(19)
(11)EP 3 327 892 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
09.09.2020 Bulletin 2020/37

(21)Application number: 17205285.4

(22)Date of filing:  04.12.2017
(51)International Patent Classification (IPC): 
H02J 7/00(2006.01)
H01M 10/48(2006.01)
H01M 10/42(2006.01)
H03K 17/687(2006.01)

(54)

CHARGING AND DISCHARGING CONTROL CIRCUIT AND BATTERY PACK

LADE- UND ENTLADESTEUERSCHALTUNG UND BATTERIEPACK

CIRCUIT DE COMMANDE DE CHARGE ET DE DÉCHARGE ET BLOC-BATTERIE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 03.10.2016 GB 201616798

(43)Date of publication of application:
30.05.2018 Bulletin 2018/22

(73)Proprietor: O2Micro, Inc.
Santa Clara, CA 95054 (US)

(72)Inventor:
  • GUOXING, Li
    Santa Clara, CA California 95054 (US)

(74)Representative: Weal, Emily Teresa et al
Keltie LLP No.1 London Bridge
London SE1 9BA
London SE1 9BA (GB)


(56)References cited: : 
US-A1- 2002 050 806
US-A1- 2013 057 221
US-A1- 2012 032 646
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    BACKGROUND



    [0001] FIG. 1 illustrates a conventional switch control circuit 102 that controls a charge switch QCHG and a discharge switch QDSG for a battery 138 in a battery pack 100. The control circuit 102 generates driving signals DCHG and DDSG to turn on or off the switches QCHG and QDSG, under control of a microcontroller unit (MCU) 108. For instance, the MCU 108 can instruct the control circuit 102 to turn on the charge switch QCHG such that a charger connected to the terminals PACK+ and PACK- charges the battery 138, or to turn off the charge switch QCHG if the battery 138 is fully charged or an abnormal condition such as over-charge, over-current, or the like occurs. For another instance, the MCU 108 can instruct the control circuit 102 to turn on the discharge switch QDSG such that battery 138 discharges to power a load connected to the terminals PACK+ and PACK-, or to turn off the discharge switch QDSG if an abnormal condition such as over-discharge, over-load, or the like occurs. The MCU 108 can also instruct the control circuit 102 to turn off both the switches QCHG and QDSG such that the battery pack 100 enters into a deep sleep mode or a low-power mode in which the power can be saved.

    [0002] However, the conventional switch control circuit 102 has some shortcomings. For example, when the charge switch QCHG is off, additional circuitry (not shown) is used to detect whether a charger is connected to the terminals PACK+ and PACK-because the conventional switch control circuit 102 does not perform the detection. Similarly, when the discharge switch QDSG is off, additional circuitry is used to detect whether an above mentioned over-load condition has been removed. Moreover, when the battery 138 is powering a load, additional circuitry is used to detect whether an abnormal condition such as short-circuit load, over-load, or the like occurs. The additional circuitry increases the cost, PCB size, and power consumption of a battery management system for the battery pack 100. Thus, a switch control circuit that not only has the functions of the switch control circuit 102 but also performs the abovementioned detections would be beneficial.

    [0003] US 2013/0057221 A1 describes a semiconductor integrated circuit that protects a secondary battery by controlling an on/off status of a discharge control switch.

    SUMMARY



    [0004] In one embodiment, a control circuit includes a set of driving terminals and detection circuitry coupled to the driving terminals. The driving terminals provide driving signals to control a status of a switch circuit to enable charging or discharging of a battery pack. The detection circuitry is configured to receive voltages at multiple terminals of the switch circuit, and is configured to detect a status of an interface of the battery pack according to the status of the switch circuit and a difference between the voltages. The interface can receive power to charge the battery pack in a charge mode and provide power from the battery pack to a load in a discharge mode. The driving signals comprise a signal that selectively turns on a charge switch in the switch circuit to deliver a charging current of said battery pack from a charge input terminal to a charge output terminal. When the charge switch is off, the detection circuitry receives a first voltage at the charge input terminal and a second voltage at the charge output terminal, compares a difference between the first and second voltages with a first voltage reference, and detects whether a charger is connected to the interface according to a result of the comparison.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0005] Features and advantages of embodiments of the claimed subject matter will become apparent as the following detailed description proceeds, and upon reference to the drawings, wherein like numerals depict like parts, and in which:

    FIG. 1 illustrates a conventional charge/discharge switch control circuit for a battery.

    FIG. 2 illustrates an example of a charge/discharge switch control circuit for a battery, in an embodiment of the present invention.

    FIG. 3 illustrates an example of a charge/discharge switch control circuit for a battery, in another embodiment of the present invention.

    FIG. 4 illustrates an example of a charge/discharge switch control circuit for a battery, in another embodiment of the present invention.

    FIG. 5 illustrates an example of a charge/discharge switch control circuit for a battery, in another embodiment of the present invention.

    FIG. 6 illustrates an example of a charge/discharge switch control circuit for a battery, in another embodiment of the present invention.

    FIG. 7 illustrates an example of a charge/discharge switch control circuit for a battery, in another embodiment of the present invention.

    FIG. 8 illustrates an example of a charge/discharge switch control circuit for a battery, in another embodiment of the present invention.

    FIG. 9 illustrates a flowchart of examples of operations performed by a charge/discharge switch control circuit, in an embodiment of the present invention.


    DETAILED DESCRIPTION



    [0006] Reference will now be made in detail to the embodiments of the present invention. While the invention will be described in conjunction with these embodiments, it will be understood that they are not intended to limit the invention to these embodiments. On the contrary, the invention is intended to cover alternatives, modifications and equivalents, which may be included within the spirit and scope of the invention as defined by the appended claims.

    [0007] Furthermore, in the following detailed description of the present invention, numerous specific details are set forth in order to provide a thorough understanding of the present invention. However, it will be recognized by one of ordinary skill in the art that the present invention may be practiced without these specific details. In other instances, well known methods, procedures, components, and circuits have not been described in detail as not to unnecessarily obscure aspects of the present invention.

    [0008] In one embodiment according to the present invention, a charge/discharge switch control circuit generates driving signals to control a status of a switch circuit, e.g., including a charge switch and a discharge switch, to enable charging or discharging of a battery pack. The switch control circuit also receives voltages at multiple terminals of the switch circuit, and detects a status of an interface of the battery pack according to a status of the switch circuit and a difference between the voltages. The interface can receive power from a charger/adapter to charge the battery pack in a charge mode and provide power from the battery pack to a load in a discharge mode. The status of the interface includes whether a charge is connected to the interface, whether an over-heavy or short-circuit load is connected to the interface, whether the over-heavy/short-circuit load has been removed from the interface, etc. Since the switch control circuit can not only control the switch circuit but also can detect a status of the interface of the battery pack, additional circuitry mentioned in relation to the convention switch control circuit 102 in FIG. 1 can be omitted to reduce the cost, size of printed circuit board, and power consumption of a battery management system for the battery pack.

    [0009] FIG. 2 illustrates an example of a charge/discharge switch control circuit 202 that controls a switch circuit for a battery 238 in a batter pack 200, in an embodiment of the present invention. In one embodiment, the switch circuit includes a charge switch QCHG and a discharge switch QDSG (hereinafter, switch circuit QCHG&QDSG). The battery 238 includes one or more rechargeable battery cells, and may include, but is not limited to, lithium ion battery, lithium ion polymer battery, lead-acid battery, nickel cadmium battery, nickel metal hydride battery, or the like. In one embodiment, the control circuit 202 includes sense terminals 210, 214 and 218, driving terminals 212 and 216, communication terminals ENCHG, ENDSG and INT, and control circuitry (e.g., including a charge pump 222, driver circuits 204 and 206, a voltage reference providing circuit (e.g., a reference source 224), a comparator 226, and a control logic circuit 220).

    [0010] In one embodiment, the sense terminals 210, 214 and 218 receive voltages VBP, VCP and VPP at terminals 244, 246 and 248 of the switch circuit QCHG&QDSG. The terminal 244 can include a positive terminal of the battery 238. The terminal 244 can be referred to as "charge output terminal" if the battery 238 is charging, or as "discharge input terminal" if the battery 238 is discharging. The terminal 246 can include a drain terminal of the charge switch QCHG, e.g., an n-channel Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET), and can be referred to as "charge input terminal" if the battery 238 is charging. The terminal 248 can include a positive terminal PACK+ of the battery pack 200. The terminal 248 can be referred to as "charge input terminal" if the battery 238 is charging, or as "discharge output terminal" if the battery 238 is discharging.

    [0011] In one embodiment, the driving terminals 212 and 216 provide driving signals DCHG and DDSG to control the switch circuit QCHG&QDSG to enable charging or discharging of the battery pack 200. For example, the driving signal DCHG can selectively turn on the charge switch QCHG to deliver a charging current of the battery pack 200 from the charge input terminal 246 to the charge output terminal 244. The driving signal DDSG can selectively turn on the discharge switch QDSG to deliver a discharging current of the battery pack 200 from the discharge input terminal 244 to the discharge output terminal 248.

    [0012] In one embodiment, the logic circuit 220 communicates with a controller 208, e.g., a microcontroller unit, via the communication terminals ENCHG, ENDSG and INT. The terminal ENCHG can receive an enable/disable signal that instructs the logic circuit 220 to turn on or off the charge switch QCHG, the terminal ENDSG can receive an enable/disable signal that instructs the logic circuit 220 to turn on or off the discharge switch QDSG, and the terminal INT can output an interrupt signal 230 indicative of a status of an interface, e.g., including terminals PACK+ and PACK- (hereinafter, interface PACK±), of the battery pack 200.

    [0013] In one embodiment, detection circuitry, e.g., including the reference source 224, the comparator 226, and the logic circuit 220, receives the voltages VBP and VCP and detects a status of the interface PACK± according to a status of the switch circuit QCHG&QDSG and a difference between the voltages VBP and VCP. In the example of FIG. 2, the status of the interface PACK± includes whether a charger or an adapter is connected to the interface PACK±. More specifically, when the charge switch QCHG is off, the detection circuitry can receive a first voltage VCP at the charge input terminal 246 and a second voltage VBP at the charge output terminal 244, compare a difference between the voltages VCP and VBP with a first voltage reference VTH1, and detect whether a charger/adapter is connected to, e.g., plugged in, the interface PACK± according to a result 228 of the comparison. In one embodiment, if the difference between the voltages VCP and VBP is greater than the voltage reference VTH1 for a predefined time interval ΔT1, then the detection circuitry can determine that a charger/adapter is connected to the interface PACK±.

    [0014] By way of example, when the charge switch QCHG is off and the discharge switch QDSG is on, the voltage VCP at the charge input terminal 246 can be greater than the voltage VBP at the charge output terminal 244 if a charger/adapter is connected to the interface PACK±. When both the switches QCHG and QDSG are off, if a charger/adapter is connected to the interface PACK±, then the body diode of the discharge switch QDSG can be forward-biased and therefore the voltage VCP can also be greater than the voltage VBP. In one embodiment, when the charge switch QCHG is off, if a voltage difference of VCP-VBP is greater than a voltage reference VTH1 for a predefined time interval ΔT1, then it indicates that a charger/adapter is connected to the interface PACK±. In one embodiment, the reference source 224, e.g., a voltage providing circuit, has a voltage level VTH1, and is coupled between the terminal 244 and the comparator 226 to provide a combination signal, representing a combination of the voltage VBP and the voltage reference VTH1, to the comparator 226. In the example of FIG. 2, the combination signal has a voltage level of VBP+VTH1, and the comparator 226 compares the voltage VBP+VTH1 with the voltage VCP to generate a comparison result 228 indicative of whether the voltage VCP is greater than the voltage VBP+VTH1. The comparison result 228 also indicates whether the voltage level VCP-VBP is greater than the voltage reference VTH1. The logic circuit 220 can include a timer (not shown) that starts to count time on detection of a comparison result 228 indicating that the voltage level VCP-VBP is greater than the voltage reference VTH1. If the logic level of the comparison result 228 remains unchanged for a time interval ΔT1, then the logic circuit 220 determines that a charger/adapter is connected to the interface PACK±.

    [0015] The logic circuit 220 can also generate an interrupt signal 230 to inform the controller 208 of the availability of the charger/adapter. In response to the interrupt signal 230, the controller 208 can instruct the control circuit 202 to turn on the charge switch QCHG if the battery 238 is not fully charged.

    [0016] FIG. 3 illustrates an example of a charge/discharge switch control circuit 302, in another embodiment of the present invention. FIG. 3 is described in combination with FIG. 2. Similar to the control circuit 202 in FIG. 2, the control circuit 302 can detect a status of the interface PACK±. In the example of FIG. 3, the detection circuitry includes a current providing circuit (e.g., a current source 332), a reference source 324, a comparator 326, and a control logic circuit 320. The control circuit 302 can detect whether a load, e.g., an over-heavy load, a short-circuit load, or the like, is removed from the interface PACK±.

    [0017] More specifically, in one embodiment, during discharging of the battery 238, if an over-heavy/short-circuit load condition is detected, then the control circuit 302 disables the discharge switch QDSG to stop the discharging. When the discharge switch QDSG is off, the detection circuitry can provide a bias current IB to charge a capacitor 336 coupled to the discharge output terminal 248, e.g., coupled between the terminals PACK+ and PACK-. The detection circuitry can receive a third voltage VBP at the discharge input terminal 244 and a fourth voltage Vpp at the discharge output terminal 248, compare a difference between the third and fourth voltages VBP and VPP with a second voltage reference VTH2, and detect whether the over-heavy/short-circuit load is removed from the interface PACK± according to a result 328 of the comparison. In one embodiment, if the difference between the voltages VBP and VPP is less than the voltage reference VTH2 for a predefined time interval ΔT2, then the detection circuitry determines that the over-heavy/short-circuit load is removed from the interface PACK±.

    [0018] By way of example, when the discharge switch QDSG is off, if an over-heavy/short-circuit load is connected to the interface PACK±, then a voltage Vpp at the discharge output terminal 248 (e.g., the terminal PACK+) can be pulled down to a voltage level that is much less than the voltage VBP at the discharge input terminal (e.g., the positive terminal of the battery 238). In one embodiment, the abovementioned current IB that charges the capacitor 336 is relatively small (e.g., hundreds of µA level) and the charging of the capacitor 336 does not increase the voltage Vpp if the over-heavy/short-circuit load is still connected to the interface PACK±. On the other hand, if the over-heavy/short-circuit load has been removed from the interface PACK±, then the charging of the capacitor 336 can increase the voltage Vpp. When the voltage Vpp increases to a level such that the difference of VBP-VPP is less than a voltage reference VTH2, it indicates that the over-heavy/short-circuit load has been removed from the interface PACK±. In one embodiment, the current source 332 can generate a current IB to charge the capacitor 336. The reference source 324 has a voltage level VTH2, and is coupled between the terminal 244 and the comparator 326 to provide a combination signal, representing a combination of the voltage VBP and the voltage reference VTH2, to the comparator 326. In the example of FIG. 3, the combination signal has a voltage level of VBP-VTH2, and the comparator 326 compares the voltage VBP-VTH2 with the voltage VPP to generate a comparison result 328 indicative of whether the voltage VBP-VTH2 is less than the voltage Vpp. The comparison result 228 also indicates whether the voltage level VBP-VPP is less than the voltage reference VTH2. The logic circuit 320 can include a timer (not shown) that starts to count time on detection of a comparison result 328 indicating that the voltage level VBP-VPP is less than the voltage reference VTH2. If the logic level of the comparison result 328 remains unchanged for a predefined time interval ΔT2, then the logic circuit 320 determines that an above mentioned over-heavy/short-circuit load is removed from the interface PACK±.

    [0019] The logic circuit 320 can also generate an interrupt signal 330 to inform a controller (e.g., similar to the controller 208) of the removal of the over-heavy/short-circuit load. In response to the interrupt signal 330, the controller can instruct the control circuit 302 to turn on the discharge switch QDSG.

    [0020] FIG. 4 illustrates an example of a charge/discharge switch control circuit 402, in another embodiment of the present invention. FIG. 4 is described in combination with FIG. 2 and FIG. 3. In the example of FIG. 4, the detection circuitry includes a current source 332, a reference generator 424, a multiplexer 434, a comparator 426, and a control logic circuit 420. The control circuit 402 can detect whether a charger/adapter is connected to the interface PACK± when the charge switch QCHG is off, and detect whether a load, e.g., an over-heavy/short-circuit load, is removed from the interface PACK± when the discharge switch QDSG is off.

    [0021] In one embodiment, the comparator 426 compares a difference between voltages VBP, VCP and VPP with a voltage reference, e.g., an abovementioned voltage reference VTH1 or VTH2, to generate a comparison result 428 indicative of a status of the interface PACK±. The reference generator 424 can control a level of the voltage reference according to the driving signals DCHG and DDSG. The multiplexer can receive an input voltage VCP at the charge input terminal 246 and an output voltage VPP at the discharge output terminal 248, and selectively provide a voltage of the input and output voltages VCP and VPP to the comparator 426 according to the driving signals DCHG and DDSG.

    [0022] For example, the reference generator 424 and the multiplexer 434 can be controlled by the driving signals DCHG and DDSG. If the driving signals DCHG and DDSG include signal levels that turn off the charge switch QCHG and turn on the discharge switch QDSG, then the reference generator 424 sets the voltage reference to be VTH1, and the multiplexer 434 provides the input voltage VCP to the comparator 426. The reference generator 424 receives a first signal VBP indicative of a voltage of the battery 238 and generates a second signal indicative of a combination of the first signal VBP and the voltage reference VTH1. In one embodiment, similar to the combination signal described in relation to FIG. 2, the second signal has a voltage level of VBP+VTH1. Similar to the comparator 226 described in relation to FIG. 2, the comparator 426 compares the second signal VBP+VTH1 with the input voltage VCP to generate a comparison result 428 indicative of whether a charger/adapter is connected to the interface PACK±. If the logic circuit 420 detects that the input voltage VCP is greater than the second signal VBP+VTH1, i.e., VCP-VBP>VTH1, for a predefined time interval ΔT1, then the logic circuit 420 determines that a charger/adapter is connected to the interface PACK±.

    [0023] For another example, if the driving signals DCHG and DDSG include signal levels that turn on the charge switch QCHG and turn off the discharge switch QDSG, then the reference generator 424 sets the voltage reference to be VTH2, and the multiplexer 434 provides the output voltage Vpp to the comparator 426. The reference generator 424 receives a first signal VBP indicative of a voltage of the battery 238 and generates a third signal indicative of a combination of the first signal VBP and the voltage reference VTH2. In one embodiment, similar to the combination signal described in relation to FIG. 3, the third signal has a voltage level of VBP-VTH2. The current source 332 provides a current IB to charge the capacitor 336 coupled to the discharge output terminal 248. Similar to the comparator 326 described in relation to FIG. 3, the comparator 426 compares the third signal VBP-VTH2 with the output voltage VPP to generate a comparison result 428 indicative of whether a load (e.g., an over-heavy/short-circuit load) is removed from the interface PACK±. If the logic circuit 420 detects that the third signal VBP-VTH2 is less than the output voltage VPP, i.e., VBP-VPP<VTH2, for a predefined time interval ΔT2, then the logic circuit 420 determines that the load is removed from the interface PACK±.

    [0024] FIG. 5 illustrates an example of a charge/discharge switch control circuit 502, in another embodiment of the present invention. FIG. 5 is described in combination with FIG. 2, FIG. 3 and FIG. 4. In the example of FIG. 5, the detection circuitry further includes a reference source 540 and a comparator 542. In one embodiment, during discharging of the battery 238, the detection circuitry can detect whether a load 550 connected to the interface PACK± is in an over-heavy status. In one embodiment, as used herein "over-heavy status" means that the power consumed by a load connected to the interface PACK± is greater than a power threshold. In one embodiment, the power that a load normally requires is within a power range, and the power threshold can be equal to or great than the maximum power of the power range. In one embodiment, if a load connected to the interface PACK± is short-circuited, the load can also be considered to be in an over-heavy status.

    [0025] More specifically, in one embodiment, during discharging, the switch circuit QCHG&QDSG is turned on (e.g., at least the discharge switch QDSG is turned on), and the detection circuitry receives a fifth voltage VBP at the discharge input terminal 244 and a sixth voltage Vpp at the discharge output terminal 248, compares a difference between the fifth and sixth voltages VBP and VPP with a third voltage reference Vsc, and detects a status of the load 550 according to a result 552 of the comparison. If the difference between the voltages VBP and VPP is greater than the voltage reference Vsc for a predefined time interval ΔT3, then the detection circuitry determines that the load 550 is in an over-heavy status.

    [0026] By way of example, if the load 550 is in an over-heavy status, then the load 550 can pull down the voltage Vpp at the discharge output terminal 248. In one embodiment, if the voltage VPP deceases to a level such that the voltage difference VBP-VPP is greater than the voltage reference VSC, then it indicates that the load 550 is in the over-heavy status. In one embodiment, the reference source 540 has a voltage level Vsc, and is coupled between the discharge output terminal 248 and the comparator 542 to provide a combination signal, e.g., representing a combination of the voltage Vpp and the voltage reference VSC, to the comparator 542. In the example of FIG. 5, the combination signal has a voltage level of VPP+VSC, and the comparator 542 compares the voltage VBP with the voltage VPP+VSC to generate a comparison result 552 indicative of whether the voltage VBP is greater than the voltage VPP+VSC. The comparison result 552 also indicates whether the voltage level VBP-VPP is greater than the voltage reference Vsc. The logic circuit 520 can include a timer (not shown) that starts to count time on detection of a comparison result 552 indicating that the voltage level VBP-VPP is greater than the voltage reference VSC. If the logic level of the comparison result 552 remains unchanged for a predefined time interval ΔT3, then the logic circuit 520 determines that the load 550 is in an over-heavy status.

    [0027] The logic circuit 520 can also generate an interrupt signal 530 to inform a controller (e.g., similar to the controller 208) of the over-heavy status of the load 550. In response to the interrupt signal 530, the controller can instruct the control circuit 502 to turn off the discharge switch QDSG or reduce the load 550.

    [0028] FIG. 6 illustrates an example of a charge/discharge switch control circuit 602, in another embodiment of the present invention. FIG. 6 is described in combination with FIG. 2, FIG. 3, FIG. 4 and FIG. 5. In the example of FIG. 6, the switch circuit QCHG&QDSG includes a charging path and a discharging path. The charging path includes a charge input terminal 646, a charge switch QCHG, and a charge output terminal 244. The discharging path includes a discharge input terminal 244, a discharge switch QDSG, and a discharge output terminal 248. Additionally, the interface of the battery pack 600 includes terminals PACK+, PACK-, and CHG+ (hereinafter, interface PACK±&CHG+). The terminals PACK+ and PACK- can be used to provide power to a load, and the terminal CHG+ can be used to receive power from a charger/adapter.

    [0029] In one embodiment, the control circuit 602 in FIG. 6 has structure and functions similar to those of the control circuit 502 in FIG. 5, except that the multiplexer 434 in the control circuit 602 receives a voltage VCP at the charge input terminal 646, instead of the charge input terminal 246 mentioned in relation to FIG. 5. Thus, a detailed description of the control circuit 602 is omitted here for purpose of simplicity.

    [0030] FIG. 7 illustrates an example of a charge/discharge switch control circuit 702, in another embodiment of the present invention. FIG. 7 is described in combination with FIG. 2. In one embodiment, the control circuit 702 in FIG. 7 has structure and functions similar to those of the control circuit 202 in FIG. 2, except that the comparator 726 in FIG. 7 receives a voltage Vpp at the charge input terminal 248, instead of a voltage VCP at the charge input terminal 246 described in relation to FIG. 2. Thus, a detailed description of the control circuit 702 is omitted here for purpose of simplicity. Additionally, the control circuit 702 can include components similar to the reference source 540 and comparator 542 in FIG. 5.

    [0031] FIG. 8 illustrates an example of a charge/discharge switch control circuit 802, in another embodiment of the present invention. FIG. 8 is described in combination with FIG. 4. In one embodiment, the control circuit 802 in FIG. 8 has structure and functions similar to those of the control circuit 402 in FIG. 4, except that the multiplexer 434 in FIG. 4 is omitted in FIG. 8 and the comparator 826 in FIG. 8 receives a voltage Vpp at the terminal 248 (which can be a charge input terminal during charging or a discharge output terminal during discharging), instead of an output voltage from the multiplexer 434. Thus, a detailed description of the control circuit 802 is omitted here for purpose of simplicity. Additionally, the control circuit 802 can include components similar to the reference source 540 and comparator 542 in FIG. 5.

    [0032] FIG. 9 illustrates a flowchart 900 of examples of operations performed by a charge/discharge switch control circuit, in an embodiment of the present invention. Although specific steps are disclosed in FIG. 9, such steps are examples for illustrative purposes. That is, embodiments according to the present invention are well suited to performing various other steps or variations of the steps recited in FIG. 9. FIG. 9 is described in combination with FIG. 2, FIG. 3, FIG. 4, FIG. 5, FIG. 6, FIG. 7 and FIG. 8.

    [0033] In block 902, a control circuit (e.g., 202, 302, 402, 502, 602, 702 or 802) generates a set of driving signals (e.g., DCHG and DDSG) to control a status of a switch circuit (e.g., QCHG&QDSG) thereby enabling charging or discharging of a battery pack (e.g., 200, 300, 400, 500, 600, 700 or 800)

    [0034] In block 904, an interface (e.g., PACK± or PACK±&CHG+) of the battery pack receives power to charge the battery pack in a charge mode or provides power from the battery pack to a load in a discharge mode. In one embodiment, the battery pack is in a charge mode when the battery pack is charged by a power source such as a charger, an adapter, or the like. In one embodiment, the battery pack is in a discharge mode when the battery pack discharges power.

    [0035] In block 906, detection circuitry in the control circuit receives voltages (e.g., VBP, VCP and/or VPP) at multiple terminals (e.g., 244, 246, 646 and/or 248) of the switch circuit (e.g., QCHG&QDSG).

    [0036] In block 908, the detection circuitry detects a status of the interface according to the status of the switch circuit and a difference (e.g., VCP-VBP or VBP-VPP) between the voltages. In one embodiment, the status of the switch circuit includes whether a charger is connected to the interface when the charge switch is off QCHG, whether a load connected to the interface is in an over-heavy status, and/or whether an over-heavy/short-circuit load is removed from the interface.

    [0037] While the foregoing description and drawings represent embodiments of the present invention, it will be understood that various additions, modifications and substitutions may be made therein without departing from the spirit and scope of the principles of the present invention as defined in the accompanying claims. One skilled in the art will appreciate that the invention may be used with many modifications of form, structure, arrangement, proportions, materials, elements, and components and otherwise, used in the practice of the invention, which are particularly adapted to specific environments and operative requirements without departing from the principles of the present invention. The presently disclosed embodiments are therefore to be considered in all respects as illustrative and not restrictive, the scope of the invention being indicated by the appended claims and their legal equivalents, and not limited to the foregoing description.


    Claims

    1. A control circuit (202, 302, 402) comprising:

    a plurality of driving terminals (212,216) that are configured to provide driving signals to control a status of a switch circuit to enable charging or discharging of a battery pack (200);

    detection circuitry, coupled to said driving terminals, that is configured to receive voltages at a plurality of terminals of said switch circuit, and to detect a status of an interface of said battery pack (200) according to said status of said switch circuit and a difference between said voltages, said interface operable for receiving power to charge said battery pack in a charge mode and providing power from said battery pack to a load in a discharge mode;

    wherein said driving signals comprise a signal that is configured to selectively turn on a charge switch (QCHG) in said switch circuit to deliver a charging current of said battery pack (200) from a charge input terminal (246) to a charge output terminal (244); and characterised in that when said charge switch (QCHG) is off, said detection circuitry is configured to receive a first voltage at said charge input terminal (246) and a second voltage at said charge output terminal (244), to compare a difference between said first and second voltages with a first voltage reference, and to detect whether a charger is connected to said interface according to a result of the comparison (228).


     
    2. The control circuit of claim 1, wherein if said difference between said first and second voltages is greater than said first voltage reference for a first predefined time interval, then said detection circuitry is configured to determine that said charger is connected to said interface.
     
    3. The control circuit of claim 1 or claim 2, wherein said driving signals comprise a signal that is configured to selectively turn on a discharge switch (QDSG) in said switch circuit to deliver a discharging current of said battery pack (200) from a discharge input terminal (244) to a discharge output terminal (248), and wherein when said discharge switch (QDSG) is off, said detection circuitry is configured to provide a current to charge a capacitor (336) coupled to said discharge output terminal (248), to receive a third voltage at said discharge input terminal (244) and a fourth voltage at said discharge output terminal (248), to compare a difference between said third and fourth voltages with a second voltage reference to generate a comparison result (328), and to detect whether said load is removed from said interface according to said comparison result (328).
     
    4. The control circuit of claim 3, wherein if said difference between said third and fourth voltages is less than said second voltage reference for a second predefined time interval, then said detection circuitry is configured to determine that said load is removed from said interface.
     
    5. The control circuit of any of claims 1 to 4, wherein said detection circuitry comprises:

    a comparator (426) that is configured to compare said difference between said voltages with a voltage reference to generate a comparison result indicative of said status of said interface;

    a reference generator (424), coupled to said comparator (426), that is configured to control a level of said voltage reference according to said driving signals; and

    a multiplexer (434), coupled to said comparator (426), that is configured to receive an input voltage at a charge input terminal (246) and an output voltage at a discharge output terminal (248), and to selectively provide a voltage of said input and output voltages to said comparator (426) according to said driving signals,

    wherein said switch circuit comprises a charge switch (QCHG) and a discharge switch (QDSG), wherein said charge switch (QCHG) is configured to deliver a current from said charge input terminal (246) to charge said battery pack (200) if said charge switch is on, and wherein said discharge switch (QDSG) is configured to deliver a discharging current of said battery pack (200) to said discharge output terminal (248) if said discharge switch is on.


     
    6. The control circuit of claim 5, wherein if said driving signals comprise signal levels that are configured to turn off said charge switch (QCHG) and to turn on said discharge switch (QDSG), then said reference generator (424) sets said voltage reference to be a first voltage reference, and said multiplexer (434) is configured to provide said input voltage to said comparator (426).
     
    7. The control circuit of claim 6, wherein said reference generator (424) is configured to receive a first signal indicative of a voltage of a battery (238) in said battery pack and to generate a second signal indicative of a combination of said first signal and said first voltage reference, and wherein said comparator (426) is configured to compare said second signal with said input voltage to generate a comparison result indicative of whether a charger is connected to said interface.
     
    8. The control circuit of any of claims 5 to 7, wherein if said driving signals comprise signal levels that are configured to turn on said charge switch (QCHG) and to turn off said discharge switch (QDSG), then said reference generator (424) is configured to set said voltage reference to be a second voltage reference, and said multiplexer (434) is configured to provide said output voltage to said comparator.
     
    9. The control circuit of claim 8, wherein said reference generator (424) is configured to receive a first signal indicative of a voltage of a battery (238) in said battery pack and to generate a third signal indicative of a combination of said first signal and said second voltage reference, wherein detection circuitry is configured to provide a current to charge a capacitor (336) coupled to said discharge output terminal (248), and wherein said comparator (426) is configured to compare said third signal with said output voltage to generate a comparison result indicative of whether said load is removed from said interface.
     
    10. The control circuit of any of claims 1 to 9, wherein said switch circuit is operable for delivering a discharging current of said battery pack (200) from a discharge input terminal (244) to a discharge output terminal (248), and wherein said detection circuitry is configured to receive a fifth voltage at said discharge input terminal and a sixth voltage at said discharge output terminal (248), to compare a difference between said fifth and sixth voltages with a third voltage reference, and to detect a status of said load according to a result of the comparison.
     
    11. The control circuit of claim 10, wherein if said difference between said fifth and sixth voltages is greater than said third voltage reference for a third predefined time interval, then said detection circuitry is configured to determine that said load is in an over-heavy status.
     
    12. A battery pack (200) comprising:

    a battery (238);

    a switch circuit (QDSG & QCHG), coupled to said battery, that is configured to enable charging or discharging of said battery (238) under control of the plurality of driving signals; and

    the control circuit (202, 302, 402) of claim 1, that is configured to provide said driving signals.


     
    13. The battery pack of claim 12, wherein said switch circuit (QDSG & QCHG) comprises a discharge switch (QDSG) that is configured to deliver a discharging current of said battery from a discharge input terminal (244) to a discharge output terminal (248) when said discharge switch is on, and wherein when said discharge switch (QDSG) is off, said control circuit is configured to provide a current to charge a capacitor (336) coupled to said discharge output terminal (248), to receive a third voltage at said discharge input terminal (244) and a fourth voltage at said discharge output terminal (248), to compare a difference between said third and fourth voltages with a second voltage reference to generate a comparison result (328), and to detect whether said load is removed from said interface according to said comparison result (328).
     
    14. The battery pack of claim 12 or claim 13, wherein said switch circuit (QDSG & QCHG) is configured to selectively deliver a current from a charge input terminal (246) to said battery (238) or a current from said battery (238) to a discharge output terminal (248) under control of said driving signals, and wherein said control circuit comprises:

    a comparator (426) that is configured to compare said difference between said voltages with a voltage reference to generate a comparison result indicative of said status of said interface;

    a reference generator (424), coupled to said comparator (426), that is configured to control a level of said voltage reference according to said driving signals; and

    a multiplexer (434), coupled to said comparator (426) and said switch circuit (QDSG & QCHG), that is configured to receive an input voltage at said charge input terminal (246) and an output voltage at said discharge output terminal (248), and to selectively provide a voltage of said input and output voltages to said comparator (426) according to said driving signals.


     
    15. A method (900) comprising:

    generating (902) a plurality of driving signals to control a status of a switch circuit thereby enabling charging or discharging of a battery pack (200);

    receiving (904) power to charge said battery pack (200) in a charge mode or providing power from said battery pack to a load in a discharge mode, via an interface of said battery pack;

    receiving (906)voltages at a plurality of terminals of said switch circuit; and

    detecting (908) a status of said interface according to said status of said switch circuit and a difference between said voltages;

    the method further comprising:

    when a charge switch (QCHG) in said switch circuit is on, delivering a charging current of said battery pack (200) from a charge input terminal (246) to a charge output terminal (244) through said charge switch; and

    when said charge switch (QCHG) is off, performing a plurality of steps comprising:

    receiving a first voltage at said charge input terminal (246) and a second voltage at said charge output terminal (244);

    comparing a difference between said first and second voltages with a first voltage reference; and

    detecting whether a charger is connected to said interface according to a result of the comparison (228).


     
    16. The method of claim 15, further comprising:

    when a discharge switch (QDSG) in said switch circuit is on, delivering a discharging current from a discharge input terminal (244) to a discharge output terminal (248) through said discharge switch; and

    when said discharge switch (QDSG) is off, performing a plurality of steps comprising:

    providing a current to charge a capacitor (336) coupled to said discharge output terminal (248);

    receiving a third voltage at said discharge input terminal (244) and a fourth voltage at said discharge output terminal (248);

    comparing a difference between said third and fourth voltages with a second voltage reference to generate a comparison result (328); and

    detecting whether said load is removed from said interface according to said comparison result (328).


     
    17. The method of claim 15 or claim 16, further comprising:

    selectively delivering a current from a charge input terminal (246) to charge said battery pack or delivering a discharging current of said battery pack to a discharge output terminal (248) under control of said driving signals;

    comparing said difference between said voltages with a voltage reference to generate a comparison result indicative of said status of said interface, using a comparator (426);

    controlling a level of said voltage reference according to said driving signals;

    receiving an input voltage at said charge input terminal (246) and an output voltage at said discharge output terminal (248); and

    selectively providing a voltage of said input and output voltages to said comparator (426) according to said driving signals.


     


    Ansprüche

    1. Steuerschaltung (202, 302, 402), umfassend:

    Eine Vielzahl von Antriebsanschlüssen (212, 216), die ausgelegt sind, Antriebssignale bereitzustellen, um einen Zustand eines Schalterstromkreises zu steuern, um Laden oder Entladen eines Batteriepacks (200) zu ermöglichen;

    Erkennungsschaltung, die an die Antriebsanschlüsse gekoppelt ist, die ausgelegt ist, Spannungen an einer Vielzahl von Klemmen des Schalterstromkreises zu empfangen, und um einen Status einer Schnittstelle des Batteriepacks (200) übereinstimmend mit dem Status des Schalterstromkreises und einer Differenz zwischen den Spannungen zu erkennen, wobei die Schnittstelle betreibbar ist, Strom zum Laden des Batteriepacks in einem Lademodus zu empfangen und in einem Entlademodus Strom aus dem Batteriepack einer Last bereitzustellen;

    wobei die Antriebssignale ein Signal umfassen, das ausgelegt ist, selektiv auf einem Ladeschalter (QCHG) im Schalterstromkreis, einen Ladestrom des Batteriepacks (200) von einem Ladeeingangsanschluss (246) zu einem Ladeausgangsanschluss (244) zu liefern; und

    dadurch gekennzeichnet, dass, wenn der Ladeschalter (QCHG) ausgeschaltet ist, die Erkennungsschaltung ausgelegt ist, eine erste Spannung am Ladeeingangsanschluss (246) und eine zweite Spannung am Ladeausgangsanschluss (244) zu empfangen, um eine Differenz zwischen den ersten und zweiten Spannungen mit einer ersten Spannungsreferenz zu vergleichen und zu erkennen, ob eine Ladegerät an die Schnittstelle übereinstimmend mit einem Ergebnis des Vergleichs (228) angeschlossen ist.


     
    2. Steuerschaltung nach Anspruch 1, wobei, falls die Differenz zwischen den ersten und zweiten Spannungen größer als die erste Spannungsreferenz für ein erstes vordefiniertes Zeitintervall ist, dann die Erkennungsschaltung ausgelegt ist, zu bestimmen, dass das Ladegerät an die Schnittstelle angeschlossen ist.
     
    3. Steuerschaltung nach Anspruch 1 oder Anspruch 2, wobei die Antriebssignale ein Signal umfassen, das ausgelegt ist, einen Entladeschalter (QDSG) im Schalterstromkreis selektiv einzuschalten, um einen Entladestrom des Batteriepacks (200) von einem Entladeeingangsanschluss (244) zu einem Entladeausgangsanschluss (248) zu liefern, und wobei wenn der Entladeschalter (QDSG) ausgeschaltet ist, die Erkennungsschaltung ausgelegt ist, einen Strom bereitzustellen, um einen Kondensator (336) zu laden, der an den Entladeausgangsanschluss (248) gekoppelt ist, um eine dritte Spannung am Entladeeingangsanschluss (244) und eine vierte Spannung am Entladeausgangsanschluss (248) zu empfangen, um eine Differenz zwischen den dritten und vierten Spannungen mit einer zweiten Spannungsreferenz zu vergleichen, um ein Vergleichsergebnis (328) zu generieren, und um zu erkennen, ob die Last von der Schnittstelle gemäß dem Vergleichsergebnis (328) entfernt wird.
     
    4. Steuerschaltung nach Anspruch 3, wobei, falls die Differenz zwischen den dritten und vierten Spannungen geringer als die zweite Spannungsreferenz für ein zweites vordefiniertes Zeitintervall ist, dann die Erkennungsschaltung ausgelegt ist, zu bestimmen, dass die Last von der Schnittstelle entfernt wird.
     
    5. Steuerschaltung nach einem der Ansprüche 1 bis 4, wobei die Erkennungsschaltung umfasst:

    Einen Komparator (426) der ausgelegt ist, die Differenz zwischen den Spannungen mit einer Spannungsreferenz zu vergleichen, um einer Vergleichsergebnis zu generieren, das den Status der Schnittstelle erkennen lässt;

    einen Referenzgenerator (424), der an den Komparator (426) gekoppelt ist, der ausgelegt ist, einen Level der Spannungsreferenz übereinstimmend mit den Antriebssignalen zu steuern; und

    einen Multiplexer (434), der an den Komparator (426) gekoppelt ist, der ausgelegt ist, eine Eingangsspannung an einem Ladeeingangsanschluss (246) und eine Ausgangsspannung an einem Entladeausgangsanschluss (248) zu empfangen, und dem Komparator (426) selektiv eine Spannung der Eingangs- und Ausgangsspannungen übereinstimmend mit den Antriebssignalen bereitzustellen,

    wobei der Schalterstromkreis einen Ladeschalter (QCHG) und einen Entladeschalter (QDSG) umfasst, wobei der Ladeschalter (QCHG) ausgelegt ist, einen Strom vom Ladeeingangsanschluss (246) zu liefern, um den Batteriepack (200) zu laden, falls der Ladeschalter eingeschaltet ist und wobei der Entladeschalter (QDSG) ausgelegt ist, einen Entladestrom des Batteriepacks (200) zum Entladeausgangsanschluss (248) zu liefern, falls der Entladeschalter eingeschaltet ist.


     
    6. Steuerschaltung nach Anspruch 5, wobei, falls die Antriebssignale Signallevels umfassen, die ausgelegt sind, den Ladeschalter (QCHG) auszuschalten und den Entladeschalter (QDSG) einzuschalten, dann stellt der Referenzgenerator (424) die Spannungsreferenz ein eine erste Spannungsreferenz zu sein, und der Multiplexer (434) ausgelegt ist, dem Komparator (426) die Eingangsspannung bereitzustellen.
     
    7. Steuerschaltung nach Anspruch 6, wobei der Referenzgenerator (424) ausgelegt ist, ein erstes Signal zu empfangen, das eine Spannung einer Batterie (238) im Batteriepack erkennen lässt und ein zweites Signal zu generieren, das eine Kombination des ersten Signals und der ersten Spannungsreferenz erkennen lässt, und wobei der Komparator (426) ausgelegt ist, das zweite Signal mit der Eingangsspannung zu vergleichen, um ein Vergleichsergebnis zu generieren, das darauf hindeutet, ob ein Ladegerät an die Schnittstelle angeschlossen ist.
     
    8. Steuerschaltung nach irgendeinem der Ansprüche 5 bis 7, wobei, falls die Antriebssignale Signallevels umfassen, die ausgelegt sind, den Ladeschalter (QCHG) einzuschalten und den Entladeschalter (QDSG) auszuschalten, dann wird der Referenzgenerator (424) ausgelegt, die Spannungsreferenz einzustellen, eine zweite Spannungsreferenz zu sein, und der Multiplexer (434) wird ausgelegt, dem Komparator die Ausgangsspannung bereitzustellen.
     
    9. Steuerschaltung nach Anspruch 8, wobei der Referenzgenerator (424) ausgelegt ist, ein erstes Signal zu empfangen, das auf eine Spannung einer Batterie (238) im Batteriepack hindeutet und ein drittes Signal zu generieren, das auf eine Kombination des ersten Signals und der zweiten Spannungsreferenz hindeutet, wobei Erkennungsschaltung ausgelegt ist, einen Strom einem Kondensator (336) bereitzustellen, der an den Entladeausgangsanschluss (248) gekoppelt ist, und wobei der Komparator (426) ausgelegt ist, das dritte Signal mit der Ausgangsspannung zu vergleichen, um ein Vergleichsergebnis zu generieren, das erkennen lässt, ob die Last von der Schnittstelle entfernt worden ist.
     
    10. Steuerschaltung nach einem der Ansprüche 1 bis 9, wobei der Schalterstromkreis betreibbar ist, einen Entladestrom des Batteriepacks (200) von einem Entladeeingangsanschluss (244) zu einem Entladeausgangsanschluss (248) zu liefern, und wobei die Erkennungsschaltung ausgelegt ist, eine fünfte Spannung am Entladeeingangsanschluss und eine sechste Spannung am Entladeausgangsanschluss (248) zu empfangen, um eine Differenz zwischen den fünften und sechsten Spannungen mit einer dritten Spannungsreferenz zu vergleichen, und um einen Status der Last übereinstimmend mit einem Ergebnis des Vergleichs zu erkennen.
     
    11. Steuerschaltung nach Anspruch 10, wobei, falls die Differenz zwischen den fünften und sechsten Spannungen größer als die dritte Spannungsreferenz für ein drittes vordefiniertes Zeitintervall ist, dann die Erkennungsschaltung ausgelegt ist, zu bestimmen, dass die Last in einem überlasteten Status ist.
     
    12. Batteriepack (200), umfassend:

    Eine Batterie (238);

    einen Schalterstromkreis (QDSG & QCHG), an die Batterie gekoppelt, der ausgelegt ist, Laden oder Entladen der Batterie (238) unter Steuerung der Vielzahl von Antriebssignalen zu ermöglichen; und

    die Steuerschaltung (202, 302, 402) von Anspruch 1, die ausgelegt ist, die Antriebssignale bereitzustellen.


     
    13. Batteriepack nach Anspruch 12, wobei der Schalterstromkreis (QDSG & QCHG) einen Entladeschalter (QDSG) umfasst, der ausgelegt ist, einen Entladestrom der Batterie von einem Entladeeingangsanschluss (244) zu einem Entladeausgangsanschluss (248) zu liefern, wenn der Entladeschalter eingeschaltet ist, und wobei, wenn der Entladeschalter (QDSG) ausgeschaltet ist, die Steuerschaltung ausgelegt ist, einen Strom bereitzustellen, um einen Kondensator (336) zu laden, der an den Entladeausgangsanschluss (248) gekoppelt ist, um eine dritte Spannung am Entladeeingangsanschluss (244) und eine vierte Spannung am Entladeausgangsanschluss (248) zu empfangen, um eine Differenz zwischen den dritten und vierten Spannungen mit einer zweiten Spannungsreferenz zu vergleichen, um ein Vergleichsergebnis (328) zu generieren und zu erkennen, ob die Last von der Schnittstelle übereinstimmend mit dem Vergleichsergebnis (328) entfernt worden ist.
     
    14. Batteriepack nach Anspruch 12 oder Anspruch 13, wobei der Schalterstromkreis (QDSG & QCHG) ausgelegt ist, selektiv einen Strom von einem Ladeeingangsanschluss (246) zur Batterie (238) oder einen Strom von der Batterie (238) zu einem Entladeausgangsanschluss (248) unter Steuerung der Antriebssignale zu liefern, und wobei die Steuerschaltung umfasst:

    Einen Komparator (426) der ausgelegt ist, die Differenz zwischen den Spannungen mit einer Spannungsreferenz zu vergleichen, um einer Vergleichsergebnis zu generieren, das den Status der Schnittstelle erkennen lässt;

    einen Referenzgenerator (424), der an den Komparator (426) gekoppelt ist, der ausgelegt ist, einen Level der Spannungsreferenz übereinstimmend mit den Antriebssignalen zu steuern; und

    einen Multiplexer (434), der an den Komparator (426) und den Schalterstromkreis (QDSG & QCHG) gekoppelt ist, der ausgelegt ist, eine Eingangsspannung am Ladeeingangsanschluss (246) und eine Ausgangsspannung am Entladeausgangsanschluss (248) zu empfangen, und dem Komparator (426) eine Spannung der Eingangs- und Ausgangsspannungen übereinstimmend mit den Antriebssignalen selektiv bereitzustellen.


     
    15. Verfahren (900), umfassend:

    Generieren (902) einer Vielzahl von Antriebssignalen, um einen Status eines Schalterstromkreises zu steuern, um dadurch Laden oder Entladen eines Batteriepacks (200) zu ermöglichen;

    Empfangen (904) von Strom zum Laden des Batteriepacks (200) in einem Lademodus oder Bereitstellen von Strom vom Batteriepack an eine Last in einem Entlademodus, über eine Schnittstelle des Batteriepacks;

    Empfangen (906) von Spannungen an einer Vielzahl von Anschlüssen des Steuerstromkreises; und

    Erkennen (908) eines Status der Schnittstelle übereinstimmend mit dem Status des Schalterstromkreises und einer Differenz zwischen den Spannungen;

    wobei das Verfahren ferner umfasst:

    wenn ein Ladeschalter (QCHG) im Schalterstromkreis eingeschaltet ist, Liefern eines Ladestroms des Batteriepacks (200) von einem Ladeeingangsanschluss (246) zu einem Ladeausgangsanschluss (244) durch den Ladeschalter; und

    wenn der Ladeschalter (QCHG) ausgeschaltet ist, Durchführen einer Vielzahl von Schritten, umfassend:

    Empfangen einer ersten Spannung am Ladeeingangsanschluss (246) und einer zweiten Spannung am Ladeausgangsanschluss (244);

    Vergleichen einer Differenz zwischen den ersten und zweiten Spannungen mit einer ersten Spannungsreferenz; und

    Erkennen, ob ein Ladegerät an die Schnittstelle übereinstimmend mit einem Ergebnis des Vergleichs (228) angeschlossen ist.


     
    16. Verfahren nach Anspruch 15, ferner umfassend:

    Wenn ein Entladeschalter (QDSG) im Schalterstromkreis eingeschaltet ist, Liefern eines Entladestroms von einem Entladeeingangsanschluss (244) zu einem Entladeausgangsanschluss (248) durch den Entladeschalter; und

    wenn der Entladeschalter (QDSG) ausgeschaltet ist, Durchführen einer Vielzahl von Schritten, umfassend:

    Bereitstellen eines Stroms, um einen Kondensator (336) zu laden, der an den Entladeausgangsanschluss (248) gekoppelt ist;

    Empfangen einer dritten Spannung am Entladeeingangsanschluss (244) und einer vierten Spannung am Entladeausgangsanschluss (248);

    Vergleichen einer Differenz zwischen den dritten und vierten Spannungen mit einer zweiten Spannungsreferenz, um ein Vergleichsergebnis (328) zu generieren; und

    Erkennen, ob die Last von der Schnittstelle übereinstimmend mit dem Vergleichsergebnis (328) entfernt worden ist.


     
    17. Verfahren nach Anspruch 15 oder Anspruch 16, ferner umfassend:

    Selektives Liefern eines Stroms von einem Ladeeingangsanschluss (246), um den Batteriepack zu laden oder Liefern eines Entladestroms des Batteriepacks zu einem Entladeausgangsanschluss (248) unter Steuerung der Antriebssignale;

    Vergleichen der Differenz zwischen den Spannungen mit einer Spannungsreferenz, unter Verwendung eines Komparators (426), um ein Vergleichsergebnis zu generieren, das den Status der Schnittstelle erkennen lässt;

    Steuern eines Levels der Spannungsreferenz übereinstimmend mit den Antriebssignalen;

    Empfangen einer Eingangsspannung am Ladeeingangsanschluss (246) und einer Ausgangsspannung a, Entladeausgangsanschluss (248); und

    Selektives Bereitstellen einer Spannung der Eingangs- und Ausgangsspannungen an den Komparator (426) übereinstimmend mit den Antriebssignalen.


     


    Revendications

    1. Circuit de commande (202, 302, 402) comprenant :

    une pluralité de bornes d'attaque (212, 216) configurées pour fournir des signaux d'attaque afin de commander un état d'un circuit de commutation pour permettre la charge ou la décharge d'un bloc batterie (200) ;

    une circuiterie de détection, couplée auxdites bornes d'attaque, configurée pour recevoir des tensions au niveau d'une pluralité de bornes dudit circuit de commutation, et détecter un état d'une interface dudit bloc batterie (200) en fonction dudit état dudit circuit de commutation et d'une différence entre lesdites tensions, ladite interface étant exploitable pour recevoir une puissance afin de charger ledit bloc batterie dans un mode de charge et fournir une puissance à partir dudit bloc batterie à une charge dans un mode de décharge ;

    dans lequel lesdits signaux d'attaque comprennent un signal qui est configuré pour activer sélectivement un commutateur de charge (QCHG) dans ledit circuit de commutation afin de délivrer un courant de charge dudit bloc batterie (200) d'une borne d'entrée de charge (246) à une borne de sortie de charge (244) ; et

    caractérisé en ce que quand ledit commutateur de charge (QCHG) est désactivé, ladite circuiterie de détection est configurée pour recevoir une première tension au niveau de ladite borne d'entrée de charge (246) et une deuxième tension au niveau de ladite borne de sortie de charge (244), comparer une différence entre lesdites première et deuxième tensions à une première référence de tension, et détecter qu'un chargeur est connecté ou non à ladite interface en fonction d'un résultat de la comparaison (228).


     
    2. Circuit de commande selon la revendication 1, dans lequel si ladite différence entre lesdites première et deuxième tensions est supérieure à ladite première référence de tension pendant un premier intervalle de temps prédéfini, ladite circuiterie de détection est configurée pour déterminer que ledit chargeur est connecté à ladite interface.
     
    3. Circuit de commande selon la revendication 1 ou la revendication 2, dans lequel lesdits signaux d'attaque comprennent un signal qui est configuré pour activer sélectivement un commutateur de décharge (QDSG) dans ledit circuit de commutation afin de délivrer un courant de décharge dudit bloc batterie (200) d'une borne d'entrée de décharge (244) à une borne de sortie de décharge (248), et dans lequel quand ledit commutateur de décharge (QDSG) est désactivé, ladite circuiterie de détection est configurée pour fournir un courant afin de charger un condensateur (336) couplé à ladite borne de sortie de décharge (248), recevoir une troisième tension au niveau de ladite borne d'entrée de décharge (244) et une quatrième tension au niveau de ladite borne de sortie de décharge (248), comparer une différence entre lesdites troisième et quatrième tensions à une deuxième référence de tension afin de générer un résultat de comparaison (328), et détecter que ladite charge est déconnectée ou non de ladite interface en fonction dudit résultat de comparaison (328).
     
    4. Circuit de commande selon la revendication 3, dans lequel si ladite différence entre lesdites troisième et quatrième tensions est inférieure à ladite deuxième référence de tension pendant un deuxième intervalle de temps prédéfini, ladite circuiterie de détection est configurée alors pour déterminer que ladite charge est déconnectée de ladite interface.
     
    5. Circuit de commande selon l'une quelconque des revendications 1 à 4, dans lequel ladite circuiterie de détection comprend :

    un comparateur (426) configuré pour comparer ladite différence entre lesdites tensions à une référence de tension afin de générer un résultat de comparaison indicatif dudit état de ladite interface ;

    un générateur de référence (424), couplé audit comparateur (426), configuré pour commander un niveau de ladite référence de tension conformément auxdits signaux d'attaque ; et

    un multiplexeur (434), couplé audit comparateur (426), configuré pour recevoir une tension d'entrée au niveau d'une borne d'entrée de charge (246) et une tension de sortie au niveau d'une borne de sortie de décharge (248), et fournir sélectivement une tension desdites tensions d'entrée et de sortie audit comparateur (426) en fonction desdits signaux d'attaque,

    dans lequel ledit circuit de commutation comprend un commutateur de charge (QCHG) et un commutateur de décharge (QDSG), ledit commutateur de charge (QCHG) étant configuré pour délivrer un courant à partir de ladite borne d'entrée de charge (246) afin de charger ledit bloc batterie (200) si ledit commutateur de charge est activé, ledit commutateur de décharge (QDSG) étant configuré pour délivrer un courant de décharge dudit bloc batterie (200) à ladite borne de sortie de décharge (248) si ledit commutateur de décharge est activé.


     
    6. Circuit de commande selon la revendication 5, dans lequel si lesdits signaux d'attaque comprennent des niveaux de signaux configurés pour désactiver ledit commutateur de charge (QCHG) et activer ledit commutateur de décharge (QDSG), ledit générateur de référence (424) établit alors ladite référence de tension à une première référence de tension, et ledit multiplexeur (434) est configuré pour fournir ladite tension d'entrée audit comparateur (426).
     
    7. Circuit de commande selon la revendication 6, dans lequel ledit générateur de référence (424) est configuré pour recevoir un premier signal indicatif d'une tension d'une batterie (238) dans ledit bloc batterie et générer un deuxième signal indicatif d'une combinaison dudit premier signal et de ladite première référence de tension, et dans lequel ledit comparateur (426) est configuré pour comparer ledit deuxième signal à ladite tension d'entrée pour générer un résultat de comparaison indicatif de la connexion ou non d'un chargeur à ladite interface.
     
    8. Circuit de commande selon l'une quelconque des revendications 5 à 7, dans lequel si lesdits signaux d'attaque comprennent des niveaux de signaux configurés pour activer ledit commutateur de charge (QCHG) et désactiver ledit commutateur de décharge (QDSG), ledit générateur de référence (424) est configuré alors pour établir ladite référence de tension à une deuxième référence de tension, et ledit multiplexeur (434) est configuré pour fournir ladite tension de sortie audit comparateur.
     
    9. Circuit de commande selon la revendication 8, dans lequel ledit générateur de référence (424) est configuré pour recevoir un premier signal indicatif d'une tension d'une batterie (238) dans ledit bloc batterie et générer un troisième signal indicatif d'une combinaison dudit premier signal et de ladite deuxième référence de tension, dans lequel une circuiterie de détection est configurée pour fournir un courant afin de charger un condensateur (336) couplé à ladite borne de sortie de décharge (248), et dans lequel ledit comparateur (426) est configuré pour comparer ledit troisième signal à ladite tension de sortie afin de générer un résultat de comparaison indicatif de la déconnexion ou non de ladite charge de ladite interface.
     
    10. Circuit de commande selon l'une quelconque des revendications 1 à 9, dans lequel ledit circuit de commutation est exploitable pour délivrer un courant de décharge dudit bloc batterie (200) d'une borne d'entrée de décharge (244) à une borne de sortie de décharge (248), et dans lequel ladite circuiterie de détection est configurée pour recevoir une cinquième tension au niveau de ladite borne d'entrée de décharge et une sixième tension au niveau de ladite borne de sortie de décharge (248), comparer une différence entre lesdites cinquième et sixième tensions à une troisième référence de tension, et détecter un état de ladite charge conformément à un résultat de la comparaison.
     
    11. Circuit de commande selon la revendication 10, dans lequel si ladite différence entre lesdites cinquième et sixième tensions est supérieure à ladite troisième référence de tension pendant un troisième intervalle de temps prédéfini, ladite circuiterie de détection est configurée alors pour déterminer que ladite charge est trop importante.
     
    12. Bloc batterie (200) comprenant :

    une batterie (238) ;

    un circuit de commutation (QDSG & QCHG), couplé à ladite batterie, configuré pour permettre la charge ou la décharge de ladite batterie (238) sous la commande de la pluralité de signaux d'attaque ; et

    le circuit de commande (202, 302, 402) selon la revendication 1, configuré pour fournir lesdits signaux d'attaque.


     
    13. Bloc batterie selon la revendication 12, dans lequel ledit circuit de commutation (QDSG & QCHG) comprend un commutateur de décharge (QDSG) configuré pour délivrer un courant de décharge de ladite batterie d'une borne d'entrée de décharge (244) à une borne de sortie de décharge (248) quand ledit commutateur de décharge est activé, et dans lequel quand ledit commutateur de décharge (QDSG) est désactivé, ledit circuit de commande est configuré pour fournir un courant afin de charger un condensateur (336) couplé à ladite borne de sortie de décharge (248), recevoir une troisième tension au niveau de ladite borne d'entrée de décharge (244) et une quatrième tension au niveau de ladite borne de sortie de décharge (248), comparer une différence entre lesdites troisième et quatrième tensions à une deuxième référence de tension pour générer un résultat de comparaison (328), et détecter que ladite charge est déconnectée ou non de ladite interface conformément audit résultat de comparaison (328).
     
    14. Bloc batterie selon la revendication 12 ou la revendication 13, dans lequel ledit circuit de commutation (QDSG & QCHG) est configuré pour délivrer sélectivement un courant depuis une borne d'entrée de charge (246) à ladite batterie (238) ou un courant depuis ladite batterie (238) à une borne de sortie de décharge (248) sous la commande desdits signaux d'attaque, et dans lequel ledit circuit de commande comprend :

    un comparateur (426) configuré pour comparer ladite différence entre lesdites tensions à une référence de tension pour générer un résultat de comparaison indicatif dudit état de ladite interface ;

    un générateur de référence (424), couplé audit comparateur (426), configuré pour commander un niveau de ladite référence de tension conformément auxdits signaux d'attaque ; et

    un multiplexeur (434), couplé audit comparateur (426) et audit circuit de commutation (QDSG & QCHG), configuré pour recevoir une tension d'entrée au niveau de ladite borne d'entrée de charge (246) et une tension de sortie au niveau de ladite borne de sortie de décharge (248), et fournir sélectivement une tension desdites tensions d'entrée et de sortie audit comparateur (426) en fonction desdits signaux d'attaque.


     
    15. Procédé (900) comprenant :

    la génération (902) d'une pluralité de signaux d'attaque pour commander un état d'un circuit de commutation permettant ainsi la charge ou la décharge d'un bloc batterie (200) ;

    la réception (904) d'une puissance pour charger ledit bloc batterie (200) dans un mode de charge ou fournir une puissance à partir du bloc batterie à une charge dans un mode de décharge, par l'intermédiaire d'une interface dudit bloc batterie ;

    la réception (906) de tensions au niveau d'une pluralité de bornes dudit circuit de commutation ; et

    la détection (908) d'un état de ladite interface en fonction dudit état dudit circuit de commutation et d'une différence entre lesdites tensions ;

    le procédé comprenant en outre :

    quand un commutateur de charge (QCHG) dans ledit circuit de commutation est activé, la délivrance d'un courant de charge dudit bloc batterie (200) d'une borne d'entrée de charge (246) à une borne de sortie de charge (244) par le biais dudit commutateur de charge ; et

    quand ledit commutateur de charge (QCHG) est désactivé, la réalisation d'une pluralité d'étapes comprenant :

    la réception d'une première tension au niveau de ladite borne d'entrée de charge (246) et d'une deuxième tension au niveau de ladite borne de sortie de charge (244) ;

    la comparaison d'une différence entre lesdites première et deuxième tensions à une première référence de tension ; et

    la détection qu'un chargeur est connecté ou non à ladite interface en fonction d'un résultat de la comparaison (228).


     
    16. Procédé selon la revendication 15, comprenant en outre :

    quand un commutateur de décharge (QDSG) dans ledit circuit de commutation est activé, la délivrance d'un courant de décharge d'une borne d'entrée de décharge (244) à une borne de sortie de décharge (248) par le biais dudit commutateur de décharge ; et

    quand ledit commutateur de décharge (QDSG) est désactivé, la réalisation d'une pluralité d'étapes comprenant :

    la fourniture d'un courant pour charger un condensateur (336) couplé à ladite borne de sortie de décharge (248) ;

    la réception d'une troisième tension au niveau de ladite borne d'entrée de décharge (244) et d'une quatrième tension au niveau de ladite borne de sortie de décharge (248) ;

    la comparaison d'une différence entre lesdites troisième et quatrième tensions à une deuxième référence de tension pour générer un résultat de comparaison (328) ; et

    la détection que ladite charge est déconnectée ou non de ladite interface en fonction dudit résultat de comparaison (328).


     
    17. Procédé selon la revendication 15 ou la revendication 16, comprenant en outre :

    la délivrance sélective d'un courant d'une borne d'entrée de charge (246) afin de charger ledit bloc batterie ou la délivrance d'un courant de décharge du bloc batterie à une borne de sortie de décharge (248) sous la commande desdits signaux d'attaque ;

    la comparaison de ladite différence entre lesdites tensions à une référence de tension pour générer un résultat de comparaison indicatif dudit état de ladite interface, à l'aide d'un comparateur (426) ;

    la commande d'un niveau de ladite référence de tension conformément auxdits signaux d'attaque ;

    la réception d'une tension d'entrée au niveau de ladite borne d'entrée de charge (246) et d'une tension de sortie au niveau de ladite borne de sortie de décharge (248) ; et

    la fourniture sélective d'une tension desdites tensions d'entrée et de sortie audit comparateur (426) en fonction desdits signaux d'attaque.


     




    Drawing
































    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description