(19)
(11)EP 3 328 830 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
06.05.2020 Bulletin 2020/19

(21)Application number: 16741397.0

(22)Date of filing:  17.05.2016
(51)Int. Cl.: 
C07D 207/267  (2006.01)
(86)International application number:
PCT/IN2016/050141
(87)International publication number:
WO 2017/021976 (09.02.2017 Gazette  2017/06)

(54)

AN IMPROVED PROCESS FOR THE SELECTIVE PRODUCTION OF N-METHYL-2-PYRROLIDONE (NMP)

VERBESSERTES VERFAHREN ZUR SELEKTIVEN HERSTELLUNG VON N-METHYL-2-PYRROLIDON (NMP)

PROCÉDÉ AMÉLIORÉ POUR LA PRODUCTION SÉLECTIVE DE N-MÉTHYL-2-PYRROLIDONE (NMP)


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 31.07.2015 IN 2353DE2015

(43)Date of publication of application:
06.06.2018 Bulletin 2018/23

(73)Proprietor: Council of Scientific and Industrial Research
New Delhi 110001 (IN)

(72)Inventors:
  • GHOSH, Indrajit, Kumar
    Dehradun Uttrakhand 248005 (IN)
  • JAIN, Suman, Lata
    Dehradun Uttrakhand 248005 (IN)
  • KHATRI, Praveen, Kumar
    Dehradun Uttrakhand 248005 (IN)
  • RAY, Siddharth, Sankar
    Dehradun Uttrakhand 248005 (IN)
  • GARG, Madhukar, Onkarnath
    Dehradun Uttrakhand 248005 (IN)

(74)Representative: Kolster Oy Ab 
(Salmisaarenaukio 1) P.O. Box 204
00181 Helsinki
00181 Helsinki (FI)


(56)References cited: : 
WO-A1-2009/082086
US-B1- 6 248 902
US-A1- 2001 018 528
US-B1- 6 350 883
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    FIELD OF THE INVENTION



    [0001] The present invention relates to an improved process for the selective production of N-methyl-2 pyrrolidone(NMP). More particularly, the invention deals with production of 1-methyl 2-pyrrolidone from gamma-butyrolactone and monomethyl amine preferably in aqueous form in presence of a catalyst in a single step at a milder operating condition than the processes known in prior literature. The catalyst is recyclable without loss of activity for a number of runs and does not need regeneration frequently. NMP is used as a solvent in electrochemical and petrochemical industries.

    BACKGROUND OF THE INVENTION AND DESCRIPTION OF PRIOR ART



    [0002] N-methyl-2-pyrrolidone or 1-methyl-2-pyrrolidone (NMP) is a versatile and highly useful chemical which finds large and diverse applications in a wide variety of end uses from electrochemical to petrochemical industries. NMP exhibits higher thermal stability; nontoxicity and having low viscosity which makes it highly useful to be used in chemical synthesis and for the preparation of semiconductors. It is colorless in nature or may be of yellow color depending on the level of impurity present in it. NMP belongs to a class of dipolar aprotic solvents like dimethyl formamide and dimethyl sulphoxide. Due to nonvolatile nature and ability to dissolve diverse chemicals, NMP is used as solvent for extracting and recovering certain high value hydrocarbons during petrochemical processing e.g., in the recovery of 1,3-butadiene from cracked C4 stream, and aromatics (BTX) from naphtha/pyrolysis gasoline etc. The NMP extracted 1,3-butadiene from cracked C4 stream from stream crackers is so far the main source of 1,3-butadiene for polymer industries. The good solvency property of NMP also makes it very useful in the polymer industries as a solvent for surface treatment of textiles, resins, and metal coated plastics or as a paint stripper. It is utilized as a solvent in the commercial preparation of polyphenylene sulfide. In the pharmaceutical industry, N-methyl-2-pyrrolidone is used in the formulation for drugs by both oral and transdermal delivery routes.

    [0003] It is pertinent to mention that the industrial preparation of NMP is predominantly carried out by reaction of gamma-butyrolactone (GBL) with mono methylamine (MMA) in a tubular reactor, e.g. a shaft reactor, at temperature from 200 to 350°C and super atmospheric pressure, e.g. about 10 MPa (Ullmann's Encyclopedia of Industrial Chemistry, 5th edition., Vol. A22, pages 458 to 459 (1993).

    [0004] There are several other processes for the synthesis of NMP from gamma-butyrolactone with mono methylamine (MMA) as a starting material.

    [0005] Reference may be made to several patents (JP7221420, JP7400259, JP7420585, JP7642107) Mitsubishi Chemical Industries Co. Ltd. of Japan described continuous processes for the synthesis of NMP using GBL and MMA as starting materials. The production of NMP was carried out by reactions with high molar ratios between water and shot GBL (typically ranging between 3 and 4 moles of water for each mole of GBL) and by the presence of great amounts of MMA (typically with molar ratios ranging between 1.4-3 moles of MMA per mole of GBL).

    [0006] Reference may be made to an Indian patent application number: 4/MUM/2007 (publication no. 39/2008) assigned to Balaji Amines Limited discloses a process for the production of NMP from gamma-butyrolactone (GBL) and mono methyl amine (MMA) at a desired molar ratio in a series of reactors operated at temperatures in the range of 200 to 300°C and pressures in the range of 30 to 90 atmospheric for a residence time of 15 to 150 minutes. NMP thus obtained reported to purity of not less than 99.7% and yield of greater than 90%.

    [0007] Reference may be made to the US patent 6,348,601 B2 assigned to BASF discloses a method for N-Methyl-2-pyrrolidone (NMP) production by preparing a mixture comprising monomethylamine, dimethylamine and trimethylamine in a first step by reacting ammonia with methanol at elevated temperature in the range of 300 to 500°C and pressure in the range of 1500 to 3000 kPa in the presence of a solid acid catalyst and hydrogen, followed by separating off the ammonia and then reacting the mixture comprising methylamines with gamma-butyrolactone (GBL) in a molar ratio of monomethylamine to GBL in the range of 1.05 to 1.5 at temperature 230 to 270°C and pressure 50 to 150 bar in a second step for a residence time of 2 to 4 hrs. The process elaborated yields NMP at a selectivity of 95% or more at the conversion of GBL of 99%.

    [0008] Reference may be made to the US patent 6248902B1 assigned to Pantochim S.A., describes a process for the production of N-methyl-pyrrolidone obtained by reaction of gamma-butyrolactone and monomethylamine, wherein the synthesis is carried out by a continuous non-catalytic process in liquid phase, via three distinct reaction stages connected in series. Three reactors operated in the range of temperature 150 to 310°C and pressure 30 to 90 atmospheric and residence time of 5 to 180 minutes which gives a conversion of GBL of more than 98% with selectivity to NMP 95% or more.

    [0009] Reference may be made to the US patent 6987191B1 assigned to BASF also discloses a process for the production of N-methyl pyrrolidone using gamma-butyrolactone and mixed methylamines as starting materials, in a continuous process, in such operating conditions as to allow the production of high purity N-methyl-2-pyrrolidone in high yields. The process also consists of three stages in series at operating temperature in the range of 150 to 310°C and pressure 40 to 100 atmospheric for residence time 15 to 180 minutes. The conversion and selectivity of GBL and NMP reported to be of more than 98% and 95% respectively.

    [0010] Reference may be made to the Chem. abstracts 124:145893 (CN-A-11046 35) describes the synthesis of NMP by reaction of GBL with MMA at 220 to 290°C and 26 MPa (260 bar). The batch wise reaction of a mixture of GBL, 30% strength aqueous MMA and water in a weight ratio of 1:1.4:5.6 at 280° C. and 6 MPa (60 bar) gives NMP in a yield of 97%. The above weight ratio corresponds to a molar ratio of GBL: MMA: H2O of 1:1.2: 26.7 (without taking the water in the MMA solution into account) or a molar ratio of 1:1.2:31.5 (when the water in the MMA solution is taken into account).

    [0011] Reference may be made to the Chem. abstracts 129:67694 (JP-A2-10158238) relates to the reaction of GBL with from 1.03 to 1.50 molar equivalents of MMA in the presence of from 1.0 to 2.9 molar equivalents of water at from 250 to 300° C. The batch wise reaction of GBL with MMA and water in a molar ratio of 1:1.1:1 at 280°C for 1hour gives NMP in a yield of 99.9%.

    [0012] Reference may be made to the Derwent abstract 1998-607722, Chem. Abstracts 134:178463 (RO-B1-113640) relate to a process for the continuous preparation of NMP in the liquid phase in a two stage procedure. The reaction conditions in the first stage are: molar ratio of GBL, MMA and water: 1:1.2:2.1, temperature of 150 to 170°C and pressure of 90 to 100 bar. The reaction conditions in the second stage are: 280 to 290° C and 90 to 100 bar.

    [0013] Reference may be made to the Chem. abstract 82:139947 (JP-B4-49 020 585) describes the reaction of one part of GBL With two parts of monomethylamine and from 2 to 4 parts of water (molar ratio of 1:5.5:9.6-19.1) at 250°C for 2 hours to give NMP in a yield of 99%. The temperature range for the reaction is generally from 200 to 300°C, in particular from 230 to 300°C.

    [0014] Reference may be made to the Chem. abstract 87:5802 (JP-A2-49 041364) discloses the reaction of GBL with monomethylamine and water as a 1:1.4:4 mixture (molar ratio of 1:3.9:19.1) at 250°C and from 44 to 49 bar.

    [0015] Reference may be made to the US patent 7227029B2 assigned to BASF describes a process for the continuous preparation of N-methyl-2-pyrrolidone (NMP) by reacting gamma-butyrolactone (GBL) with monomethylamine (MMA) in the liquid Phase, wherein GBL and MMA are used in a molar ratio of from 1:1.08 to 1:2 and the reaction is carried out at from 320 to 380°C and an absolute pressure of from 70 to 120 bar at a space velocity of 1.4 kg/h of GBL per unit volume of reactor. The process yields NMP at a selectivity of more than 98% under conversion of GBL of more than 98%. The process claims use of an upright tube reactor in which the monomethylamine and the GBL are fed separately at the bottom of the reactor via a two fluid injector provided the feed mixture contains less than 10% by Weight of Water.

    [0016] Reference may be made to the US patent No. 2,964,535 assigned to Monsanto relates to a process for purifying NMP by treatment with an alkali metal hydroxide in aqueous solution and subsequent distillation.

    [0017] The thermal processes at liquid phase although lead to high NMP yield but they suffer from the following disadvantages:
    1. a. High pressure requirement to carry out the reaction in the liquid phase involves high engineering outlay associated with high capital and operating costs
    2. b. High corrosion rate of aqueous methyl amine solution at high temperature and high pressure reduce the life of equipments and thus increase the capex and opex of the plant
    3. c. Plurality of reaction stages to get the high space time yield of NMP is associated with high capital and operating costs


    [0018] The processes described by Mitsubishi is also disadvantageous in terms of the high costs involved with the separation of excess MMA and its recovery and with the separation of the water forwarded to the reaction to which synthesis water adds up (one mole of water for each mole of reacted GBL).

    [0019] To avoid the drawbacks associated with the continuous reaction in the presence of excess MMA and water, alternative methodologies have been proposed and these are based on the employment of catalysts.

    [0020] Reference may be made to the German Patent no. 2,159,858 owned by Mobil Oil a synthesis with GBL and MMA in the presence of 13X type Zeolites is described.

    [0021] Reference may be made to the German Patent 4,203,527 owned by AKZO, a synthesis involving GBL, MMA and steam in the gas phase and at a temperature of 275° C on a NaX type Zeolite is described.

    [0022] US 6,350,883 B1 discloses a method for preparing lactam using crystalline aluminosilicate zeolites as catalysts.

    [0023] WO 2009/082086 A1 discloses a method for preparation of N-methyl pyrrolidone using a metal oxide solid catalyst.

    [0024] The above mentioned processes did not succeed in being applied industrially, as the employment of the mentioned catalyst subject to regenerations is disadvantageous in terms of the economic balance of the process as compared with non-catalytic processes.

    [0025] Thus, the overall drawbacks of the prior art processes to produce NMP are:
    1. a. High pressure requirement to carry out the reaction in the liquid phase involves high engineering outlay associated with high capital and operating costs
    2. b. High corrosion rate of aqueous methyl amine solution at high temperature and high pressure reduce the life of equipments and thus increase the capex and opex of the plant
    3. c. Plurality of reaction stages to get the high space time yield of NMP is associated with high capital and operating costs.
    4. d. the high costs involved with the separation of excess MMA and its recovery and with the separation of the MMA.


    [0026] The need of the present invention from industrial outlook is therefore of utmost importance to produce NMP from GBL and MMA preferably in aqueous form in a typical molar ratio GBL to MMA at a milder condition than that as per the prior art of literatures, in presence of a catalyst which does not need to regenerate frequently. Another potential aspect of the present invention is the low cost of separation of the product as NMP is produced at a very high selectivity≥99% at the conversion of GBL≥ 99%.

    OBJECTIVES OF THE INVENTION



    [0027] An objective of the present invention is to eliminate the disadvantages of the prior art processes and to provide a one-step catalytic process for producing NMP in high yield Another objective of the present invention is to provide an improved process for the selective production of N-methyl-2-pyrrolidone (NMP) using gamma-butyrolactone, and mono methylamine preferably in aqueous form of concentration of the amine in aqueous solution ranging up to 40% by weight as feed material in a single step.

    [0028] Yet another objective of this invention is to provide an improved process for the production of NMP in a batch wise operation at a milder operating condition than that stated in the prior literature art; at temperature 130 to 250°C preferably 150 to 200°C and pressure 5 to 70 bar preferably 20 to 30 bar and at a period of residence time of 30 to 180 minutes preferably 60 to 120 minutes in presence of a catalyst consisting of an acidic support preferably a bronsted acidic support and modified by at least one of the oxides or in their combination among the metals like Al, Zr, W etc. to the percentage of weight of metal loading of 1 to 30 preferably 5 to 20 more particularly 10 to 15.

    [0029] Still, another objective of this invention is to propose an improved process for the production of NMP at a selectivity of ≥ 99% at conversion of GBL ≥ 99% using MMA in aqueous form and GBL at a molar ratio of GBL to MMA 1:1 to 1:2 preferably 1:1 to 1:1.5 more particularly 1:1 to 1:1.15.

    [0030] Yet, another objective of this invention is to propose an improved process for the efficient recycling of catalyst without frequent regeneration for the selective production of NMP from GBL and MMA as feedstock.

    [0031] Still a further objective of this invention is to propose a process for the selective production of NMP from GBL and MMA at a lower cost in comparison to the processes mentioned in the prior art.

    SUMMARY OF THE INVENTION



    [0032] Accordingly, the present invention provides a process for the selective production of N-methyl-2-pyrrolidone comprising process steps:
    1. a) reacting feedstock monomethyl amine (MMA) preferably in aqueous form and gamma-butyrolactone (GBL) in a single step in a continuously stirred tank reactor(CSTR) in batch mode at a molar ratio of MMA to GBL in the range of 1 to 2, in the presence of catalyst consisting of a bronsted acidic support which is a class of zeolitic material with SiO2 to Al2O3 molar ratio of 70 to 100 having specific surface area of 400 to 500 m2/g and modified by oxide of one or metals selected from Al, Zr, W to the percentage of metal loading of 1 to 30 parts by weight of the support with catalyst content between 1 to 10% of total feedstock, at operating condition of temperature 130 to 250°C and pressure 5 to 70 bar at 500 to 1000 rmp agitator speed, for a period of 30 to 180 minutes,
    2. b) cooling the reaction mixture to the temperature in the range of 20 to 25°C,
    3. c) separating the catalyst from the reaction mixture of step b) by known methods,
    4. d) separating the product from reaction mixture of step c) by evaporation or distillation to obtain NMP at selectivity to ≥99% at a conversion of GBL to ≥98%,
    5. e) recycling the catalyst to reactor after repeating the steps a) to d) several times.


    [0033] In an embodiment of the present invention, said MMA is used in aqueous form of concentration by weight of up to 40%.

    [0034] In another embodiment of the present invention, percentage weight of metal loading in catalyst is 5 to 20, more particularly 10 to 15.

    [0035] In yet another embodiment of the present invention, the support used in the formulation of the catalyst has SiO2 to Al2O3 molar ratio of 80 to 90 and preferable specific surface area of 420 to 450 m2/g.

    [0036] In still another embodiment of the present invention, amount of catalyst used with respect to the total feed is in the range of 1 to 5% by wt.

    [0037] In still yet another embodiment of the present invention, the catalyst used is in the form of powder to a particle size of 20-30 mesh.

    [0038] In another embodiment of the present invention, the catalyst used for several runs is recycled back after stirring with a solvent at temperature 60-90°C under reflux and drying in oven for a period of 6 to 12 hours at 80 to 110°C.

    [0039] In still another embodiment of the present invention, the solvent used for the washing of the catalyst for recycled use is selected from low boiling chemicals like acetone, dimethylene chloride, benzene, petroleum ether.

    [0040] In still yet another embodiment of the present invention, purity of NMP is 99.99%.

    [0041] In yet another embodiment of the present invention, recovered unreacted monomethyl amine is recycled back.

    [0042] In an embodiment of the present invention, gamma-butyrolactone, and mono methylamine preferably in aqueous form are used as the raw materials for the selective production of NMP.

    [0043] In yet another embodiment of the present invention, a suitable catalyst used is comprised of an acidic support and modified by metal oxide of one or in combination of the metals like Al, Zr, W at a percentage weight of metal loading by 1 to 30 preferably 5 to 20 more particularly 10 to 15.

    [0044] In yet another embodiment of the present invention, the catalyst used is prepared by conventional incipient wetness impregnation method by dissolving appropriate quantity of precursor salt of the metal in excess of a low boiling solvent preferably demineralized water and bringing the solution in contact of the support material preferably in powder form and stirring the mixture at temperature in the range of 40 to 60°C until a slurry is obtained, followed by drying in oven at 110°C for 6 to 12 hours preferably 8 to 10 hours and finally calcining at 450°C for a period of 3 to 6 hours preferably 4 to 5 hours under continuous flow of air.

    [0045] In yet another embodiment of the present invention, the amount of catalyst used with respect to the total feed is in the range of 1 to 10 parts preferably 1 to 5 parts by weight.

    [0046] In yet another embodiment of the present invention, the catalyst used is in the form of powder to a particle size of 20 to 30 mesh.

    [0047] In yet another embodiment of the present invention, the catalyst is separated from reaction mixture by filtration and simply recycled for further reactions.

    [0048] In yet another embodiment of the present invention, the catalyst used for several runs is recycled back after stirring with a solvent at temperature 60 to 90°C under reflux and drying in oven for a period of 6 to 12 hours at 80 to 110°C.

    [0049] In yet another embodiment of the present invention, the solvent used for the washing of the catalyst for recycled use may be among the low boiling chemicals like acetone, dimethylene chloride, benzene, petroleum ether etc.

    [0050] In yet another embodiment of the present invention, pure NMP (99.99%) is obtained by evaporating off the water and methylamine left in the product mixture.

    [0051] In yet another embodiment of the present invention, recovered unreacted monomethyl amine is recycled back.

    DETAILED DESCRIPTION OF THE INVENTION



    [0052] According to this invention, the process involves the production of N-methyl-2-pyrrolidone (NMP) by reacting monomethyl amine (MMA) preferably in aqueous form with gamma-butyrolactone in a batchwise operation in a single step in a typical CSTR in presence of a catalyst. In an alternative approach, MMA preferably in aqueous form is introduced into the reactor containing GBL and the catalyst premixed under a pressure of 5 to 70 bar preferably 20 to 30 bar. In another alternative approach, GBL is introduced into the reactor containing MMA preferably in aqueous form and the catalyst premixed under a pressure of 5 to 70 bar preferably 20 to 30 bar. The concentration of MMA in aqueous solution may be up to 40% by weight and the MMA is introduced to the reactor at a molar ratio to GBL of 1 to 2 more preferably 1 to 1.5 more particularly 1 to 1.15. The amount of the catalyst used is 1 to 20 parts preferably 1 to 10 parts more particularly 1 to 5 parts by weight of the total feed material. The reaction mixture is then heated to the desired temperature in the range of 130 to 250°C preferably 150 to 200°C and kept for residence time of 30 to 180 minutes preferably 60 to 120 minutes under proper agitation. The reactor is then cooled down to room temperature and the catalyst is separated by filtration from the reaction product mixture. The reaction product collected is therefore subjected to either of the process of separation by evaporation or distillation to produce NMP at selectivity to ≥99% at a conversion of GBL to ≥98%.

    [0053] Accordingly, the present invention provides an improved process for the selective production of NMP at a milder condition than the processes mentioned in the prior art of literature in presence of a catalyst.

    [0054] In accordance with the present invention, the catalyst used is a typical acidic catalyst consisting of a bronsted acidic support and modified by oxide of one or in their combination among Al, Zr, W to the percentage of metal loading of 1 to 30 parts preferably 5 to 20 parts more particularly 10 to 15 parts by weight of the support.

    [0055] In accordance with the present invention, the catalyst used is prepared by conventional incipient wetness impregnation method by dissolving appropriate quantity of precursor salt of the metal in excess of a low boiling solvent preferably demineralized water and bringing the solution in contact of the support material preferably in powder form and stirring the mixture at temperature in the range of 40 to 60°C until a slurry is obtained, followed by drying in oven at 110ºC for 6 to 12 hours preferably 8 to 10 hours and finally calcining at 450°C for a period of 3 to 6 hours preferably 4 to 5 hours under continuous flow of air.

    [0056] In accordance with this invention, the support used in the formulation of the catalyst is a class of zeolitic material with SiO2 to Al2O3 mole ratio of 70 to 100 preferably 80 to 90 having specific surface area of 400 to 500 m2/g preferably 420 to 450 m2/g.

    [0057] In accordance with this invention, the catalyst used is in the form of powder to a particle size of 20 to 30 mesh.

    [0058] In accordance with this invention, the catalyst can be recycled back without any drastic change in activity after several runs.

    [0059] In accordance with this invention, the catalyst is thoroughly washed after number of experiments by stirring with a low boiling solvent like acetone, dimethylene chloride, benzene, methanol, petroleum ether etc. at temperature of 60 to 90°C under reflux followed by drying in oven at 80 to 110ºC for a period of 6 to 12 hrs.

    [0060] In accordance with this invention the pure NMP is obtained after separation of water and MMA either by evaporation or distillation. The recovered MMA can further be used up in the process mentioned herein.

    [0061] The invention as described in detail in the examples given below which are provided by way of illustration only and therefore should not be construed to limit the scope of the present invention.

    Examples



    [0062] The synthesis of NMP was carried out under the conditions indicated below in a batch CSTR consisting of a reactor vessel of volume 100 ml and made of high quality stainless steel. The reactor is fitted with an agitator which enables to mix the reactants with catalyst, a thermocouple inside the vessel that detects the reaction mixture temperature and a probe that detects the pressure inside the vessel. The pressure inside the vessel is maintained by using nitrogen gas supplied from a high pressure cylinder during the filling of reactants into the vessel. The external heating jacket enables to achieve the reaction temperature in the vessel very smoothly. For the safety precautions, the vessel is filled with reactants and catalyst up to 50% volume of the vessel. The agitator can be adjusted to a speed of maximum up to 3000 rpm in order to mix up the reactants with catalyst very well. Once the residence time gets over, the reaction is quenched by cooling the reactor vessel with ice water to bring the content of the vessel at room temperature. The pressure is released from vent valve and the content of the mixture is employed to filtration for the separation of the catalyst. Once the catalyst is separated, the product mixture is employed for evaporation of water and unreacted MMA from the solution. The catalyst so separated is directly used for recycle experiments The products left after evaporation of the lighters, are then analyzed by Gas Chromatography equipped with a FID detector precalibrated to measure the content of GBL, NMP and by-products to finally calculate the conversion of GBL and selectivity to NMP production as per:





    [0063] The catalyst used is comprised of 15% of Al in the form of oxide loaded on H-ZSM-5 (SiO2 to Al2O3 molar ratio 80, typical surface area of 425 m2/g) in the reaction mentioned above. The catalyst is prepared by dissolving 21.2805 g of Al(NO3)3.9H2O in about 40 ml of demineralized water and stirred with 10g of powdered HZSM-5 at temperature 60°C until a thick slurry is obtained. The slurry is then kept at room temperature for 24 hours and dried in oven at 110°C for 12 hours. Final catalyst is obtained after calcination of the dried material in a tubular furnace by heating it up to temperature of 450°C at a ramp of 2°C/min and keeping at 450°C for 5 hours under a constant flow of air.

    [0064] Following are the condition and result of the experiments.
    Experiment No.Temperature (°C)Pressure (bar)Molar ratio: MMA to GBLResidence time (minute)Agitator speed (rpm)GBL conversion (%)Selectivity for NMP (%)
    1 150 30 1 120 500 99.876 99.94
    2* 200 25 1 90 500 99.85 99.92
    3* 200 25 1.15 120 500 99.55 99.65
    4 200 30 1.15 120 1000 99.5 98.95
    5 200 30 1.15 120 500 80.35 78.5
    6 200 30 1.15 120 500 94.56 93.5
    7 200 30 1.15 120 500 95.78 93.55
    8 200 30 1.15 120 500 96.35 95.66
    9 200 30 1.15 120 500 99.85 99.89
    10 200 30 1.15 120 500 99.95 99.65
    11 200 30 1.15 120 500 93.5 92.00
    12 200 30 1.15 120 500 92.25 90.75
    (*with recycled catalyst)


    [0065] The catalyst combination used for the above experiments:
    Experiment No.% Al loading in the form of oxide (%weight)Catalyst content with respect to the total feed content (% weight)
    1 15 1
    2* 15 1
    3* 15 1
    4 15 1
    5 0 1
    6 5 1
    7 10 1
    8 20 1
    9 15 3
    10 15 5
    11 5 (%Zr loading in the form of oxide) 1
    12 5 (%W loading in the form of oxide) 1
    (*with recycled catalyst)

    ADVANTAGES OF THE PRESENT INVENTION



    [0066] 
    • The present process produces NMP at high selectivity from MMA preferably in aqueous form and GBL at milder condition than that stated in prior art of literature.
    • The present invention uses a catalyst that can be used for a number of runs at a stretch without necessity of regeneration frequently.
    • The present invention provides a low cost process for the production of NMP.



    Claims

    1. A process for the selective production of N-methyl-2-pyrrolidone (NMP) comprising process steps;

    a) reacting feedstock monomethyl amine (MMA) preferably in aqueous form and gamma-butyrolactone (GBL) in a single step in a continuously stirred tank reactor (CSTR) at a molar ratio of MMA to GBL in the range of 1 to 2, in the presence of catalyst consisting of a bronsted acidic support which is a class of zeolitic material with SiO2 to Al2O3 molar ratio of 70 to 100 having specific surface area of 400 to 500 m2/g and modified by oxide of one or metals selected from Al, Zr, W to the percentage of metal loading of 1 to 30 parts by weight of the support with catalyst content between 1 to 10% of total feedstock, at operating condition of temperature 130 to 250°C and pressure 5 to 70 bar at 500 to 1000 rpm agitator speed, for a period of 30 to 180 minutes to obtain a reaction mixture,

    b) cooling the reaction mixture to the temperature in the range of 20 to 25°C,

    c) separating the catalyst from the reaction mixture of step b) by known methods,

    d) separating the product from reaction mixture of step c) by evaporation or distillation to obtain NMP at selectivity to≥99% at a conversion of GBL to≥98%,

    e) recycling the catalyst to reactor after repeating the steps a) to d) several times.


     
    2. A process as claimed in claim 1, wherein said MMA is used in aqueous form of concentration by weight of up to 40%.
     
    3. A process as claimed in claim 1, wherein percentage weight of metal loading in catalyst is 5 to 20, more particularly 10 to 15.
     
    4. A process as claimed in claim 1, wherein the support used in the formulation of the catalyst has SiO2 to Al2O3 molar ratio of 80 to 90 and specific surface area of 420 to 450 m2/g.
     
    5. A process as claimed in claim 1, wherein amount of catalyst used with respect to the total feed is in the range of 1 to 5% by wt.
     
    6. A process as claimed in claim 1, wherein the catalyst used is in the form of powder to a particle size of 20-30 mesh.
     
    7. A process as claimed in claim 1, wherein the catalyst used for several runs is recycled back after stirring with a solvent at temperature 60-90°C under reflux and drying in oven for a period of 6 to 12 hours at 80 to 110°C.
     
    8. A process as claimed in claim 7, wherein the solvent used for the washing of the catalyst for recycled use is selected from low boiling chemicals like acetone, dimethylene chloride, benzene, petroleum ether.
     
    9. A process as claimed in claim 1, wherein purity of NMP is 99.99%.
     
    10. A process as claimed in claim 1, wherein recovered unreacted monomethyl amine is recycled back.
     


    Ansprüche

    1. Verfahren zur selektiven Herstellung von N-Methyl-2-pyrrolidon (NMP), das die folgenden Verfahrensschritte umfasst:

    a) Umsetzung von Monomethylamin (MMA) als Ausgangsmaterial, vorzugsweise in wässriger Form, und gamma-Butyrolacton (GBL) in einem einzigen Schritt in einem kontinuierlich gerührten Tankreaktor (CSTR) bei einem Molverhältnis von MMA zu GBL im Bereich von 1 bis 2 in Gegenwart eines Katalysators, der aus einem Brönsted-Säureträger besteht, der eine Klasse von zeolithischem Material mit einem Molverhältnis von SiO2 zu Al2O3 von 70 bis 100 ist, das eine spezifische Oberfläche von 400 bis 500 m2/g aufweist und durch ein Oxid eines oder mehrerer Metalle modifiziert ist, aus Al, Zr, W bis zum prozentualen Anteil der Metallbeladung von 1 bis 30 Gewichtsteilen des Trägers ausgewählt wird mit einem Katalysatorgehalt zwischen 1 bis 10 % des gesamten Einsatzmaterials, bei Betriebsbedingungen mit einer Temperatur von 130 bis 250 °C und einem Druck von 5 bis 70 bar bei einer Rührgeschwindigkeit von 500 bis 1000 U/min, für eine Dauer von 30 bis 180 Minuten, um eine Reaktionsmischung zu erhalten,

    b) Kühlen der Reaktionsmischung bis zur Temperatur im Bereich von 20 bis 25 °C,

    c) Abtrennen des Katalysators von der Reaktionsmischung von Schritt b) mit bekannten Verfahren,

    d) Abtrennen des Produktes von der Reaktionsmischung von Schritt c) durch Verdampfung oder Destillation, um NMP mit einer Selektivität bis ≥99 % bei einer Umsetzung von GBL bis ≥98 % zu erhalten,

    e) Rückführung des Katalysators in den Reaktor nach mehrmaliger Wiederholung der Schritte a) bis d).


     
    2. Verfahren nach Anspruch 1, wobei das MMA in wässriger Form mit einer Gewichtskonzentration von bis zu 40 % verwendet wird.
     
    3. Verfahren nach Anspruch 1, wobei der Gewichtsprozentsatz der Metallbeladung im Katalysator 5 bis 20, insbesondere 10 bis 15 beträgt.
     
    4. Verfahren nach Anspruch 1, wobei der bei der Formulierung des Katalysators verwendete Träger ein molares Verhältnis von SiO2 zu Al2O3 von 80 bis 90 und eine spezifische Oberfläche von 420 bis 450 m2/g aufweist.
     
    5. Verfahren nach Anspruch 1, wobei die Menge des verwendeten Katalysators in Bezug auf die gesamte Beschickung im Bereich von 1 bis 5 Gew.-% liegt.
     
    6. Verfahren nach Anspruch 1, wobei der verwendete Katalysator in Form von Pulver mit einer Partikelgröße von 20-30 Mesh vorliegt.
     
    7. Verfahren nach Anspruch 1, bei dem der für mehrere Durchläufe verwendete Katalysator nach Rühren mit einem Lösungsmittel bei einer Temperatur von 60-90 °C unter Rückfluss und Trocknen im Ofen über einen Zeitraum von 6 bis 12 Stunden bei 80 bis 110 °C zurückgeführt wird.
     
    8. Verfahren nach Anspruch 7, wobei das für das Waschen des Katalysators zur Wiederverwendung verwendete Lösungsmittel aus niedrig siedenden Chemikalien, wie Aceton, Dimethylenchlorid, Benzol, Petrolether, ausgewählt wird.
     
    9. Verfahren nach Anspruch 1, bei dem die Reinheit von NMP 99,99 % beträgt.
     
    10. Verfahren nach Anspruch 1, bei dem zurückgewonnenes, nicht umgesetztes Monomethylamin wiederverwertet wird.
     


    Revendications

    1. Procédé pour la production sélective de N-méthyl-2-pyrrolidone (NMP), comprenant les étapes de procédé suivantes :

    a) réaction d'une charge de monométhylamine (MMA) de préférence sous forme aqueuse et de gamma-butyrolactone (GBL) en une seule étape dans un réacteur à cuve agitée en continu (CSTR) en un rapport molaire de la MMA à la GBL situé dans la plage allant de 1 à 2, en présence d'un catalyseur consistant en un support d'acide de Bronsted qui est une classe de matériau zéolitique ayant un rapport molaire du SiO2 à l'Al2O3 de 70 à 100, ayant une surface spécifique de 400 à 500 m2/g, et modifié par un oxyde d'un ou plusieurs métaux choisis parmi Al, Zr, W jusqu'à un pourcentage de charge métallique de 1 à 30 parties en poids du support, la teneur en catalyseur étant de 1 à 10 % de la charge totale, dans des conditions opératoires de température de 130 à 250°C et de pression de 5 à 70 bar, à une vitesse de l'agitateur de 500 à 1000 t/min, pendant une période de 30 à 180 minutes, pour que soit obtenu un mélange réactionnel,

    b) refroidissement du mélange réactionnel à une température située dans la plage allant de 20 à 25°C,

    c) séparation du catalyseur du mélange réactionnel de l'étape b) par des procédés connus,

    d) séparation du produit du mélange réactionnel de l'étape c) par évaporation ou distillation pour que soit obtenue de la NMP avec une sélectivité ≥ 99 % lors d'une conversion de la GBL ≥ 98 %,

    e) recyclage du catalyseur vers le réacteur après répétition des étapes a) à d) plusieurs fois.


     
    2. Procédé selon la revendication 1, dans lequel ladite MMA est utilisée sous une forme aqueuse à une concentration en poids allant jusqu'à 40 %.
     
    3. Procédé selon la revendication 1, dans lequel le pourcentage en poids de charge métallique dans le catalyseur est de 5 à 20, plus particulièrement de 10 à 15.
     
    4. Procédé selon la revendication 1, dans lequel le support utilisé dans la formulation du catalyseur a un rapport molaire du SiO2 à l'Al2O3 de 80 à 90 et une surface spécifique de 420 à 450 m2/g.
     
    5. Procédé selon la revendication 1, dans lequel la quantité utilisée de catalyseur par rapport à la charge totale est située dans la plage allant de 1 à 5 % en poids.
     
    6. Procédé selon la revendication 1, dans lequel le catalyseur utilisé est sous la forme d'une poudre ayant une granulométrie de 20 à 30 mesh.
     
    7. Procédé selon la revendication 1, dans lequel le catalyseur utilisé pour plusieurs passages est recyclé après agitation avec un solvant à une température de 60 à 90°C au reflux et séchage dans un four pendant une période de 6 à 12 heures à une température de 80 à 110°C.
     
    8. Procédé selon la revendication 7, dans lequel le solvant utilisé pour le lavage du catalyseur pour une utilisation recyclée est choisi parmi les produits chimiques à bas point d'ébullition tels que l'acétone, le chlorure de diméthylène, le benzène, l'éther de pétrole.
     
    9. Procédé selon la revendication 1, dans lequel la pureté de la NMP est de 99,99 %.
     
    10. Procédé selon la revendication 1, dans lequel la monométhylamine n'ayant pas réagi récupérée est recyclée.
     




    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description




    Non-patent literature cited in the description