(19)
(11)EP 3 319 057 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
26.06.2019 Bulletin 2019/26

(21)Application number: 16196873.0

(22)Date of filing:  02.11.2016
(51)International Patent Classification (IPC): 
G08B 17/107(2006.01)
G08B 17/113(2006.01)

(54)

INTEGRATED SMOKE DETECTION DEVICE

INTEGRIERTE RAUCHDETEKTIONSVORRICHTUNG

DISPOSITIF INTÉGRÉ DE DÉTECTION DE FUMÉE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(43)Date of publication of application:
09.05.2018 Bulletin 2018/19

(73)Proprietor: ams AG
8141 Premstätten (AT)

(72)Inventors:
  • Etschmaier, Harald
    8010 Graz (AT)
  • Hiramatsu, Nobuyoshi
    Namerikawa, Toyama 936-0848 (JP)
  • Synooka, Olesia
    8020 Graz (AT)

(74)Representative: Epping - Hermann - Fischer 
Patentanwaltsgesellschaft mbH Schloßschmidstraße 5
80639 München
80639 München (DE)


(56)References cited: : 
CH-A5- 571 750
JP-A- H11 316 283
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description


    [0001] A smoke detector is a device that senses smoke, typically as an indicator of fire. Commercial security devices issue a signal to a fire alarm control panel as part of a fire alarm system, while household smoke detectors generally issue a local audible or visual alarm from the detector itself. Many smoke detectors apply light scattering for smoke detection. This has the advantages of fast response and low signal drift, as well as low cost and long useful life. The reliability of such a smoke detector may be impaired by the presence of aerosols like water vapour, cigarette smoke, dust or various fumes, which may cause false alarm.

    [0002] A light detector that is used in a smoke detector may be mounted in a smoke chamber, which shields ambient light but allows smoke to enter and reach the light detector. A smoke chamber enlarges the device and may unduly delay the detection of smoke, if the passage of the smoke to the light detector is inhibited by parts of the smoke chamber or by the shape or arrangement of the inlet. If the smoke detector is exposed to the environment, dust or dew may adhere to the smoke chamber in the course of time and may cause false alarms.

    [0003] US 6 218 950 B1 discloses a fire detector measuring light signals at two different scattering angles. Two optical paths for the scattered light are arranged in such a way that one of the paths responds predominantly to light aerosols whereas the other path responds predominantly to dark aerosols. An alarm threshold is determined depending on the brightness of the aerosol. Fraudulent measurement values arising from water vapour or the like are stored in a memory for further reference to avoid false alarms.

    [0004] US 6 788 197 B1 discloses a fire alarm device having an electronic evaluator, an optical module, a temperature sensor and at least one combustion gas sensor. A light source, which can be an LED, emits non-polarized light. A polarizer with a rotatable polarization plane, which may comprise a liquid crystal, is arranged between the light source and an optical receiver. Thus scattering of the emitted light can be measured in two orthogonal polarization planes.

    [0005] US 7 746 239 B2 discloses a light scattering type smoke detector including a sensor body, a light-emitter for emitting light toward an open smoke-sensing space and outputting a signal according to the amount of scattered light received, and a fire judging unit. Two light sources with polarization filters emit at different angles with different polarization states, and forward and backwards scattered light is collected by a light receiving element.

    [0006] CN 200963473 Y discloses a photoelectric smoke fire detecting device based on depolarization. A light beam emitted from a light source is injected to a smoke granule via a polarizer, taking the plane passed by the incident light beam as a scattering base plane. The upper and lower sides of a receiving plane, which is vertical to the scattering base plane, are provided with two identical photoelectric receivers, which are placed close to and symmetrical to the scattering base plane with and without a polarizer which has a polarization axis vertical to the scattering plane.

    [0007] JP H11316283 A discloses a smoke detection device comprising a light source, a light receiver at a distance from the light source, and a polarizing beam splitter. The light source emits radiation into the beam splitter, where it is decomposed into linearly polarized components. A polarized component is reflected through an exit surface into the light receiver.

    [0008] CH 571750 A5 discloses a photoelectric aerosol detector. A detection chamber receives aerosol particles through a cap. An optical prism is located in the path of parallel light from a lense and light is transmitted through the detection chamber to an absorption chamber. The presence of particles of smoke causes scattering of the light and the photocell is actuated at a predetermined level. Reflected light from the prism is focussed on a second photocell and the amount depends upon the degree of contamination of the main surface of the prism.

    [0009] In the publication of Stefano di Stasio, "Experiments on depolarized optical scattering to sense in situ the onset of early agglomeration between nano-size soot particles", Journal of Quantitative Spectroscopy and Radiative Transfer vol. 73 (2002), pages 423 - 432, soot aerosol particles generated in hydrocarbon flames are investigated by laser light scattering techniques. The contribution of co- and cross-polarized scattered light for vertical and horizontal linear polarization states are measured at variable polar angles. The vertical depolarization ratio measured against the scattering angle was found to be very low and flat in the case of smaller chain-like aggregates, whereas in the case of larger branched-chain aggregates, it exhibits a maximum at about 90°. The measured ratio between the two depolarized contributions for each of the vertical and horizontal polarization states of the incident light is found to be suitable to establish the onset of the early aggregation mechanism between nano-size soot particles formed in a flame.

    [0010] When a light ray passes a planar boundary between two isotropic dielectric media, from a first medium having a refractive index n1 to a second medium having a different refractive index n2, the incident ray is split into a reflected ray and a refracted ray. The incident, reflected and refracted rays propagate in the same plane, which is designated as plane of incidence.

    [0011] The angle of incidence θ1 is enclosed by the incident ray and a straight line normal to the boundary, the straight line intersecting with the incident ray. The angle of refraction θ2 is enclosed by the refracted ray and a straight line normal to the boundary, the straight line intersecting with the refracted ray. The indices n1 and n2 and the angles θ1 and θ2 are connected by Snell's law: n1·sin θ1 = n2·sin θ2.

    [0012] The refracted ray vanishes if n2 < n1 and θ1 is so large that the equation n1·sin θ1 = n2·sin θ2 cannot be satisfied. This condition is called total internal reflection. The limit occurs for θ2 = 90°, in which case the angle of incidence is the critical angle θ1 = arcsin (n2/n1).

    [0013] A component of the polarization that is normal to the plane of incidence is conventionally designated as s-polarization, and a component of the polarization that is parallel to the plane of incidence is designated as p-polarization.

    [0014] The reflectance is the fraction of the incident power that is reflected from the interface between the dielectric media. From the Fresnel equations for non-absorbing, non-magnetic materials, the value of the reflectance for p-polarization is [(n1·cos θ2 - n2·cos θ1)/(n1·cos θ2 + n2·cos θ1)]2.

    [0015] The value of the reflectance is zero if n1·cos θ2 = n2·cos θ1, which is equivalent to n1·sin (90 °- θ2) = n2·sin(90°- θ1). This condition is met if θ1 + θ2 = 90°, according to Snell's law, and occurs for a special angle of incidence θB, which is named Brewster's angle after the Scottish physicist David Brewster.

    [0016] The equation n1·sin θB = n2·sin θ2 = n2·sin(90° - θB) = n2·cos θB, which is valid in the case θB + θ2 = 90°, yields the relation θB = arctan (n2/n1). For a boundary between a clear molding compound and ambient air, Brewster's angle may be typically θB = 33.85°.

    [0017] It is an object of the present invention to provide a smoke detector of reduced size for easy manufacturing and high reliability.

    [0018] This object is achieved with the integrated light scattering smoke detection device according to claim 1. Embodiments derive from the dependent claims.

    [0019] The integrated smoke detection device comprises a carrier, a light source arranged on or above the carrier, a light receiver arranged on or above the carrier at a distance from the light source, and a polarizing member arranged on or above the carrier, the light source emitting radiation into the polarizing member. The polarizing member is configured to have a boundary surface that linearly polarizes a reflected portion of the radiation emitted by the light source, and an exit surface that allows the reflected portion to exit the polarizing member.

    [0020] The light source and the polarizing member are configured such that the radiation emitted by the light source is redirected by total internal reflection of an emitted ray into an internally reflected ray, which is directed to the boundary surface.

    [0021] An embodiment of the integrated smoke detection device comprises a detection region contiguous with the polarizing member. The detection region and the polarizing member comprise indices of refraction, the index of refraction of the polarizing member being higher than the index of refraction of the detection region.

    [0022] A further embodiment comprises sidewalls limiting the detection region, the sidewalls being formed by a dark molding compound.

    [0023] In a further embodiment the polarizing member comprises a clear or semitransparent molding compound.

    [0024] In a further embodiment the light source emits directly into the polarizing member.

    [0025] In a further embodiment the light source is embedded in the polarizing member.

    [0026] In a further embodiment the light source, the light receiver and the polarizing member are arranged on a planar top surface of the carrier, and the light source emits in a direction normal to the top surface, away from the carrier.

    [0027] In a further embodiment the polarizing member has a shape of a triangular prism or a truncated triangular prism.

    [0028] In a further embodiment the boundary surface is arranged to generate a refracted portion and a reflected portion of the radiation emitted by the light source, a ray of the refracted portion and a ray of the reflected portion enclosing an angle of 90°.

    [0029] A further embodiment comprises an upper layer of the light receiver, the upper layer including a polarization filter. The upper layer may also include a band-pass filter.

    [0030] A further embodiment comprises a photodiode and a further photodiode integrated in the light receiver, the polarization filter being arranged such that radiation passing the polarization filter is only received by the photodiode.

    [0031] A further embodiment comprises a shielding member arranged between the light source and the light receiver, the shielding member being formed by a dark molding compound.

    [0032] The following is a more detailed description of examples and embodiments of the integrated smoke detection device in conjunction with the appended figures.
    Figure 1
    is a cross section of an embodiment of the integrated smoke detection device.
    Figure 2
    is a transparent perspective view of the embodiment according to Figure 1.


    [0033] Figure 1 is a cross section of an embodiment of the integrated smoke detection device. A light source 2 is arranged on or above a top surface 10 of a carrier 1, which may in particular be a semiconductor substrate, like a silicon substrate, for instance. A light receiver 3 is arranged on or above the top surface 10 of the carrier 1 at a distance from the light source 2. The use of a semiconductor substrate as carrier 1 facilitates external electric connections of the light source 2 and the light receiver 3, in particular connections with electric circuits for power supply and/or signal processing.

    [0034] The light source 2 may in particular be a light-emitting diode (LED) or a vertical-cavity surface-emitting laser (VCSEL), for instance. A vertical-cavity surface-emitting laser has the advantage that it provides a collimated and intense beam emitted in a relatively small solid angle.

    [0035] The light receiver 3 may especially be a semiconductor device, like a silicon die with an integrated photodiode and/or readout circuitry, for instance. More than one photodiode may be integrated in the light receiver 3. The light receiver 3 may comprise an upper layer 5 including a polarization filter 15 and/or a band-pass filter 16.

    [0036] Figure 1 shows an embodiment comprising a photodiode 13 that is covered by the polarization filter 15 and a further photodiode 14 that is not covered by a polarization filter. This arrangement enables a differential measurement, which can compensate for obstructions of the light path by dirt or debris, for example.

    [0037] The polarization filter 15 can especially be a metal grid formed in a metallization layer of a wiring provided for the circuitry. The optional band-pass filter 16 may be a narrow band-pass interference filter, for instance, which reduces the influence of ambient light.

    [0038] A detection region 4 is present above the carrier 1. The detection region 4 may be limited by sidewalls 6, which may be formed by a dark molding compound absorbing radiation in the wavelength range of the light source 2, for instance. The detection region 4 is not closed and allows smoke 9 to enter from outside, especially from the environment. If no smoke is present, the detection region 4 may be filled with any gas from the environment that does not trigger the smoke detector, like ambient air, for instance. A smoke chamber may optionally be provided for the detection region 4 and may include the sidewalls 6, but a smoke chamber is not necessary for the integrated smoke detection device.

    [0039] A polarizing member 7 is arranged adjacent to the detection region 4. The light source 2 can be contiguous with the polarizing member 7, so that the light source 2 emits radiation directly into the polarizing member 7. The polarizing member 7 is configured to have a boundary surface 11 that linearly polarizes a reflected portion d of the radiation a, b emitted by the light source 2, and an exit surface 12 that allows the reflected portion d to exit the polarizing member 7 and to enter the detection region 4. The polarizing member 7 may especially have essentially the shape of a triangular prism or a truncated triangular prism.

    [0040] The polarizing member 7 may comprise a clear or semitransparent molding compound like epoxy resin, for instance, and may especially be directly molded over the light source 2. Its index of refraction may be typically about 1.5, for example.

    [0041] A shielding member 8 may optionally be arranged between the light source 2 and the light receiver 3 to shield the light emitted from the light source 2 and prevent stray light from reaching the light receiver 3. The shielding member 8 may be formed by a dark molding compound, for instance, especially the same kind of molding compound that is used for the sidewalls 6.

    [0042] The embodiment according to Figure 1 shows an example of a suitable path of the radiation emitted by the light source 2. The radiation is emitted into the polarizing member 7 in a direction pointing away from the carrier 1. If the top surface 10 of the carrier 1 is planar, the direction of an emitted ray a may especially be perpendicular to the top surface 10 of the carrier 1.

    [0043] Total internal reflection within the polarizing member 7 may be employed to redirect the emitted ray a. To this end, the shape of the polarizing member 7 may be adapted so that the angle of incidence θ1 onto the first outer boundary surface of the polarizing member 7 that is reached by the emitted ray a is larger than the critical angle. Consequently, the emitted ray a is totally internally reflected into an internally reflected ray b as shown in Figure 1. If the critical angle is assumed to be typically about 42° for a clear molding compound at an interface to ambient air, the angle of incidence θ1, which is equal to the angle of reflection θ1', may be typically 67°, for instance.

    [0044] The shape of the polarizing member 7 is such that the radiation propagating within, either the emitted ray a or the internally reflected ray b as in the embodiment shown in Figure 1, reaches a boundary surface 11 of the polarizing member 7 at an angle of incidence θB that is smaller than the critical angle. Thus the boundary surface 11 splits the radiation into a refracted portion c and a reflected portion d. The reflected portion d is at least partially polarized. The refracted portion c is not employed for the detection of smoke and may be absorbed at the sidewall 6.

    [0045] The polarizing member 7 may especially be configured to yield Brewster's angle of incidence θB at the boundary surface 11, so that a ray of the refracted portion c and a ray of the reflected portion d form an angle of 90°, and the reflected portion d is linearly polarized. The right angle between the rays of the refracted portion c and the reflected portion d is indicated in Figure 1 by an angle curve and a small dot.

    [0046] Brewster's angle is about 34° at an interface between a dielectric material having a refractive index of about 1.5 and ambient air. The reflected portion d may be sufficiently polarized if the angle of incidence θB is not exactly but at least close to Brewster's angle.

    [0047] The angle of incidence θB equals the angle of reflection θB'. As the detection region 4, which may be filled with ambient air, for instance, has a refractive index that is lower than the refractive index of the polarizing member 7, the angle of refraction θ2 may be assumed to be larger than the angle of incidence θB.

    [0048] The polarized radiation exits the polarizing member 7 at an exit surface 12, from where it propagates into the detection region 4. If smoke 9 has entered the detection region 4 and the exiting ray e reaches the smoke 9, the radiation is scattered by the smoke 9, and scattered rays f, g propagating in different directions are observed.

    [0049] In Figure 1 polarization is indicated on the rays with double arrows and circles. The double arrows indicate the presence of a polarization parallel to the plane of the drawing, while the circle indicates the presence of a polarization normal to the plane of the drawing. If θB is Brewster's angle, the ray of the reflected portion d of the radiation is linearly polarized orthogonally to the plane of the drawing, as indicated by the presence of a circle and the absence of a double arrow. The exiting ray e maintains its linear polarization during its further propagation.

    [0050] The polarization filter 15 is arranged to block the component of polarization that is orthogonal to the plane of the drawing of Figure 1. Hence radiation that is totally linearly polarized in the orthogonal direction, which is indicated in Figure 1 by the absence of a double arrow, cannot pass the polarization filter 15 and is thus prevented from reaching the photodiode 13 of the light receiver 3. If the radiation is scattered by smoke 9, the linear polarization is not maintained during scattering, so that the scattered rays f, g comprise components of polarization parallel and orthogonal to the plane of the drawing, as indicated in Figure 1 by the presence of both circles and double arrows. The depolarized radiation traverses the polarization filter 15 on the light receiver 3, is detected by the photodiode 13, and a signal is triggered accordingly.

    [0051] By way of example, Figure 1 shows a scattered ray f that reaches the photodiode 13 through the polarization filter 15 and a further scattered ray g that reaches the photodiode 14 without traversing a polarization filter, thus enabling a differential measurement.

    [0052] If there is no smoke in the detection region 4, but only water vapour, the polarized radiation will be scattered as well, but its linear polarization is not altered. Consequently it will be blocked by the polarization filter 15 and cannot be detected by the photodiode 13. Triggering a false alarm in the absence of smoke is thus avoided.

    [0053] Figure 2 is a transparent perspective view of the embodiment according to Figure 1. Elements shown in Figure 2 that correspond to elements shown in Figure 1 are designated with the same reference numerals.

    [0054] The detection mechanism of the integrated smoke detection device does not rely on an accurate alignment of the scattering angle. This enables a short optical path at a relatively large scattering volume and thus a reduction of size. Because of the compact arrangement of the smoke detection device, without smoke chamber, no complex optical elements that require a special manufacturing process are required. The device can easily be tested during the manufacturing process. Further advantages are high reliability, stability against cross-sensing of water droplets, and a reduction of the influence of stray light.

    List of reference numerals



    [0055] 
    1
    carrier
    2
    light source
    3
    light receiver
    4
    detection region
    5
    upper layer
    6
    sidewall
    7
    polarizing member
    8
    shielding member
    9
    smoke
    10
    top surface
    11
    boundary surface
    12
    exit surface
    13
    photodiode
    14
    further photodiode
    15
    polarization filter
    16
    band-pass filter
    a
    emitted ray
    b
    internally reflected ray
    c
    refracted portion
    d
    reflected portion
    e
    exiting ray
    f
    scattered ray
    g
    further scattered ray
    θ1
    angle of incidence
    θ1'
    angle of reflection
    θB
    angle of incidence
    θB'
    angle of reflection
    θ2
    angle of refraction



    Claims

    1. An integrated smoke detection device, comprising:

    - a carrier (1),

    - a light source (2) arranged on or above the carrier (1),

    - a light receiver (3) arranged on or above the carrier (1) at a distance from the light source (2), and

    - a polarizing member (7) arranged on or above the carrier (1), the light source (2) emitting radiation (a, b) into the polarizing member (7),

    - wherein the polarizing member (7) is configured to have a boundary surface (11) that linearly polarizes a reflected portion (d) of the radiation (a, b) emitted by the light source (2), and an exit surface (12) that allows the reflected portion (d) to exit the polarizing member (7) characterized in that

    - the smoke detection device is a light scattering smoke detection device,

    - the light source (2) and the polarizing member (7) are configured such that the radiation (a, b) emitted by the light source (2) is redirected by total internal reflection of an emitted ray (a) into an internally reflected ray (b), and

    - the internally reflected ray (b) is directed to the boundary surface (11).


     
    2. The integrated smoke detection device according to claim 1, further comprising:
    a detection region (4) contiguous with the polarizing member (7), the detection region (4) and the polarizing member (7) comprising indices of refraction, the index of refraction of the polarizing member (7) being higher than the index of refraction of the detection region (4).
     
    3. The integrated smoke detection device according to claim 2, further comprising:
    sidewalls (6) limiting the detection region (4), the sidewalls (6) being formed by a dark molding compound.
     
    4. The integrated smoke detection device according to one of claims 1 to 3, wherein the polarizing member (7) comprises a clear or semitransparent molding compound.
     
    5. The integrated smoke detection device according to one of claims 1 to 4, wherein the light source (2) emits directly into the polarizing member (7).
     
    6. The integrated smoke detection device according to one of claims 1 to 5, wherein the light source (2) is embedded in the polarizing member (7).
     
    7. The integrated smoke detection device according to one of claims 1 to 6, further comprising:

    a planar top surface (10) of the carrier (1), the light source (2), the light receiver (3) and the polarizing member (7) being arranged on the top surface (10), and

    the light source (2) emitting in a direction normal to the top surface (10), away from the carrier (1).


     
    8. The integrated smoke detection device according to one of claims 1 to 7, wherein the polarizing member (7) has a shape of a triangular prism or a truncated triangular prism.
     
    9. The integrated smoke detection device according to one of claims 1 to 8, wherein the boundary surface (11) is arranged to generate a refracted portion (c) and a reflected portion (d) of the radiation (a, b) emitted by the light source (2), a ray of the refracted portion (c) and a ray of the reflected portion (d) enclosing an angle of 90°.
     
    10. The integrated smoke detection device according to one of claims 1 to 9, further comprising:
    an upper layer (5) of the light receiver (3), the upper layer (5) including a polarization filter (15).
     
    11. The integrated smoke detection device according to claim 10, further comprising:
    a band-pass filter (16) in the upper layer (5).
     
    12. The integrated smoke detection device according to claim 10 or 11, further comprising:
    a photodiode (13) and a further photodiode (14) being integrated in the light receiver (3), the polarization filter (15) being arranged such that radiation (g) passing the polarization filter (15) is only received by the photodiode (13) .
     
    13. The integrated smoke detection device according to one of claims 1 to 12, further comprising:
    a shielding member (8) arranged between the light source (2) and the light receiver (3), the shielding member (8) being formed by a dark molding compound.
     


    Ansprüche

    1. Integrierte Rauchdetektionsvorrichtung, Folgendes umfassend:

    - einen Träger (1),

    - eine Lichtquelle (2), die auf oder über dem Träger (1) angeordnet ist,

    - einen Lichtempfänger (3), der auf oder über dem Träger (1) in einem Abstand von der Lichtquelle (2) angeordnet ist, und

    - ein Polarisierungsteil (7), das auf oder über dem Träger (1) angeordnet ist, wobei die Lichtquelle (2) Strahlung (a, b) in das Polarisierungsteil (7) emittiert,

    - wobei das Polarisierungsteil (7) dazu ausgelegt ist, eine Grenzfläche (11), die einen reflektierten Anteil (d) der durch die Lichtquelle (2) emittierten Strahlung (a, b) linear polarisiert, und eine Austrittsfläche (12) zu haben, die den reflektierten Anteil (d) aus dem Polarisierungsteil (7) austreten lässt,
    dadurch gekennzeichnet, dass

    - es sich bei der Rauchdetektionsvorrichtung um eine Licht streuende Rauchdetektionsvorrichtung handelt,

    - die Lichtquelle (2) und das Polarisierungsteil (7) derart ausgelegt sind, dass die durch die Lichtquelle (2) emittierte Strahlung (a, b) durch Totalreflexion eines emittierten Strahls (a) in einen intern reflektierten Strahl (b) umgeleitet wird, und

    - der intern reflektierte Strahl (b) zur Grenzfläche (11) geleitet wird.


     
    2. Integrierte Rauchdetektionsvorrichtung nach Anspruch 1, darüber hinaus umfassend:
    einen an den Polarisierungsteil (7) angrenzenden Detektionsbereich (4), wobei der Detektionsbereich (4) und das Polarisierungsteil (7) Brechungsindices aufweisen und der Brechungsindex des Polarisierungsteils (7) höher ist als der Brechungsindex des Detektionsbereichs (4).
     
    3. Integrierte Rauchdetektionsvorrichtung nach Anspruch 2, darüber hinaus umfassend:
    Seitenwände (6), die den Detektionsbereich (4) begrenzen, wobei die Seitenwände (6) durch eine dunkle Formmasse gebildet sind.
     
    4. Integrierte Rauchdetektionsvorrichtung nach einem der Ansprüche 1 bis 3, wobei das Polarisierungsteil (7) eine klare oder semitransparente Formmasse umfasst.
     
    5. Integrierte Rauchdetektionsvorrichtung nach einem der Ansprüche 1 bis 4, wobei die Lichtquelle (2) direkt in das Polarisierungsteil (7) emittiert.
     
    6. Integrierte Rauchdetektionsvorrichtung nach einem der Ansprüche 1 bis 5, wobei die Lichtquelle (2) im Polarisierungsteil (7) eingebettet ist.
     
    7. Integrierte Rauchdetektionsvorrichtung nach einem der Ansprüche 1 bis 6, darüber hinaus umfassend:
    eine plane Oberfläche (10) des Trägers (1), wobei die Lichtquelle (2), der Lichtempfänger (3) und das Polarisierungsteil (7) auf der Oberfläche (10) angeordnet sind und die Lichtquelle (2) in einer Richtung senkrecht zur Oberfläche (10) weg vom Träger (1) emittiert.
     
    8. Integrierte Rauchdetektionsvorrichtung nach einem der Ansprüche 1 bis 7, wobei das Polarisierungsteil (7) eine Form eines Dreieckprismas oder eines abgestumpften Dreieckprismas hat.
     
    9. Integrierte Rauchdetektionsvorrichtung nach einem der Ansprüche 1 bis 8, wobei die Grenzfläche (11) dazu angeordnet ist, einen gebrochenen Anteil (c) und einen reflektierten Anteil (d) der durch die Lichtquelle (2) emittierten Strahlung (a, b) zu erzeugen, wobei ein Strahl des gebrochenen Anteils (c) und ein Strahl des reflektierten Anteils (d) einen Winkel von 90° einschließen.
     
    10. Integrierte Rauchdetektionsvorrichtung nach einem der Ansprüche 1 bis 9, darüber hinaus umfassend:
    eine obere Schicht (5) des Lichtempfängers (3), wobei die obere Schicht (5) ein Polarisierungsfilter (15) umfasst.
     
    11. Integrierte Rauchdetektionsvorrichtung nach Anspruch 10, darüber hinaus umfassend:
    ein Bandpassfilter (16) in der oberen Schicht (5).
     
    12. Integrierte Rauchdetektionsvorrichtung nach Anspruch 10 oder 11, darüber hinaus umfassend:
    eine Fotodiode (13) und eine weitere Fotodiode (14), die im Lichtempfänger (3) integriert sind, wobei das Polarisierungsfilter (15) so angeordnet ist, dass durch das Polarisierungsfilter (15) hindurchtretende Strahlung (g) nur von der Fotodiode (13) empfangen wird.
     
    13. Integrierte Rauchdetektionsvorrichtung nach einem der Ansprüche 1 bis 12, darüber hinaus umfassend:
    ein Abschirmungsteil (8), das zwischen der Lichtquelle (2) und dem Lichtempfänger (3) angeordnet ist, wobei das Abschirmungsteil (8) durch eine dunkle Formmasse gebildet ist.
     


    Revendications

    1. Dispositif intégré de détection de fumée, comprenant:

    - un support (1),

    - une source de lumière (2) agencée sur ou au-dessus du support (1),

    - un récepteur de lumière (3) agencé sur ou au-dessus du support (1) à une distance de la source de lumière (2), et

    - un élément de polarisation (7) agencé sur ou au-dessus du support (1), la source de lumière (2) émettant un rayonnement (a, b) vers l'élément de polarisation (7),

    - sachant que l'élément de polarisation (7) est configuré pour présenter une surface limite (11) qui polarise linéairement une partie réfléchie (d) du rayonnement (a, b) émis par la source de lumière (2), et une surface de sortie (12) qui permet à la partie réfléchie (d) de sortir de l'élément de polarisation (7),
    caractérisé en ce que

    - le dispositif de détection de fumée est un dispositif de détection de fumée par diffusion de lumière,

    - la source de lumière (2) et l'élément de polarisation (7) sont configurés de telle sorte que le rayonnement (a, b) émis par la source de lumière (2) soit redirigé par réflexion interne totale d'un rayon émis (a) en un rayon (b) réfléchi intérieurement, et

    - le rayon (b) réfléchi intérieurement est dirigé vers la surface limite (11).


     
    2. Le dispositif de détection de fumée intégré selon la revendication 1, comprenant en outre:
    une région de détection (4) contiguë à l'élément de polarisation (7), la région de détection (4) et l'élément de polarisation (7) comprenant des indices de réfraction, l'indice de réfraction de l'élément de polarisation (7) étant plus élevé que l'indice de réfraction de la région de détection (4).
     
    3. Le dispositif de détection de fumée intégré selon la revendication 2, comprenant en outre:
    des parois latérales (6) limitant la région de détection (4), les parois latérales (6) étant formées par un composé de moulage foncé.
     
    4. Le dispositif de détection de fumée intégré selon l'une des revendications 1 à 3, sachant que l'élément de polarisation (7) comprend un composé de moulage clair ou semitransparent.
     
    5. Le dispositif de détection de fumée intégré selon l'une des revendications 1 à 4, sachant que la source de lumière (2) émet directement vers l'élément de polarisation (7).
     
    6. Le dispositif de détection de fumée intégré selon l'une des revendications 1 à 5, sachant que la source de lumière (2) est logée dans l'élément de polarisation (7).
     
    7. Le dispositif de détection de fumée intégré selon l'une des revendications 1 à 6, comprenant en outre:

    une surface supérieure (10) plane du support (1), la source de lumière (2), le récepteur de lumière (3) et l'élément de polarisation (7) étant agencés sur la surface supérieure (10), et

    la source de lumière (2) émettant dans une direction normale par rapport à la surface supérieure (10), en éloignement du support (1).


     
    8. Le dispositif de détection de fumée intégré selon l'une des revendications 1 à 7, sachant que l'élément de polarisation (7) a une forme de prisme triangulaire ou de prisme triangulaire tronqué.
     
    9. Le dispositif de détection de fumée intégré selon l'une des revendications 1 à 8, sachant que la surface limite (11) est agencée pour générer une partie réfractée (c) et une partie réfléchie (d) du rayonnement (a, b) émis par la source de lumière (2),
    un rayon de la partie réfractée (c) et un rayon de la partie réfléchie (d) décrivant un angle de 90°.
     
    10. Le dispositif de détection de fumée intégré selon l'une des revendications 1 à 9, comprenant en outre:
    une couche supérieure (5) du récepteur de lumière (3), la couche supérieure (5) incluant un filtre de polarisation (15) .
     
    11. Le dispositif de détection de fumée intégré selon la revendication 10, comprenant en outre:
    un filtre passe-bande (16) dans la couche supérieure (5).
     
    12. Le dispositif de détection de fumée intégré selon la revendication 10 ou 11, comprenant en outre:
    une photodiode (13) et une photodiode supplémentaire (14) intégrées dans le récepteur de lumière (3), le filtre de polarisation (15) étant agencé de telle sorte que le rayonnement (g) passant par le filtre de polarisation (15) soit seulement reçu par la photodiode (13).
     
    13. Le dispositif de détection de fumée intégré selon l'une des revendications 1 à 12, comprenant en outre:
    un élément écran (8) agencé entre la source de lumière (2) et le récepteur de lumière (3), l'élément écran (8) étant formé par un composé de moulage foncé.
     




    Drawing











    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description




    Non-patent literature cited in the description