(19)
(11)EP 3 319 379 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
29.07.2020 Bulletin 2020/31

(21)Application number: 15900768.1

(22)Date of filing:  12.08.2015
(51)International Patent Classification (IPC): 
H04L 5/00(2006.01)
H04W 72/04(2009.01)
H04L 5/14(2006.01)
(86)International application number:
PCT/CN2015/086808
(87)International publication number:
WO 2017/024570 (16.02.2017 Gazette  2017/07)

(54)

METHOD AND APPARATUS FOR DETERMINING SUBFRAME CONFIGURATION OF CELL CLUSTER

VERFAHREN UND VORRICHTUNG ZUR BESTIMMUNG DER SUBFRAME-KONFIGURATION EINES ZELLENCLUSTERS

PROCÉDÉ ET APPAREIL POUR DÉTERMINER LA CONFIGURATION DE SOUS-TRAME D'UN GROUPE DE CELLULES


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(43)Date of publication of application:
09.05.2018 Bulletin 2018/19

(73)Proprietor: Huawei Technologies Co., Ltd.
Longgang District Shenzhen, Guangdong 518129 (CN)

(72)Inventors:
  • ZHANG, Jietao
    Shenzhen Guangdong 518129 (CN)
  • YANG, Kewen
    Shenzhen Guangdong 518129 (CN)
  • ZHUANG, Hongcheng
    Shenzhen Guangdong 518129 (CN)

(74)Representative: Körber, Martin Hans 
Mitscherlich PartmbB Patent- und Rechtsanwälte Sonnenstrasse 33
80331 München
80331 München (DE)


(56)References cited: : 
WO-A1-2014/043863
CN-A- 103 037 524
US-A1- 2014 301 255
CN-A- 103 037 524
CN-A- 104 780 559
  
  • NEC GROUP;: 'Discussions on Interference Mitigation Schemes for LTE TDD eIMTA' 3GPPTSG RAN WG1 MEETING #74, R1-133337 23 August 2013, XP050716457
  
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description

TECHNICAL FIELD



[0001] The present invention relates to the field of wireless communications technologies, and in particular, to a method and an apparatus for determining subframe configuration of a cell cluster.

BACKGROUND



[0002] A high rate and diversity are two typical requirements of a personal communications service in the future. Access network densification shortens a wireless communication distance, and basically ensures high-rate connection. A feature of service diversity is that uplink and downlink service requirements of terminals vary according to different applications. A TDD (Time Division Duplex time division duplex) mode is convenient for a service with network service diversity. Therefore, dense deployment of wireless access points in the TDD mode is a trend of a network architecture in the future.

[0003] A coverage radius of each cell is greatly reduced because of network densification. In most scenarios, a quantity of terminals served by a cell is far less than that in a macro cell scenario. With diversity of terminal services, a service of each cell will show a relatively high volatility, that is, uplink and downlink services of a cell change relatively rapidly within a short period of time. Therefore, the 3GPP sets up an eIMTA (Enhanced Interference Management and Traffic Adaptation enhanced interference management and traffic adaptation) research project, to research technologies for managing interference in flexible TDD subframe configuration of a cell. In 3GPP R12 specifications, each cell may dynamically select, according to current uplink and downlink service requirements of a cell, TDD subframe configuration that adapts to a service. The greatest challenge brought by dynamic TDD subframe configuration of each cell to network interference management is cross subframe interference between cells; that is, for a same subframe, neighbor cells have different data transmission directions, and consequently, downlink or uplink transmission of a neighbor cell is interfered with by uplink or downlink transmission of a cell. The eIMTA research project is to research how to avoid or eliminate the cross subframe interference between the cells brought by the flexible TDD subframe configuration of the cell.

[0004] In the industry, a management thought for the cross subframe interference that may exist in the flexible TDD subframe configuration is: Different cells with a similar feature (for example, a path loss between stations is relatively low, and relatively high interference may be easily generated between the stations) are placed in an interference cell cluster. Each cell in the interference cell cluster uses same TDD subframe configuration, and different interference cell clusters may use different TDD subframe configuration, so as to achieve a compromise between interference management and traffic adaptation. However, currently, there is a singular and an inflexible manner for performing subframe configuration for a cell cluster in the prior art. Further, a factor for determining TDD subframe configuration of a cell cluster is not clear.

[0005] The document CN 103 037 524 A shows a double-period dynamic configuration method for ratio between time division duplex uplink subframes and time division duplex downlink subframes, base station, system, and communication equipment. Especially, this document shows, in a first cycle, determining a first configuration parameter, for example a first time division duplex sub-frame configuration for eIMTA terminals and, in a second cycle, determining a second configuration parameter, for example second time division duplex sub-frame configuration, for example for legacy terminals.

SUMMARY



[0006] The present invention provides a method and an apparatus for determining subframe configuration of a cell cluster, so as to implement flexible TDD subframe configuration of the cell cluster for terminals of different types. Especially, the invention provides a method according to the independent claim 1 and an apparatus according to the independent claim 4.

BRIEF DESCRIPTION OF DRAWINGS



[0007] 

FIG. 1 is a flowchart of a method for determining subframe configuration of a cell cluster according to an embodiment of the present invention;

FIG. 2 is a flowchart of another method for determining subframe configuration of a cell ;

FIG. 3 is a schematic diagram of subframe configuration in a TDD-LTE system;

FIG. 4 is a schematic structural diagram of an apparatus for determining subframe configuration of a cell cluster according to an embodiment of the present invention;

FIG. 5 is a schematic structural diagram of another apparatus for determining subframe configuration of a cell cluster ; and

FIG. 6 is a schematic structural diagram of a further apparatus for determining subframe configuration of a cell cluster.


DESCRIPTION OF EMBODIMENTS



[0008] In a wireless network, a conventional terminal and a terminal that has an eIMTA function generally co-exist. The conventional terminal does not have an eIMTA function, and the conventional terminal and the terminal that has an eIMTA function use different TDD subframe configuration. In the prior art, during subframe configuration, capabilities and requirements are not distinguished between the terminal that has an eIMTA function and the conventional terminal, and same subframe configuration is used for an entire cell cluster. When a network resource is limited, for example, when a network has heavy load, the network cannot provide differentiated services for terminals of different types, and cannot perform differentiated subframe configuration according to a terminal type. Based on the prior art, in embodiments of the present invention, different capabilities and requirements of terminals of two types are considered, so as to implement TDD subframe configuration of the cell cluster.

[0009] In the embodiments of the present invention, for the terminal that has an eIMTA capability and the conventional terminal that exist in a network, when the network determines the TDD subframe configuration of the cell cluster, radio resource information required by the terminals of two types is separately collected, so as to optimize subframe configuration.

[0010] A wireless communications network generally includes a wireless access point, a wireless access point controller, and a user terminal, or includes only a wireless access point and a user terminal. The wireless access point may be a base station, an access point AP (Access Point), a transmission point, or the like. The wireless communications network may be a cellular mobile communications network, for example, WCDMA (Wideband Code Division Multiple Access) or LTE (Long Term Evolution), or may be a wireless local area network WLAN (Wireless Local Area Network), a future network, or the like. The cellular mobile communications network is used as an example in the following embodiment. The wireless access point is a base station, and the wireless access point controller is a base station controller.

[0011] There are two manners for implementing technical solutions in the present invention: centralized implementation and distributed implementation.

[0012] For the centralized implementation, a central control node in a network collects radio resource information required by terminals of different types in a cell cluster and determines TDD subframe configuration, and delivers a determining result to each cell in the cell cluster. The central control node may be a physical entity such as a base station, a base station controller, or another network device, or may be an independent controller, or may be a functional entity on another network entity on mobility management entity MME (mobility management entity). A function of the central control node is to collect statistics about radio resource information required by terminals of different types in the cell cluster and is responsible for determining TDD subframe configuration used in all cells in the cell cluster. Referring to FIG. 1, main steps of the centralized implementation include the following steps.

[0013] 101. A central control node obtains radio resource information required by enhanced interference management and traffic adaptation eIMTA terminals and radio resource information required by conventional terminals in a cell cluster, where the cell cluster includes multiple cells.

[0014] For example, each cell in the cell cluster sends, to the central control node, radio resource information required by eIMTA terminals and conventional terminals of the cell. Generally, one cell is corresponding to one base station, or multiple cells may be corresponding to one base station. In a specific embodiment, a base station corresponding to each cell in the cell cluster separately sends, to the central control node, radio resource information required by eIMTA terminals and conventional terminals of the cell, for example, wireless uplink and downlink resource information. If the central control node is a base station, radio resource information of a corresponding cell may be transmitted by using an interface between base stations, for example, a load interaction message of an X2 interface. If the central control node is a base station controller, radio resource information corresponding to each cell may be collected by using an interface between the base station controller and a base station.

[0015] Certainly, in some cases, a cell in the cell cluster may include only one type of terminal, such as an eIMTA terminal. Therefore, during collection, a quantity of conventional terminals in the cell is 0.

[0016] The radio resource information required by the eIMTA terminals and the conventional terminals may be defined as wireless uplink and downlink resource information required when terminals of two types perform corresponding data transmission, such as a quantity of uplink and downlink time-frequency resource blocks, a quantity of uplink and downlink subframes, or an uplink and downlink data buffer size. Alternatively, the radio resource information required by the eIMTA terminals and the conventional terminals may be defined as respective uplink and downlink load information required by the eIMTA terminals and the conventional terminals, and may include any one of the following types: uplink load and downlink load of the eIMTA terminals, uplink load and downlink load of the conventional terminals, overall load and an uplink-downlink service ratio that are of the eIMTA terminals, or overall load and an uplink-downlink service ratio that are of the conventional terminals.

[0017] 102. Determine TDD subframe configuration of all cells in the cell cluster according to the radio resource information required by the eIMTA terminals and the conventional terminals in the cell cluster.

[0018] In this step, the central control node determines, according to radio resource information required by eIMTA terminals and conventional terminals of each cell in the cell cluster, shared TDD subframe configuration used by all cells in the cell cluster. For example, after obtaining radio resource information required by all eIMTA terminals and radio resource information required by all conventional terminals in the entire cell cluster, the central control node may determine an uplink-downlink resource ratio required by all the eIMTA terminals and an uplink-downlink resource ratio required by all the conventional terminals, that is, the uplink-downlink resource ratio required by all the eIMTA terminals and the uplink-downlink resource ratio required by all the conventional terminals in the entire cell cluster. Further, TDD uplink-downlink subframe configuration of the entire cell cluster may be determined according to the ratio.

[0019] In another embodiment, in step 101, each cell in the cell cluster may separately report respective uplink resources and respective downlink resources required by the eIMTA terminals and the conventional terminals. After receiving the resource information, the central control node may collect statistics about an uplink-downlink resource ratio required by the eIMTA terminals and an uplink-downlink resource ratio required by the conventional terminals in the cell cluster.

[0020] Further, in a specific embodiment, when TDD subframe configuration is determined, a network policy may be further considered in addition to considering radio resource information required by the foregoing terminals of different types in the cell cluster. That is, TDD subframe configuration of all cells in the cell cluster is determined according to the network policy and radio resource information required by the eIMTA terminals and the conventional terminals in the cell cluster. The network policy may be priority weights of terminals of two types.

[0021] For example, a carrier's policy is to ensure that a resource is preferentially used by the eIMTA terminals, or when the eIMTA terminals have a higher priority, when determining subframe configuration, the central control node may preferentially allocate more TDD subframe resources to the eIMTA terminals for use. In the prior art, when a network resource is limited, if the eIMTA terminal and the conventional terminal are not distinguished from each other, requests of terminals of two types cannot be met. In the technical solution of this embodiment, because the eIMTA terminal and the conventional terminal are distinguished from each other, when a network resource is limited, it can be ensured that requests of the eIMTA terminals are preferentially met.

[0022] For example, when determining subframe configuration of the cell cluster, the central control node may centrally determine subframe configuration of all cells in the cell cluster according to an obtained quantity of subframes required by respective downlink transmission and respective uplink transmission of the eIMTA terminals and the conventional terminals of each cell in the cell cluster. For example, after accumulating obtained corresponding resource requirements of the foregoing terminals of two types of each cell, the central control node obtains, by means of calculation, respective downlink resources and respective uplink resources required by all eIMTA terminals and all conventional terminals of all cells in the cell cluster, that is, a quantity of subframes required by respective downlink transmission and respective uplink transmission required by all eIMTA terminals and all conventional terminals in the cell cluster. Optionally, the central control node then centrally determines subframe configuration of each cell in the cell cluster according to a network policy such as a priority weight. The priority weight is used as a weight factor, and reflects a priority policy used when a network allocates a resource to the eIMTA terminals and the conventional terminals. When the eIMTA terminals have a larger priority weight, it indicates that the network tends to preferentially allocate a resource to the eIMTA terminals for use when the resource is limited. On the contrary, when the conventional terminals have a larger priority weight, it indicates that the network tends to preferentially allocate a resource to the conventional terminals for use when the resource is limited. The central control node performs calculation according to resource requirements of all eIMTA terminals, resource requirements of all conventional terminals in the cell cluster, and priority weights, to obtain resource requirements of all eIMTA terminals and resource requirements of all conventional terminals obtained after a weighted operation. Based on the network resource, the central control node determines corresponding downlink transmission resources and uplink transmission resources of all cells according to a quantity of resource requirements that is obtained after the weighted operation and that is of terminals of two types, that is, TDD subframe configuration of the cell cluster.

[0023] 103. Notify each cell in the cell cluster of TDD subframe configuration information of the cell cluster.

[0024] The central control node may broadcast the TDD subframe configuration information of the cell cluster. After receiving the TDD subframe configuration information, each cell uses new subframe configuration to transmit data for user terminals of two types of the cell. In an embodiment, this step may be completed by a base station corresponding to each cell. One cell may be corresponding to one base station, or multiple cells may be corresponding to one base station.

[0025] In the foregoing embodiment, a central control node separately obtains radio resource information required by terminals of different types of each cell in a cell cluster, and centrally determines TDD subframe configuration of the entire cell cluster. In another distributed implementation, each cell in a cell cluster may separately determine TDD subframe configuration of the cell. Different from the foregoing centralized implementation, for the distributed implementation, a cell in the cell cluster obtains radio resource information required by terminals of different types of the cell and another cell in the cell cluster, and determines TDD subframe configuration of the cell according to the obtained radio resource information. Each cell in the cell cluster separately performs a similar operation, that is, separately determines TDD subframe configuration of each cell, so that TDD subframe configuration of the entire cell cluster is determined. Likewise, generally, one cell is corresponding to one base station, or multiple cells may be corresponding to one base station. For one cell, referring to FIG. 2, main steps include the following steps.

[0026] 201. A cell in a cell cluster obtains radio resource information required by eIMTA terminals and radio resource information required by conventional terminals in the cell cluster, including radio resource information required by eIMTA terminals and conventional terminals of the cell, and radio resource information required by eIMTA terminals and conventional terminals of another cell.

[0027] In a specific embodiment, each cell in an interference cell cluster separately exchanges, by using an X2 interface message, radio resource information required by eIMTA terminals and conventional terminals of a respective cell with another cell in the cluster. Therefore, any cell may obtain radio resource information required by eIMTA terminals and conventional terminals of another cell in the cell cluster, and may obtain radio resource information required by eIMTA terminals and conventional terminals of the cell, so that radio resource information required by eIMTA terminals and radio resource information required by conventional terminals in the entire cell cluster are obtained. A type and a definition of the radio resource information are similar to those in the foregoing centralized embodiment, and details are not described again. This step may be completed by a base station corresponding to each cell. One cell may be corresponding to one base station, or multiple cells may be corresponding to one base station.

[0028] 202. The cell determines TDD subframe configuration of the cell according to the radio resource information required by the eIMTA terminals and the conventional terminals in the cell cluster.

[0029] A process of determining subframe configuration is similar to that in the foregoing centralized embodiment, and details are not described again. A difference is: In the foregoing embodiment, a central control node centrally determines TDD subframe configuration of the entire cell cluster, but in this embodiment, a cell determines TDD subframe configuration of the cell, and after determining the TDD subframe configuration of the cell, the cell uses new subframe configuration to transmit data for the eIMTA terminals and the conventional terminals of the cell. After each cell in the cell cluster separately performs the foregoing step, TDD subframe configuration of each cell is determined, and subframe configuration of the entire cell cluster is centrally completed. In an embodiment, this step may be completed by a base station corresponding to each cell. One cell may be corresponding to one base station, or multiple cells may be corresponding to one base station.

[0030] Further, the cell uses the TDD subframe configuration to transmit data for user terminals of the cell. After TDD subframe configuration of each cell is determined, each cell separately uses the subframe configuration to transmit data for user terminals of two types of each cell.

[0031] Further, similar to the foregoing centralized embodiment, when TDD subframe configuration is determined, a network policy may be further considered in addition to considering radio resource information required by the foregoing terminals of different types in the cell cluster. That is, TDD subframe configuration of the cell is determined according to a network policy and radio resource information required by the eIMTA terminals and the conventional terminals in the cell cluster. The network policy may be priority weights of terminals of two types. In a specific embodiment, a TDD subframe configuration manner in the cell cluster may be performing weighted processing on a resource required by eIMTA terminals and a resource required by conventional terminals. When the eIMTA terminals have a higher priority, the network tends to preferentially allocate a resource to the eIMTA terminals for use when the resource is limited. On the contrary, when the conventional terminals have a higher priority, the network tends to preferentially allocate a resource to the conventional terminals for use when the resource is limited.

[0032] For example, each cell in the cell cluster determines subframe configuration of the cell according to an obtained quantity of subframes required by respective downlink transmission and respective uplink transmission of the eIMTA terminals and the conventional terminals of the other cells and the cell in the cell cluster. Specifically, after accumulating obtained corresponding resource requirements of the terminals of two types of another cell and corresponding resource requirements of the terminals of two types of the cell, each cell obtains, by means of calculation, respective downlink resources and respective uplink resources required by all eIMTA terminals and all conventional terminals of all cells in the cell cluster, that is, a quantity of subframes required by downlink transmission and uplink transmission of all eIMTA terminals and all conventional terminals in the cell cluster. Optionally, each cell then determines TDD subframe configuration of the cell according to a network policy such as a priority weight. The priority weight is used as a weight factor, and reflects a priority policy used when a network allocates a resource to the eIMTA terminals and the conventional terminals. When the eIMTA terminals have a larger priority weight, it indicates that the network tends to preferentially allocate a resource to the eIMTA terminals for use when the resource is limited. On the contrary, when the conventional terminals have a larger priority weight, it indicates that the network tends to preferentially allocate a resource to the conventional terminals for use when the resource is limited. Each cell performs calculation according to requirements of all eIMTA terminals and requirements of all conventional terminals of all cells in the cell cluster, and priority weights, to obtain resource requirements of the eIMTA terminals and resource requirements of the conventional terminals obtained after a weighted operation. Based on the network resource, each cell determines corresponding downlink transmission resources and uplink transmission resources of the cell according to a quantity of resource requirements obtained after the weighted operation, that is, TDD subframe configuration. Each cell completes TDD subframe configuration of the cell, so that TDD subframe configuration of the cell cluster is completed.

[0033] Compared with the foregoing centralized manner, each cell separately obtains radio resource information required by terminals of different types in a cell cluster, and determines TDD subframe configuration of the cell; and each cell independently performs subframe configuration and uses the subframe configuration. Compared with the foregoing embodiment, subframe configuration information does not need to be delivered to each cell, thereby reducing a signaling procedure and saving a system resource.

[0034] In this solution of the present invention, a method for determining subframe configuration of a cell cluster is provided. The method has the following beneficial effects: When TDD subframe configuration of the cell cluster is determined, radio resource information required by eIMTA terminals and conventional terminals of each cell is obtained, and the TDD subframe configuration of the cell cluster is implemented according to the obtained radio resource information of terminals of two types, thereby optimizing TDD resource allocation and ensuring service requirements of terminals of different types. Further, TDD subframe configuration may be further flexibly optimized according to a network policy. For example, when service load is relatively high, the network may further optimize resource allocation according to priorities of terminals of different types.

[0035] A TDD-LTE system is used as an example in the following to describe processes of determining TDD subframe configuration in the foregoing embodiments, that is, to further describe specific TDD subframe configuration processes in steps 102 and 202. In the following embodiments, radio resource information required by eIMTA terminals and conventional terminals in a cell cluster is a ratio of a quantity of downlink subframes to a quantity of uplink subframes of terminals of two types; that is, in step 101, a central control node obtains a ratio of a quantity of downlink subframes to a quantity of uplink subframes of eIMTA terminals and conventional terminals of each cell in the cell cluster, and collects statistics about a ratio of a quantity of downlink subframes to a quantity of uplink subframes of all eIMTA terminals and all conventional terminals in the cell cluster. Alternatively, in step 201, a cell obtains a ratio of a quantity of downlink subframes to a quantity of uplink subframes of eIMTA terminals and conventional terminals of each cell in the cell cluster, and collects statistics about the ratio of a quantity of downlink subframes to a quantity of uplink subframes of the eIMTA terminals and the conventional terminals in the entire cell cluster, including the cell and another cell.

[0036] In the TDD-LTE system, specifically, as shown in FIG. 3, seven types of TDD subframe configuration are stipulated in the standard. A frame of a TDD system is divided into ten subframes. D represents a downlink transmission subframe; S represents a special subframe, and may be usually used for downlink transmission, but cannot be used for uplink transmission; and U represents an uplink transmission subframe.

[0037] As stipulated in an LTE standard, in configuration 0 to configuration 6, corresponding subframe quantity ratios that may be used for downlink and uplink transmission are respectively 4:6, 6:4, 8:2, 7:3, 8:2, 9:1, and 5:5. The subframe quantity ratio is a ratio of a quantity of subframes configured for downlink transmission to a quantity of subframes configured for uplink transmission in cell configuration. The radio resource information required by the eIMTA terminals and the conventional terminals in the cell cluster is the ratio of a quantity of downlink subframes to a quantity of uplink subframes of terminals of two types. It is assumed that a downlink-uplink subframe quantity ratio that needs to be used by all eIMTA terminals of all cells in the cell cluster is 7:2, and a downlink-uplink subframe quantity ratio that needs to be used by all conventional terminals of all cells in the cell cluster is 2:7. That is, if service requirements of all terminals need to be met, a downlink-uplink subframe quantity ratio required by a system is 9:9, that is, 18 subframes are required. The resource requirement exceeds a total resource (10 subframes) of the system. In this case, in the prior art, because the eIMTA terminal and the conventional terminal cannot be distinguished from each other, during resource allocation, an allocated downlink-uplink subframe quantity ratio is 5:5, that is, to maintain a relative ratio between a downlink requirement and an uplink requirement. Therefore, it can be learned that service requirements of the eIMTA terminals and the conventional terminals cannot be met. In the technical solution of the present invention, the network may distinguish between the eIMTA terminals and the conventional terminals, and may further perform TDD subframe configuration according to different network policies. For example, an allocation ratio of uplink subframes to downlink subframes in the TDD subframe may be adjusted, to some extent, according to resources that need to be used for uplink and downlink data transmission and with reference to network policies for terminals of different types.

[0038] Three examples are used for description in the following.

[0039] In a first implementation, during resource allocation, a network gives a higher priority to the eIMTA terminals, so that a resource is preferentially allocated to the eIMTA terminals. In this case, a network policy includes a priority weight.

[0040] For example, during TDD resource allocation, a weight value given to the eIMTA terminals is a (a<=1), and a weight value given to the conventional terminals is (1-a), so that differentiated resource allocation for terminals of two types can be implemented by setting different values during resource allocation. If the terminals of two types have a same weight value, it indicates that the terminals of two types have a same priority. A larger weight value of a type of terminal indicates that the terminal of the type has a higher priority.

[0041] It is assumed that it is learned, according to the radio resource information required by the eIMTA terminals and the conventional terminals in the cell cluster, that a downlink-uplink subframe quantity ratio that needs to be used by all eIMTA terminals of all cells in the cell cluster is 7:2, and a downlink-uplink subframe quantity ratio that needs to be used by all conventional terminals of all cells in the cell cluster is 2:7. It is assumed that, in the network policy, a priority weight value of the eIMTA terminals is set to a=0.7, and a priority weight value of the conventional terminals is set to 1-0.7=0.3. After normalization, a downlink-uplink subframe requirement ratio of the eIMTA terminals is ma7:ma2, and m is a set normalization factor; and a downlink-uplink subframe requirement ratio of the conventional terminals is m(1-a)2:m(1-a)7. A total resource is 10 subframes. Therefore, m=10/9 is obtained by calculating m0.77+m0.72+m0.32+m0.37=10, that is, theoretically, a downlink-uplink subframe quantity ratio allocated to the eIMTA terminals by means of calculation according to m0.77:m0.72 is 5.44:1.56, and a downlink-uplink subframe quantity ratio allocated to the conventional terminals by means of calculation according to m0.32+m0.37 is 0.67:2.33. Therefore, theoretically, a downlink-uplink subframe quantity ratio of a cell or a cell cluster is (5.44+0.67):(1.56+2.33)=6.11:3.89, and corresponding closest subframe configuration is Configuration 1 in FIG. 3. In this case, Configuration 1 is selected as TDD subframe configuration of the conventional terminals and the eIMTA terminals, that is, TDD subframe configuration of the entire cell cluster or a cell.

[0042] In a second implementation, it is assumed that a downlink-uplink subframe quantity ratio that needs to be used by all eIMTA terminals of all cells in the cell cluster is 7:2, and a downlink-uplink subframe quantity ratio that needs to be used by all conventional terminals of all cells in the cell cluster is 2:7. The network policy needs to ensure that service requirements of the eIMTA terminals are preferentially met, that is, a weight value of the foregoing eIMTA terminals may be set to a=1, and a weight value of the conventional terminals is set to 0. In this case, to preferentially meet requirements of the eIMTA terminals, the subframe configuration that is closest to the requirements of the eIMTA terminals is selected. For example, a subframe of each cell in the cell cluster can be set to Configuration 3 (7:3) or Configuration 4 (8:2), so that uplink and downlink service requirements of the eIMTA terminals can be met, and the remaining subframe resource is allocated to the conventional terminals for use. For example, subframe configuration of each cell in the cell cluster is set to Configuration 3, that is, a downlink-uplink subframe quantity ratio is 7:3. In this case, because a downlink-uplink subframe quantity ratio of the requirements of the eIMTA terminals is 7:2, a cell can allocate all downlink subframes to the eIMTA terminals for downlink transmission, and allocate two subframes of the three uplink subframes to the eIMTA terminals for uplink transmission, thereby ensuring uplink and downlink transmission requirements of the eIMTA terminals. The cell allocates one remaining uplink subframe to the conventional terminals, and service requirements of only some conventional terminals can be met. On the contrary, it can be ensured that service requirements of the conventional terminals are preferentially met, a weight value of the conventional terminals is set to 1, and a weight value of the eIMTA terminals is set to 0. In this case, requirements of the conventional terminals are preferentially met, and the subframe configuration that is closest to the requirements of the conventional terminals is selected.

[0043] If requirements of terminals of only one type in the cell cluster are considered, such as the eIMTA terminals, in step 101 or 201, during resource information collection, only statistics about radio resource information required by the eIMTA terminals in the cell cluster may be collected; or if only requirements of the conventional terminals are considered, only statistics about radio resource information required by the conventional terminals are collected.

[0044] In a third implementation, during resource allocation, a network gives a higher priority to the conventional terminals, so that a resource is preferentially allocated to the conventional terminals. For example, during resource allocation, a weight value given to the eIMTA terminals is a=0.3, and a weight value given to the conventional terminals is 0.7. According to a similar calculation manner in the first implementation, an allocated downlink-uplink subframe quantity ratio of a cell is 3.89:6.11, and the selected corresponding closest subframe configuration is Configuration 0 (4:6) in FIG. 3.

[0045] Certainly, in the foregoing embodiment, that radio resource information is a quantity of uplink and downlink subframes required by terminals of two types is used as an example for description. In the foregoing implementation, an uplink-downlink resource ratio required by all eIMTA terminals and all conventional terminals in the cell cluster may be obtained in a similar calculation manner, for example, by obtaining a radio resource information that is of any other type and that is of the foregoing two terminals such as a quantity of uplink and downlink time-frequency resource blocks, an uplink and downlink data buffer size, or required uplink and downlink load; and then TDD uplink-downlink subframe configuration of the cell cluster or the cell may be further obtained with reference to the network policy.

[0046] It can be learned that when a system resource is limited and it is hardly to meet service requirements of all user terminals, for example, when a system has heavy load, in the technical solution in this embodiment of the present invention, resources may be flexibly allocated to terminals of different types according to the network policy.

[0047] Corresponding to the foregoing first method embodiment, the present invention further discloses an apparatus for determining subframe configuration of a cell cluster, configured to perform the method in the foregoing embodiment. Referring to FIG. 4, the apparatus includes:

an obtaining module 401, configured to obtain radio resource information required by enhanced interference management and traffic adaptation eIMTA terminals and radio resource information required by conventional terminals in the cell cluster, where the cell cluster includes multiple cells;

a configuration module 402, configured to determine TDD subframe configuration of the cell cluster according to the radio resource information required by the eIMTA terminals and the conventional terminals in the cell cluster; and

a notification module 403, configured to notify each cell in the cell cluster of the TDD subframe configuration information of the cell cluster.



[0048] The apparatus is a central control node in the foregoing method embodiment. For example, the apparatus may be a base station, a base station controller, or a mobility management entity MME.

[0049] Optionally, the obtaining module is specifically configured to:
receive, radio resource information required by the eIMTA terminals and radio resource information required by the conventional terminals, where the radio resource information is sent by each cell in the cell cluster; and collect statistics about the radio resource information required by all eIMTA terminals and the radio resource information required by all conventional terminals in the cell cluster. Alternatively, the obtaining module includes a receiving module and a statistics collecting module, which separately perform the foregoing two steps.

[0050] Optionally, the configuration module is specifically configured to:

determine a ratio of uplink resources to downlink resources required by the eIMTA terminals according to the radio resource information required by the eIMTA terminals in the cell cluster, and determine a ratio of uplink resources to downlink resources required by the conventional terminals according to the radio resource information required by the conventional terminals in the cell cluster; and

determine TDD uplink-downlink subframe configuration of the cell cluster according to a network policy and the ratio of uplink resources to downlink resources required by the eIMTA terminals and the conventional terminals.



[0051] The network policy includes a priority weight of the eIMTA terminals and a priority weight of the conventional terminals.

[0052] The radio resource information required by the eIMTA terminals and the conventional terminals is a quantity of uplink and downlink time-frequency resource blocks, a quantity of uplink and downlink subframes, an uplink and downlink data buffer size, or uplink and downlink service load that is required by the eIMTA terminals and the conventional terminals.

[0053] All the modules in the foregoing apparatus embodiment may separately perform corresponding steps in the method embodiment. Some steps are not listed one by one. For details, refer to the method embodiment.

[0054] Alternatively, the foregoing apparatus embodiment may be in another form. Referring to FIG. 6, the apparatus includes:

a receiver 601, configured to obtain radio resource information required by enhanced interference management and traffic adaptation eIMTA terminals and radio resource information required by conventional terminals in the cell cluster, where the cell cluster includes multiple cells;

a processor 602, configured to determine TDD subframe configuration of the cell cluster according to the radio resource information required by the eIMTA terminals and the conventional terminals in the cell cluster; and

a transmitter 603, configured to notify each cell in the cell cluster of the TDD subframe configuration information of the cell cluster.



[0055] The apparatus is similar to that in the foregoing apparatus embodiment. The receiver performs corresponding steps performed by the obtaining module, the processor performs corresponding steps performed by the configuration module, and the transmitter performs corresponding steps performed by the notification module. Other corresponding steps may be performed by the foregoing three units, and are not listed one by one. For details, refer to the foregoing method embodiment and apparatus embodiment. The apparatus is a central control node in the foregoing method embodiment. For example, the apparatus may be a base station, a base station controller, or a mobility management entity MME.

[0056] Corresponding to the foregoing second method embodiment, the present invention further discloses an apparatus for determining subframe configuration of a cell cluster, configured to perform the method in the foregoing embodiment. The apparatus may be a wireless access point corresponding to a cell in the cell cluster, for example, a base station. Referring to FIG. 5, the apparatus includes:

an obtaining module 501, configured to obtain radio resource information required by enhanced interference management and traffic adaptation eIMTA terminals and radio resource information required by conventional terminals in the cell cluster;

a configuration module 502, configured to determine TDD subframe configuration of the cell according to the radio resource information required by the eIMTA terminals and the conventional terminals in the cell cluster.



[0057] Optionally, the obtaining module is specifically configured to:
obtain radio resource information required by eIMTA terminals and conventional terminals of the cell, obtain radio resource information required by eIMTA terminals and radio resource information required by conventional terminals of another cell in the cell cluster, and collect statistics about the radio resource information required by all eIMTA terminals and the radio resource information required by all conventional terminals in the cell cluster. Alternatively, the obtaining module includes a receiving module and a statistics collecting module, which separately perform the foregoing two steps.

[0058] Optionally, the configuration module is specifically configured to:

determine a ratio of uplink resources to downlink resources required by the eIMTA terminals according to the radio resource information required by the eIMTA terminals in the cell cluster, and determine a ratio of uplink resources to downlink resources required by the conventional terminals according to the radio resource information required by the conventional terminals in the cell cluster; and

determine TDD subframe configuration of the cell according to a network policy and the ratio of uplink resources to downlink resources required by the eIMTA terminals and the conventional terminals in the cell cluster.



[0059] The network policy includes a priority weight of the eIMTA terminals and a priority weight of the conventional terminals.

[0060] The radio resource information required by the eIMTA terminals and the conventional terminals is a quantity of uplink and downlink time-frequency resource blocks, a quantity of uplink and downlink subframes, an uplink and downlink data buffer size, or uplink and downlink service load that is required by the eIMTA terminals and the conventional terminals.

[0061] All the modules in the foregoing apparatus embodiment may separately perform corresponding steps in the method embodiment. Some steps are not listed one by one. For details, refer to the method embodiment.

[0062] Alternatively, the foregoing apparatus embodiment may be in another form. Referring to FIG. 6, the apparatus (the transmitter 603 is not included) includes:

a receiver 601, configured to obtain radio resource information required by enhanced interference management and traffic adaptation eIMTA terminals and radio resource information required by conventional terminals in the cell cluster; and

a processor 602, configured to determine TDD subframe configuration of the cell according to the radio resource information required by the eIMTA terminals and the conventional terminals in the cell cluster.



[0063] The apparatus is similar to that in the foregoing apparatus embodiment. The receiver performs corresponding steps performed by the obtaining module, and the processor performs corresponding steps performed by the configuration module. Other corresponding steps may be performed by the foregoing two units, and are not listed one by one. For details, refer to the foregoing method embodiment and apparatus embodiment. The apparatus may be a wireless access point corresponding to a cell in the cell cluster, for example, a base station.

[0064] According to the method and the apparatus for determining subframe configuration of a cell cluster that are provided in the foregoing embodiment, radio resource information required by terminals of two types in the cell cluster is collected, and subframe configuration of the cell cluster is performed, so as to implement flexible TDD subframe configuration for terminals of different types. Further, TDD subframe configuration of the cell cluster may be flexibly adjusted according to network policies for the terminals of different types.

[0065] A person of ordinary skill in the art may understand that all or some of the processes of the methods in the embodiments may be implemented by a computer program instructing relevant hardware. The program may be stored in a computer readable storage medium. When the program runs, the processes of the methods in the embodiments are performed. The foregoing storage medium may include: a magnetic disk, an optical disc, a read-only memory (Read-Only Memory, ROM), or a random access memory (Random Access Memory, RAM).

[0066] The foregoing descriptions are merely specific implementations of the present invention, but are not intended to limit the protection scope of the present invention. Therefore, the protection scope of the present invention shall be subject to the protection scope of the claims.


Claims

1. A method for determining subframe configuration of a cell cluster, comprising:

obtaining (101), by a central control node, radio resource information required by enhanced interference management and traffic adaptation, eIMTA, terminals and radio resource information required by conventional terminals in the cell cluster, wherein the cell cluster comprises multiple cells;

determining (102) time division duplex, TDD, subframe configuration of the cell cluster according to the radio resource information required by the eIMTA terminals and the conventional terminals in the cell cluster; and

notifying (103) each cell in the cell cluster of the TDD subframe configuration information of the cell cluster,

wherein the central control node is a base station, a base station controller, or a mobility management entity MME,

wherein the determining TDD subframe configuration of the cell cluster according to the radio resource information required by the eIMTA terminals and the conventional terminals in the cell cluster comprises:

determining a ratio of uplink resources to downlink resources required by the eIMTA terminals according to the radio resource information required by the eIMTA terminals in the cell cluster, and determining a ratio of uplink resources to downlink resources required by the conventional terminals according to the radio resource information required by the conventional terminals in the cell cluster; and characterized by

determining TDD uplink-downlink subframe configuration of the cell cluster according to a network policy and the ratio of uplink resources to downlink resources required by the eIMTA terminals and the conventional terminals, and

wherein the network policy comprises a priority weight of the eIMTA terminals and a priority weight of the conventional terminals.


 
2. The method according to claim 1,
wherein the obtaining, by a central control node, radio resource information required by enhanced interference management and traffic adaptation eIMTA terminals and radio resource information required by conventional terminals in the cell cluster comprises:
receiving, by the central control node, radio resource information required by the eIMTA terminals and radio resource information required by the conventional terminals, wherein the radio resource information is sent by each cell in the cell cluster; and collecting statistics about the radio resource information required by all eIMTA terminals and the radio resource information required by all conventional terminals in the cell cluster.
 
3. The method according to claim 1 or 2,
wherein the radio resource information required by the eIMTA terminals and the conventional terminals is a quantity of uplink and downlink time-frequency resource blocks, a quantity of uplink and downlink subframes, an uplink and downlink data buffer size, or uplink and downlink service load that is required by the eIMTA terminals and the conventional terminals.
 
4. An apparatus for determining sub frame configuration of a cell cluster, comprising:

an obtaining module (401), configured to obtain radio resource information required by enhanced interference management and traffic adaptation, eIMTA, terminals and radio resource information required by conventional terminals in the cell cluster, wherein the cell cluster comprises multiple cells;

a configuration module (402), configured to determine time division duplex, TDD, subframe configuration of the cell cluster according to the radio resource information required by the eIMTA terminals and the conventional terminals in the cell cluster; and

a notification module (403), configured to notify each cell in the cell cluster of the TDD subframe configuration information of the cell cluster,

wherein the configuration module is specifically configured to:

determine a ratio of uplink resources to downlink resources required by the eIMTA terminals according to the radio resource information required by the eIMTA terminals in the cell cluster, and determine a ratio of uplink resources to downlink resources required by the conventional terminals according to the radio resource information required by the conventional terminals in the cell cluster; and characterized by

determine TDD uplink-downlink subframe configuration of the cell cluster according to a network policy and the ratio of uplink resources to downlink resources required by the eIMTA terminals and the conventional terminals,

wherein the network policy comprises a priority weight of the eIMTA terminals and a priority weight of the conventional terminals.


 
5. The apparatus according to claim 4, wherein the obtaining module is specifically configured to:
receive, radio resource information required by the eIMTA terminals and radio resource information required by the conventional terminals, wherein the radio resource information is sent by each cell in the cell cluster; and collect statistics about the radio resource information required by all eIMTA terminals and the radio resource information required by all conventional terminals in the cell cluster.
 


Ansprüche

1. Verfahren zum Bestimmen der "Subframe"-Konfiguration eines Zellenclusters, umfassend:

Beziehen (101)

von Funkressourceninformationen, die durch verbessertes Störungsmanagement und Verkehrsanpassungs-, eIMTA, Endgeräte benötigt werden, und von Funkressourceninformationen, die durch herkömmliche Endgeräte in dem Zellencluster benötigt werden, durch einen zentralen Steuerknoten, wobei der Zellencluster mehrere Zellen umfasst;

Bestimmen (102)

der Zeitmultiplex-Duplex-, TDD, "Subframe"-Konfiguration des Zellenclusters gemäß den Funkressourceninformationen, die durch die eIMTA-Endgeräte und die herkömmlichen Endgeräte in dem Zellencluster benötigt werden; und

Benachrichtigen (103)

jeder Zelle in dem Zellencluster über die TDD-"Subframe"-Konfigurationsinformationen des Zellenclusters,

wobei der zentrale Steuerknoten eine Basisstation, ein Basisstationscontroller oder eine Mobilitätsverwaltungseinrichtung MME ist,

wobei das Bestimmen der TDD-"Subframe"-Konfiguration des Zellenclusters gemäß den durch die eIMTA-Endgeräte und die herkömmlichen Endgeräte im Zellencluster benötigten Funkressourceninformationen umfasst:

Bestimmen eines Verhältnisses von Aufwärtsstrecken-Ressourcen zu Abwärtsstrecken-Ressourcen, die durch die eIMTA-Terminals benötigt werden, gemäß den durch die eIMTA-Endgeräte in dem Zellencluster benötigten Funkressourceninformationen, und Bestimmen eines Verhältnisses von Aufwärtsstrecken-Ressourcen zu Abwärtsstrecken-Ressourcen, die durch die herkömmlichen Endgeräte benötigt werden, gemäß den durch die herkömmlichen Endgeräte in dem Zellencluster benötigten Funkressourceninformationen; und gekennzeichnet durch

Bestimmen einer TDD-Aufwärtsstrecken-Abwärtsstrecken-"Subframe"-Konfiguration des Zellenclusters gemäß einer Netzwerkrichtlinie und dem Verhältnis von Aufwärtsstrecken-Ressourcen zu Abwärtsstrecken-Ressourcen, die durch die eIMTA-Endgeräte und die herkömmlichen Endgeräte benötigt werden, und

wobei die Netzwerkrichtlinie eine Prioritätsgewichtung der eIMTA-Endgeräte und eine Prioritätsgewichtung der herkömmlichen Endgeräte umfasst.


 
2. Verfahren nach Anspruch 1,
wobei das Beziehen von Funkressourceninformationen, die durch verbessertes Störungsmanagement und Verkehrsanpassungs-, eIMTA, Endgeräte benötigt werden, und von Funkressourceninformationen, die durch herkömmliche Endgeräte in dem Zellencluster benötigt werden, durch einen zentralen Steuerknoten umfasst; Empfangen von durch die eIMTA-Endgeräte benötigten Funkressourceninformationen und von durch die herkömmlichen Endgeräte benötigten Funkressourceninformationen durch den zentralen Steuerknoten, wobei die Funkressourceninformationen durch jede Zelle in dem Zellencluster gesendet werden; und Erfassen von Statistiken über die durch alle eIMTA-Endgeräte benötigten Funkressourceninformationen und die durch alle herkömmlichen Endgeräte im Zellencluster benötigten Funkres sourceninformationen.
 
3. Verfahren nach Anspruch 1 oder 2,
wobei die durch die eIMTA-Endgeräte und die herkömmlichen Endgeräte benötigten Funkressourceninformationen eine Anzahl von Aufwärts strecken- und Abwärtsstrecken-Zeitfrequenz-Ressourcenblöcken, eine Anzahl von Aufwärtsstrecken- und Abwärtsstrecken-"Subframes", eine Aufwärtsstrecken- und Abwärtsstrecken-Datenpuffergröße oder eine Aufwärtsstrecken- und Abwärtsstrecken-Dienstlast sind, die durch die eIMTA-Endgeräte und die herkömmlichen Endgeräte benötigt werden.
 
4. Vorrichtung zum Bestimmen der "Subframe"-Konfiguration eines Zellenclusters, umfassend:

ein Bezugsmodul (401),

das dazu eingerichtet ist, Funkressourceninformationen, die durch verbessertes Störungsmanagement und Verkehrsanpassungs-, eIMTA, Endgeräte benötigt werden, und Funkressourceninformationen, die durch herkömmliche Endgeräte in dem Zellencluster benötigt werden, zu beziehen, wobei der Zellencluster mehrere Zellen umfasst;

ein Konfigurationsmodul (402),

das dazu eingerichtet ist, die Zeitmultiplex-Duplex-, TDD, "Subframe"-Konfiguration des Zellenclusters gemäß den durch die eIMTA-Endgeräte und die herkömmlichen Endgeräte im Zellencluster benötigten Funkressourceninformationen zu konfigurieren; und

ein Benachrichtigungsmodul (403),

das dazu eingerichtet ist, jede Zelle in dem Zellencluster über die TDD-"Subframe"-Konfigurationsinformationen des Zellenclusters zu benachrichtigen,

wobei das Konfigurationsmodul speziell dazu eingerichtet ist:

ein Verhältnis von Aufwärtsstrecken-Ressourcen zu Abwärtsstrecken-Ressourcen, die durch die eIMTA-Endgeräte benötigt werden, gemäß den durch die eIMTA-Endgeräte in dem Zellencluster benötigten Funkressourceninformationen zu bestimmen, und ein Verhältnis von Aufwärtsstrecken-Ressourcen zu Abwärtsstrecken-Ressourcen, die durch die herkömmlichen Endgeräte benötigt werden, gemäß den durch die herkömmlichen Endgeräte in dem Zellencluster benötigten Funkressourceninformationen zu bestimmen; und gekennzeichnet durch

Bestimmen der TDD-Aufwärtsstrecken-Abwärtsstrecken-"Subframe"-Konfiguration des Zellenclusters gemäß einer Netzwerkrichtlinie und dem Verhältnis der Aufwärtsstrecken-Ressourcen zu den Abwärtsstrecken-Ressourcen, die durch die eIMTA-Endgeräte und die herkömmlichen Endgeräte benötigt werden,

wobei die Netzwerkrichtlinie eine Prioritätsgewichtung der eIMTA-Endgeräte und eine Prioritätsgewichtung der herkömmlichen Endgeräte umfasst.


 
5. Vorrichtung nach Anspruch 4, wobei das Bezugsmodul speziell dazu eingerichtet ist: durch die eIMTA-Endgeräte benötigte Funkressourceninformationen und durch die herkömmlichen Endgeräte benötigte Funkressourceninformationen zu empfangen, wobei die Funkressourceninformationen durch jede Zelle in dem Zellencluster gesendet werden; und Statistiken über die durch alle eIMTA-Endgeräte benötigten Funkressourceninformationen und die durch alle herkömmlichen Endgeräte benötigten Funkressourceninformationen in dem Zellencluster zu erfassen.
 


Revendications

1. Procédé pour déterminer la configuration de sous-trame d'un groupe de cellules, comprenant : l'obtention (101), par un nœud de commande central, d'informations de ressources radio requises par des terminaux de gestion d'interférences et d'adaptation de trafic améliorées, eIMTA, et des informations de ressources radio requises par des terminaux conventionnels dans le groupe de cellules, le groupe de cellules comprenant de multiples cellules ;
la détermination (102) de la configuration de sous-trame de duplexage par répartition temporelle, TDD, du groupe de cellules en fonction des informations de ressources radio requises par les terminaux eIMTA et les terminaux conventionnels dans le groupe de cellules ; et
la notification (103) à chaque cellule dans le groupe de cellules d'informations de configuration de sous-trame TDD du groupe de cellules,
le nœud de commande central étant une station de base, un dispositif de commande de station de base, ou une entité de gestion de mobilité MME,
la configuration de sous-trame TDD déterminante du groupe de cellules en fonction des informations de ressources radio requises par les terminaux eIMTA et les terminaux conventionnels dans le groupe de cellules comprenant :

la détermination d'un rapport entre les ressources de liaison montante et les ressources de liaison descendante requises par les terminaux eIMTA en fonction des informations de ressources radio requises par les terminaux eIMTA dans le groupe de cellules, et la détermination d'un rapport entre les ressources de liaison montante et les ressources de liaison descendante requises par les terminaux conventionnels en fonction des informations de ressources radio requises par les terminaux conventionnels dans le groupe de cellules ; et caractérisé par

la détermination d'une configuration de sous-trame de liaison montante et de liaison descendante TDD du groupe de cellules en fonction d'une politique de réseau et du rapport entre les ressources de liaison montante et les ressources de liaison descendante requises par les terminaux eIMTA et les terminaux conventionnels, et

la politique de réseau comprenant un poids de priorité des terminaux eIMTA et un poids de priorité des terminaux conventionnels.


 
2. Procédé selon la revendication 1,
l'obtention, par un nœud de commande central, d'informations de ressources radio requises par des terminaux de gestion des interférences et d'adaptation de trafic améliorées eIMTA et des informations de ressources radio requises par des terminaux conventionnels dans le groupe de cellules comprenant :
la réception, par le nœud de commande central, d'informations de ressources radio requises par les terminaux eIMTA et des informations de ressources radio requises par les terminaux conventionnels, les informations de ressources radio étant envoyées par chaque cellule dans le groupe de cellules ; et la collecte de statistiques concernant les informations de ressources radio requises par tous les terminaux eIMTA et les informations de ressources radio requises par tous les terminaux conventionnels dans le groupe de cellules.
 
3. Procédé selon la revendication 1 ou 2,
les informations de ressources radio requises par les terminaux eIMTA et les terminaux conventionnels étant une quantité de blocs de ressources temps-fréquence de liaison montante et de liaison descendante, une quantité de sous-trames de liaison montante et de liaison descendante, une taille de tampon de données de liaison montante et de liaison descendante, ou une charge de service de liaison montante et de liaison descendante qui est requise par les terminaux eIMTA et les terminaux conventionnels.
 
4. Appareil pour déterminer la configuration des sous-trames d'un groupe de cellules, comprenant :

un module d'obtention (401), configuré pour obtenir des informations de ressources radio requises par des terminaux de gestion d'interférences et d'adaptation de trafic améliorées, eIMTA, et des informations de ressources radio requises par des terminaux conventionnels dans le groupe de cellules, le groupe de cellules comprenant de multiples cellules ;

un module de configuration (402), configuré pour déterminer la configuration de sous-trame de duplexage par répartition temporelle, TDD, du groupe de cellules en fonction des informations de ressources radio requises par les terminaux eIMTA et les terminaux conventionnels dans le groupe de cellules ; et

un module de notification (403) configuré pour notifier à chaque cellule dans le groupe de cellules les informations de configuration de sous-trame TDD du groupe de cellules, le module de configuration étant spécifiquement configuré pour :

déterminer un rapport entre les ressources de liaison montante et les ressources de liaison descendante requises par les terminaux eIMTA en fonction des informations de ressources radio requises par les terminaux eIMTA dans le groupe de cellules, et déterminer un rapport entre les ressources de liaison montante et les ressources de liaison descendante requises par les terminaux conventionnels en fonction des informations de ressources radio requises par les terminaux conventionnels dans le groupe de cellules ; et caractérisé par

la détermination d'une configuration de sous-trame de liaison montante et de liaison descendante TDD du groupe de cellules en fonction d'une politique de réseau et le rapport entre les ressources de liaison montante et de liaison descendante requises par les terminaux eIMTA et les terminaux conventionnels,

la politique de réseau comprenant un poids de priorité des terminaux eIMTA et un poids de priorité des terminaux conventionnels.


 
5. Appareil selon la revendication 4, le module d'obtention étant spécifiquement configuré pour :
recevoir des informations de ressources radio requises par les terminaux eIMTA et des informations de ressources radio requises par les terminaux conventionnels, les informations de ressources radio étant envoyées par chaque cellule dans le groupe de cellules ; et collecter des statistiques concernant les informations de ressources radio requises par tous les terminaux eIMTA et les informations de ressources radio requises par tous les terminaux conventionnels dans le groupe de cellules.
 




Drawing














Cited references

REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description