(19)
(11)EP 3 328 728 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
01.12.2021 Bulletin 2021/48

(21)Application number: 16730936.8

(22)Date of filing:  26.05.2016
(51)International Patent Classification (IPC): 
B64C 1/14(2006.01)
G01N 27/04(2006.01)
G01N 27/22(2006.01)
B64D 15/20(2006.01)
G01N 27/12(2006.01)
G01R 27/26(2006.01)
(52)Cooperative Patent Classification (CPC):
G01N 27/048; B64C 1/1492; G01N 27/223; B64C 1/1484; B64D 15/20
(86)International application number:
PCT/US2016/034307
(87)International publication number:
WO 2017/019165 (02.02.2017 Gazette  2017/05)

(54)

AIRCRAFT WINDSHIELD WITH MOISTURE SENSORS

FLUGZEUG-WINDSCHUTZSCHEIBE MIT FEUCHTESENSOREN

VITRAGE D'AÉRONEF COMPRENANT DES CAPTEURS D'HUMIDITÉ


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 28.07.2015 US 201514810517

(43)Date of publication of application:
06.06.2018 Bulletin 2018/23

(73)Proprietor: PPG Industries Ohio, Inc.
Cleveland, OH 44111 (US)

(72)Inventors:
  • JIAO, Yu
    Blawnox, Pennsylvania 15238 (US)
  • ACORD, Jeremy D.
    Lower Burrell, Pennsylvania 15068 (US)
  • DUARTE, Nicolas B.
    Allison Park, Pennsylvania 15101 (US)

(74)Representative: f & e patent 
Braunsberger Feld 29
51429 Bergisch Gladbach
51429 Bergisch Gladbach (DE)


(56)References cited: : 
WO-A1-81/03709
WO-A2-2007/009767
US-A- 4 522 060
US-A1- 2010 163 675
WO-A1-2015/073269
US-A- 3 440 372
US-A1- 2005 115 308
US-A1- 2015 171 624
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    BACKGROUND OF THE INVENTION


    1. Field of the Invention



    [0001] This invention relates to transparencies, e.g. windows, having one or more moisture sensors to measure ingress of moisture, and more particularly, to aircraft and aerospace laminated windows, e.g. laminated windshield, having moisture sensors to monitor the real time performance of moisture seals of the windshield, and the amount of moisture accumulated over time,

    2. Discussion of the Presently Available Technology



    [0002] Aircraft and aerospace windows, e.g. windshields include a laminate of plastic layers or sheets, glass layers or sheets and combinations thereof. The layers of an inner segment of the windshield face the interior of the aircraft and are designed to provide structural stability to the windshield. The layers of outer segment of the windshield face the exterior of the aircraft and are designed to provide structural stability and accessories for visual acuity. For example and not limiting to the discussion, one accessory to enhance visual acuity is a heatable member that includes an electrically conductive coating, or a plurality of electrically conductive wires, between and connected to a pair of spaced bus bars to heat the outer surface of the windshield to prevent the formation of, and/or to remove fog and ice on and/or from, respectively, the outer surface of the windshield.

    [0003] As is appreciated by those skilled in the art, as the service time of the aircraft windshield increases, the operating efficiency of the windshield decreases until such time that the windshield becomes non-functional, and the windshield needs to be replaced or repaired. More particularly, the peripheral edge of the windshield has an outboard moisture seal that is a barrier to prevent moisture from entering between the plastic and glass layers or sheets of the windshield, When the moisture seal fails, e.g. cracks and/or the layers of the windshield laminate de-bond, moisture enters between the layers of the windshield. While the cracking or de-bonding of the seal is not a structural issue, when moisture moves between the layers of the windshield, the windshield can de-laminate, and the conductive coating or wires, whichever is present can be damaged and fail, thereby reducing or ending, the service life of the windshield. More particularly, when delamination of the windshield occurs, increased amounts of moisture move between the layers of the windshield accelerating the degradation of the windshield, e.g. damage and/or failure of the bus bars and electrically conductive coating or wires, which reduces or eliminates the defrosting capabilities of the windshield.

    [0004] US 2010/0163675 A1 discloses a laminated windshield for an aircraft, the windshield having a moisture seal and a moisture sensor positioned between the sheets of the windshield. The moisture sensor comprises a dielectric member which maintains two electrodes spaced from one another. By measurement of resistance of the sensor, an amount of moisture absorbed by the dielectric material is determined.

    [0005] Untimely response to repair defects in the accessories of the transparency when they begin, decreases the operating efficiency of the transparency and can result in the need for emergency maintenance, e.g. the repair or replacement of the transparency. It would be advantageous, therefore, to provide a transparency with moisture sensors to monitor the performance of the transparency so that the repair, or replacement, of the transparency is a scheduled maintenance and not an emergency maintenance.

    SUMMARY OF THE INVENTION



    [0006] This invention relates to an aircraft windshield having, among other things, a plurality of sheets joined together to provide a laminated window having a vision area, the window having a moisture seal on the peripheral and marginal edge portions of the sheets. A moisture sensor is positioned between the sheets and/or between the sheets and the moisture seal. The moisture sensor includes, among other things, a dielectric member comprising a dielectric material between a first electrode and a second electrode wherein the dielectric material is a dielectric material that increases in electrical impedance as the moisture in electrical absorbed by the dielectric material increases, The dielectric member is in electrical contact with the first and second electrodes and maintains the first and the second electrodes spaced from one another and out of the surface contact with one another. Sensor electronics are operatively connected to the electrodes of the moisture sensor to measure an electrical property of the sensor to determine amount of moisture absorbed by the dielectric member, wherein applying alternating electrical current to the first and the second electrodes and measuring the complex impedance (ohms) of the dielectric material measures the amount of moisture within the laminated windshield in the area of the moisture sensor.

    [0007] The invention further relates to a method. The method includes, among other things, fabricating a laminated aircraft transparency having a moisture barrier over the outer surface of the marginal edges of, and periphery of the laminated aircraft transparency. During fabrication of the laminated aircraft transparency placing a sensor element responsive to moisture between the sheets and/or between the sheets and the moisture seal of the aircraft transparency. The sensor element includes, among other things, a dielectric member, comprising a dielectric material between a first electrode and a second electrode wherein the dielectric is a dielectric material that increases in electrical impedance as the moisture absorbed by the dielectric material increases. The dielectric member is in electrical contact with the first and second electrodes and maintains the first and the second electrodes spaced from one another and out of contact with one another, applying alternating electrical current to the electrodes to measure the complex impedance (ohms) of the dielectric to determine the amount of moisture within the laminated windshield in the area of the moisture sensor.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0008] 

    Fig. 1 is a cross sectional view of a non-limiting embodiment of an aircraft windshield incorporating features of the invention.

    Fig. 2 is an isometric view of a prior art heatable member for removing fog, and melting ice and snow on the outer surface of the windshield.

    Fig. 3 is an isometric segmented view of a non-limiting aspect of a moisture sensor or detector of the invention.

    Fig. 4 is an isometric view of another non-limiting aspect of a moisture sensor or detector of the invention.

    Fig. 5 is a non-limiting embodiment of an electrical system to monitor and act on the output signals of the moisture sensor in accordance to the teachings of the invention.

    Fig. 6 is a plan view of a non-limiting embodiment of an arrangement of moisture sensors or detectors to estimate approximate position of moisture penetration and depth of moisture penetration,

    Fig. 7 is a plan view showing the moisture sensor of the invention surrounding the heatable member shown in Fig. 2.

    Fig. 8 is an elevated cross sectional side view showing a non-limiting embodiment of the invention for mounting a sensor over a bus bar of a heatable member.

    Fig. 9 is a graph showing changes in complex impedance (ohms) as a function of moisture content in wt. % for a dielectric material.

    Fig. 10 is a cross section view of a segment of the windshield shown in Fig. 1 showing the position of moisture sensors or detectors at the marginal and peripheral edge portions of the aircraft windshield in accordance to the teachings of the invention.


    DETAILED DESCRIPTION OF THE INVENTION



    [0009] As used herein, spatial or directional terms such as "inner", "outer", "left", "right", "up", "down", "horizontal", "vertical", and the like, relate to the invention as it is shown in the drawing on the figures. However, it is to be understood that the invention can assume various alternative orientations and, accordingly, such terms are not to be considered as limiting. Further, all numbers expressing dimensions, physical characteristics, and so forth, used in the specification and claims are to be understood as being modified in all instances by the term "about". Accordingly, unless indicated to the contrary, the numerical values set forth in the following specification and claims can vary depending upon the property desired and/or sought to be obtained by the present invention. Each numerical parameter should at least be construed in light of the number of reported significant digits and by applying ordinary rounding techniques. Moreover, all ranges disclosed herein are to be understood to encompass any and all subranges subsumed therein. For example, a stated range of "1 to 10" should be considered to include any and all subranges between and inclusive of the minimum value of 1 and the maximum value of 10; that is, all subranges beginning with a minimum value of 1 or more and ending with a maximum value of 10 or less, e.g., 1 to 6.7, or 3,2 to 8.1, or 5.5 to 10. Also, as used herein, the term "applied over", "positioned over" or "mounted over" means applied on, positioned on or mounted over but not necessarily in surface contact with. For example, one article or component of an article "applied over", "mounted over" or "positioned over" another article or component of an article does not preclude the presence of materials between the articles, or between components of the article, respectively,

    [0010] Before discussing several non-limiting embodiments of the invention, it is understood that the invention is not limited in its application to the details of the particular non-limiting embodiments shown and discussed herein since the invention is capable of other embodiments. Further, the terminology used herein to discuss the invention is for the purpose of description and is not of limitation. Still further, unless indicated otherwise, in the following discussion like numbers refer to like elements,

    [0011] Non-limiting embodiments of the invention are directed to an aircraft laminated transparency, and in particular to an aircraft laminated windshield. The invention, however, is not limited to any particular type of aircraft transparency, and the invention contemplates the practice of the invention on any type of windshield, e.g. but not limited to (1) a laminated windshield disclosed in U.S. Patent No. 8,155,816; (2) an aircraft window having a medium responsive to electric stimuli to increase or decrease visible transmission, e.g. but not limited to the type of aircraft window disclosed in U.S. Published Patent application 2007/0002422A, and (3) aircraft windows of the type having an insulated air space between a pair of laminated sheets, Further, the invention can be practiced on commercial and residential windows, e.g. but not limited to (1) the type disclosed in U.S. Patent No. 5,675,944; (2) a window for any type of land vehicle; (3) a canopy, cabinn window and windshield for any type of air and space vehicle; (4) a window for any above and/or below water vessel, and (5) a window for a viewing side or door for any type of containers, for example but not limited to a refrigerator, cabinet and/or oven door. Still further, the invention is not limited to the material of the layers or sheets of the transparency, and the layers or sheets can be made of, but not limited to, cured and uncured plastic sheets; annealed glass sheets, and heat and chemically strengthened, clear, colored, coated and uncoated glass sheets

    [0012] The laminated windshield is usually designed to be a passive component of the aircraft with de-icing and/or de-fogging features. In the practice of the non-limiting aspects of the invention, sensors are used to provide feedback on the performance of the transparency. More particularly, the moisture sensors of the invention provide an intelligent window with the goal of providing feedback on the health status of the window system for electrical and mechanical integrity. Specifically, moisture ingress is a known problem of aerospace transparency aging, especially when window seals are not properly maintained. If left to continue, moisture ingress can permanently deteriorate the interior laminate, causing reduced visibility and rendering the window useless. In the worst cases, moisture ingress can affect the electrically conductive heater layer (discussed in detail below), potentially causing arcing and structure failure of one or more layers, sheets or plies of the laminated windshield.

    [0013] Shown in Fig. 1 is a non-limiting embodiment of an aircraft windshield 20 that can be used in the practice of the invention, The windshield 20 has a first glass sheet 22 secured to surface 24 of a vinyl-interlayer or sheet 26 by a first urethane interlayer 28, and has a second glass sheet 30 secured to surface 32 of the vinyl-interlayer 26 by a second urethane interlayer 34. An edge member or moisture barrier 36 of the type used in the art, e.g. but not limited to a silicone rubber or other flexible durable moisture resistant material is secured to (1) peripheral edge 38 of the windshield 20, i.e. the peripheral edge 38 of the first and second sheets 22 and 30, respectively; of the vinyl-infarlayer 26; of the first and second urethane interlayers 28 and 34, respectively; (2) margins or marginal edges 40 of outer surface 42 of the windshield 20, i.e. the margins 40 of the outer surface 42 of the first glass sheet 22 of the windshield 20, and (3) margins or marginal edges 44 of outer surface 46 of the windshield 20, i.e. margins of the outer surface 46 of the second glass sheet 30.

    [0014] As is appreciated by those skilled in the art and not limiting to the invention, the first glass sheet 22; the vinyl-interlayer 26 and the first urethane interlayer 28 form the structural part, or inner segment, of the windshield 20. The outer surface 42 of the windshield 20, which is the outer surface 42 of the glass sheet 22 faces the interior of the vehicle, e.g, but not limited to an aircraft (an aircraft that can be used in the practice of the invention, but not limiting to the invention, is shown in U.S. Patent No. 8,155,816B2). The second urethane layer 34 and the second glass sheet 30 form the non-structural part, or outer segment, of the windshield 20. The outer surface 46 of the windshield 20 which is the surface 46 of the second glass sheet 30 faces the exterior of the aircraft. The second glass sheet 30 is part of a heatable member 50 that provides heat to remove fog from, and/or to melt ice on, the outer surface 46 of the windshield 20 in a manner discussed below.

    [0015] As can be appreciated the invention is not limited to the construction of the windshield 20 and any of the constructions of aircraft transparencies disclosed in the art can be used in the practice of the invention, For example and not limited to the invention, the windshield 20 can include a construction wherein the vinyl interlayer 26 and the first urethane interlayer 28 are omitted, and the glass sheets 22 and/or 30 are plastic sheets.

    [0016] Generally the glass sheets 22 and 30 of the windshield 20 are clear chemically strengthened glass sheets; however, the invention is not limited thereto, and the glass sheets 22 and/or 30 can be heat strengthened or heat tempered glass sheets. Further as is appreciated, the invention is not limited to the number of glass sheets, vinyl Interlayers or urethane interlayers that make up the windshield 20, and the windshield 20 can have any number of sheets and/or interlayers.

    [0017] The invention is not limited to the design and/or construction of the heatable member 50, and any electrically conductive heatable member used in the art to heat a surface of a glass or plastic sheet to melt ice on, and/or remove fog from the surface of the sheet can be used in the practice of the invention. With reference to Fig. 2, in one non-limiting embodiment of the invention, the heatable member 50 includes a conductive coating 62 applied to surface 64 of the second glass sheet 30, and a pair of spaced bus bars 66 and 68 in electrical contact with the conductive coating 62. The invention is not limited to the composition of the conductive coating 62, for example and not limiting to the invention; the conductive coating 62 can be made from any suitable electrically conductive material. Non-limiting aspects of conductive coatings that can be used in the practice of the invention include, but are not limited to a pyrolytic deposited fluorine doped tin oxide film of the type sold by PPG Industries, Inc. under the trademark NESA®; a magnetron sputter deposited tin doped indium oxide film of the type sold by PPG Industries, Inc. under the trademark NESATRON®; a coating made up of one or more magnetron sputter deposited films, the films including, but not limited to a metal film, e.g. silver between metal oxide films, e.g. zinc oxide and/or zinc stannate, each of which may be applied sequentially by magnetron sputtering, e.g. as disclosed in U.S. Patent Nos. 4,810,771; 4,806,220 and 5,821,001.

    [0018] As can be appreciated, the invention is not limited to the use of an electrically conductive coating to heat the glass sheet 60 and contemplates the use of any type of member that can be electrically heated, e.g. but not limited to electrical conducting wires. The wires, e.g. the wires 69 shown in phantom in Fig. 1 can be embedded in the second urethane interlayer 34 and electrically connected to the bus bars 66 and 68. Such a heating arrangement is known in the art under the PPG Industries Ohio Inc. registered trademark AIRCON and is disclosed in U.S. Patent No. 4,078,107.

    [0019] The invention is not limited to the design and/or construction of the bus bars and any of the types of bus bars known in the art can be used in the practice of the invention. Examples of bus bars that can be used in the practice of the invention, include, but are not limited to, the types disclosed in U.S. Patent Nos. 4,623,389; 4,820,902; 4,894,513; 4,994,650, and 4,902,875. Each of the bus bars 66 and 68 are connected by a wire 70 and 71, respectively to a power source 72, e.g. a battery to flow current through the bus bars 66 and 68, and the conductive coating 62 to heat the conductive coating 62 and the second glass sheet 30 to remove ice and/or fog from the outer surface 46 of the windshield 20. A window heat controller 73 to provide electrical current to heat the coating 62 and to disconnect electrical current from the coating 62 is connected to one of the wires, e.g. the wire 71 such that wire section 71A of the wire 71 connects one pole of the window heat controller 73 to the bus bar 68, and the wire section 71 B of the wire 71 connects another pole of the window heat controller 73 to the battery 72. With this arrangement, the window heat controller 73 can control the electrical power to the bus bars 66 and 68, and the conductive coating 62 to vary and/or regulate the current flow through the bus bars 68 and 66, and the conductive coating 62 to control the temperature of the conductive coating 62. Although not limiting to the invention, ends 75 of the bus bar 66, and ends 76 of the bus bar 68 are spaced from adjacent sides 78-81 of the glass sheet 30 to prevent arcing of the bus bars 66 and 68 with the metal body cover of the aircraft (shown in U.S. Patent No. 8,155,816B2).

    [0020] Shown in Fig. 3 is a moisture sensor 85, and shown in Fig. 4 is a moisture sensor 87; the moisture sensors 85 and 87 having features of the invention. More particularly, the moisture sensor 85 has a coaxial arrangement and includes, but is not limited to, a central electrical conductor or electrode 89, a dielectric sleeve 91 over the central electrical electrode 89, and an outer moisture pervious electrical conductive sleeve or outer electrode 93. The moisture sensor 87 shown in Fig. 4 includes a first outer moisture porous electrical conductive electrode 95 spaced from a second outer moisture porous electrical conductive electrode 97, and a dielectric layer 99 between and in physical contact, or close proximity, with the first and second electrodes 95 and 97, respectively. The dielectric material that increases in electrical impedance as the moisture absorbed by it increases can consist of insulating material compatible with wire manufacturing, with preferably a large saturated moisture capacity, and with a melting temperature greater than the laminate processing temperature. Materials that can be used for the dielectric 91 or 99 include, but are not limited to, nylon of any chain length, e.g., nylon 4-6, nylon 6, nylon 6-6, nylon 6-12, nylon 11, polyamide-imide, polybenzimidazole, polyethersulfone or polysulfone. The moisture sensor 85 or 87 shown in Fig. 3 or Fig. 4, respectively can also include any number of additional moisture permeable conducting or insulating layers that do not substantially change the electrical response of the moisture sensor but may be desirable for fabrication or installation of the sensor, as is appreciated by those skilled in the art. A segment of a moisture permeable conducting or insulating layer 86 is shown in phantom in Fig. 4. The moisture sensors 85 and 87 are made of materials that are non-reactive with the materials of the windshield, e.g. but not limited to the glass sheets 22 and 30, the conductive coating 62, the vinyl interlayer 26 and the urethane interlayers 28 and 34. The electrodes 89 and 93 of the moisture sensor 85, and the electrodes 95 and 97 of the moisture sensor 87 are made of electrically conductive materials have a constant electrical conductivity over time at a fixed temperature. Materials that can be used for the electrodes 89 and 93 of the moisture sensor 85, and the electrodes 95 and 97 of the moisture sensor 87 include, but are not limited to the noble metals most commonly considered to be ruthenium, rhodium, palladium, silver, osmium, iridium, platinum, and gold, and non-noble metals and alloys such as, but not limited to, copper, tin-plated copper, nickel-plated copper, nickel-chromium, aluminum, and combinations thereof.

    [0021] The central electrode 89 and the outer electrode 91 of the moisture sensor 85 preferably are made of the same material, and the outer electrodes 95 and 97 of the moisture sensor 87 are also preferably made of the same material to avoid chemical reaction between two different metals. In one aspect of the invention, the central electrode 89 of the moisture sensor 85 shown in Fig. 3 was made of a solid or stranded tin plated copper wire, and the outer electrode 93 of the moisture sensor 85 (see Fig. 3) and the outer electrodes 95 and 97 of the moisture sensor 87 (see Fig. 4) were made of a tin plated copper mesh to provide passageways 103 for moisture to move through the outer electrodes 93, 95 and 97 to contact the dielectric material 91 between the electrodes 89 and 93 of the sensor 85, and to move through the outer electrodes 95 and 97 of the sensor 87 to contact the dielectric layer 105 between the electrodes 95 and 97 of the moisture sensor 87. The invention is not limited to the thickness, size and number of passageways in the braid of the outer electrodes 93, 95 and 97. In the practice of the invention the outer mesh electrode was made of 44 AWG tin-plated copper wires with a 75% braid coverage.

    [0022] The dielectric material 91 of the sensor 85 and the dielectric material 99 of the sensor 87 used in the practice of the invention is of the type that has increasing electric impedance as the moisture absorbed by the dielectric materiel increases. For purposes of clarity, impedance is the measurement of the opposition to current flow in a circuit For direct current (DC) the only opposition is the resistance of the circuit. For alternating current (AC) the current is opposed by the inductance and capacitance as well as the resistance. The combination of inductance and capacitance is referred to as reactance and makes up the complex component of impedance, while resistance forms the real component. Quantitatively, impedance is defined as the complex ratio of the voltage to the current at a given frequency. For a sinusoidal input, the polar form of the complex impedance relates the amplitude and phase of the voltage and current. The magnitude of the polar impedance is the voltage to current amplitude ratio. The phase of the polar impedance is the phase shift between the current and voltage.

    [0023] The impedance of the sensor 85 or 87 is measured by the electrical measurement mechanism 115 (see Fig. 5) at one or more frequencies. As appreciated by those skilled in the art the impedance in general and the reactive impedance in particular of the sensor 85 or 87 can be related to the moisture content of the sensor 85 or 87 through the use of a suitable model and or calibration curve, illustrated in a non-limiting embodiment by Fig. 9. Moisture permeation into the dielectric 91 in Fig. 3 or 99 in Fig. 4 primarily causes an increase in the capacitive component of the reactive impedance of the sensor. Similarly, through the use of a calibration routine the moisture content of the sensor 85 or 87 can be related to the moisture content of the materials in immediate contact with the sensor, such as the vinyl interlayer 26 or the urethane interlayers 28 and / or 34.

    [0024] The thickness of the moisture sensors 85 and 87 is not limiting to the invention, however, in the practice of the invention, when the moisture sensor 85 or 87 is positioned between sheets, the thickness of the moisture sensor 85 or 87 is preferably limited to a thickness such that the moisture sensor can be positioned within a layer spaced from the layer on each side of the moisture sensor. More particularly, with reference to Fig. 1, the moisture sensors 85 or 87 shown in Fig. 1 are positioned in the plastic laminate layer 26, 28 and/or 34; the first urethane layer 28 having a thickness of 0.152 cm (0.060 inch) as measured between the surface 23 of the first glass sheet 22 and the surface 24 of the vinyl interlayer 26. The moisture sensor 85 preferably has a diameter of less than 0.152 cm (0.060 inch), or the moisture sensor 87 has a thickness measured between outer surface 101 of the electrodes 95 and 97 of the moisture sensor 87 to secure the moisture sensor 85 or 87 in the first urethane layer 28. As can be appreciated, when the moisture sensors 85 and 87 are placed on the periphery 38 of the windshield 20 within the moisture seal 36 (see Fig. 1), the thickness of the moisture sensors 85 and 87 is less than the thickness of the windshield as measured between the inner surface 42 and the outer surface 46, of the windshield 20 (see Fig. 1).

    [0025] A moisture sensor 85 was made. The center electrode 89 was made of 28 AWG 7/36 tin plated stranded copper wire. The dielectric sleeve 91 was made of nylon 6 purchased from Honeywell and sold under the trademark Aegis H55WC Nylon Jacket Compound, The nylon was extruded over the center electrode 89 to a nominal wall thickness of 0.013 cm (0.005 inch). The outer electrode 93 was made of 44 AWG tin plated copper braid, braided over the dielectric sleeve 91 with a nominal 75% coverage. An outer insulating layer (numbered 86 and shown only in Fig. 4 and only in phantom) consisting of Aegis H55WC Nylon Jacket Compound was extruded over the braid to a nominal outside diameter of 0.045 inch. A moisture sensor 87 was also made. The dielectric material 99 of the moisture sensor 87 had a range of thicknesses 0.003 cm to 0.081 cm (0.001 inch to 0.032 inch) with a non-limiting width of 1.27 cm (0.5 inch).

    [0026] The length varied depending on the size of the windshield and the area to be monitored by the moisture sensor. The dielectric layer 99 of the sensor 87 consisted of the same dielectric material used for the dielectric sleeve 91 of the moisture sensor 85 (see Fig. 3). The electrodes 95 and 97 of the moisture sensor 87 were made of nickel plated copper metalized polyester fabric tape, with conductive pressure sensitive acrylic adhesive, nominally 0.64 cm (0.25 inch) wide.

    [0027] The electrodes 95 and 97 of the moisture sensor 87 were joined to one pair of opposite surfaces of the dielectric material 99 by conductive pressure sensitive acrylic adhesive.

    [0028] As is appreciated by those skilled in the art a dielectric material or dielectric for short is an electrical insulator that can be polarized by an applied electric field. When a dielectric is placed in an electric field, electric charges do not flow through the material as they do in a conductor, but only slightly shift from their average equilibrium positions causing dielectric polarization. Because of dielectric polarization, positive charges are displaced toward the field and negative charges shift in the opposite direction. This creates an internal electric field that reduces the overall field within the dielectric itself. If a dielectric is composed of weakly bonded molecules, those molecules not only become polarized, but also reorient so that their symmetry axes align to the field. The moisture sensor having a coaxial structure can function as an impedance moisture sensor or as a reactive moisture sensor. The electrical impedance, i.e. the capacitance, resistance and complex impedance of the moisture sensor changes. Once the moisture starts to ingress into the cockpit layer system, a sensor that consists of the electrical power supply and sensors for the capacitance, resistance and/or complex impedance will detect these changes.

    [0029] In the coaxial structure (Fig. 3) or the stripline structure (Fig. 4) the "outside insulation" represents the material matrix in which the sensor is embedded. For Instance the outside insulation can consist of inter layer resin or material that surround the laminate. The wire mesh comprising the outer electrode of the coaxial pair was selected for moisture permeability, electrical conductivity and chemical compatibility. The central conductor in the preferred practice of the invention is selected primarily for electrical conductivity and chemical compatibility, The responsive dielectric can change resistivity and/or dielectric constant upon absorption of moisture. The moisture to be sensed moves from the outside Insulation through the outer conductor and into the responsive dielectric. The coaxial geometry of the moisture sensor 85 (see Fig. 3) has the additional advantage of superior immunity to electrical interference, relative to the stripline geometry of the moisture sensor 87 (see Fig. 4) since the wire mesh can be held at aircraft ground or floating ground potential to provide electrical shielding of the inner conductor 89 of the moisture sensor 85.

    [0030] The purpose of the moisture measurement is not simply to measure the instantaneous water ingression rate between sheets of the aircraft laminated windshield, but also the quantity of moisture accumulated over time. The history of the moisture ingression is just as important as the absolute concentration of the water in the window system. The concept of the window moisture measurement is based on the electrical property changes of a sensor element following moisture ingression between the sheets of the windshield. A sensor system includes, but is not limited to, the moisture sensor together with the electrical power supply, circuitry and software that detects the changes and communicates the changes to the persons responsible for maintaining the aircraft in a safe operating condition, e.g. as disclosed in U.S. Patent No. 8,155,816B2.

    [0031] The moisture sensor 85 and/or 87 is based on the predictable increase in complex impedance (ohms) resulting from the dielectric sleeve 91 of the sensor 85 or the dielectric 99 of the sensor 87 absorbing moisture, More particularly, the center electrode 89 as shown in Fig. 3 is connected to one pole 105 of an AC power supply 106, and the outer electrode 93 is connected to a second pole 108 of the AC power supply 106 (see Fig. 5). As for the moisture sensor 87, the first outer electrode 95 is connected to the pole 105 of the AC power supply 106, and the second outer electrode 97 is connected to the pole 108 of the power supply 106. Voltage is applied to the electrodes and the impedance of the circuit measured. As the dielectric absorbs moisture the impedance increases.

    [0032] The invention is not limited to the circuit employed to measure the electrical changes when moisture is absorbed by the dielectric. Shown in Fig. 5 is a non-limiting embodiment of an electrical system 110 that can be used with the sensors 85 and 87 to determine moisture penetration in the windshield 20. In the following discussion, the invention will be discussed using the moisture sensor 85 shown in Fig. 3. Unless indicated otherwise, the discussion of the invention using the sensor 85 is applicable to the practice of the invention using the sensor 87. In the non-limiting aspect, of the invention shown in Fig. 5, the moisture sensor 85 is applied to the surface 23 of the glass sheet 22 and secured against the surface 23 of the first glass sheet 22 in any usual manner, e.g. but not limiting to the invention by the first urethane interlayer 28 (see Fig. 1). As can be appreciated, the coaxial moisture sensor 85 can be integrated in any plastic laminate member (28, 26 and 34). In the non-limiting embodiment of the invention shown in Fig. 5, the coaxial moisture sensor 86 is mounted over the surface 23 of the first glass sheet 22 of the windshield 20 and extends around substantially the entire marginal edges of the first glass sheet 22. The coaxial moisture sensor 85 has a first termination surface designated by the number 89 (the central electrode of the sensor 85) and a wire 111 connecting the central electrode 89 to the pole 105 of the AC power supply 106, and a second termination surface designated by 93 (the outer electrode 93 of the sensor 85) and a wire 112 connecting the outer electrode 93 to the pole 108 of the AC power supply 106 to apply a voltage to the moisture sensor 85. In Fig. 5 there is shown a separation between the ends 113 and 114 of the sensor 85. The separation between the ends 113 and 114 is not limiting to the invention, and the ends 113 and 114 of the sensor 85 can overlap one another as shown in phantom in Fig. 5.

    [0033] The power source 106 of the electrical system 110 can be any conventional electrical source, such as, but not limited to, a battery, an electrical generator, and the like to apply a voltage to the moisture sensor 85. The electrical system 110 further includes an electrical measurement mechanism 115 to measure complex impedance (ohm) of the moisture sensor 85. A control mechanism 116, such as embedded electronics or software on a computer, is used to control and communicate with both the electrical power source 106 and the electrical measurement mechanism 115, The control mechanism 116 can be used to command the electrical power source 106 to provide a specifically set electrical potential to the moisture sensor 85 and, after application, the control mechanism 116 can collect and/or calculate the electrical potential of the moisture sensor 85 via the electrical measurement mechanism 115. All of the electrical power source 106, the electrical measurement mechanism 115, and the control mechanism 116 can be combined in a single unit or instrument, e.g. a console of the type shown in Fig. 18 of, and disclosed in, U.S. Patent No. 8,155,816B2 or can be individual units as shown in Fig. 5. The electrical measurement system can be any commonly used system used for measuring impedance or capacitance, two such examples are described below for completeness.

    [0034] In one non-limiting embodiment of the invention, an impedance measurement is made by way of analyzing the phase shift of a known frequency applied to the sensing element 85. As mentioned above, the electrical power source 106 is connected to one electrode 89 through the wire 111, and the power source 106 is connected to the other electrode 93 of the sensor 85 through the wire 112. This connection allows the moisture sensor 85 to act as an electrical circuit when the electrical power source 106 applies an electrical potential. The electrical power source 106 applies an AC voltage to the moisture sensor 85, as set or specified by the control mechanism 116. This applied voltage results in a measured potential on sensor 85 (measured by electrical measurement mechanism 115) that is different in phase and magnitude from the applied voltage. Since the electrical power source 106 is applying a set voltage, and the electrical measurement mechanism 115 is reading or measuring the voltage difference on moisture sensor 85, the electrical measurement mechanism 115 (or the control mechanism 116, or any connected system) is able to calculate the complex impedance (ohm) from the voltage magnitude and phase difference between the central electrode 89 and outer electrode 93 of the moisture sensor 85. The complex impedance is then used to indicate the amount of moisture absorbed by the dielectric material 91 of the moisture sensor 85 or the dielectric material 99 of the moisture sensor 87. The electrical signal frequency used for this measurement is typically chosen to maximize the response of the sensing element to moisture change however multiple frequencies can be used to improve accuracy and reduce the impact of noise.

    [0035] In another unclaimed example of the invention an impedance measurement is made by way of DC voltage that is applied across the electrodes and the charge time is measured (time it takes for the sensing element to reach the applied DC voltage). The electrical power source 106 applies a DC voltage to the moisture sensor 85, again as set or specified by control mechanism 116. This applied voltage results in a measured potential difference (from electrical measurement mechanism 115) on sensor 85 that will approach the applied voltage. The electrical measurement mechanism 115 (or the control mechanism 116) is able to calculate the capacitance (farads) of the moisture sensor 85 based on the time to reach the applied voltage. The capacitance of the sensing element is then used to indicate the amount of moisture absorbed by the dielectric material 91 of the moisture sensor 85 or the dielectric material 99 of the moisture sensor 87. In order to obtain continuous measurements, a changing DC voltage can be used as well as measurement of both charge and/or discharge times.

    [0036] The invention described can use the above described methods, or any other impedance measurement systems including series and/or parallel resistance measurement using a current and voltage relationship, Additionally the invention can use a combination of impedance measurement systems at the same time, sequentially, or selectively based on the measurement condition.

    [0037] More particularly, when moisture penetrates the windshield 20, the moisture will eventually reach the dielectric material 91 of the moisture sensor 85 and/or the dielectric material 99 of the moisture sensor 87. As the moisture reaches the dielectric material 91 and /or 99 of the moisture sensor 85 and /or 87, respectively, the moisture begins to be absorbed by the dielectric material. As the dielectric material continues to absorb moisture the dielectric material becomes saturated with moisture and no longer significantly absorbs moisture. The absolute moisture content of the dielectric material depends on the thickness, and absorption coefficient, of the dielectric material. In the practice of a non-limited aspect of the invention, when the measured complex impedance of the moisture sensor 85 and/or 87 is at a value indicating that moisture absorption by the dielectric material 91 and/or 95 is at a predetermined value, the control mechanism 116 sends a signal to the alarm 118 to advise the crew of the aircraft and/or other personnel as disclosed in U.S. Patent 8,155,816B2 of a moisture penetration issue. In another non-limiting embodiment of the invention, the moisture content of moisture sensor 85 and/or 87 is monitored (either continuously or intermittently) and the trending of moisture content over time is analyzed to advise the crew of the aircraft and/or other personnel of an issue with the windshield.

    [0038] The arrangement of the moisture sensor 85 shown in Fig. 5 can be used to indicate that moisture has penetrated through or around the sealant 36 and entered the volume between the glass sheets 22 and 30 (see Fig. 1). However using a single strip, 104, of the moisture sensor 85 and 87, does not indicate where the moisture penetration occurred, how far the moisture has penetrated, or which side of the windshield the moisture has penetrated. In order to enhance identifying the moisture penetration areas between the glass sheet 22 and the vinyl interlayer 26, multiple strips 104 can be placed in a grid or array pattern over the inner surface 23 of the sheet 22.

    [0039] In the non-limited embodiment of the invention shown in Fig. 6, each one of sides 120-123 of glass sheet 125 has two rows 132 and 134 of moisture sensors at or adjacent to the margin 135 of glass sheet 125 to provide an array of moisture sensors to more definitively identify where a moisture area in the windshield is present. Although the non-limited embodiment of the invention under discussion references the sheet 125 (Fig. 6), the discussion is applicable to the glass sheets 22 and 30, the vinyl interlayer 26 and urethane interlayers 28 and 34 unless indicated otherwise. Further, although reference in the following discussion is made to moisture sensors having different number designations, unless indicated otherwise the moisture sensors mentioned below include the moisture sensor 85 of Fig. 3 and moisture sensor 87 of Fig. 4.

    [0040] With reference to Fig. 6, the first row 132 of moisture sensors 136-139 are at corners 141-144, respectively of the sheet 125, and moisture sensors 146 and 147 are at the sides 121 and 123, respectively of the sheet 125. End 136A of the moisture sensor 136 is adjacent to and spaced from end 139B of the moisture sensor 139 at the side 120 of the sheet 125; end 136B of the moisture sensor 136 is spaced from and adjacent to end 146A of the moisture sensor 146, and end 146B of the moisture sensor 146 is adjacent to and spaced from end 137A of the moisture sensor 137, at the side 121 of the sheet 125; end 137B of the moisture sensor 137 is adjacent to and spaced from the end 138A of the moisture sensor 138 at the side 122; end 138B of the moisture sensor 138 is adjacent to and spaced from end 147A of the moisture sensor 147, and end 147B of the moisture sensor 147 is adjacent to and spaced from end 139A of the moisture 139, at the side 123, of the sheet 125.

    [0041] The second row 134 of the moisture sensors includes moisture sensors 150-153. The moisture sensor 150 extends between sides 121 and 123 of the glass sheet 125; has its end 150A adjacent to and spaced from end 151B of the moisture sensor 151, and its end 150B adjacent to and spaced from end 153A of the moisture sensor 153. The moisture sensor 151 extends between sides 122 and 120 of the glass sheet 125 and has its end 151A adjacent to and spaced from end 152B of the moisture sensor 152. The moisture sensor 152 extends between sides 121 and 123 of the glass sheet 125 and has its end 152A adjacent to and spaced from end 153B of the moisture sensor 153. The moisture sensor 153 extends between sides 120 and 122 of the glass sheet 125 and has its end 153B adjacent to and spaced from end 152A of the moisture sensor 152.

    [0042] The ends A and B of each of the moisture sensors 136-139, 146,147 and 150-153 are individually electrically connected to the electrical power source 106 as shown in Fig. 4 to apply an electrical potential to the moisture sensors 136-139, 146, 147 and 150-153, and to the electrical measurement mechanism 115 for measuring the electrical potential of the moisture sensors 136-139, 146, 147 and 150-153, In another aspect of the invention, the end A or B of each of the moisture sensors 136-139, 146, 147 and 150-153 are individually electrically connected to the electrical power source 106 as shown in Fig. 3 to apply an electrical potential to the moisture sensors 136-139, 146, 147 and 150-153, and to the electrical measurement mechanism 115 for measuring the complex impedance of the moisture sensors 136-139, 146, 147 and 150-153. The control mechanism 116 controls and communicates with both the electrical power source 106 and the electrical measurement mechanism 115 as discussed above to command the electrical power source 106 to provide a predetermined or specifically set electrical potential to the electrodes 89 and 93 of the moisture sensor 85 and/or electrodes 95 and 97 of the moisture sensor 87 and to electrodes of the moisture sensors 136-139, 146, 147 and 150-153 and, after application, the control mechanism 116 can collect and/or calculate the electrical potential of the moisture sensors 85, 87 and 136-139, 146, 147 and 150-153 via the electrical measurement mechanism 115. All of the electrical power sources 106, the electrical measurement mechanisms 115 and the control mechanisms 116 for the moisture sensors 85, 87 and 136-139, 146, 147 and 150-153 can be combined in a single unit or instrument, e.g. a console of the type disclosed in U.S. Patent No. 8,155,816B2, or can be individual units,

    [0043] With continued reference to Fig. 6, the arrangement of the two rows 132 and 134 each having spaced moisture sensors, e.g. moisture sensors 136-139, 146 and 147 in the row 132, and the moisture sensors 150-153 in the row 134 provides for a closer approximation to area of moisture penetration. More particularly and not limiting to the invention, moisture is absorbed by the dielectric material 91 and/or 99, positioning moisture penetration 156 in the center area of the side 121 of the sheet 125; moisture is absorbed by the moisture sensors 139 and 153, positioning the moisture penetration 158 in the side 123 adjacent the side 138 of the sheet 125.

    [0044] The moisture sensor 85 and/or 87 can be applied to a surface of one or more of the glass sheets 22 and 30. As is appreciated, when moisture sensors of the invention are placed on more than one sheet, each one of the moisture sensors preferably has its own electrical power source 106, or one power source is provided and is electrically connected to two or more of the moisture sensors. Similarly, one or multiple electrical measurement mechanisms 115 can be used to read and measure the electrical potential or current flowing through each of the moisture sensors on the glass sheets 22 and 30, and the vinyl interlayer 28, of the windshield 20. In this manner the output of each one of the moisture sensors on the sheets 22, 28 and 30 can be monitored.

    [0045] With reference to Fig. 7, there is shown the heatable member 50 having the conductive coating 62 applied to the inner surface 64 of the second glass sheet 30. As can be appreciated by those skilled in the art, the moisture sensors 136-139, 146 and 147 are spaced from the bus bars 66 and 68, and from the conductive coating 62, to electrically isolate the moisture sensors from the bus bars 66 and 68, and from the conductive coating 62, of the heatable member 50. In one non-limiting aspect of the invention, e.g. as shown in Fig. 7, the bus bars are within the perimeter of the coating 62, and the perimeter of the conductive coating 62 is spaced from sides 38 of the glass sheet 30, The moisture sensors 136-139, 146 and 147 are applied on uncoated portion 154 of the surface 64 of the glass sheet 30 between the sides 38 of the sheet 30 and the conductive coating 62. The uncoated portion 154 of the glass surface 62 can be provided in any convenient manner, e.g. by masking the glass surface during the coating process, or abrasively or chemically removing the coating from the glass surface. Because the glass is chemically strengthened It is preferred to mask the areas during the coating process to avoid surface damage that can cause the tempered glass to fracture.

    [0046] As can be appreciated, the invention contemplates positioning moisture sensors of the invention over the conductive coating 62 and/or the bus bars 66 and 68. More particularly, as shown in Fig. 8, the moisture sensors 136, 139, 145 and 147 are applied over the electrically conductive coating 62. To electrically isolate the outer electrode 93 of the moisture sensor 85 shown in Fig. 3, and/or one or both the electrodes 95 and 97 of the moisture sensor 87 shown in Fig. 8 a moisture permeable, electrically nonconductive outer insulator 159 extends under the moisture sensors 136-139, 146 and 147 electrically isolate the coating 62 and moisture sensors 135-139, 146 and 147. Materials that can be used in the practice of the invention, but not limited thereto include nylon (of any chain length previously listed), urethane, polyvinyl butyral or polyimide. The layer 159 can have an adhesive layer on each surface to secure one or more of the moisture sensors in position during the handling of the sheets prior to the lamination of the sheets, or can be held in place using any practical means consistent with the practices of laminated windshield manufacture. As can be appreciated, the moisture sensor can decrease visibility through that portion of the glass sheet over which it is deposited, and therefore, for the moisture sensors that extend into the vision area of the windshield, the maximum width of the moisture sensor depends upon the required or specified operator viewing area through the windshield 20. Aircraft transparencies, e.g. windshields have specific safety requirements specifying, among other things, the size of the viewing area of the windshield.

    [0047] The complex impedance (ohm) output of the moisture sensor of the invention can be measured using a variety of standard readout sensor circuits, e.g. of the type disclosed in US Published Patent application 2015/0137837A1 and of the type shown in Fig. 5. Shown in Fig. 9 is a graph showing the performance of the moisture sensor shown in Fig. 3. With reference to Fig. 9, the "y" or vertical axis is the imaginary component of the complex impedance (ohms) and the "x" or horizontal axis is the moisture content of the urethane layer 28 or 34 in percent. The graph shown in Fig. 9 is a mode! (solid curve) with one set of recorded data for the complex impedance (ohms) of the sensor 85 shown in Fig. 3. The weight of all sensors with their associated connection wires were recorded prior to lamination. The laminate or coupons were fabricated with urethane of the type sold by PPG industries, Inc. under the trademark PPG112, incorporating a moisture sensor of the type 85 show in Fig. 3, and with the glass plies removed after lamination. The composition of the PPG112 interlayer is disclosed in U.S. Patent No. 4,704,174. After removal of the glass plies the coupons were initially dried in a vacuum oven set at nominally 50 °C until the weight change between measurements 24 hours apart was less than 5 milligrams, and the "dry" starting weight recorded. The coupons were then enclosed in individual glass desiccator jars, with vacuum grease seals between all mating parts, containing a predetermined quantity of water and left to equilibrate for 1 month. The coupons were removed, immediately weighed and the complex impedance (ohms) measured. The conversion from impedance to moisture is possible through use of standard transmission line or capacitor equations by replacing the dielectric constant of the inner dielectric with a moisture dependent equation. Equations for conversation from impedance to moisture are known in the art and further discussions not deemed necessary.

    [0048] The discussion is now directed to non-limited embodiments of the invention relating to the placement of the non-limiting embodiments of moisture sensors or detectors of the invention on selected components of the windshield 20, to detect the presence of moisture and/or measure the amount of moisture present between the sheets, e.g. but not limited to, between the glass sheets 22 and 30, in accordance to the teachings of the invention.

    [0049] As critical as the measurement principle and type, where the moisture sensor should be located will determine if the new sensor can effectively detect the moisture ingress and provide early enough warning for the "Intelligent Window" sensor system to alarm the pilot. With reference to Fig. 1 as needed, the placement of the moisture sensor 85 (Fig. 3), or 87 (Fig. 4) or multiple strips (Figs. 6 and 7) can be applied to any position on or between the glass sheets 22 and 30 as shown in Figs. 1 and 10. Further, the invention is not limited to the number of moisture sensors and/or the location of the moisture sensor on the windshield. More particularly and not limiting to the invention, the moisture sensor can be embedded in the first urethane layer 28 between the glass sheet 22 and the vinyl interlayer 26, embedded in the vinyl interlayer 26; embedded in the second urethane layer 28 between the glass sheet 30 and vinyl interlayer 26.

    [0050] In the non-limited embodiments of the invention discussed above, the moisture sensor 85 and 87, in general, has the function of measuring the presence and time period that moisture is in contact with the moisture sensor of the invention. The invention, however, is not limited thereto, and the moisture sensor of the invention can be used to measure the presence and time period that moisture is in contact with the moisture sensor and to activate and deactivate electrical equipment, e.g. as discussed below and in U.S. Patent No. 8,155,816B2.

    Control system



    [0051] Disclosed in U.S. Patent No. 8,155,816B2 is a method and apparatus to monitor the performance of a transparency, e.g. but not limited to the windshield 20 of the invention and to timely schedule maintenance of, e.g. repairs to, or replacement of, transparencies, e.g. aircraft windshields that are performing outside acceptable limits. In this particular instance, performing outside of acceptable limits as a result of moisture penetration.

    [0052] In general the output of the sensors carrying data regarding the performance of moisture barrier of the windshield are connected to a console including a computer having software to read and analyze the signals from the moisture sensors or detectors to monitor and/or determine the performance of the windshield. A monitor can be used in the practice of the invention to provide visual display, and a speaker to provide an audio, regarding the performance of the windshield. The console can include an alarm to bring attention to the monitor. Placing the console in the aircraft provides the personnel within the aircraft with real time performance of the windshield.

    [0053] In another embodiment disclosed in U.S. Patent 8,155,816, the console has a wireless transmitter and receiver; the transmitter transmits signals to a transmitting tower. The signals carry data on the performance of the windshield 20 are transmitted to a control center (not shown). The data received is studied and the appropriate action to be taken is scheduled, e.g., based on the information received, personnel at the control center determine what action, if any, is needed. If action such as repairs to the windshield or replacement of the windshield, is needed, a signal providing a repair schedule is transmitted to the satellite to a maintenance center geographically close to the designated repair location (usually the next scheduled stop for the aircraft) to arrange to have all parts, equipment and personal need at the designated repair location.

    [0054] The invention is not limited to the embodiments of the invention presented and discussed above which are presented for illustration purposes only, and the scope of the invention is only limited by the scope of the following claims.


    Claims

    1. An aircraft windshield (20) comprising:

    a plurality of sheets (22, 30) joined together to provide a laminated window having a vision area, the window having a moisture seal (36) on the peripheral and marginal edge portions (38, 40) of the sheets (22, 30);

    a moisture sensor (85, 87) positioned between the sheets (22, 30) and/or between the sheets (22, 30) and the moisture seal (36), wherein the moisture sensor (85, 87) comprises a dielectric member comprising a dielectric material (91, 99) between a first electrode (93, 95) and a second electrode (89, 97), wherein the dielectric material (91, 99) is a dielectric material that increases in electrical impedance as the moisture absorbed by the dielectric material increases, the dielectric member being in electrical contact with the first (93, 95) and second (89, 97) electrodes and maintaining the first (93, 95) and the second (89, 97) electrodes spaced from one another and out of surface contact with one another, and

    sensor electronics operatively connected to the electrodes (89, 93, 95, 97) of the sensor (85, 87) to measure an electrical property of the sensor (85, 87) to determine an amount of moisture absorbed by the dielectric material (91, 99), wherein said sensor electronics are configured to apply alternating electrical current to the first (93, 95) and the second (89, 97) electrodes and measure the complex impedance (ohms) of the dielectric material (91, 99) for determining the amount of moisture within the laminated windshield (20) in the area of the moisture sensor (85, 87).


     
    2. The aircraft windshield (20) according to claim 1 wherein the sensor electronics are configured to measure capacitance, resistance and/or complex impedance changes of the dielectric material (91, 99) due to moisture absorbed by the dielectric material (91, 99).
     
    3. The aircraft windshield (20) according to claim 1 wherein the dielectric material is selected from the group of nylon, polyamide-imide, polybenzimidazole, polyethersulfone or polysulfone and combinations thereof.
     
    4. The aircraft windshield (20) according to claim 1 wherein the sensor (85) has a coaxial shape and the dielectric material (91) has an elongated shape with a center hole, the first electrode (93) comprises an outside moisture pervious sleeve, and the first electrode (93) is in surface contact with outer surface of the dielectric material (91), and the second electrode (89) is within the center hole of the dielectric material (91) in surface contact with inner surface of the dielectric material (91), wherein the first and the second electrodes (89, 93) are preferably made of a material selected from the group of ruthenium, rhodium, palladium, silver, osmium, iridium, platinum, gold, tin plated copper, nickel-chromium, aluminum, alloys and combinations thereof.
     
    5. The aircraft windshield (20) according to claim 1 wherein the dielectric material (99) has an elongated shape having a first surface and a second surface, the first electrode (95) is in electrical contact with the first surface of the dielectric material (99) and the second electrode (97) is in electrical contact with the second surface of the dielectric material (95), and the first and the second electrodes (95, 97) are only electrically connected to one another by way of the dielectric material (99) and the first and the second electrode (95, 97) each are moisture porous.
     
    6. The aircraft windshield (20) according to claim 5, wherein the first and the second electrodes (95, 97) are made of a material selected from the group of ruthenium, rhodium, palladium, silver, osmium, iridium, platinum, gold, tin plated copper, nickel-chromium, aluminum, alloys and combinations thereof.
     
    7. The aircraft windshield (20) according to claim 5, wherein the dielectric material (99) has a 4-sided cross section with the first electrode (95) mounted on a side of the dielectric material (99) designated as the first side of the dielectric material (99) and the second electrode (97) is mounted on a side of the dielectric material (99) opposite to the first side.
     
    8. The aircraft windshield (20) according to claim 1, wherein a moisture seal (36) overlays marginal edges (40) of outer opposed surfaces of, and peripheral edges (38), of the laminated window (20), and the moisture sensor (85, 87) is between the sheets (20, 30), and/or between the sheets (20, 30) and the moisture seal (36), of the laminated window (20).
     
    9. The aircraft windshield (20) according to claim 8 comprising:

    the plurality of sheets (22, 30) comprises two or more transparent sheets (22, 30) joined together by an adhesive, and

    the sensor element (85, 87) on a surface portion of at least one of the sheets (22, 30).


     
    10. The aircraft windshield (20) according to claim 9 wherein each of the sheets (22, 30) comprises a first major surface opposite to a second major surface and a peripheral surface joining the first major surface and the second major surface, wherein the surface portion of the at least one of the sheets (22, 30) is selected from the group of the first major surface, the second major surface, the peripheral surface and combinations thereof.
     
    11. The aircraft windshield (20) according to claim 1, wherein each of the sheets (22, 30) comprises a first major surface opposite to a second major surface and a peripheral surface joining the first major surface and the second major surface, wherein the second surface of the first sheet (22) is in facing relationship to and spaced from the second surface of the second sheet (30) and the sensor element (85, 87) is between the first sheet (22) and the second sheet (30), and spaced from the peripheral edge of the first sheet (22) and the second sheet (30).
     
    12. The aircraft windshield (20) according to claim 8 wherein the sensor element (85, 87) is one of a plurality of sensor elements (85, 87), wherein a first one of the plurality of sensor elements (85, 87) is between the moisture seal (36) and the sheets (22, 30), and a third one of the plurality of sensor elements (85, 87) is between the moisture seal (36) and outer surface portion of the aircraft windshield (20).
     
    13. The aircraft windshield (20) according to claim 8, wherein the sensor element (85, 87) is a first elongated moisture sensor (85, 87) having a first end and a second opposite end, and comprising second, third, and fourth elongated moisture sensors (85, 87); each of the moisture sensors (85, 87) comprising a first end and an opposite second end, wherein the first, second, third and fourth moisture sensors (85, 87) are mounted on a major surface of one of the pair of sheets (22, 30) adjacent peripheral edge (38) of the sheet (22, 30), wherein the second end of the first sensor (85, 87) is adjacent and spaced from the first end of the second sensor (85, 87), the second end of the second sensor (85, 87) is adjacent and spaced from the first end of the third sensor (5, 87), the second end of the third sensor (85, 87) is adjacent and spaced from the first end of the fourth sensor (85, 87), and the second end of the fourth sensor (85, 87) is adjacent and spaced from the first end of the first sensor (85, 87), wherein optionally the first, second, third and fourth elongated sensors (85, 87) form a first boundary and comprising a second boundary within and spaced from the first boundary, and a third boundary within and spaced from the second boundary, wherein each of the second and third boundaries comprises at least one elongated moisture sensor (85, 87) defined as a fifth elongated moisture sensor (85, 87) for the second boundary and the sixth elongated moisture sensor (85, 87) for the third boundary.
     
    14. The aircraft windshield (20) according to claim 1, wherein the sheets (22, 30) of the aircraft windshield (20) are selected from the group of uncured plastic sheets; annealed glass sheets, and heat and chemically strengthened, clear, colored, coated and uncoated glass sheets.
     
    15. A method comprising:

    fabricating a laminated aircraft transparency (20) having a moisture barrier (36) over outer surface of the marginal edges (40) of, and periphery (38) of the laminated aircraft transparency (20);

    during fabrication of the laminated aircraft transparency (20) placing a sensor element (85, 87) responsive to moisture between the sheets (22, 30) and/or between the sheets (22, 30) and the moisture seal (36) of the aircraft transparency (20), wherein the sensor element (85, 87) comprises a dielectric member comprising a dielectric material (91, 99) between a first electrode (93, 95) and a second electrode (89, 97) wherein the dielectric material (91, 99) is a dielectric material that increases in electrical impedance as the moisture absorbed by the dielectric material increases, the dielectric member being in electrical contact with the first (93, 95) and second (89, 97) electrodes and maintaining the first (93, 95) and the second (89, 97) electrodes spaced from one another and out of contact with one another, and

    applying alternating electrical current to the electrodes (89, 93, 95, 97) to measure the complex impedance (ohms) of the dielectric (91, 99) to determine the amount of moisture within the laminated windshield (20) in the area of the moisture sensor (85, 87).


     


    Ansprüche

    1. Eine Flugzeugwindschutzscheibe (20) umfassend:

    eine Mehrzahl an Lagen (22, 30), die miteinander verbunden sind, um ein laminiertes Fenster, das einen Sichtbereich aufweist, bereitzustellen, das Fenster aufweisend eine Feuchtigkeitsdichtung (36) auf den peripheren und Randkantenbereichen (38, 40) der Lagen (22, 30),

    einen Feuchtigkeitssensor (85, 87), der zwischen den Lagen (22, 30) und/oder zwischen den Lagen (22, 30) und der Feuchtigkeitsdichtung (36) positioniert ist, wobei der Feuchtigkeitssensor (85, 87) ein dielektrisches Element umfassend ein dielektrisches Material (91, 99) zwischen einer ersten Elektrode (93, 95) und einer zweiten Elektrode (89, 87) umfasst,

    wobei das dielektrische Material (91, 99) ein dielektrisches Material ist,

    dessen elektrische Impedanz zunimmt, wenn die durch das dielektrische Material absorbierte Menge an Feuchtigkeit zunimmt, wobei das dielektrische Element in elektrischem Kontakt mit den ersten (93, 95) und

    zweiten (89, 97) Elektroden steht und die ersten (93, 95) und die zweiten (89, 97) Elektroden im Abstand voneinander und ohne Oberflächenkontakt zueinander hält, und

    Sensorelektronik, wirkverbunden mit den Elektroden (89, 93, 95, 97) des Sensors (85, 87), um eine elektrische Eigenschaft des Sensors (85, 87) zu messen, um eine durch das dielektrische Material (91, 99) absorbierte Menge an Feuchtigkeit zu bestimmen, wobei die Sensorelektronik ausgestaltet ist, Wechselstrom an die ersten (93, 95) und die zweiten (89, 97) Elektroden zu applizieren und die komplexe Impedanz (Ohm) des dielektrischen Materials (91, 99) zum Bestimmen der Menge an Feuchtigkeit innerhalb der laminierten Windschutzscheibe (20) in dem Bereich des Feuchtigkeitssensors (85, 87) zu messen.


     
    2. Die Flugzeugwindschutzscheibe (20) gemäß Anspruch 1, wobei die Sensorelektronik ausgestaltet ist, Änderungen der Kapazität, des Widerstands und/oder der komplexen Impedanz des dielektrischen Materials (91, 99) aufgrund von durch das dielektrische Material (91, 99) absorbierter Feuchtigkeit zu messen.
     
    3. Die Flugzeugwindschutzscheibe (20) gemäß Anspruch 1, wobei das dielektrische Material aus der Gruppe von Nylon, Polyamidimid, Polybenzimidazol, Polyethersulfon oder Polysulfon und Kombinationen davon ausgewählt ist.
     
    4. Die Flugzeugwindschutzscheibe (20) gemäß Anspruch 1, wobei der Sensor (85) eine koaxiale Form aufweist und das dielektrische Material (91) eine längliche Form mit einem mittigen Loch aufweist, die erste Elektrode (93) eine äußere feuchtigkeitsdurchlässige Hülle umfasst, und die erste Elektrode (93) in Oberflächenkontakt mit der äußeren Oberfläche des dielektrischen Materials (91) ist, und die zweite Elektrode (89) innerhalb des mittigen Lochs des dielektrischen Materials (91) in Oberflächenkontakt mit der inneren Oberfläche des dielektrischen Materials (91) ist, wobei die ersten und die zweiten Elektroden (89, 93) vorzugsweise aus einem Material ausgewählt aus der Gruppe aus Ruthenium, Rhodium, Palladium, Silber, Osmium, Iridium, Platin, Gold, verzinntem Kupfer, Nickel-Chrom und Aluminium, und Legierungen und Kombinationen davon hergestellt sind.
     
    5. Die Flugzeugwindschutzscheibe (20) gemäß Anspruch 1, wobei das dielektrische Material (99) eine längliche Form aufweisend eine erste Oberfläche und eine zweite Oberfläche aufweist, die erste Elektrode (95) in elektrischem Kontakt mit der ersten Oberfläche des dielektrischen Materials (99) ist und die zweite Elektrode (97) in elektrischem Kontakt mit der zweiten Oberfläche des dielektrischen Materials (95) ist, und die ersten und die zweiten Elektroden (95, 97) nur miteinander über das dielektrische Material (99) elektrisch verbunden sind und die erste und zweite Elektrode (95, 97) jeweils feuchtigkeitsdurchlässig sind.
     
    6. Die Flugzeugwindschutzscheibe (20) gemäß Anspruch 5, wobei die ersten und die zweiten Elektroden (95, 97) aus einem Material ausgewählt aus der Gruppe aus Ruthenium, Rhodium, Palladium, Silber, Osmium, Iridium, Platin, Gold, verzinntem Kupfer, Nickel-Chrom und Aluminium, und Legierungen und Kombinationen davon, hergestellt sind.
     
    7. Die Flugzeugwindschutzscheibe (20) gemäß Anspruch 5, wobei das dielektrische Material (99) einen vierseitigen Querschnitt mit der ersten Elektrode (95) aufgebracht auf einer Seite des dielektrischen Materials (99), bezeichnet als die erste Seite des dielektrischen Materials (99) aufgebracht ist, und die zweite Elektrode (97) auf einer Seite des dielektrischen Materials (99) gegenüberliegend zu der ersten Seite aufgebracht ist.
     
    8. Die Flugzeugwindschutzscheibe (20) gemäß Anspruch 1, wobei eine Feuchtigkeitsdichtung (36) Randkanten (40) von äußeren gegenüberliegenden Oberflächen von dem laminierten Fenster (20) und periphere Kanten (38) davon überlagern, und der Feuchtigkeitssensor (85, 87) zwischen den Lagen (20, 30) und/oder zwischen den Lagen (20, 30) und der Feuchtigkeitsdichtung (36) des laminierten Fensters (20) ist.
     
    9. Die Flugzeugwindschutzscheibe (20) gemäß Anspruch 8 umfassend:

    die Mehrzahl an Lagen (22, 30) umfassend zwei oder mehr transparente Lagen (22, 30), die miteinander durch ein Klebemittel verbunden sind, und

    das Sensorelement (85, 87) auf einem Oberflächenbereich von wenigstens einer der Lagen (22, 30).


     
    10. Die Flugzeugwindschutzscheibe (20) gemäß Anspruch 9, wobei jede der Lagen (22, 30) eine erste Hauptoberfläche gegenüberliegend zu einer zweiten Hauptoberfläche und eine periphere Oberfläche, die die erste Hauptoberfläche und die zweite Hauptoberfläche verbindet, umfasst, wobei der Oberflächenbereich von der wenigstens einen der Lagen (22, 30) aus der Gruppe von der ersten Hauptoberfläche, der zweiten Hauptoberfläche und der peripheren Oberfläche und Kombinationen davon ausgewählt ist.
     
    11. Die Flugzeugwindschutzscheibe (20) gemäß Anspruch 1, wobei jede der Lagen (22, 30) eine erste Hauptoberfläche gegenüberliegend zu einer zweiten Hauptoberfläche und eine periphere Oberfläche, die die erste Hauptoberfläche und die zweite Hauptoberfläche verbindet, umfasst, wobei die zweite Oberfläche der ersten Lage (22) sich in zuweisender Anordnung gegenüber und im Abstand von der zweiten Oberfläche der zweiten Lage (30) befindet, und das Sensorelement (85, 87) zwischen der ersten Lage (22) und der zweiten Lage (30) und im Abstand von der peripheren Kante der ersten Lage (22) und der zweiten Lage (30) ist.
     
    12. Die Flugzeugwindschutzscheibe (20) gemäß Anspruch 8, wobei das Sensorelement (85, 87) eines von einer Mehrzahl an Sensorelementen (85, 87) ist, wobei ein erstes der Mehrzahl an Sensorelementen (85, 87) zwischen der Feuchtigkeitsdichtung (36) und den Lagen (22, 30) ist, und ein drittes der Mehrzahl an Sensorelementen (85, 87) zwischen der Feuchtigkeitsdichtung (36) und einem äußeren Oberflächenbereich der Flugzeugwindschutzscheibe (20) ist.
     
    13. Die Flugzeugwindschutzscheibe (20) gemäß Anspruch 8, wobei das Sensorelement (85, 87) ein erster länglicher Feuchtigkeitssensor (85, 87) aufweisend ein erstes Ende und ein gegenüberliegendes zweites Ende ist, und umfassend zweite, dritte und vierte längliche Feuchtigkeitssensoren (85, 87), jeder der Feuchtigkeitssensoren (85, 87) umfassend ein erstes und ein gegenüberliegendes zweites Ende, wobei die ersten, zweiten, dritten und vierten Feuchtigkeitssensoren (85, 87) auf einer Hauptoberfläche von einer des Paares an Lagen (22, 30) nahe einer peripheren Kante (38) der Lage (22, 30) aufgebracht sind, wobei das zweite Ende des ersten Sensors (85, 87) nahe zu und im Abstand von dem ersten Ende des zweiten Sensors (85, 87) ist, das zweite Ende des zweiten Sensors (85, 87) nahe zu und im Abstand von dem ersten Ende des dritten Sensors (5, 87) ist, das zweite Ende des dritten Sensors (85, 87) nahe zu und im Abstand von dem ersten Ende des vierten Sensors (85, 87) ist, und das zweite Ende des vierten Sensors (85, 87) nahe zu und im Abstand von dem ersten Ende des ersten Sensors (85, 87) ist, wobei wahlweise die ersten, zweiten, dritten und vierten länglichen Sensoren (85, 87) eine erste Umrandung bilden und umfassend eine zweite Umrandung innerhalb und im Abstand von der ersten Umrandung, und eine dritte Umrandung innerhalb und im Abstand von der zweiten Umrandung, wobei jede von den zweiten und dritten Umrandungen wenigstens einen länglichen Feuchtigkeitssensor (85, 87), definiert als einen fünften länglichen Feuchtigkeitssensor (85, 87) für die zweite Umrandung und sechsten länglichen Feuchtigkeitssensor (85, 87) für die dritte Umrandung umfassen.
     
    14. Die Flugzeugwindschutzscheibe (20) gemäß Anspruch 1, wobei die Lagen (22, 30) der Flugzeugwindschutzscheibe (20) aus der Gruppe von ungehärteten Kunststofflagen, Lagen aus vergütetem Glas und Lagen aus wärme- und chemisch gehärtetem, klarem, gefärbtem, beschichtetem oder unbeschichtetem Glas ausgewählt sind.
     
    15. Ein Verfahren umfassend:

    Herstellen einer laminierten Flugzeugscheibe (20) umfassend eine Feuchtigkeitsbarriere (36) über der äußeren Oberfläche von Randkanten (40) der der laminierten Flugzeugscheibe (20) und der Peripherie (38) davon während des Herstellens der laminierten Flugzeugscheibe (20), Platzieren eines Sensorelements (85, 87), das auf Feuchtigkeit anspricht, zwischen den Lagen (22, 30) und/oder zwischen den Lagen (22, 30) und der Feuchtigkeitsdichtung (36) der Flugzeugscheibe (20), wobei das Sensorelement (85, 87) ein dielektrisches Element umfassend ein dielektrisches Material (91, 99) zwischen einer ersten Elektrode (93, 95) und einer zweiten Elektrode (89, 97) umfasst, wobei das dielektrische Material (91, 99) ein dielektrisches Material ist, dessen elektrische Impedanz zunimmt, wenn die durch das dielektrische Material absorbierte Menge an Feuchtigkeit zunimmt, wobei das dielektrische Element in elektrischem Kontakt mit den ersten (93, 95) und zweiten (89, 97) Elektroden ist und die ersten (93, 95) und die zweiten (89, 97) Elektroden im Abstand voneinander und außer Kontakt zueinander hält, und

    Applizieren von Wechselstrom an die Elektroden (89, 93, 95, 97), um die komplexe Impedanz (Ohm) des dielektrischen Materials (91, 99) zu messen, um die Menge an Feuchtigkeit innerhalb der laminierten Windschutzscheibe (20) in dem Bereich des Feuchtigkeitssensors (85, 87) zu bestimmen.


     


    Revendications

    1. Pare-brise d'aéronef (20) comprenant :

    une pluralité de feuilles (22, 30) reliées entre elles pour constituer une fenêtre stratifiée ayant une zone de vision, la fenêtre ayant un joint contre l'humidité (36) sur les parties périphériques et de bords marginaux (38, 40) des feuilles (22, 30) ;

    un capteur d'humidité (85, 87) positionné entre les feuilles (22, 30) et/ou entre les feuilles (22, 30) et le joint contre l'humidité (36), dans lequel le capteur d'humidité (85, 87) comprend un élément diélectrique comprenant un matériau diélectrique (91, 99) entre une première électrode (93, 95) et une deuxième électrode (89, 97), dans lequel le matériau diélectrique (91, 99) est un matériau diélectrique dont l'impédance électrique augmente lorsque l'humidité absorbée par le matériau diélectrique augmente, l'élément diélectrique étant en contact électrique avec les première (93, 95) et deuxième (89, 97) électrodes et maintenant les première (93, 95) et deuxième (89, 97) électrodes espacées l'une de l'autre et hors de contact de surface l'une de l'autre, et

    un circuit électronique de capteur relié fonctionnellement aux électrodes (89, 93, 95, 97) du capteur (85, 87) pour mesurer une propriété électrique du capteur (85, 87) pour déterminer une quantité d'humidité absorbée par le matériau diélectrique (91, 99), dans lequel ledit circuit électronique de capteur est configuré pour appliquer un courant électrique alternatif aux première (93, 95) et deuxième (89, 97) électrodes et mesurer l'impédance complexe (ohms) du matériau diélectrique (91, 99) pour déterminer la quantité d'humidité dans le pare-brise stratifié (20) dans la région du capteur d'humidité (85, 87).


     
    2. Pare-brise d'aéronef (20) selon la revendication 1, dans lequel le circuit électronique de capteur est configuré pour mesurer les changements de capacité, de résistance et/ou d'impédance complexe du matériau diélectrique (91, 99) dus à l'humidité absorbée par le matériau diélectrique (91, 99).
     
    3. Pare-brise d'aéronef (20) selon la revendication 1, dans lequel le matériau diélectrique est choisi dans le groupe comprenant le nylon, le polyamide-imide, le polybenzimidazole, la polyéthersulfone ou polysulfone et leurs combinaisons.
     
    4. Pare-brise d'aéronef (20) selon la revendication 1, dans lequel le capteur (85) a une forme coaxiale et le matériau diélectrique (91) a une forme allongée avec un trou central, la première électrode (93) comprend un manchon extérieur perméable à l'humidité, et la première électrode (93) est en contact de surface avec la surface externe du matériau diélectrique (91), et la deuxième électrode (89) se trouve dans le trou central du matériau diélectrique (91) en contact de surface avec la surface interne du matériau diélectrique (91), dans lequel les première et deuxième électrodes (89, 93) sont de préférence faites d'un matériau choisi dans le groupe comprenant le ruthénium, le rhodium, le palladium, l'argent, l'osmium, l'iridium, le platine, l'or, le cuivre étamé, le nickel-chrome, l'aluminium, les alliages et combinaisons de ceux-ci.
     
    5. Pare-brise d'aéronef (20) selon la revendication 1, dans lequel le matériau diélectrique (99) a une forme allongée ayant une première surface et une deuxième surface, la première électrode (95) est en contact électrique avec la première surface du matériau diélectrique (99) et la deuxième électrode (97) est en contact électrique avec la deuxième surface du matériau diélectrique (95), et les première et deuxième électrodes (95, 97) sont seulement électriquement reliées l'une à l'autre au moyen du matériau diélectrique (99) et les première et deuxième électrodes (95, 97) sont toutes deux poreuses à l'humidité.
     
    6. Pare-brise d'aéronef (20) selon la revendication 5, dans lequel les première et deuxième électrodes (95, 97) sont faites d'un matériau choisi dans le groupe comprenant le ruthénium, le rhodium, le palladium, l'argent, l'osmium, l'iridium, le platine, l'or, le cuivre étamé, le nickel-chrome, l'aluminium, les alliages et combinaisons de ceux-ci.
     
    7. Pare-brise d'aéronef (20) selon la revendication 5, dans lequel la section du matériau diélectrique (99) est à 4 côtés avec la première électrode (95) montée sur un côté du matériau diélectrique (99) appelé le premier côté du matériau diélectrique (99) et la deuxième électrode (97) est montée sur un côté du matériau diélectrique (99) opposé au premier côté.
     
    8. Pare-brise d'aéronef (20) selon la revendication 1, dans lequel un joint contre l'humidité (36) recouvre les bords marginaux (40) des surfaces extérieures opposées, et des bords périphériques (38), de la fenêtre stratifiée (20), et le capteur d'humidité (85, 87) est entre les feuilles (20, 30), et/ou entre les feuilles (20, 30) et le joint contre l'humidité (36), de la fenêtre stratifiée (20).
     
    9. Pare-brise d'aéronef (20) selon la revendication 8, comprenant :

    la pluralité de feuilles (22, 30) comprend deux feuilles transparentes (22, 30) ou plus, reliées entre elles par un adhésif, et

    l'élément de capteur (85, 87) sur une partie de surface d'au moins l'une des feuilles (22, 30).


     
    10. Pare-brise d'aéronef (20) selon la revendication 9, dans lequel chacune des feuilles (22, 30) comprend une première surface principale opposée à une deuxième surface principale et une surface périphérique qui relie la première surface principale et la deuxième surface principale, dans lequel la partie de surface de ladite au moins une des feuilles (22, 30) est choisie dans le groupe comprenant la première surface principale, la deuxième surface principale, la surface périphérique et leurs combinaisons.
     
    11. Pare-brise d'aéronef (20) selon la revendication 1, dans lequel chacune des feuilles (22, 30) comprend une première surface principale opposée à une deuxième surface principale et une surface périphérique qui relie la première surface principale et la deuxième surface principale, dans lequel la deuxième surface de la première feuille (22) est en vis-à-vis et espacée de la deuxième surface de la deuxième feuille (30) et l'élément de capteur (85, 87) se trouve entre la première feuille (22) et la deuxième feuille (30), et espacé par rapport au bord périphérique de la première feuille (22) et de la deuxième feuille (30).
     
    12. Pare-brise d'aéronef (20) selon la revendication 8, dans lequel l'élément de capteur (85, 87) est un élément d'une pluralité d'éléments de capteur (85, 87), dans lequel un premier élément de la pluralité d'éléments de capteur (85, 87) se trouve entre le joint contre l'humidité (36) et les feuilles (22, 30), et un troisième élément de la pluralité d'éléments de capteur (85, 87) se trouve entre le joint contre l'humidité (36) et une partie de surface extérieure du pare-brise d'aéronef (20).
     
    13. Pare-brise d'aéronef (20) selon la revendication 8, dans lequel l'élément de capteur (85, 87) est un premier capteur d'humidité de forme allongée (85, 87) ayant une première extrémité et une deuxième extrémité opposée, et comprenant des deuxième, troisième et quatrième capteurs d'humidité de forme allongée (85, 87) ; chacun des capteurs d'humidité (85, 87) comprenant une première extrémité et une deuxième extrémité opposée, dans lequel les premier, deuxième, troisième et quatrième capteurs d'humidité (85, 87) sont montés sur une surface principale de l'une des feuilles de la paire de feuilles (22, 30) adjacente au bord périphérique (38) de la feuille (22, 30), dans lequel la deuxième extrémité du premier capteur (85, 87) est adjacente et espacée de la première extrémité du deuxième capteur (85, 87), la deuxième extrémité du deuxième capteur (85, 87) est adjacente et espacée de la première extrémité du troisième capteur (85, 87), la deuxième extrémité du troisième capteur (85, 87) est adjacente et espacée de la première extrémité du quatrième capteur (85, 87), et la deuxième extrémité du quatrième capteur (85, 87) est adjacente et espacée de la première extrémité du premier capteur (85, 87), dans lequel en option, les premier, deuxième, troisième et quatrième capteurs allongés (85, 87) forment une première limite et comprenant une deuxième limite à l'intérieur et espacée de la première limite, et une troisième limite à l'intérieur et espacée de la deuxième limite, dans lequel chacune des deuxième et troisième limites comprend au moins un capteur d'humidité de forme allongée (85, 87) défini en tant que cinquième capteur d'humidité de forme allongée (85, 87) pour la deuxième limite et le sixième capteur d'humidité de forme allongée (85, 87) pour la troisième limite.
     
    14. Pare-brise d'aéronef (20) selon la revendication 1, dans lequel les feuilles (22, 30) du pare-brise d'aéronef (20) sont choisies dans le groupe comprenant des feuilles plastiques non durcies ; des feuilles de verre recuit, et des feuilles de verre renforcé thermiquement, renforcé chimiquement, clair, coloré, enrobé et nu.
     
    15. Procédé comprenant les étapes suivantes :

    fabriquer un élément transparent d'aéronef stratifié (20) comportant une barrière contre l'humidité (36) sur la surface extérieure des bords marginaux (40) de, et la périphérie (38) de l'élément transparent d'aéronef stratifié (20) ;

    pendant la fabrication de l'élément transparent d'aéronef stratifié (20), placer un élément de capteur (85, 87) réagissant à l'humidité entre les feuilles (22, 30) et/ou entre les feuilles (22, 30) et le joint contre l'humidité (36) de l'élément transparent d'aéronef (20), dans lequel l'élément de capteur (85, 87) comprend un élément diélectrique comprenant un matériau diélectrique (91, 99) entre une première électrode (93, 95) et une deuxième électrode (89, 97), dans lequel le matériau diélectrique (91, 99) est un matériau diélectrique dont l'impédance électrique augmente lorsque l'humidité absorbée par le matériau diélectrique augmente, l'élément diélectrique étant en contact électrique avec les première (93, 95) et deuxième (89, 97) électrodes et maintenant les première (93, 95) et deuxième (89, 97) électrodes espacées l'une de l'autre et hors de contact l'une de l'autre, et

    appliquer un courant électrique alternatif aux électrodes (89, 93, 95, 97) pour mesurer l'impédance complexe (ohms) du diélectrique (91, 99) pour déterminer la quantité d'humidité dans le pare-brise stratifié (20) dans la région du capteur d'humidité (85, 87).


     




    Drawing


























    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description