higher than modified pressure dew point temperatures thereof.

    [0012] In one embodiment, the valves are a plurality of bypass valves able to respectively maintain minimum flow rates of the lubricating oil entering into the first stage compression chamber, the air buffering chamber and the second stage compression chamber.

    [0013] In one embodiment, the valves further has a plurality of bypass pipes able to respectively maintain minimum flow rates of the lubricating oil entering into the first stage compression chamber, the air buffering chamber and the second stage compression chamber.

    [0014] In one embodiment, the oil cooling device further has a cooling fan for cooling the lubricating oil and is an air-cooling-typed cooling device.

    [0015] In one embodiment, the oil cooling device further has water pipes for cooling the lubricating oil and is a water-cooling-typed cooling device.

    [0016] In one embodiment, the oil-injected screw air compressor further has an oil separating tank to separate the lubricating oil from compressed air.

    [0017] In one embodiment, the oil-injected screw air compressor further has a motor, a transmission device and a gear box to distribute power to the first stage compression chamber and the second stage compression chamber.

    [0018] In one embodiment, the oil-injected screw air compressor further has a suction filter and a suction throttle valve at an air inlet of the oil-injected screw air compressor.

    [0019] The oil-injected screw air compressor according to one embodiment of the present invention utilizes sensors to detect the temperature and humidity of the environment and outlet pressures and outlet temperatures of the first stage compression chamber, the air buffering chamber, and the second stage compression chamber to dynamically and respectively control the temperatures of the compressed air so as to prevent water vapor in the compressed air from condensing into liquid water. The flow rates of the lubricating oil of the first stage compression chamber, the air buffering chamber and the second stage compression chamber are dynamically controlled by the control unit according to the feedback ambient temperature and humidity, and pressure data and temperature data from the sensors located at outlets of the first stage compression chamber, the air buffering chamber and the second stage compression chamber. Hence, the oil-injected screw air compressor can be operated close to an isothermal compression condition all the year round, regardless of winter or summer season. The efficiency of the oil-injected screw air compressor is therefore increased.

    Brief Description of the Drawings



    [0020] The foregoing aspects and many of the attendant advantages of this invention will be more readily appreciated as the same becomes better understood by reference to the following detailed description, when taken in conjunction with the accompanying drawings, wherein:

    FIG. 1 illustrates a schismatic diagram showing an oil-injected screw air compressor according to one embodiment of the present invention.


    Detailed Description of the Preferred Embodiment



    [0021] The following description is of the best presently contemplated mode of carrying out the present disclosure. This description is not to be taken in a limiting sense but is made merely for the purpose of describing the general principles of the invention. The scope of the invention should be determined by referencing the appended claims.

    [0022] Referring to FIG1, a schismatic diagram showing an oil-injected screw air compressor according to one embodiment of the present invention is illustrated. The oil-injected screw air compressor 100 includes two compression chambers, e.g. a first stage compression chamber 130 and a second stage compression chamber 150, an air buffering chamber 140 coupled to the first stage compression chamber 130 and the second stage compression chamber 150, and an oil separating tank 200 coupled to the second stage compression chamber 150 with an air pipe 190.

    [0023] The first stage compression chamber 130 and the second stage compression chamber 150 are driven by a motor 160 through a transmission device 170, i.e. a coupling, and a gear box 180 to distribute power to the first stage compression chamber 130 and the second stage compression chamber 150. The oil-injected screw air compressor 100 absorbs air from the air inlet 340 into the first stage compression chamber 130 via a suction filter 110 and a suction throttle valve 120, is then compressed and discharged into the air buffering chamber 140. The air stored in the air buffering chamber 140 is then be absorbed into the second stage compression chamber 150 and compressed and discharged into an oil separating tank 200 through an air pipe 190. The oil accumulated at the bottom of the oil separating tank 200 is delivered into an oil cooling device 230 through a high temperature oil pipe 220. The temperature of the high temperature oil is then cooled down by the oil cooling device 230. The cooled oil is then be delivered into the first stage compression chamber 130 through a first stage lubricating oil pipe 250, the second stage compression chamber 150 through a second stage lubricating oil pipe 240, and the air buffering chamber 140 through an air buffering chamber lubricating oil pipe 260.

    [0024] The first stage lubricating oil pipe 250, the second stage lubricating oil pipe 240, and the air buffering chamber lubricating oil pipe 260 can absorb the cooling oil, i.e. the lubricating oil, from different positions of the oil cooling device 230. For example, the first stage lubricating oil pipe 250 absorbs the lubricating oil for the first stage compression chamber 130 at a lower temperature position and the second stage lubricating oil pipe 240 absorbs the lubricating oil for the second stage compression chamber 150 at a higher temperature position. The air buffering chamber lubricating oil pipe 260 can absorb the lubricating oil from the oil cooling device 230 at the position similar to the first stage lubricating oil pipe 250.

    [0025] In addition, a control valve 270 is equipped in the first stage lubricating oil pipe 250 and controlled by a control unit 300, a control valve 280 is equipped in the air buffering chamber lubricating oil pipe 260 and controlled by the control unit 300, and a control valve 290 is equipped in the second stage lubricating oil pipe 240 and also controlled by the control unit 300. The control unit 300 separately determines the flow rate of the oil entering into the first stage compression chamber 130, the second stage compression chamber 150, and the air buffering chamber 140 according to atmospheric temperature and humidity of the environment and the outlet pressures and outlet temperatures of the first stage compression chamber 130, the second stage compression chamber 150, and the air buffering chamber 140. Therefore, the flow rate of the cooling oil, i.e. lubricating oil, is decreased while the temperature at the outlet of the first stage compression chamber 130, the second stage compression chamber 150, or the air buffering chamber 140 is too low, e.g. lower than a modified pressure dew point temperature thereof. For example, the modified pressure dew point temperature is the pressure dew point temperature plus 6 to 10 degrees Celsius. The flow rate of the cooling oil is increased while the temperature at the outlet of the first stage compression chamber 130, the second stage compression chamber 150 or the air buffering chamber 140 is too high, e.g. higher than the modified pressure dew point temperature thereof.

    [0026] In one embodiment, the temperature at the outlet of the first stage compression chamber 130 is controlled at about 8 degrees Celsius higher than first stage pressure dew point e.g. 70 degrees Celsius, the temperature at the outlet of the second stage compression chamber 150 is controlled at about 10 degrees Celsius higher than second pressure dew point e.g. 90 degrees Celsius, and the temperature at the outlet of air buffering chamber 140 is controlled at about 6 degrees Celsius higher than first stage pressure dew point e.g. 68 degrees Celsius because that the pressure of the outlet of the second stage compression chamber 150 is higher than those of the first stage compression chamber 130 and the air buffering chamber 140. The control unit 300 separately and dynamically controls the control valve 270, the control valve 280 and the control valve 290 to control the flow rate of the cooling oil according to the temperature and the humidity of the environment, and the outlet pressures and outlet temperatures of the first stage compression chamber 130, the second stage compression chamber 150, and the air buffering chamber 140 with sensors 132 located at the outlet of the first stage compression chamber 130, sensors 152 located at the outlet of the second stage compression chamber 150 and sensors 142 located at the outlet of the air buffering chamber 140 to maintain the output temperatures of the compressed air higher than a pressure dew point temperature, preferably a modified pressure dew point temperature, e.g. the pressure dew point temperature plus 6 to 10 degrees Celsius, at the outlets thereof. Therefore, the control unit 300 can automatically and individually controls the flow rate of the cooling oil by way of the control valve 270, the control valve 280 and the control valve 290 through control circuits 330. The measured temperature and pressure data are transmitted to the control unit 300 through circuits 360. In addition, the temperature and humidity data of the environment can also be detected by the control unit 300 or be sent to the control unit 300 by other equipment.

    [0027] In one embodiment, the control valve 270, the control valve 280 and the control valve 290 further include a bypass pipe 272, a bypass pipe 282 and a bypass pipe 292, or the control valve 270, the control valve 280 and the control valve 290 further include bypass function therein to respectively maintain a minimum flow rate of the cooling oil for the first stage compression chamber 130, the second stage compression chamber 150, and the air buffering chamber 140.

    [0028] In one embodiment, the oil cooling device 230 includes a cooling water pipe 310 to provide the cooling water for cooling the high temperature oil. The cooling water pipe 310 further includes a water inlet pipe 312 and a water outlet pipe 314 to supply and drain the cooling water.

    [0029] In one embodiment, the oil cooling device 230 includes a cooling fan 320 for cooling the high temperature oil.

    [0030] In one embodiment, the oil cooling device 230 includes the cooling fan 320 and the cooling water pipe 310 for cooling the high temperature oil, i.e. lubricating oil.

    [0031] In one embodiment, a pressure valve 210, e.g. a pressure maintenance valve, is equipped in the oil separating tank 200 to maintain the compressed air pressure for the oil-injected screw air compressor 100 and supply the compressed air to the required equipment through an air outlet 350.

    [0032] The oil-injected screw air compressor according to one embodiment of the present invention utilizes the sensors to detect the outlet pressures and outlet temperatures of the first stage compression chamber, the air buffering chamber, the second stage compression chamber and the temperature and humidity of the environment to automatically control the temperatures of the compressed air to prevent the water vapor in the compressed air from condensing into the liquid water. The flow rates of the lubricating oil of the first stage compression chamber, the air buffering chamber and the second stage compression chamber are dynamically controlled by the control unit according to the feedback measured data. Therefore, the oil-injected screw air compressor can be operated close to an isothermal compression condition all the year round, regardless of winter or summer season. The efficiency of the oil-injected screw air compressor is therefore increased.


    Claims

    1. An oil-injected screw air compressor (100), comprising a first stage compression chamber (130);
    an air buffering chamber (140) coupled to the first stage compression chamber (130);
    a second stage compression chamber (150) coupled to the air buffering chamber (140);
    an oil cooling device (230) for cooling lubricating oil for the first stage compression chamber (130), the air buffering chamber (140) and the second stage compression chamber (150);
    a plurality of sensors (132, 142, 152) respectively located at outlets of the first stage compression chamber (130), the air buffering chamber (140) and the second stage compression chamber (150);
    a control unit (300) respectively and dynamically controlling flow rates of the lubricating oil entering into the first stage compression chamber (130), the air buffering chamber (140) and the second stage compression chamber (150) according to outlet pressure and outlet temperature data measured by the sensors (132, 142, 152), and temperature data and humidity data of an environment; characterized in that the oil-injected screw air compressor further comprises:
    a plurality of control valves (270, 280, 290) and a plurality of oil pipes (240, 250, 260) respectively coupled between the oil cooling device (230) and the first stage compression chamber (130), the oil cooling device (230) and the air buffering chamber (140), and the oil cooling device (230) and the second stage compression chamber (150), wherein the oil pipes (240, 250, 260) are connected to the oil cooling device (230) at different positions to allow a temperature of the lubricating oil for the first stage compression chamber (130) and the air buffering chamber (140) to be lower than a temperature of the lubricating oil for the second stage compression chamber (150).
     
    2. The oil-injected screw air compressor (100) of claim 1, characterized in that the valves are controlled by the control unit (300) to respectively and dynamically control the flow rates of the lubricating oil entering into the first stage compression chamber (130), the air buffering chamber (140) and the second stage compression chamber (150) according to the outlet pressure and outlet temperature data measured by the sensors (132, 142, 152) and the temperature data and the humidity data of the environment to maintain the outlet temperatures of compressed air of the first stage compression chamber (130), the air buffering chamber (140) and the second stage compression chamber (150) higher than pressure dew point temperatures thereof.
     
    3. The oil-injected screw air compressor (100) of claim 2, characterized in that the valves are a plurality of bypass valves to respectively maintain minimum flow rates of the lubricating oil entering into the first stage compression chamber (130), the air buffering chamber (140) and the second stage compression chamber (150).
     
    4. The oil-injected screw air compressor (100) of claim 2, characterized by further comprising a plurality of bypass pipes (272, 282, 292) to respectively maintain minimum flow rates of the lubricating oil entering into the first stage compression chamber (130), the air buffering chamber (140) and the second stage compression chamber (150).
     
    5. The oil-injected screw air compressor (100) of claim 1, characterized in that the oil cooling device (230) further comprises a cooling fan for cooling the lubricating oil.
     
    6. The oil-injected screw air compressor (100) of claim 1, characterized in that the oil cooling device (230) further comprises water pipes for cooling the lubricating oil.
     
    7. The oil-injected screw air compressor (100) of claim 1, characterized by further comprising an oil separating tank to separate the lubricating oil from compressed air.
     
    8. The oil-injected screw air compressor (100) of claim 1, characterized by further comprising a motor, a transmission device and a gear box to distribute power to the first stage compression chamber (130) and the second stage compression chamber (150), and a suction filter and a suction throttle valve at an air inlet of the oil-injected screw air compressor (100).
     


    Ansprüche

    1. Schraubenluftverdichter (100) mit Öleinspritzung, aufweisend

    eine Kompressionskammer (130) einer ersten Stufe;

    eine Luftzwischenspeicherkammer (140), die an die Kompressionskammer (130) der ersten Stufe angeschlossen ist;

    eine Kompressionskammer (150) der zweiten Stufe, die an die Luftzwischenspeicherkammer (140) angeschlossen ist;

    eine Ölkühlungsvorrichtung (230) zum Kühlen von Schmieröl für die Kompressionskammer (130) der ersten Stufe, die Luftzwischenspeicherkammer (140) und die Kompressionskammer (150) der zweiten Stufe;

    mehrere Sensoren (132, 142, 152), die sich jeweils an den Auslässen der Kompressionskammer (130) der ersten Stufe, der Luftzwischenspeicherkammer (140) und der Kompressionskammer (150) der zweiten Stufe befinden;

    eine Steuereinheit (300), die jeweils dynamisch die Fördermengen des Schmieröls steuert, die in die Kompressionskammer (130) der ersten Stufe, die Luftzwischenspeicherkammer (140) und die Kompressionskammer (150) der zweiten Stufe gelangen, und zwar entsprechend Auslassdruck- und Auslasstemperaturdaten, die von den Sensoren (132, 142, 152) gemessen werden, und gemäß Temperaturdaten und Feuchtigkeitsdaten der Umgebung;

    dadurch gekennzeichnet, dass der Schraubenluftverdichter mit Öleinspritzung darüber hinaus aufweist:
    mehrere Steuerventile (270, 280, 290) und mehrere Ölleitungen (240, 250, 260), die jeweils zwischen der Ölkühlungsvorrichtung (230) und der Kompressionskammer (130) der ersten Stufe, der Ölkühlungsvorrichtung (230) und der Luftzwischenspeicherkammer (140) sowie zwischen der Ölkühlungsvorrichtung (230) und der Kompressionskammer (150) der zweiten Stufe angeschlossen sind, wobei die Ölleitungen (240, 250, 260) mit der Ölkühlungsvorrichtung (230) an unterschiedlichen Positionen verbunden sind, um zu ermöglichen, dass eine Temperatur des Schmieröls für die Kompressionskammer (130) der ersten Stufe und die Luftzwischenspeicherkammer (140) niedriger ist als eine Temperatur des Schmieröls für die Kompressionskammer (150) der zweiten Stufe.


     
    2. Schraubenluftverdichter (100) mit Öleinspritzung nach Anspruch 1, dadurch gekennzeichnet, dass die Ventile von der Steuereinheit (300) so gesteuert werden, dass sie jeweils dynamisch die Fördermengen des in die Kompressionskammer (130) der ersten Stufe, die Luftzwischenspeicherkammer (140) und die Kompressionskammer (150) der zweiten Stufe gelangenden Schmieröls entsprechend den Auslassdruck- und Auslasstemperaturdaten, die von den Sensoren (132, 142, 152) gemessen werden, und gemäß den Temperaturdaten und den Feuchtigkeitsdaten der Umgebung steuern, um die Auslasstemperaturen der Druckluft der Kompressionskammer (130) der ersten Stufe, der Luftzwischenspeicherkammer (140) und der Kompressionskammer (150) der zweiten Stufe über deren Drucktaupunkttemperaturen zu halten.
     
    3. Schraubenluftverdichter (100) mit Öleinspritzung nach Anspruch 2, dadurch gekennzeichnet, dass es sich bei den Ventilen um mehrere Bypass-Ventile handelt, um jeweils minimale Fördermengen des Schmieröls aufrechtzuerhalten, die in die Kompressionskammer (130) der ersten Stufe, die Luftzwischenspeicherkammer (140) und die Kompressionskammer (150) der zweiten Stufe gelangen.
     
    4. Schraubenluftverdichter (100) mit Öleinspritzung nach Anspruch 2, dadurch gekennzeichnet, dass er darüber hinaus mehrere Bypass-Leitungen (272, 282, 292) aufweist, um jeweils minimale Fördermengen des Schmieröls aufrechtzuerhalten, die in die Kompressionskammer (130) der ersten Stufe, die Luftzwischenspeicherkammer (140) und die Kompressionskammer (150) der zweiten Stufe gelangen.
     
    5. Schraubenluftverdichter (100) mit Öleinspritzung nach Anspruch 1, dadurch gekennzeichnet, dass die Ölkühlungsvorrichtung (230) darüber hinaus ein Kühlgebläse zum Kühlen des Schmieröls aufweist.
     
    6. Schraubenluftverdichter (100) mit Öleinspritzung nach Anspruch 1, dadurch gekennzeichnet, dass die Ölkühlungsvorrichtung (230) darüber hinaus Wasserleitungen zum Kühlen des Schmieröls aufweist.
     
    7. Schraubenluftverdichter (100) mit Öleinspritzung nach Anspruch 1, dadurch gekennzeichnet, dass er darüber hinaus einen Ölabscheidebehälter aufweist, um das Schmieröl von Druckluft zu trennen.
     
    8. Schraubenluftverdichter (100) mit Öleinspritzung nach Anspruch 1, dadurch gekennzeichnet, dass er darüber hinaus einen Motor, eine Übertragungsvorrichtung und ein Getriebegehäuse, um auf die Kompressionskammer (130) der ersten Stufe und die Kompressionskammer (150) der zweiten Stufe eine Antriebskraft zu übertragen, und einen Saugfilter und ein Saugdrosselventil an einem Lufteinlass des Schraubenluftverdichters (100) mit Öleinspritzung aufweist.
     


    Revendications

    1. Compresseur d'air à vis à injection d'huile (100), comprenant
    une chambre de compression de premier étage (130) ;
    une chambre tampon d'air (140) couplée à la chambre de compression de premier étage (130) ;
    une chambre de compression de deuxième étage (150) couplée à la chambre tampon d'air (140) ;
    un dispositif de refroidissement d'huile (230) destiné à refroidir de l'huile de lubrification pour la chambre de compression de premier étage (130), la chambre tampon d'air (140) et la chambre de compression de deuxième étage (150) ;
    une pluralité de capteurs (132, 142, 152) situés respectivement à des sorties de la chambre de compression de premier étage (130), de la chambre tampon d'air (140) et de la chambre de compression de deuxième étage (150) ;
    une unité de commande (300) commandant respectivement et dynamiquement des débits de l'huile de lubrification entrant dans la chambre de compression de premier étage (130), la chambre tampon d'air (140) et la chambre de compression de deuxième étage (150) selon des données de pression de sortie et de température de sortie mesurées par les capteurs (132, 142, 152), et des données de température et des données d'humidité d'un environnement ;
    caractérisé en ce que le compresseur d'air à vis à injection d'huile comprend en outre :
    une pluralité de vannes de commande (270, 280, 290) et une pluralité de tuyaux d'huile (240, 250, 260) couplés respectivement entre le dispositif de refroidissement d'huile (230) et la chambre de compression de premier étage (130), le dispositif de refroidissement d'huile (230) et la chambre tampon d'air (140), et le dispositif de refroidissement d'huile (230) et la chambre de compression de deuxième étage (150), sachant que les tuyaux d'huile (240, 250, 260) sont connectés au dispositif de refroidissement d'huile (230) dans différentes positions pour permettre qu'une température de l'huile de lubrification pour la chambre de compression de premier étage (130) et la chambre tampon d'air (140) soit inférieure à une température de l'huile de lubrification pour la chambre de compression de deuxième étage (150).
     
    2. Le compresseur d'air à vis à injection d'huile (100) de la revendication 1, caractérisé en ce que les vannes sont commandées par l'unité de commande (300) pour commander respectivement et dynamiquement les débits de l'huile de lubrification entrant dans la chambre de compression de premier étage (130), la chambre tampon d'air (140) et la chambre de compression de deuxième étage (150) selon les données de pression de sortie et de température de sortie mesurées par les capteurs (132, 142, 152) et les données de température et les données d'humidité de l'environnement pour maintenir les températures de sortie d'air comprimé de la chambre de compression de premier étage (130), de la chambre tampon d'air (140) et de la chambre de compression de deuxième étage (150) à une valeur supérieure à des températures de point de rosée sous pression de celles-ci.
     
    3. Le compresseur d'air à vis à injection d'huile (100) de la revendication 2, caractérisé en ce que les vannes sont une pluralité de vannes de dérivation pour maintenir respectivement des débits minimaux de l'huile de lubrification entrant dans la chambre de compression de premier étage (130), la chambre tampon d'air (140) et la chambre de compression de deuxième étage (150).
     
    4. Le compresseur d'air à vis à injection d'huile (100) de la revendication 2, caractérisé en ce qu'il comprend en outre une pluralité de tuyaux de dérivation (272, 282, 292) pour maintenir respectivement des débits minimaux de l'huile de lubrification entrant dans la chambre de compression de premier étage (130), la chambre tampon d'air (140) et la chambre de compression de deuxième étage (150).
     
    5. Le compresseur d'air à vis à injection d'huile (100) de la revendication 1, caractérisé en ce que le dispositif de refroidissement d'huile (230) comprend en outre un ventilateur de refroidissement destiné à refroidir l'huile de lubrification.
     
    6. Le compresseur d'air à vis à injection d'huile (100) de la revendication 1, caractérisé en ce que le dispositif de refroidissement d'huile (230) comprend en outre des tuyaux d'eau destinés à refroidir l'huile de lubrification.
     
    7. Le compresseur d'air à vis à injection d'huile (100) de la revendication 1, caractérisé en ce qu'il comprend en outre un réservoir de séparation d'huile pour séparer l'huile de lubrification de l'air comprimé.
     
    8. Le compresseur d'air à vis à injection d'huile (100) de la revendication 1, caractérisé en ce qu'il comprend en outre un moteur, un dispositif de transmission et une boîte d'engrenages pour distribuer de la puissance à la chambre de compression de premier étage (130) et à la chambre de compression de deuxième étage (150), et un filtre d'aspiration et une vanne d'étranglement d'aspiration à une entrée d'air du compresseur d'air à vis à injection d'huile (100).
     




    Drawing








    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description