(19)
(11)EP 3 321 522 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
06.05.2020 Bulletin 2020/19

(21)Application number: 17162275.6

(22)Date of filing:  22.03.2017
(51)Int. Cl.: 
F16B 25/00  (2006.01)

(54)

CRACK-PROOF SCREW

SCHRAUBE

VIS


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 15.11.2016 TW 105137180

(43)Date of publication of application:
16.05.2018 Bulletin 2018/20

(73)Proprietor: Kwantex Research Inc.
Tainan City 71841 (TW)

(72)Inventor:
  • LIN, Chao-Wei
    71841 Tainan City (TW)

(74)Representative: Zimmermann, Tankred Klaus 
Schoppe, Zimmermann, Stöckeler Zinkler, Schenk & Partner mbB Patentanwälte Radlkoferstrasse 2
81373 München
81373 München (DE)


(56)References cited: : 
JP-A- H06 193 622
TW-U- M 460 950
JP-A- 2004 344 952
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description


    [0001] The disclosure relates to a screw and a method for manufacturing the screw, and more particularly to a crack-proof screw and a method for manufacturing the crack-proof screw.

    [0002] A conventional screw 1 as shown in Figure 1 includes a shank 11 with a tapered end, a thread 12 formed around the shank 11, and one chip collection channel 13 extending from the tapered end of the shank 11 for collecting wood chips when the screw penetrates into a wood and produces wood chips. In Figure 2, the conventional screw 1 has two chip collection channels 13.

    [0003] Another conventional screw 2 as shown in Figure 3 includes a shank 21 having a tapered end in a quadrangular pyramid shape, and a thread 22 formed around the shank 21. A plurality of wavy channels 221 are formed at intervals in the thread 22 and extend from the tapered end of the shank 21, so that the tapered end of the shank 21 is advantageous for cutting and penetrating.

    [0004] However, when the conventional screw 1 or 2 is forced to penetrate into a wood without a preformed hole, because friction between the screw and wood gradually increases, application force has to be increased to enable the screw to smoothly advance into the wood. In addition, because the chip collection channel 13 or the wavy channels 221 is provided only in a section of the screw from the tapered end, when the amount of wood chips in the chip collection channel 13 or the waved channels 221 increases the wood chips may squeeze into the wood causing the wood to split.

    [0005] Referring to Figure 4, a self-tapping screw 3 disclosed in Taiwanese Utility Model Patent No. M460950 includes a shank 31, a thread 32 formed around the shank 31, and a chip collection groove 33 indented into the shank 31 and extending from a tapered end to a head of the self-tapping screw 3. The thread 32 includes a plurality of spaced-apart tooth portions 321 disposed around the shank 31. The chip collection groove 33 includes a plurality of indentation portions 331 each of which is disposed between two adjacent ones of the tooth portions 321. While the self-tapping screw 3 may accommodate an increased amount of wood chips through the indentation portions 331 of the chip collection groove 33, the increased wood chips are unable to be discharged outwardly from the chip collection groove 33.

    [0006] Referring to Figure 5, a self-tapping screw 4 disclosed in Taiwanese Invention Patent No. 201013060 includes a shank 41, a thread 42, and a cutting groove 43 helically indented into the shank 41 and the thread 42. When the self-tapping screw 4 advances into a wood, the cutting groove 43 can discharge the wood chips outwardly from the wood. However, the cutting groove 43 is arcuated in cross section. During forming the thread 42 and the cutting groove 43, because the arcuated cutting groove 43 may be unable to mesh with a thread forming die, a positional deviation may occur between the cutting groove 43 and the thread forming die lowering the quality of forming the thread 42.

    [0007] JP 2004/344952 A describes a form-rolling die with which a male screw and a deep groove are formed without deforming the thread of the male screw in one process and consequently the screw thread with the deep groove is manufactured at a low cost. The form-rolling die consists of the combination of a fixed die and a moving die and a projected line for forming the deep groove having steep angle is provided in arrangement of a certain interval and over the entire area respectively on the opposed form-rolling faces of the fixed die and the moving die. By successively setting this form-rolling face in a temporary forming part of the male screw, a deep groove forming part, a main forming part of the male screw and a finish forming part of the male screw toward the rear end from the tip of the inlet side and forming a recessed groove between the deep grooves with a projected line provide in the temporary forming part of the male screw to the shaft part of a rivet, the biting of the projected line in the main forming part of the next male screw starts from the recessed groove, so that the occurrence of resistance and impact in the biting of the projected line of the main forming part is prevented and the shaft part of the rivet is smoothly form-rolled.

    [0008] It is an object of the present invention is to provide a crack-proof screw and method for manufacturing a crack-proof screw that is able to prevent expansion of a screw hole in wood and alleviate the drawbacks of the prior arts.

    [0009] This object is achieved by a crack-proof screw according to claim 1, and by a method according to claim 5.

    [0010] The present invention provides a crack-proof screw includes a head, a shank, a thread and a helical notch.

    [0011] The shank axially extends from the head, and has a tip.

    [0012] The thread is formed continuously and helically around the shank.

    [0013] The helical notch continuously and helically extends along the shank and is indented into the shank and the thread. The helical notch is proximal to but spaced apart from the tip. The notch is trapezoidal in cross section, and has a notch bottom, an open end opening at an outer peripheral surface of the shank oppositely of the notch bottom, and two opposite notch walls extending divergingly from the notch bottom to the open end. The open end is larger in width than the notch bottom.

    [0014] The present invention provides a method for manufacturing a crack-proof screw includes:

    cutting a rod metal material with a predetermined length into a shank, and punching an end of the shank into a head; and

    thread rolling by using a die assembly to form a thread that extends continuously and helically around the shank, and a helical notch extending continuously and helically along the shank and indented into the shank and the thread, the helical notch being proximal to but spaced apart from a tip of the shank, the helical notch being trapezoidal in cross section, and having a notch bottom, an open end opening at an outer peripheral surface of the shank oppositely of the notch bottom, and two opposite notch walls that extend divergingly from the notch bottom to the open end, the open end being larger in width than the notch bottom. The die assembly has a prolong length through which the number of revolutions that the metal blank revolves over the die assembly to form the thread (53) is increased by an amount of 40% to 60% compared to the number of revolutions allowed by the conventional die assembly to complete formation of a screw.



    [0015] Other features and advantages of the disclosure will become apparent in the following detailed description of the embodiment with reference to the accompanying drawings, of which:

    Figure 1 is a fragmentary view of a conventional screw with one chip collection channel;

    Figure 2 is a fragmentary view of a conventional screw with two chip collection channels;

    Figure 3 is a perspective view of another conventional screw;

    Figure 4 is a perspective view of a self-tapping screw disclosed in Taiwanese Utility Model Patent No. M460950;

    Figure 5 is a perspective view of a self-tapping screw disclosed in Taiwanese Invention Patent No. 201013060;

    Figure 6 is a front view of a crack-proof screw according to an embodiment of the present disclosure;

    Figure 7 is a sectional view of the embodiment; and

    Figure 8 is fragmentary sectional view, illustrating the crack-proof screw of the embodiment advanced into a wood.



    [0016] Referring to Figure 6, a crack-proof screw 5 according to an embodiment of the present disclosure includes a head 51, a shank 52, a thread 53 and a helical notch 54. The shank 52 axially extends from the head 51, and has a tip 521. The thread 53 is formed continuously and helically around the shank 52. The helical notch 54 continuously and helically extends along the shank 52 and is indented into the shank 52 and the thread 53. The helical notch 54 is proximal to but spaced apart from the tip 521. In addition, the helical notch 54 has a length equal to at least half of a length of the thread 53, and has a lead angle (α2) greater than a lead angle (α1) of the thread 53.

    [0017] Referring to Figure 7, in combination with Figure 6, the helical notch 54 is trapezoidal in cross section, and has a notch bottom 540, an open end 542 opening at an outer peripheral surface of the shank 52 oppositely of the notch bottom 540, and two opposite notch walls 543 extending divergingly from the notch bottom 540 to the open end 542. The open end 542 is larger in width than the notch bottom 540. Each of the notch walls 543 forms a cutting edge 541 at the open end 542. The cutting edges 541 of the notch walls 543 intersect noncontinuously the thread 53 to enhance cutting and anchoring effects.

    [0018] Referring to Figure 8, when the crack-proof screw 5 is driven into a wood 7, the thread 53 is guided to penetrate into the wood 7 and the cutting edges 541 cut into and remove wood chips 71 of the wood 7. Meanwhile, the helical notch 54 discharges the wood chips 71 outwardly from the wood 7. By virtue of the configuration of the helical notch 54, the crack-proof screw 5 may collect and discharge the wood chips 71 produced during the screwing process. Therefore, the crack-proof screw 5 may be easily advanced into the wood 7 with a constant driving force, thereby considerably reducing the torque required for driving the crack-proof screw 5 into the wood 7. The total driving torque may be stably and slowly accumulated, and the effect of saving energy may be apparently increased. In addition, an incidence of splitting the wood 7 may be avoided. Because the penetration of the thread 53 into the wood 7 does not cause expansion of the screw hole, the pull-out strength of the crack-proof screw is not reduced. The structural strength of the wood 7 can thus be maintained. In sum, aside from improving the efficiency of the screwing operation, the crack-proof screw 5 may increase the structural safeness, and solve the global problems encountered in the exiting industries as to how to achieve a high ratio of energy saving and a safe pullout strength, and how to prevent wood cracking.

    [0019] A method for manufacturing a crack-proof screw according to the present disclosure may be performed as follows. A rod metal material is cut with a predetermined length into a shank 52, and is subjected to punching to form an end of the shank 52 into a head 51. Thread rolling is performed by using a die assembly to form a thread 53 that extends continuously and helically around the shank 52, and a helical notch 54 that extends continuously and helically along the shank 52 and indented into the shank 52 and the thread 53. The helical notch 54 is proximal to but spaced apart from a tip 521 of the shank 52. The helical notch 54 is trapezoidal in cross section, and has a notch bottom 540, an open end 542 opening at an outer peripheral surface of the shank 52 oppositely of the notch bottom 540, and two opposite notch walls 543 that extend divergingly from the notch bottom 540 to the open end 542. The open end 542 is larger in width than the notch bottom 540. Specifically, for forming the trapezoidal cross section of the helical notch 54 and the open end 542 wider than the notch bottom 540, a die block of the die assembly is moved slowly for rolling the thread at a speed that is lower than a speed conventionally used in an existing thread rolling process by an amount of 25% to 35%. The purpose of the speed reduction is to assuredly intermesh a metal blank for the shank 52 and the die assembly so that positional deviation between the metal blank and the die assembly may be avoided and a proper configuration may be completed. For forming the crack-proof screw 5, the die assembly has a prolong length through which the number of revolutions that the metal blank revolves over the die assembly to form the thread 53 is increased by an amount of 40% to 60% compared to the number of revolutions allowed by the conventional die assembly to complete formation of a screw.

    [0020] Because the thread 53 and the helical notch 54 are simultaneously formed at one time, it is unnecessary to use an additional process for forming the helical notch 54, thereby saving processing costs.

    [0021] In the description above, for the purposes of explanation, numerous specific details have been set forth in order to provide a thorough understanding of the embodiment. It will be apparent, however, to one skilled in the art, that one or more other embodiments may be practiced without some of these specific details. It should also be appreciated that reference throughout this specification to "one embodiment," "an embodiment," an embodiment with an indication of an ordinal number and so forth means that a particular feature, structure, or characteristic may be included in the practice of the disclosure. It should be further appreciated that in the description, various features are sometimes grouped together in a single embodiment, figure, or description thereof for the purpose of streamlining the disclosure and aiding in the understanding of various inventive aspects.


    Claims

    1. A crack-proof screw (5), comprising:

    a head (51); and

    a shank (52) axially extending from said head (51), and having a tip (521);

    and a thread (53) formed continuously and helically around said shank (52); and

    a helical notch (54) continuously and helically extending along said shank (52) and indented into said shank (52) and said thread (53), said helical notch (54) being proximal to but spaced apart from said tip (521), said helical notch (54) being trapezoidal in cross section, and having a notch bottom (540), an open end (542) opening at an outer peripheral surface of said shank (52) oppositely of said notch bottom (540), and two opposite notch walls (543) extending divergingly from said notch bottom (540) to said open end (542), said open end (542) being larger in width than said notch bottom (540).


     
    2. The crack-proof screw (5) as claimed in Claim 1, wherein said helical notch (54) has a length equal to at least half of a length of said thread (53).
     
    3. The crack-proof screw (5) as claimed in Claim 1, characterized in that said helical notch (54) has a lead angle (α2) greater than a lead angle (α1) of said thread (53).
     
    4. The crack-proof screw (5) as claimed in Claim 1, characterized in that each of said notch walls (543) forms a cutting edge (541) at said open end (542).
     
    5. A method for manufacturing a crack-proof screw, the method comprising:

    cutting a rod metal material with a predetermined length into a shank (52), and punching an end of the shank (52) into a head (51); and

    thread rolling a metal blank by using a die assembly to form a thread (53) that extends continuously and helically around the shank (52), and a helical notch (54) that extends continuously and helically along the shank (52) and indented into the shank (52) and the thread (53), the helical notch (54) being proximal to but spaced apart from a tip (521) of the shank (52), the helical notch (54) being trapezoidal in cross section, and having a notch bottom (540), an open end (542) opening at an outer peripheral surface of the shank (52) oppositely of the notch bottom (540), and two opposite notch walls (543) that extend divergingly from the notch bottom (540) to the open end (542), the open end (542) being larger in width than the notch bottom (540),

    wherein the die assembly has a prolong length through which the number of revolutions that the metal blank revolves over the die assembly to form the thread (53) is increased by an amount of 40% to 60% compared to the number of revolutions allowed by the conventional die assembly to complete formation of a screw.


     
    6. The method for manufacturing a crack-proof screw as claimed in Claim 5, characterized in that the helical notch (54) has a length equal to at least half of a length of the thread (53).
     
    7. The method for manufacturing a crack-proof screw as claimed in Claim 5, characterized in that the helical notch (54) has a lead angle (α2) greater than a lead angle (α1) of the thread (53).
     
    8. The method for manufacturing a crack-proof screw as claimed in Claim 5, characterized in that each of the notch side walls (543) has a cutting edge at the open end (542).
     


    Ansprüche

    1. Eine risssichere Schraube (5), die folgende Merkmale aufweist:

    einen Kopf (51); und

    einen Schaft (52), der sich von dem Kopf (51) axial erstreckt und eine Spitze (521) aufweist; und

    ein Gewinde (53), das fortlaufend und schraubenförmig um den Schaft (52) gebildet ist; und

    eine Schraubenkerbe (54), die sich fortlaufend und schraubenförmig um den Schaft (52) erstreckt und in den Schaft (52) und das Gewinde (53) eingekerbt ist, wobei die Schraubenkerbe (54) nahe an aber beabstandet von der Spitze (521) ist, wobei die Schraubenkerbe (54) im Querschnitt trapezförmig ist und einen Kerbenboden (540), ein offenes Ende (542), das sich an einer Außenumfangsoberfläche des Schafts (52) gegenüber dem Kerbenboden (540) öffnet und zwei gegenüberliegende Kerbenwände (543) aufweist, die sich divergierend von dem Kerbenboden (540) zu dem offenen Ende (542) erstrecken, wobei das offene Ende (542) eine größere Breite aufweist als der Kerbenboden (540).


     
    2. Die risssichere Schraube (5) gemäß Anspruch 1, bei der die Schraubenkerbe (54) eine Länge gleich zumindest einer Hälfte einer Länge des Gewindes (53) aufweist,
     
    3. Die risssichere Schraube (5) gemäß Anspruch 1, dadurch gekennzeichnet, dass die Schraubenkerbe (54) einen Steigungswinkel (α2) aufweist, der größer ist als ein Steigungswinkel (α1) des Gewindes (53).
     
    4. Die risssichere Schraube (5) gemäß Anspruch 1, dadurch gekennzeichnet, dass jede der Kerbenwände (543) an dem offenen Ende (542) eine Schnittkante (541) bildet.
     
    5. Ein Verfahren zum Herstellen einer risssicheren Schraube, wobei das Verfahren folgende Schritte aufweist:

    Schneiden eines Stabmetallmaterials mit einer vorbestimmten Länge in einen Schaft (52), und Stanzen eines Endes des Schafts (52) in einen Kopf (51); und

    Gewindewalzen eines Metallrohlings durch Verwenden einer Formanordnung, um ein Gewinde (53), das sich fortlaufend und schraubenförmig um den Schaft (52) erstreckt, und eine Schraubenkerbe (54) zu formen, die sich fortlaufend und schraubenförmig entlang dem Schaft (52) erstreckt und in den Schaft (52) und in das Gewinde (53) eingekerbt ist, wobei die Schraubenkerbe (54) nahe an aber beabstandet von einer Spitze (521) des Schafts (52) ist, wobei die Schraubenkerbe (54) im Querschnitt trapezförmig ist und einen Kerbenboden (540), ein offenes Ende (542), das sich an einer Außenumfangsoberfläche des Schafts (52) gegenüber dem Kerbenboden (540) öffnet und zwei gegenüberliegende Kerbenwände (543) aufweist, die sich divergierend von dem Kerbenboden (540) zu dem offenen Ende (542) erstrecken, wobei das offene Ende (542) eine größere Breite aufweist als der Kerbenboden (540), wobei

    die Formanordnung eine Verlängerungslänge aufweist, durch die die Anzahl der Drehungen, die sich der Metallrohling über die Formanordnung dreht, um das Gewinde (53) zu bilden, um einen Betrag von 40% bis 60% erhöht ist im Vergleich zu der Anzahl von Drehungen, die durch die herkömmliche Formanordnung erlaubt sind, um die Bildung einer Schraube durchzuführen.


     
    6. Das Verfahren zum Herstellen einer risssicheren Schraube gemäß Anspruch 5, dadurch gekennzeichnet, dass die Schraubenkerbe (54) eine Länge gleich zumindest einer Hälfte einer Länge des Gewindes (53) aufweist.
     
    7. Das Verfahren zum Herstellen einer risssicheren Schraube gemäß Anspruch 5, dadurch gekennzeichnet, dass die Schraubenkerbe (54) einen Steigungswinkel (α2) aufweist, der größer ist als ein Steigungswinkel (α1) des Gewindes (53).
     
    8. Das Verfahren zum Herstellen einer risssicheren Schraube gemäß Anspruch 5, dadurch gekennzeichnet, dass jede der Kerbenseitenwände (543) an dem offenen Ende (542) eine Schnittkante aufweist.
     


    Revendications

    1. Vis résistante à la fissuration (5), comprenant:

    une tête (51); et

    une tige (52) s'étendant axialement à partir de ladite tête (51) et présentant une pointe (521); et

    un filet (53) formé en continu et de manière hélicoïdale autour de ladite tige (52); et

    une encoche hélicoïdale (54) s'étendant en continu et de manière hélicoïdale le long de ladite tige (52) et entaillée dans ladite tige (52) et dans ledit filet (53), ladite encoche hélicoïdale (54) étant à proximité, mais espacée de ladite pointe (521), ladite encoche hélicoïdale (54) présentant une section transversale trapézoïdale et présentant un fond d'encoche (540), une extrémité ouverte (542) débouchant sur une surface périphérique extérieure de ladite tige (52) opposée audit fond d'encoche (540), et deux des parois d'encoche opposées (543) s'étendant de manière divergente dudit fond d'encoche (540) vers ladite extrémité ouverte (542), ladite extrémité ouverte (542) étant de largeur plus grande que ledit fond d'encoche (540).


     
    2. Vis résistante à la fissuration (5) selon la revendication 1, dans laquelle ladite encoche hélicoïdale (54) présente une longueur égale à au moins la moitié d'une longueur dudit filet (53).
     
    3. Vis résistante à la fissuration (5) selon la revendication 1, dans laquelle ladite encoche hélicoïdale (54) présente un angle d'attaque (α2) supérieur à un angle d'attaque (α1) dudit filet (53).
     
    4. Vis résistante à la fissuration (5) selon la revendication 1, dans laquelle chacune desdites parois d'encoche (543) forme un bord tranchant (541) à ladite extrémité ouverte (542).
     
    5. Procédé de fabrication d'une vis résistante à la fissuration, le procédé comprenant le fait de:

    découper un matériau métallique en forme de tige d'une longueur prédéterminée pour obtenir une tige (52) et poinçonner une extrémité de la tige (52) pour obtenir une tête (51); et

    fileter par roulage une ébauche de métal à l'aide d'un ensemble de filière pour former un filet (53) qui s'étend en continu et de manière hélicoïdale autour de la tige (52), et une encoche hélicoïdale (54) qui s'étend en continu et de manière hélicoïdale le long de la tige (52) et entaillée dans la tige (52) et dans le filet (53), l'encoche hélicoïdale (54) étant à proximité, mais espacée d'une pointe (521) de la tige (52), l'encoche hélicoïdale (54) présentant une section transversale trapézoïdale, et présentant un fond d'encoche (540), une extrémité ouverte (542) s'ouvrant sur une surface périphérique extérieure de la tige (52) opposée au fond d'encoche (540), et deux parois d'encoche opposées (543) qui s'étendent de manière divergente du fond d'encoche (540) à l'extrémité ouverte (542), l'extrémité ouverte (542) étant de largeur plus grande que le fond d'encoche (540),

    dans lequel l'ensemble de filière présente une longueur prolongée par laquelle le nombre de tours selon lequel l'ébauche de métal tourne sur l'ensemble de filière pour former le filet (53) est augmenté d'une quantité de 40% à 60% en comparaison avec le nombre de tours permis par le ensemble de filière conventionnel pour terminer la formation d'une vis.


     
    6. Procédé de fabrication d'une vis résistante à la fissuration selon la revendication 5, caractérisé par le fait que l'encoche hélicoïdale (54) présente une longueur égale à au moins la moitié d'une longueur du filet (53).
     
    7. Procédé de fabrication d'une vis résistante à la fissuration selon la revendication 5, caractérisé par le fait que l'encoche hélicoïdale (54) présente un angle d'attaque (α2) supérieur à un angle d'attaque (α1) du filet (53).
     
    8. Procédé de fabrication d'une vis résistante à la fissuration selon la revendication 5, caractérisé par le fait que chacune des parois latérales d'encoche (543) présente un bord tranchant à l'extrémité ouverte (542).
     




    Drawing
























    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description