(19)
(11)EP 3 330 569 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
04.11.2020 Bulletin 2020/45

(21)Application number: 15903059.2

(22)Date of filing:  04.09.2015
(51)International Patent Classification (IPC): 
F16H 3/72(2006.01)
H02P 5/747(2006.01)
F16H 61/02(2006.01)
(86)International application number:
PCT/JP2015/075183
(87)International publication number:
WO 2017/037940 (09.03.2017 Gazette  2017/10)

(54)

CONTROL METHOD FOR VARIABLE SPEED ELECTRIC MOTOR SYSTEM AND CONTROL DEVICE FOR VARIABLE SPEED ELECTRIC MOTOR SYSTEM

STEUERUNGSVERFAHREN FÜR DREHZAHLVERÄNDERLICHES ELEKTROMOTORSYSTEM UND STEUERUNGSVORRICHTUNG FÜR DREHZAHLVERÄNDERLICHES ELEKTROMOTORSYSTEM

PROCÉDÉ DE COMMANDE POUR SYSTÈME DE MOTEUR ÉLECTRIQUE À VITESSE VARIABLE ET DISPOSITIF DE COMMANDE POUR SYSTÈME DE MOTEUR ÉLECTRIQUE À VITESSE VARIABLE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(43)Date of publication of application:
06.06.2018 Bulletin 2018/23

(73)Proprietor: Mitsubishi Heavy Industries Compressor Corporation
Minato-ku Tokyo 108-0014 (JP)

(72)Inventors:
  • OKAMOTO, Yoshiyuki
    Hiroshima-shi Hiroshima 733-8553 (JP)
  • MORI, Yasushi
    Hiroshima-shi Hiroshima 733-8553 (JP)

(74)Representative: Studio Torta S.p.A. 
Via Viotti, 9
10121 Torino
10121 Torino (IT)


(56)References cited: : 
EP-A1- 0 138 739
JP-A- 2014 217 118
JP-B2- 4 472 350
JP-A- S6 087 698
JP-A- 2015 033 913
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    [Technical Field]



    [0001] The present invention relates to a control method of a variable speed electric motor system and a control device thereof.

    [Background Art]



    [0002] As a device for driving a rotary machine such as a compressor, there is a device having an electric device that generates rotational driving force and a transmission device that changes the speed of the rotational driving force generated by the electric device and transmits the result to the rotary machine.

    [0003] Japanese Patent No. 4472350 discloses a device in which a constant speed electric motor and a variable speed electric motor for variable speed are used as an electric device and a planetary gear transmission device is used as a transmission device, in order to accurately control a gear ratio. In this device, it is possible to change the number of rotations (a rotational speed) of an output shaft of the transmission device connected to a rotary machine by changing the number of rotations of the variable speed electric motor.

    [0004] European patent application No. EP0138739A1 relates to variable speed drive motor systems and more particularly relates to variable speed drive motor systems for driving centrifugal compressors in refrigeration systems.

    [Summary of Invention]



    [0005] According to the present invention, a control method of a variable speed electric motor system and a control device of a variable speed electric motor system are provided, as defined in appended claims 1 and 3, respectively.

    [Technical Problem]



    [0006] For example, when an induction motor having 3 phases is used as a variable speed electric motor, it is possible to rotate the variable speed electric motor forward and backward by using a circuit for switching a connected power line. That is, the number of rotations of the variable speed electric motor is changed and its rotation direction is changed, so that it is possible to change the number of rotations of the variable speed electric motor from a maximum number of rotations in a forward direction to a maximum number of rotations in a reverse direction. In this way, it is possible to widen a variable speed range of a variable speed electric motor system having the variable speed electric motor.

    [0007] Meanwhile, it is necessary to allow the number of rotations of the variable speed electric motor to be in the vicinity of 0 rpm according to the number of rotations of an instructed output shaft. However, when an induction motor is used as the variable speed electric motor, it is not possible to hold the number of rotations in the vicinity of 0 rpm. Thus, there is a case where it is not possible to achieve the number of rotations of the instructed output shaft.

    [0008] An object of the present invention is to provide a control method of a variable speed electric motor system and a control device thereof, by which it is possible to increase the degree of freedom of the number of rotations of an output shaft of a transmission device in the variable speed electric motor system including an electric device having a constant speed electric motor and a variable speed electric motor, and a planetary gear transmission device that changes the speed of rotational driving force generated by the electric device and transmits the result to an object to be driven.

    [Solution to Problem]



    [0009] According to a first aspect of the present invention, a control method according to claim 1 is provided.

    [0010] According to such a configuration, when the number of rotations of the output shaft of the variable speed electric motor system is controlled, it is possible to increase the degree of freedom of the number of rotations. That is, even when the number of rotations is set in the uncontrollable range of the variable speed electric motor, the variable speed electric motor is rotationally driven such that the average number of rotations is the number of rotations, so that the number of rotations of the output shaft can be approximated to a desired number of rotations.

    [0011] In the control method of the variable speed electric motor system, a ratio of the forward direction minimum rotation number instruction and the reverse direction minimum rotation number instruction is changed, so that the number of rotations of the variable speed electric motor may be controlled.

    [0012] According to a second aspect of the present invention, a variable speed electric motor system according to claim 3 is provided.

    [Advantageous Effects of Invention]



    [0013] According to the present invention, when the number of rotations of the output shaft of the variable speed electric motor system is controlled, it is possible to increase the degree of freedom of the number of rotations. That is, even when the number of rotations is set in the uncontrollable range of the variable speed electric motor, the variable speed electric motor is rotationally driven such that the average number of rotations is the number of rotations, so that the number of rotations of the output shaft can be approximated to a desired number of rotations.

    [Brief Description of Drawings]



    [0014] 

    Fig. 1 is a sectional view of a variable speed electric motor system of an embodiment according to the present invention.

    Fig. 2 is a sectional view of a transmission device of an embodiment according to the present invention.

    Fig. 3 is a sectional view of an electric device of an embodiment according to the present invention.

    Fig. 4 is a schematic diagram illustrating a configuration of a transmission device of an embodiment according to the present invention.

    Fig. 5 is a flowchart illustrating an operation of a control device of an embodiment according to the present invention.

    Fig. 6 is a graph illustrating a rotation number instruction value in an uncontrollable speed range operation of a variable speed electric motor of an embodiment according to the present invention.

    Fig. 7 is a graph illustrating a rotation number instruction value in an uncontrollable speed range operation of a variable speed electric motor of an embodiment according to the present invention.


    [Description of Embodiments]



    [0015] Hereinafter, a variable speed electric motor system of an embodiment of the present invention is described in detail with reference to the drawings.

    [0016] As illustrated in Fig. 1, a variable speed electric motor system 1 of the present embodiment includes an electric device 50 that generates rotational driving force, and a transmission device 10 that changes the speed of the rotational driving force generated by the electric device 50 and transmits the result to an object to be driven. The variable speed electric motor system 1, for example, can be applied to a fluid machine system such as a compressor system.

    [0017] The electric device 50 has a constant speed electric motor 51 that rotationally drives an internal gear carrier shaft 37, which serves as a constant speed input shaft Ac, at a constant speed, and a variable speed electric motor 71 that rotationally drives an input side planetary gear carrier shaft 27i, which serves as a variable speed input shaft Av, at an arbitrary number of rotations. The variable speed electric motor system 1 changes the number of rotations (a rotational speed) of the variable speed electric motor 71 and thus can change the number of rotations of an output shaft Ao of the transmission device 10 connected to the object to be driven.

    [0018] The electric device 50 is supported on a frame 90 by an electric device support part 50S. The transmission device 10 is supported on the frame 90 by a transmission device support part 10S. By these support parts, it is possible to reliably fix the electric device 50 and the transmission device 10 which are heavy loads.

    [0019] The transmission device 10 is a planetary gear transmission device. As illustrated in Fig. 2, the transmission device 10 has a sun gear 11 that rotates about an axis Ar extending in a horizontal direction, a sun gear shaft 12 fixed to the sun gear 11, a plurality of planetary gears 15, an internal gear 17, a planetary gear carrier 21, an internal gear carrier 31, and a transmission casing 41 that covers these elements. Each of the planetary gears 15 is engaged with the sun gear 11, revolves about the axis Ar, and rotates about its own center line Ap, and the internal gear 17 has a plurality of teeth arranged about the axis Ar in an annular shape and is engaged with the plurality of planetary gears 15. The planetary gear carrier 21 supports the plurality of planetary gears 15 so as to be revolvable about the axis Ar and to be rotatable about the center line Ap of the planetary gears 15, and the internal gear carrier 31 supports the internal gear 17 so as to be rotatable about the axis Ar.

    [0020] Hereinafter, an extension direction of the axis Ar is defined as an axial direction, one side of the axial direction is defined as an output side, and an opposite side of the output side is defined as an input side. Furthermore, a radial direction, in which the axis Ar is employed as a center, is simply defined as a radial direction below.

    [0021] The sun gear shaft 12 forms a columnar shape about the axis Ar and extends to the output side of the axial direction from the sun gear 11. A flange 13 is formed at an end portion of the output side of the sun gear shaft 12. A rotor of a compressor C serving as an object to be driven, for example, is connected to the flange 13. The sun gear shaft 12 is supported so as to be rotatable about the axis Ar by a sun gear bearing 42 arranged at the output side of the sun gear 11. The sun gear bearing 42 is mounted at the transmission casing 41.

    [0022] The planetary gear carrier 21 has a planetary gear shaft 22 provided for each of the plurality of planetary gears 15, a carrier body 23 that fixes relative positions of the plurality of planetary gear shafts 22, and a planetary gear carrier shaft 27 fixed to the carrier body 23 and extending in the axial direction about the axis Ar.

    [0023] The planetary gear shaft 22 passes through the center line Ap of the planetary gear 15 in the axial direction and supports the planetary gear 15 so as to be rotatable about the center line. The carrier body 23 has an output side arm part 24 extending radially outward from the plurality of planetary gear shafts 22, a cylindrical part 25 forming a cylindrical shape about the axis Ar and extending to the input side from an outer end in the radial direction of the output side arm part 24, and an input side arm part 26 extending radially inward from an output side end of the cylindrical part 25.

    [0024] The planetary gear carrier shaft 27 has an output side planetary gear carrier shaft 27o extending to the output side from the output side arm part 24 and an input side planetary gear carrier shaft 27i extending to the input side from the input side arm part 26. Both of the output side planetary gear carrier shaft 27o and the input side planetary gear carrier shaft 27i form a cylindrical shape about the axis Ar.

    [0025] The output side planetary gear carrier shaft 27o is supported so as to be rotatable about the axis Ar by a planetary gear carrier bearing 43 arranged at the output side from the output side arm part 24. The planetary gear carrier bearing 43 is mounted at the transmission casing 41. The sun gear shaft 12 is inserted into an inner circumferential side of the output side planetary gear carrier shaft 27o.

    [0026] The input side planetary gear carrier shaft 27i is supported so as to be rotatable about the axis Ar by a planetary gear carrier bearing 44 arranged at the input side from the input side arm part 26. The planetary gear carrier bearing 44 is mounted at the transmission casing 41. An annular flange 28 widening radially outward is formed at an input side end of the input side planetary gear carrier shaft 27i.

    [0027] The internal gear carrier 31 has a carrier body 33 to which the internal gear 17 is fixed, and an internal gear carrier shaft 37 fixed to the carrier body 33 and extending in the axial direction about the axis Ar.

    [0028] The carrier body 33 has a cylindrical part 35, which forms a cylindrical shape about the axis Ar and has an inner circumferential side to which the internal gear 17 is fixed, and an input side arm part 36 extending radially inward from an input side end of the cylindrical part 35.

    [0029] The internal gear carrier shaft 37 forms a columnar shape about the axis Ar and is arranged at the input side of the sun gear shaft 12 forming a columnar shape about the axis Ar. The input side arm part 36 of the carrier body 33 is fixed to the internal gear carrier shaft 37. At an input side end of the internal gear carrier shaft 37, an annular or disk-like flange 38 widening radially outward is formed. A part of the input side of the internal gear carrier shaft 37 is inserted into an inner circumferential side of the cylindrical input side planetary gear carrier shaft 27i. The axial direction positions of the flange 38 of the internal gear carrier shaft 37 and the flange 28 of the input side planetary gear carrier shaft 27i approximately coincide with each other.

    [0030] As illustrated in Fig. 3, the constant speed electric motor 51 rotationally drives the internal gear carrier shaft 37 of the transmission device 10 via a constant speed rotor extension shaft 55. The variable speed electric motor 71 rotationally drives the input side planetary gear carrier shaft 27i of the transmission device 10. The electric device 50 has a cooling fan 91 that cools the constant speed electric motor 51 and the variable speed electric motor 71, and a fan cover 92 that covers the cooling fan 91.

    [0031] In the present embodiment, the constant speed electric motor 51, for example, is an induction motor having 3 phases and 4 poles. Furthermore, the variable speed electric motor 71 is an induction motor having 6 poles which is greater than the number of poles of the constant speed electric motor 51. The specifications of the constant speed electric motor 51 and the variable speed electric motor 71 are not limited thereto, and can be appropriately changed.

    [0032] The constant speed electric motor 51 has a constant speed rotor 52, which rotates about the axis Ar and is connected to the internal gear carrier shaft 37 serving as the constant speed input shaft Ac of the transmission device 10, a constant speed stator 66 arranged at an outer circumferential side of the constant speed rotor 52, and a constant speed electric motor casing 61 having an inner circumferential side to which the constant speed stator 66 is fixed.

    [0033] The constant speed rotor 52 has a constant speed rotor shaft 53 and a conductor 56 fixed to an outer periphery of the constant speed rotor shaft 53. Furthermore, the constant speed rotor shaft 53 has a constant speed rotor body shaft 54, which forms a columnar shape about the axis Ar and has an outer periphery to which the conductor 56 is fixed, and a constant speed rotor extension shaft 55 which forms a columnar shape about the axis Ar and is fixed to an output side of the constant speed rotor body shaft 54.

    [0034] At both ends in the axial direction of the constant speed rotor extension shaft 55, annular or disk-like flanges 55i and 55o widening radially outward are respectively formed. At an output side end of the constant speed rotor body shaft 54, an annular or disk-like flange 54o widening radially outward is formed. Since the flanges 55i, 55o, and 54o are connected to one another by a bolt and the like, the constant speed rotor extension shaft 55 and the constant speed rotor body shaft 54 are formed integrally with each other. The cooling fan 91 is fixed to an input side end of the constant speed rotor body shaft 54.

    [0035] The constant speed stator 66 is arranged radially outward from the conductor 56 of the constant speed rotor 52. The constant speed stator 66 is formed from a plurality of coils.

    [0036] The constant speed electric motor casing 61 has a casing body 62, which forms a cylindrical shape about the axis Ar and has an inner circumferential side to which the constant speed stator 66 is fixed, and lids 63i and 63o which close both ends in the axial direction of the cylindrical casing body 62. The lids 63i and 63o are respectively mounted with constant speed rotor bearings 65i and 65o that support the constant speed rotor body shaft 54 so as to be rotatable about the axis Ar. Furthermore, each of the lids 63i and 63o is formed with a plurality of openings 64 that pass through the lids 63i and 63o in the axial direction at positions radially outward from the constant speed rotor bearings 65i and 65o.

    [0037] The input side end of the constant speed rotor body shaft 54 protrudes to the input side from the input side lid 63i of the constant speed electric motor casing 61. The aforementioned cooling fan 91 is fixed to the input side end of the constant speed rotor body shaft 54. Therefore, when the constant speed rotor 52 rotates, the cooling fan 91 also rotates together with the constant speed rotor 52. The fan cover 92 has a cylindrical cover body 93 arranged at an outer circumferential side of the cooling fan 91, and an air circulation plate 94 mounted at an inlet side opening of the cover body 93 and formed with a plurality of air holes. The fan cover 92 is fixed to the input side lid 63i of the constant speed electric motor casing 61.

    [0038] The variable speed electric motor 71 has a variable speed rotor 72, which rotates about the axis Ar and is connected to the input side planetary gear carrier shaft 27i serving as a variable speed input shaft Av, a variable speed stator 86 arranged at an outer circumferential side of the variable speed rotor 72, and a variable speed electric motor casing 81 having an inner circumferential side to which the variable speed stator 86 is fixed.

    [0039] The variable speed rotor 72 has a variable speed rotor shaft 73, and a conductor 76 fixed to an outer periphery of the variable speed rotor shaft 73. Furthermore, the variable speed rotor shaft 73 is formed with a shaft insertion hole 74 which forms a cylindrical shape about the axis Ar and penetrates in the axial direction. The constant speed rotor extension shaft 55 is inserted into the shaft insertion hole 74 of the variable speed rotor shaft 73. An annular flange 73o widening radially outward is formed at an output side end of the variable speed rotor shaft 73. The axial direction positions of the flange 73o of the variable speed rotor shaft 73 and the flange 55o formed at the output side end of the constant speed rotor extension shaft 55 approximately coincide with each other.

    [0040] The variable speed stator 86 is arranged radially outward from the conductors 56 and 76 of the variable speed rotor 72. The variable speed stator 86 is formed from a plurality of coils.

    [0041] The variable speed electric motor casing 81 has a casing body 82, which forms a cylindrical shape about the axis Ar and has an inner circumferential side to which the variable speed stator 86 is fixed, an output side lid 83o which closes an output side end of the cylindrical casing body 82, and an inlet side lid 83i arranged at the input side from the variable speed stator 86 and fixed to the inner circumferential side of the cylindrical casing body 82. The lids 83i and 83o are respectively mounted with variable speed rotor bearings 85i and 85o that support the variable speed rotor shaft 73 so as to be rotatable about the axis Ar. Furthermore, each of the lids 83i and 83o is formed with a plurality of openings 84 that pass through the lids 83i and 83o in the axial direction at positions radially outward from the variable speed rotor bearings 85i and 85o.

    [0042] As described above, by the plurality of openings 84 formed at the lids 83i and 83o of the variable speed electric motor casing 81 and the plurality of openings 64 formed at the lids 63i and 63o of the constant speed electric motor casing 61, a space in the variable speed electric motor casing 81 and a space in the constant speed electric motor casing 61 communicate with each other.

    [0043] Furthermore, in the variable speed electric motor system 1 of the present embodiment, the constant speed rotor 52, the variable speed rotor 72, and the sun gear shaft 12 are arranged on the same axis.

    [0044] The variable speed electric motor system 1 of the present embodiment further includes a flexible coupling 95 for variable speed, which is arranged between the input side planetary gear carrier shaft 27i serving as the variable speed input shaft Av and the variable speed rotor 72 and connects the input side planetary gear carrier shaft 27i and the variable speed rotor 72 to each other, and a flexible coupling 97 for constant speed, which is arranged between the internal gear carrier shaft 37 serving as the constant speed input shaft Ac and the constant speed rotor 52 and connects the internal gear carrier shaft 37 and the constant speed rotor 52 to each other.

    [0045] The variable speed electric motor system 1 includes a rotation number control device 100 that controls the number of rotations of the variable speed electric motor 71 and a control device 120 that controls operations of the rotation number control device 100. The rotation number control device 100 is electrically connected to the variable speed electric motor 71.

    [0046] The control device 120 is configured with a computer. The control device 120 has an acceptance unit 121, an interface 122, and a calculation unit 123. The acceptance unit 121 directly accepts an instruction from an operator or accepts an instruction from an upper control device, the interface 122 gives an instruction to the rotation number control device 100, and the calculation unit 123 generates an instruction for the rotation number control device 100 in accordance with the instruction and the like accepted by the acceptance unit 121.

    [0047] The rotation number control device 100 includes a frequency conversion unit 101 that changes a frequency of the power supplied from a power source (not illustrated), and a rotation direction change unit 102 that changes a rotation direction of the variable speed rotor 72.

    [0048] The frequency conversion unit 101 supplies the variable speed electric motor 71 with power of a frequency instructed from the control device 120. The variable speed rotor 72 of the variable speed electric motor 71 rotates at the number of rotations according to the frequency. As described above, since the frequency of the variable speed rotor 72 is changed, the number of rotations of the planetary gear carrier 21 of the transmission device 10, which is connected to the variable speed rotor 72, is also changed. As a consequence, the number of rotations of the sun gear shaft 12 serving as the output shaft Ao of the transmission device 10 is also changed.

    [0049] The rotation direction change unit 102 is a unit that changes the rotation direction of the variable speed electric motor 71 by using a circuit that switches a plurality of (3 in the case of the present embodiment) power lines connected to the variable speed electric motor 71. That is, the rotation direction change unit 102 can rotate the variable speed rotor 72 forward or backward.

    [0050] Hereinafter, a relationship between the number of teeth of each gear of the transmission device 10 and the number of rotations of each shaft of the transmission device 10 is described using Fig. 4.

    [0051] The number of rotations of the sun gear shaft 12 serving as the output shaft Ao is defined as ωs, the number of rotations of the internal gear carrier shaft 37 serving as the constant speed input shaft Ac is defined as ωi, and the number of rotations of the input side planetary gear carrier shaft 27i serving as the variable speed input shaft Av is defined as ωh. Furthermore, the number of teeth of the sun gear 11 is defined as Zs and the number of teeth of the internal gear 17 is defined as Zi.

    [0052] In this case, the relationship between the number of teeth of each gear and the number of rotations of each shaft of the transmission device 10 can be expressed by the following Equation (1).



    [0053] When the constant speed electric motor 51 is an induction motor having 4 poles and the power supply frequency is 50 Hz, the number ωi of rotations (the rated number of rotations) of the constant speed rotor 52 (the constant speed input shaft Ac) is 1,500 rpm. Furthermore, when the variable speed electric motor 71 is an induction motor having 6 poles and the power supply frequency is 50 Hz, the maximum number ωh of rotations (the rated number of rotations) of the variable speed rotor 72 (the variable speed input shaft Av) is 900 rpm.

    [0054] Furthermore, the ratio Zi/Zs of the number Zs of teeth of the sun gear 11 and the number Zi of teeth of the internal gear 17 is set to 4.

    [0055] In this case, when the orientation of the rotation of the constant speed rotor 52 is defined as forward rotation and orientation of the rotation of the variable speed rotor 72 corresponds to the maximum number (-900 rpm) of rotations of the orientation opposite to the rotation of the constant speed rotor 52, the number ωs of rotations of the sun gear shaft 12 serving as the output shaft Ao is -10,500 rpm.

    [0056] When the orientation of the rotation of the constant speed rotor 52 is defined as the forward rotation and the orientation of the rotation of the variable speed rotor 72 corresponds to the maximum number (900 rpm) of rotations of the same orientation as that of the rotation of the constant speed rotor 52, the number of rotations of the sun gear shaft 12 is -1,500 rpm.

    [0057] Therefore, when the number of rotations (the rated number of rotations) of the constant speed rotor 52 is +1,500 rpm and the number of rotations of the variable speed rotor 72 can be controlled in a range of 900 rpm (forward rotation) to -900 rpm (backward rotation) by frequency control of the frequency conversion unit 101, the number of rotations of the sun gear shaft 12 serving as the output shaft Ao can be controlled in a range of -1,500 rpm to -10,500 rpm. This range is a variable speed range of the sun gear shaft 12 serving as the output shaft Ao of the variable speed electric motor system 1, and the variable speed electric motor system 1 normally rotates the output shaft Ao in the variable speed range.

    [0058] When the constant speed electric motor 51 and the variable speed electric motor 71 constituting the electric device 50 have the aforementioned specifications, it is necessary to allow the number of rotations of the variable speed rotor 72 to be 0 rpm in order to allow the number of rotations of the sun gear shaft 12 serving as the output shaft Ao to be -6,000 rpm. In other words, when a variable range of the number of rotations of the variable speed electric motor 71 constituting the variable speed electric motor system 1 is a positive number of rotations to a negative number of rotations, it is necessary to allow the number of rotations of the variable speed electric motor 71 to be 0 rpm according to the number of rotations of the instructed output shaft Ao.

    [0059] The variable speed electric motor 71 of the present embodiment is a phase induction motor having 6 poles and it is not possible to control the number of rotations in the vicinity of 0 rpm. In the variable speed electric motor 71 of the present embodiment, for example, a range of -90 rpm to 90 rpm in which a rated number of rotations is equal to or less than 10%, is an uncontrollable range in which rotation number control is not possible. That is, a minimum number of rotations of the variable speed electric motor 71 of the present embodiment is 90 rpm. Power supplied to the variable speed electric motor 71 at the minimum number of rotations of 90 rpm is 5 Hz corresponding to 10% of a power supply frequency (50 Hz).

    [0060] Next, the control method of the variable speed electric motor system 1 of the present embodiment is described with reference to a flowchart illustrated in Fig. 5 and the graphs illustrated in Fig. 6 and Fig. 7.

    [0061] After the start of the variable speed electric motor 71, that is, in a state in which the constant speed electric motor 51 is rotationally driven at the rated number of rotations of 1,500 rpm and the variable speed electric motor 71, for example, is rotationally driven at the minimum number of rotations of 90 rpm, the acceptance unit 121 of the control device 120 accepts an instruction for the number of rotations of the sun gear shaft 12 serving as the output shaft Ao from an exterior (S10). The variable speed range of the output shaft Ao is -1,500 rpm to -10,500 rpm.

    [0062] When the acceptance unit 121 accepts the instruction for the number of rotations of the output shaft Ao, the calculation unit 123 performs calculation to calculate the number of rotations of the variable speed electric motor 71 corresponding to the number of rotations of the output shaft Ao (S11). That is, the calculation unit 123 calculates the number of rotations of the variable speed electric motor 71 for achieving the number of rotations of the instructed output shaft Ao.

    [0063] Next, the control device 120 determines whether the calculated number of rotations of the variable speed electric motor 71 is an uncontrollable number of rotations of the variable speed electric motor 71 (S12).

    [0064] For example, when the number of rotations of the instructed output shaft Ao is -10,500 rpm, a calculation result, which represents that the number of rotations of the variable speed electric motor 71 for allowing the number of rotations of the output shaft Ao to be -10,500 rpm is -900 rpm, is obtained.

    [0065] Since the -900 rpm is not the uncontrollable number of rotations, the interface 122 instructs the number of rotations of the calculation result to the rotation number control device 100 (S14).

    [0066] The rotation number control device 100 allows the frequency of power to be supplied to the variable speed electric motor 71 to be 50 Hz corresponding to 900 rpm by using the frequency conversion unit 101, and sets the rotation direction of the variable speed electric motor 71 as a reverse direction by using the rotation direction change unit 102. In this way, the number of rotations of the variable speed electric motor 71 is -900 rpm and the number of rotations of the sun gear shaft 12 is -10,500 rpm.

    [0067] Next, a description is provided for a control method when the number of rotations of the variable speed electric motor 71 calculated by the calculation unit 123 is in the uncontrollable range of the variable speed electric motor 71.

    [0068] For example, when the acceptance unit 121 of the control device 120 accepts an instruction for allowing the number of rotations of the sun gear shaft 12 to be -6,000 rpm, the calculation unit 123 performs calculation and calculates a calculation result in which the number of rotations of the variable speed electric motor 71 for allowing the number of rotations of the sun gear shaft 12 to be -6,000 rpm is 0 rpm.

    [0069] The 0 rpm belongs to the uncontrollable range of the variable speed electric motor 71. That is, the variable speed electric motor 71 is not able to maintain the variable speed rotor 72 at 0 rpm.

    [0070] When it is determined that the calculation result is in the uncontrollable range of the variable speed electric motor 71, the control device 120 performs uncontrollable speed range operation (S13).

    [0071] The uncontrollable speed range operation is control for repeatedly and alternately performing a forward direction minimum rotation number instruction PI (see Fig. 6) for giving an instruction for driving the variable speed electric motor 71 at the minimum number (90 rpm) of rotations in the forward direction, and a reverse direction minimum rotation number instruction for giving an instruction for driving the variable speed electric motor 71 at the minimum number of rotations in the reverse direction. By this control, the number of rotations of the variable speed electric motor 71 is approximated to a speed in the vicinity of 0 rpm.

    [0072] Fig. 6 and Fig. 7 are graphs in which a horizontal axis is defined as a time and a vertical axis is defined as a frequency (a ratio for 50 Hz and indicated by a "-" sign in the case of the backward rotation) supplied to the variable speed electric motor 71 and the number of rotations of the variable speed electric motor 71.

    [0073] As illustrated in Fig. 6, when the uncontrollable speed range operation is performed, the interface 122 repeatedly and alternately gives, to the rotation number control device 100, a command for rotating the variable speed rotor 72 forward at a frequency of 5 Hz (10% of the power supply frequency) and a command for rotating the variable speed rotor 72 backward at the frequency of 5 Hz. A period T including the forward direction minimum rotation number instruction PI and the subsequent reverse direction minimum rotation number instruction P2 is constant.

    [0074] In the period T, times (pulse widths) of the forward direction minimum rotation number instruction PI and the reverse direction minimum rotation number instruction P2 are equal to each other. In this way, the number of rotations of the variable speed electric motor 71 is changed in a sign curve shape as indicated by a dashed line. That is, the variable speed electric motor 71 repeats forward rotation and backward rotation.

    [0075] The times of the forward direction minimum rotation number instruction PI and the reverse direction minimum rotation number instruction P2 are allowed to be equal to each other, so that an average of the number of rotations can be 0 rpm. That is, it is possible to approximate to the number of rotations of 0 rpm while rotating the variable speed rotor 72.

    [0076] Next, a description is provided for a control method when the number of rotations of the variable speed electric motor 71 is in the uncontrollable range and is not 0 rpm.

    [0077] When the instructed number of rotations of the output shaft Ao is -5,700 rpm, the number of rotations of the variable speed electric motor 71 calculated by the calculation unit 123 is 60 rpm. Since the 60 rpm is in the uncontrollable range of the variable speed electric motor 71, the control device 120 performs the uncontrollable speed range operation (S13).

    [0078] As illustrated in Fig. 7, in order to approximate to 60 rpm, the control device 120 allows the times of the forward direction minimum rotation number instruction PI and the reverse direction minimum rotation number instruction P2 to be different from each other. Specifically, the control device 120 lengthens the time of the forward direction minimum rotation number instruction PI and shortens the time of the reverse direction minimum rotation number instruction P2 such that an average value of the number of rotations of the variable speed electric motor 71 is 60 rpm.

    [0079] For example, when P1:P2=5:5, the number of rotations can be approximated to 0 rpm, and when PI :P2=100, the number of rotations is 90 rpm. As described above, the ratio of the forward direction minimum rotation number instruction PI and the reverse direction minimum rotation number instruction P2 is changed, so that it is possible to approximate to the number of rotations of the uncontrollable range. When the ratio of the forward direction minimum rotation number instruction P1 is increased, the approximate number of rotations (the average number of rotations of the variable speed electric motor 71) of the variable speed electric motor 71 is approximated to 90 rpm, and when the reverse direction minimum rotation number instruction P2 is increased, the approximate number of rotations of the variable speed electric motor 71 is approximated to -90 rpm.

    [0080] According to the aforementioned embodiment, when controlling the number of rotations of the output shaft of the variable speed electric motor system 1 including the electric device 50, which has the constant speed electric motor 51 and the variable speed electric motor 71, and the planetary gear transmission device 10 that changes the speed of the rotational driving force generated by the electric device 50 and transmits the result to an object to be driven, it is possible to increase the degree of freedom of the number of rotations.

    [0081] That is, even when the number of rotations is set in the uncontrollable range of the variable speed electric motor 71, the variable speed electric motor 71 is rotationally driven such that the average number of rotations is the number of rotations, so that the number of rotations of the output shaft can be approximated to a desired number of rotations.

    [0082] The uncontrollable speed range operation is more effective when V/F control (VVVF control) is performed in variable speed control of an induction motor. In general, the V/F control has an advantage that torque ripple is small as compared with vector control and DTC (direct torque control) control, but has a disadvantage that the uncontrollable range of the electric motor becomes large. When the uncontrollable speed range operation of the present embodiment is used, it is possible to enlarge a control range of the variable speed electric motor even though the V/F control is performed.

    [0083] Furthermore, in the present embodiment, since the constant speed rotor 52 of the constant speed electric motor 51 and the variable speed rotor 72 of the variable speed electric motor 71 are arranged on the axis Ar of the transmission device 10, even when the constant speed rotor 52 and the variable speed rotor 72 are arranged at positions separated radially from the axis Ar of the transmission device 10, it is possible to achieve miniaturization as a whole. Moreover, in the present embodiment, since it is not necessary to provide a transfer mechanism such as a belt and a pulley as with a case where the constant speed rotor 52 and the variable speed rotor 72 are arranged at positions separated radially from the axis Ar of the transmission device 10, it is possible to miniaturize the device from this standpoint and to further reduce the manufacturing cost by a reduction of the number of parts. Furthermore, in the present embodiment, since it is not necessary to provide a transfer mechanism such as a belt and a pulley as with a case where the constant speed rotor 52 and the variable speed rotor 72 are arranged at positions separated radially from the axis Ar of the transmission device 10, it is also possible to reduce vibration regardless of a bending load from the belt and the like with respect to a shaft positioned on the axis Ar of the transmission device 10.

    [0084] In the present embodiment, the constant speed rotor 52 of the electric device 50 and the constant speed input shaft Ac of the transmission device 10 are connected to the flexible coupling 97 for constant speed, so that it is possible to permit eccentricity, declination, and deviation between the constant speed rotor 52 and the constant speed input shaft Ac. Moreover, in the present embodiment, the variable speed rotor 72 of the electric device 50 and the variable speed input shaft Av of the transmission device 10 are connected to the flexible coupling 95 for variable speed, so that it is possible to permit eccentricity, declination, and deviation between the variable speed rotor 72 and the variable speed input shaft Av. Therefore, in the present embodiment, it is possible to minimize time and effort of centering work of the transmission device 10 with respect to the electric device 50, and to suppress transfer of axis deflection to the transmission device 10 from the electric device 50 and transfer of axis deflection to the electric device 50 from the transmission device 10.

    [0085] In the present embodiment, the variable speed electric motor casing 81 is fixed to the constant speed electric motor casing 61. Therefore, in the present embodiment, it is possible to accurately perform positioning (centering) of the variable speed rotor 72 with respect to the constant speed rotor 52 before the shipment of a variable electric motor system from a manufacturing factory. Thus, in the present embodiment, it is possible to omit positioning work of the variable speed rotor 72 with respect to the constant speed rotor 52 in an installation site.

    [0086] In the present embodiment, when the constant speed rotor 52 rotates, the cooling fan 91 provided to the end of the constant speed rotor 52 also rotates. With the rotation of the cooling fan 91, external air is introduced into the constant speed electric motor casing 61, so that the constant speed rotor 52, the constant speed stator 66 and the like are cooled. Moreover, in the present embodiment, since the constant speed electric motor casing 61 and the variable speed electric motor casing 81 communicate with each other, the air introduced into the constant speed electric motor casing 61 is also introduced into the variable speed electric motor casing 81, so that the variable speed rotor 72, the variable speed stator 86 and the like are cooled. Thus, in the present embodiment, it is possible to cool the two generators by using the cooling fan 91 and to miniaturize the device and reduce the manufacturing cost from the standpoint.

    [0087] Furthermore, in the present embodiment, the constant speed rotor 52, the variable speed rotor 72, and the sun gear shaft 12 are arranged on the same axis, so that it is possible to reduce an installation space of the variable electric motor system. Furthermore, since parts (a bevel gear and the like) for transferring rotation are not necessary, it is possible to suppress an increase in the number of parts and to reduce the manufacturing cost.

    [0088] Furthermore, in the present embodiment, the rod-like constant speed rotor shaft 53 (the constant speed rotor extension shaft 55) is inserted into the cylindrical variable speed rotor shaft 73 formed with the shaft insertion hole 74. That is, the constant speed rotor shaft 53 of the constant speed electric motor 51 with high output power is inserted into the variable speed rotor shaft 73 of the variable speed electric motor 71 with output power smaller than that of the constant speed electric motor 51. In this way, it is possible to employ an electric motor with higher output power (horse power) as the constant speed electric motor 51.

    [0089] Furthermore, in the present embodiment, the constant speed electric motor 51, the variable speed electric motor 71, the transmission device, and the compressor C are arranged on a linear line in this order, so that it is possible to achieve compactification of the whole device.

    [0090] In addition, in the aforementioned embodiment, the constant speed rotor 52, the variable speed rotor 72, and the sun gear shaft 12 are arranged on the same axis; however, the present invention is not limited thereto. For example, the variable speed electric motor 71 may be arranged such that the axis of the variable speed rotor 72 is parallel to the axis of the constant speed rotor 52 and is located at a position different from that of the axis of the constant speed rotor 52.

    [0091] Furthermore, in the variable speed electric motor systems of the aforementioned embodiments, the compressor C is employed as an object to be driven and is rotated at a high speed equal to more than 7,500 rpm. In the variable speed electric motor systems of the aforementioned each embodiment, since the object to be driven is rotated at a high speed as described above, the number of rotations of the constant speed electric motor 51 is accelerated by the transmission device 10. Therefore, in the transmission device 10 of the aforementioned embodiments, the sun gear shaft 12 serves as the output shaft Ao, the internal gear carrier shaft 37 serves as the constant speed input shaft Ac, and the input side planetary gear carrier shaft 27i serves as the variable speed input shaft Av.

    [0092] However, the transmission device in the present invention, for example, may decelerate the number of rotations of the constant speed electric motor 51. In this case, the sun gear shaft 12 may serve as the constant speed input shaft Ac, the planetary gear carrier shaft 27 may serve as the variable speed input shaft Av, and the internal gear carrier shaft 37 may serve as the output shaft Ao. Furthermore, for example, the sun gear shaft 12 may serve as the output shaft Ao similarly to the above embodiments, the internal gear carrier shaft 37 may serve as the variable speed input shaft Av, and the planetary gear carrier shaft 27 may serve as the constant speed input shaft Ac. As described above, whether any one of the sun gear shaft 12, the planetary gear carrier shaft 27, and the internal gear carrier shaft 37 serves as the output shaft Ao, another one serves as the constant speed input shaft Ac, and the other one serves as the variable speed input shaft Av is appropriately set according to whether to accelerate output with respect to input, a change range of acceleration/deceleration of the output, and the like.

    [0093] Furthermore, in the aforementioned embodiment, an induction motor having 4 poles is exemplified as a preferable constant speed electric motor 51 in order to rotate the compressor C at a high speed, and an induction motor having 6 poles is exemplified as a preferable variable speed electric motor 71 in order to change the number of rotations of the compressor C in a constant range. However, when it is not necessary to rotate an object to be driven at a high speed, other types of electric motors may be used as the constant speed electric motor 51 and the variable speed electric motor 71.

    [0094] Furthermore, in the aforementioned embodiment, the shaft insertion hole 74 is formed at the variable speed rotor 72 and the constant speed rotor 52 is inserted into the shaft insertion hole 74; however, it may be possible to employ a configuration in which the shaft insertion hole is formed at the constant speed rotor and the variable speed rotor is inserted into the shaft insertion hole.

    [0095] Furthermore, in the aforementioned embodiment, the flexible coupling 95 for variable speed, which connects the variable speed rotor 72 and the variable speed input shaft Av to each other, serves as a first flexible coupling and the flexible coupling 97 for constant speed, which connects the constant speed rotor 52 and the constant speed input shaft Ac to each other, serves as a second flexible coupling. However, when the flexible coupling for constant speed is arranged at the outer circumferential side of the flexible coupling for variable speed, the flexible coupling for constant speed serves as the first flexible coupling and the flexible coupling for variable speed serves as the second flexible coupling.

    [Industrial Applicability]



    [0096] In an aspect of the present invention, it is possible to increase the degree of freedom of a variable speed range of the variable speed electric motor system.

    [Reference Signs List]



    [0097] 

    1 Variable speed electric motor system

    10 Transmission device (planetary gear transmission device)

    11 Sun gear

    12 Sun gear shaft

    15 Planetary gear

    17 Internal gear

    21 Planetary gear carrier

    22 Planetary gear shaft

    23 Carrier body

    27 Planetary gear carrier shaft

    27i Input side planetary gear carrier shaft

    28 Flange

    31 Internal gear carrier

    33 Carrier body

    37 Internal gear carrier shaft

    38 Flange

    41 Transmission casing

    50 Electric device

    51 Constant speed electric motor

    52 Constant speed rotor

    53 Constant speed rotor shaft

    54 Constant speed rotor body shaft

    55 Constant speed rotor extension shaft

    56 Conductor

    61 Constant speed electric motor casing

    62 Casing body

    63i, 63o Lid

    64 Opening

    66 Constant speed stator

    71 Variable speed electric motor

    71S Variable speed electric motor support part

    72 Variable speed rotor

    73 Variable speed rotor shaft

    73o Flange

    74 Shaft insertion hole

    76 Conductor

    81 Variable speed electric motor casing

    82 Casing body

    83i, 83o Lid

    84 Opening

    86 Variable speed stator

    91 Cooling fan

    100 Rotation number control device

    101 Frequency conversion unit

    102 Rotation direction change unit

    116 Carrier body

    117 Transfer part

    118 Carrier shaft gear

    119 Carrier body gear

    120 Control device

    Ap Center line

    Ar Axis




    Claims

    1. A control method of a variable speed electric motor system (1), which includes an electric device (50) for generating rotational driving force and a transmission device (10) for changing a speed of the rotational driving force generated by the electric device (50) and transmits the changed rotational driving force to an object to be driven, the control method comprising the steps of:

    a step of accepting (S10) an instruction for a number of rotations of an output shaft (Ao);

    a step of performing a calculation (S11) to calculate the number of rotations of the variable speed electric motor (71) corresponding to the number of rotations of the output shaft (Ao),

    wherein the transmission device (10) comprises:

    a sun gear (11) which rotates about an axis (Ar);

    a sun gear shaft (12) which is fixed to the sun gear (11) and extends in an axial direction about the axis (Ar);

    a planetary gear (15) which is engaged with the sun gear (11), revolves about the axis (Ar), and rotates about a center line (Ap) of the planetary gear (15);

    an internal gear (17) which has a plurality of teeth arranged about the axis (Ar) in an annular shape and is engaged with the planetary gear (15);

    a planetary gear carrier (21) which has a planetary gear carrier shaft (27) extending in the axial direction about the axis (Ar) and supports the planetary gear (15) so as to be revolvable about the axis (Ar) and to be rotatable about the center line (Ap) of the planetary gear (15); and

    an internal gear carrier (31) which has an internal gear carrier shaft (37) extending in the axial direction about the axis (Ar) and supports the internal gear (17) so as to be rotatable about the axis (Ar),

    wherein among the sun gear shaft (12), the planetary gear carrier shaft (27), and the internal gear carrier shaft (37), one serves as the output shaft (Ao) connected to the object to be driven, another one serves as a constant speed input shaft (Ac), a remaining one serves as a variable speed input shaft (Av), and

    wherein the electric device (50) comprises:

    a constant speed electric motor (51) which has a constant speed rotor (52) connected to the constant speed input shaft (Ac) of the transmission device (10); and

    the variable speed electric motor (71) which has a variable speed rotor (72) connected to the variable speed input shaft (Av) of the transmission device (10) and controlling number of rotations in the forward direction and the reverse direction, and has an uncontrollable range in which control in a range between the minimum number of rotations in the forward direction and the minimum number of rotations in the reverse direction is not possible,

    characterized by further comprising the steps of:

    a step of determining (S12) whether the calculated number of rotations of the variable speed electric motor (71) is in the uncontrollable range; and

    a step of performing (S13) uncontrollable speed range operation for repeatedly and alternately performing a forward direction minimum rotation number instruction for driving the variable speed electric motor (71) at a minimum number of rotations in a forward direction, and a reverse direction minimum rotation number instruction for driving the variable speed electric motor (71) at a minimum number of rotations in a reverse direction, when the calculated number of rotations of the variable speed electric motor (71) is in the uncontrollable range,

    wherein a period (T) including the forward direction minimum rotation number instruction (P1) and the subsequent reverse direction minimum rotation number instruction (P2) is constant, and

    wherein the ratio of the forward direction minimum rotation number instruction (P1) and the reverse direction minimum rotation number instruction (P2) is changed, so that it is possible to approximate to the number of rotations of the uncontrollable range.


     
    2. The control method of the variable speed electric motor system (1) according to claim 1, wherein a ratio of the forward direction minimum rotation number instruction and the reverse direction minimum rotation number instruction is changed, so that the number of rotations of the variable speed electric motor (71) is approximated in the uncontrollable range.
     
    3. A variable speed electric motor system (1), which includes: an electric device (50) for generating rotational driving force, which includes a constant speed electric motor (51) and a variable speed electric motor (71); a transmission device (10) for changing a speed of the rotational driving force generated by the electric device (50) and transmits the changed rotational driving force to an object to be driven; a rotation number control device (100) that controls the number of rotations of the variable speed electric motor (71); and a control device (120) including an acceptance unit (121) which directly accepts a first instruction from an operator or from an upper control device, a calculation unit (123) which generates a second instruction for a rotation number control device (100) in accordance with the first instruction accepted by the acceptance unit (121) and an interface (122) which gives the second instruction to the rotation number control device (100),
    wherein the transmission device (10) comprises:

    a sun gear (11) which rotates about an axis;

    a sun gear shaft (12) which is fixed to the sun gear (11) and extends in an axial direction about the axis (Ar);

    a planetary gear (15) which is engaged with the sun gear (11), revolves about the axis (Ar), and rotates about a center line (Ap) of the planetary gear (15);

    an internal gear (17) which has a plurality of teeth arranged about the axis (Ar) in an annular shape and is engaged with the planetary gear (15);

    a planetary gear carrier (21) which has a planetary gear carrier shaft (27) extending in the axial direction about the axis (Ar) and supports the planetary gear (15) so as to be revolvable about the axis (Ar) and to be rotatable about the center line (Ap) of the planetary gear (15); and

    an internal gear carrier (31) which has an internal gear carrier shaft (37) extending in the axial direction about the axis (Ar) and supports the internal gear (17) so as to be rotatable about the axis (Ar),

    wherein among the sun gear shaft (12), the planetary gear carrier shaft (27), and the internal gear carrier shaft (37), one serves as the output shaft (Ao) connected to the object to be driven, another one serves as a constant speed input shaft (Ac), and a remaining one serves as a variable speed input shaft (Av), and

    wherein:

    the constant speed electric motor (51) has a constant speed rotor (52) connected to the constant speed input shaft (Ac) of the transmission device (10); and

    the variable speed electric motor (71) has a variable speed rotor (72) connected to the variable speed input shaft (Av) of the transmission device (10) and controlling number of rotations in the forward direction and the reverse direction, and has the uncontrollable range in which control in a range between the minimum number of rotations in the forward direction and the minimum number of rotations in the reverse direction is not possible,

    characterized in that, when the second instruction for a number of rotations of the output shaft (Ao) is received by the rotation number control device (100), a calculation to calculate the number of rotations of the variable speed electric motor (71) corresponding to the number of rotations of the output shaft (Ao) is performed, and the calculated number of rotations of the variable speed electric motor (71) is in an uncontrollable range, a forward direction minimum rotation number instruction for driving the variable speed electric motor (71) at a minimum number of rotations in a forward direction and a reverse direction minimum rotation number instruction for driving the variable speed electric motor (71) at a minimum number of rotations in a reverse direction are repeatedly and alternately performed,

    wherein a period (T) including the forward direction minimum rotation number instruction (P1) and the subsequent reverse direction minimum rotation number instruction (P2) is constant, and

    wherein the ratio of the forward direction minimum rotation number instruction (P1) and the reverse direction minimum rotation number instruction (P2) is changed, so that it is possible to approximate to the number of rotations of the uncontrollable range.


     


    Ansprüche

    1. Steuerverfahren eines Elektromotorsystems (1) mit variabler Drehzahl, das eine Elektrovorrichtung (50) zum Erzeugen einer Drehantriebskraft und eine Übertragungsvorrichtung (10) zum Ändern einer Drehzahl der durch die Elektrovorrichtung (50) erzeugten Drehantriebskraft einschließt, und das die geänderte Drehantriebskraft auf ein anzutreibendes Objekt überträgt, wobei das Steuerverfahren die folgenden Schritte umfasst:

    einen Schritt eines Akzeptierens (S10) eines Befehls für eine Anzahl von Rotationen einer Ausgangswelle (Ao);

    einen Schritt eines Durchführens einer Berechnung (S11), um die Anzahl von Rotationen des Elektromotors (71) mit variabler Drehzahl entsprechend der Anzahl von Rotationen der Ausgangswelle (Ao) zu berechnen, wobei die Übertragungsvorrichtung (10) Folgendes umfasst:

    ein Sonnenrad (11), das um eine Achse (Ar) herum rotiert;

    eine Sonnenradwelle (12), die an dem Sonnenrad (11) befestigt ist und sich in einer axialen Richtung um die Achse (Ar) herum erstreckt;

    ein Planetenrad (15), das mit dem Sonnenrad (11) in Eingriff steht, sich um die Achse (Ar) herumdreht und um eine Mittellinie (Ap) des Planetenrads (15) herum rotiert;

    ein Innenrad (17), das mehrere Zähne aufweist, die ringförmig um die Achse (Ar) herum angeordnet sind und mit dem Planetenrad (15) in Eingriff steht;

    einen Planetenradträger (21), der eine Planetenradträgerwelle (27) aufweist, die sich in der axialen Richtung um die Achse (Ar) herum erstreckt und das Planetenrad (15) stützt, um um die Achse (Ar) herum drehbar zu sein und um die Mittellinie (Ap) des Planetenrads (15) herum rotierbar zu sein; und

    einen Innenradträger (31), der eine Innenradträgerwelle (37) aufweist, die sich in der axialen Richtung um die Achse (Ar) herum erstreckt und das Innenrad (17) stützt, um um die Achse (Ar) herum rotierbar zu sein,

    wobei von der Sonnenradwelle (12), der Planetenradträgerwelle (27) und der Innenradträgerwelle (37) eine als die Ausgangswelle (Ao) dient, die mit dem anzutreibenden Objekt verbunden ist, eine andere als eine Eingangswelle (Ac) mit konstanter Drehzahl dient, eine verbleibende als eine Eingangswelle (Av) mit variabler Dreahzahl dient, und

    wobei die Elektrovorrichtung (50) Folgendes umfasst:

    einen Elektromotor (51) mit konstanter Drehzahl, der einen Rotor (52) mit konstanter Drehzahl aufweist, der mit der Eingangswelle (Ac) mit konstanter Drehzahl der Übertragungsvorrichtung (10) verbunden ist; und

    den Elektromotor (71) mit variabler Drehzahl, der einen Rotor (72) mit variabler Drehzahl aufweist, der mit der drehzahlvariablen Eingangswelle (Av) der Übertragungsvorrichtung (10) verbunden ist und die Anzahl von Rotationen in der Vorwärtsrichtung und der Rückwärtsrichtung steuert, und einen nicht steuerbaren Bereich aufweist, in dem das Steuern in einem Bereich zwischen der Mindestanzahl von Rotationen in der Vorwärtsrichtung und der Mindestanzahl von Rotationen in der Rückwärtsrichtung nicht möglich ist,

    gekennzeichnet dadurch, dass es ferner die folgenden Schritte umfasst:

    einen Schritt eines Bestimmens (S12), ob die berechnete Anzahl von Rotationen des Elektromotors (71) mit variabler Drehzahl in dem nicht steuerbaren Bereich liegt; und

    einen Schritt des Durchführens (S13) eines nicht steuerbaren Drehzahlbereichsbetriebs zum wiederholten und abwechselnden Durchführen eines Befehls für eine Mindestrotationsanzahl in einer Vorwärtsrichtung zum Antreiben des Elektromotors (71) mit variabler Drehzahl bei einer Mindestanzahl von Rotationen in einer Vorwärtsrichtung und eines Befehls für eine Mindestrotationsanzahl in einer Rückwärtsrichtung zum Antreiben des Elektromotors (71) mit variabler Drehzahl bei einer Mindestanzahl von Rotationen in einer Rückwärtsrichtung, wenn die berechnete Anzahl von Rotationen des Elektromotors (71) mit variabler Drehzahl in dem nicht steuerbaren Bereich liegt,

    wobei eine Periode (T) die den Befehl (P1) für die Mindestrotationsanzahl in der Vorwärtsrichtung und den nachfolgenden Befehl (P2) für die Mindestrotationsanzahl in der Rückwärtsrichtung einbezieht, konstant ist, und

    wobei das Verhältnis des Befehls (P1) für die Mindestrotationsanzahl in der Vorwärtsrichtung und des Befehls (P2) für die Mindestrotationsanzahl in der Rückwärtsrichtung geändert wird, so dass es möglich ist, sich der Anzahl von Rotationen des nicht steuerbaren Bereichs anzunähern.


     
    2. Steuerverfahren des Elektromotorsystems (1) mit variabler Drehzahl nach Anspruch 1, wobei ein Verhältnis des Befehls für die Mindestrotationsanzahl in der Vorwärtsrichtung und des Befehls für die Mindestrotationsanzahl in der Rückwärtsrichtung geändert wird, so dass die Anzahl von Rotationen des Elektromotors (71) mit variabler Drehzahl in dem nicht steuerbaren Bereich angenähert wird.
     
    3. Elektromotorsystem (1) mit variabler Drehzahl, das Folgendes einschließt: eine Elektrovorrichtung (50) zum Erzeugen der Drehantriebskraft, die einen Elektromotor (51) mit konstanter Drehzahl und einen Elektromotor (71) mit variabler Drehzahl einschließt; eine Übertragungsvorrichtung (10) zum Ändern einer Drehzahl der durch die Elektrovorrichtung (50) erzeugten Drehantriebskraft und die die geänderte Drehantriebskraft auf ein anzutreibendes Objekt überträgt; eine Rotationsanzahlsteuervorrichtung (100), die die Anzahl von Rotationen des Elektromotors (71) mit variabler Drehzahl steuert; und eine Steuervorrichtung (120) einschließlich einer Akzeptanzeinheit (121), die einen ersten Befehl von einem Bediener oder von einer übergeordneten Steuervorrichtung direkt akzeptiert, einer Berechnungseinheit (123), die einen zweiten Befehl für eine Rotationsanzahlsteuervorrichtung (100) gemäß dem ersten Befehl, der durch die Akzeptanzeinheit (121) akzeptiert wird, erzeugt, und einer Schnittstelle (122), die den zweiten Befehl an die Rotationsanzahlsteuervorrichtung (100) gibt,
    wobei die Übertragungsvorrichtung (10) Folgendes umfasst:

    ein Sonnenrad (11), das um eine Achse herum rotiert;

    eine Sonnenradwelle (12), die an dem Sonnenrad (11) befestigt ist und sich in einer axialen Richtung um die Achse (Ar) herum erstreckt;

    ein Planetenrad (15), das mit dem Sonnenrad (11) in Eingriff steht, sich um die Achse (Ar) herum dreht und um eine Mittellinie (Ap) des Planetenrads (15) herum rotiert;

    ein Innenrad (17), das mehrere Zähne aufweist, die ringförmig um die Achse (Ar) herum angeordnet sind und mit dem Planetenrad (15) in Eingriff steht;

    einen Planetenradträger (21), der eine Planetenradträgerwelle (27) aufweist, die sich in der axialen Richtung um die Achse (Ar) herum erstreckt und das Planetenrad (15) stützt, um um die Achse (Ar) herum drehbar zu sein und um die Mittellinie (Ap) des Planetenrads (15) herum rotierbar zu sein; und

    einen Innenradträger (31), der eine Innenradträgerwelle (37) aufweist, die sich in der axialen Richtung um die Achse (Ar) herum erstreckt und das Innenrad (17) stützt, um um die Achse (Ar) herum rotierbar zu sein,

    wobei von der Sonnenradwelle (12), der Planetenradträgerwelle (27) und der Innenradträgerwelle (37) eine als die Ausgangswelle (Ao) dient, die mit dem anzutreibenden Objekt verbunden ist, eine andere als eine Eingangswelle (Ac) mit konstanter Drehzahl dient, und eine verbleibende als eine Eingangswelle (Av) mit variabler Drehzahl dient, und

    wobei:

    der Elektromotor (51) mit konstanter Drehzahl einen Rotor (52) mit konstanter Drehzahl aufweist, der mit der Eingangswelle (Ac) mit konstanter Drehzahl der Übertragungsvorrichtung (10) verbunden ist; und

    der Elektromotor (71) mit variabler Drehzahl einen Rotor (72) mit variabler Drehzahl aufweist, der mit der drehzahlvariablen Eingangswelle (Av) der Übertragungsvorrichtung (10) verbunden ist und die Anzahl von Rotationen in der Vorwärtsrichtung und der Rückwärtsrichtung steuert, und den nicht steuerbaren Bereich aufweist, in dem das Steuern in einem Bereich zwischen der Mindestanzahl von Rotationen in der Vorwärtsrichtung und der Mindestanzahl von Rotationen in der Rückwärtsrichtung nicht möglich ist,

    dadurch gekennzeichnet, dass wenn der zweite Befehl für eine Anzahl von Rotationen der Ausgangswelle (Ao) durch die Rotationsanzahlsteuervorrichtung (100) empfangen wird, eine Berechnung durchgeführt wird, um die Anzahl von Rotationen des Elektromotors (71) mit variabler Drehzahl entsprechend der Anzahl von Rotationen der Ausgangswelle (Ao) zu berechnen, und die berechnete Anzahl von Rotationen des Elektromotors (71) mit variabler Drehzahl in einem nicht steuerbaren Bereich liegt, ein Befehl für die Mindestrotationsanzahl in der Vorwärtsrichtung zum Antreiben des Elektromotors (71) mit variabler Drehzahl bei einer Mindestanzahl von Rotationen in einer Vorwärtsrichtung und ein Befehl für die Mindestrotationsanzahl in der Rückwärtsrichtung zum Antreiben des Elektromotors (71) mit variabler Drehzahl bei einer Mindestanzahl von Rotationen in einer Rückwärtsrichtung wiederholt und abwechselnd durchgeführt werden,

    wobei eine Periode (T) ,die den Befehl (P1) für die Mindestrotationsanzahl in der Vorwärtsrichtung und den nachfolgenden Befehl (P2) für die Mindestrotationsanzahl in der Rückwärtsrichtung einbezieht, konstant ist, und

    wobei das Verhältnis des Befehls (P1) für die Mindestrotationsanzahl in der Vorwärtsrichtung und des Befehls (P2) für die Mindestrotationsanzahl in der Rückwärtsrichtung geändert wird, so dass es möglich ist, sich der Anzahl von Rotationen des nicht steuerbaren Bereichs anzunähern.


     


    Revendications

    1. Procédé de commande d'un système de moteur électrique à vitesse variable (1), qui comporte un dispositif électrique (50) pour générer une force d'entraînement en rotation et un dispositif de transmission (10) pour modifier une vitesse de la force d'entraînement en rotation générée par le dispositif électrique (50) et qui transmet la force d'entraînement en rotation modifiée à un objet à entraîner, le procédé de commande comprenant les étapes suivantes :

    une étape d'acceptation (S10) d'une instruction pour un nombre de tours d'un arbre de sortie (Ao) ;

    une étape de réalisation d'un calcul (S11) pour calculer le nombre de tours du moteur électrique à vitesse variable (71) correspondant au nombre de tours de l'arbre de sortie (Ao),

    dans lequel le dispositif de transmission (10) comprend :

    un engrenage solaire (11) qui tourne autour d'un axe (Ar) ;

    un arbre d'engrenage solaire (12) qui est fixé à l'engrenage solaire (11) et qui s'étend dans une direction axiale autour de l'axe (Ar) ;

    un engrenage planétaire (15) qui est en prise avec l'engrenage solaire (11), qui fait des tours autour de l'axe (Ar), et qui tourne autour d'une ligne centrale (Ap) de l'engrenage planétaire (15) ;

    un engrenage interne (17), dont une pluralité de dents est disposée autour de l'axe (Ar) selon une forme annulaire et qui est en prise avec l'engrenage planétaire (15) ;

    un porte-engrenage planétaire (21), dont un arbre de porte-engrenage planétaire (27) s'étend dans la direction axiale autour de l'axe (Ar) et supporte l'engrenage planétaire (15) de manière à pouvoir faire des tours autour de l'axe (Ar) et à pouvoir tourner autour de la ligne centrale (Ap) de l'engrenage planétaire (15) ; et

    un porte-engrenage interne (31), dont un arbre de porte-engrenage interne (37) s'étend dans la direction axiale autour de l'axe (Ar) et supporte l'engrenage interne (17) de manière à pouvoir tourner autour de l'axe (Ar),

    dans lequel, parmi l'arbre d'engrenage solaire (12), l'arbre de porte-engrenage planétaire (27) et l'arbre de porte-engrenage interne (37), l'un sert d'arbre de sortie (Ao) raccordé à l'objet à entraîner, un autre sert d'arbre d'entrée de vitesse constante (Ac), et celui restant sert d'arbre d'entrée de vitesse variable (Av), et

    dans lequel le dispositif électrique (50) comprend :

    un moteur électrique à vitesse constante (51), dont un rotor à vitesse constante (52) est raccordé à l'arbre d'entrée de vitesse constante (Ac) du dispositif de transmission (10) ; et

    le moteur électrique à vitesse variable (71), dont un rotor de vitesse variable (72) est raccordé à l'arbre d'entrée de vitesse variable (Av) du dispositif de transmission (10), et qui commande le nombre de tours dans la direction avant et la direction inverse, et qui a une plage ne pouvant pas être commandée, dans laquelle la commande dans une plage entre le nombre de tours minimal dans la direction avant et le nombre de tours minimal dans la direction inverse n'est pas possible,

    caractérisé en ce qu'il comprend en outre les étapes suivantes :

    une étape de détermination (S12) quant à savoir si le nombre calculé de tours du moteur électrique à vitesse variable (71) est dans la plage ne pouvant pas être commandée ; et

    une étape de réalisation (S13) d'un fonctionnement dans une plage de vitesse ne pouvant pas être commandée pour réaliser de manière répétée et alternée une instruction de nombre de tours minimal de direction avant pour entraîner le moteur électrique à vitesse variable (71) à un nombre de tours minimal dans une direction avant, et une instruction de nombre de tours minimal de direction inverse pour entraîner le moteur électrique à vitesse variable (71) à un nombre de tours minimal dans une direction inverse, lorsque le nombre calculé de tours du moteur électrique à vitesse variable (71) est dans la plage ne pouvant pas être commandée,

    dans lequel une période (T) comportant l'instruction de nombre de tours minimal de direction avant (P1) et l'instruction suivante de nombre de tours minimal de direction inverse (P2) est constante, et

    dans lequel le rapport de l'instruction de nombre de tours minimal de direction avant (P1) et de l'instruction de nombre de tours minimal de direction inverse (P2) est modifié, de sorte qu'il soit possible de se rapprocher du nombre de tours de la plage ne pouvant pas être commandée.


     
    2. Procédé de commande du système de moteur électrique à vitesse variable (1) selon la revendication 1, dans lequel un rapport de l'instruction de nombre de tours minimal de direction avant et de l'instruction de nombre de tours minimal de direction inverse est modifié, de sorte à se approcher du nombre de tours du moteur électrique à vitesse variable (71) dans la plage ne pouvant pas être commandée.
     
    3. Système de moteur électrique à vitesse variable (1), qui comporte : un dispositif électrique (50) pour générer une force d'entraînement en rotation, qui comporte un moteur électrique à vitesse constante (51) et un moteur électrique à vitesse variable (71) ; un dispositif de transmission (10) pour modifier une vitesse de la force d'entraînement en rotation générée par le dispositif électrique (50) et qui transmet la force d'entraînement en rotation modifiée à un objet à entraîner ; un dispositif de commande de nombre de tours (100) qui commande le nombre de tours du moteur électrique à vitesse variable (71); et un dispositif de commande (120) comportant une unité d'acceptation (121) qui accepte directement une première instruction provenant d'un opérateur ou provenant d'un dispositif de commande supérieur, une unité de calcul (123) qui génère une deuxième instruction pour un dispositif de commande de nombre de tours (100) suivant la première instruction acceptée par l'unité d'acceptation (121), et une interface (122) qui donne la deuxième instruction au dispositif de commande de nombre de tours (100),
    dans lequel le dispositif de transmission (10) comprend :

    un engrenage solaire (11) qui tourne autour d'un axe ;

    un arbre d'engrenage solaire (12) qui est fixé à l'engrenage solaire (11) et qui s'étend dans une direction axiale autour de l'axe (Ar) ;

    un engrenage planétaire (15) qui est en prise avec l'engrenage solaire (11), qui fait des tours autour de l'axe (Ar), et qui tourne autour d'une ligne centrale (Ap) de l'engrenage planétaire (15) ;

    un engrenage interne (17), dont une pluralité de dents est disposée autour de l'axe (Ar) selon une forme annulaire et qui est en prise avec l'engrenage planétaire (15)) ;

    un porte-engrenage planétaire (21), dont un arbre de porte-engrenage planétaire (27) s'étend dans la direction axiale autour de l'axe (Ar) et supporte l'engrenage planétaire (15) de manière à pouvoir faire des tours autour de l'axe (Ar) et à pouvoir tourner autour de la ligne centrale (Ap) de l'engrenage planétaire (15) ; et

    un porte-engrenage interne (31), dont un arbre de porte-engrenage interne (37) s'étend dans la direction axiale autour de l'axe (Ar) et supporte l'engrenage interne (17) de manière à pouvoir tourner autour de l'axe (Ar),

    dans lequel, parmi l'arbre d'engrenage solaire (12), l'arbre de porte-engrenage planétaire (27) et l'arbre de porte-engrenage interne (37), l'un sert d'arbre de sortie (Ao) raccordé à l'objet à entraîner, un autre sert d'arbre d'entrée de vitesse constante (Ac), et celui restant sert d'arbre d'entrée de vitesse variable (Av), et

    dans lequel :

    le moteur électrique à vitesse constante (51) a un rotor à vitesse constante (52) raccordé à l'arbre d'entrée de vitesse constante (Ac) du dispositif de transmission (10) ; et

    le moteur électrique à vitesse variable (71) a un rotor de vitesse variable (72) raccordé à l'arbre d'entrée de vitesse variable (Av) du dispositif de transmission (10) et commande le nombre de tours dans la direction avant et la direction inverse, et a la plage ne pouvant pas être commandée, dans laquelle la commande dans une plage entre le nombre de tours minimal dans la direction avant et le nombre de tours minimal dans la direction inverse n'est pas possible,

    caractérisé en ce que, lorsque la deuxième instruction pour un nombre de tours de l'arbre de sortie (Ao) est reçue par le dispositif de commande de nombre de tours (100), un calcul pour calculer le nombre de tours du moteur électrique à vitesse variable (71) correspondant au nombre de tours de l'arbre de sortie (Ao) est réalisé, et lorsque le nombre calculé de tours du moteur électrique à vitesse variable (71) est dans une plage ne pouvant pas être commandée, une instruction de nombre de tours minimal de direction avant pour entraîner le moteur électrique à vitesse variable (71) à un nombre de tours minimal dans une direction avant, et une instruction de nombre de tours minimal de direction inverse pour entraîner le moteur électrique à vitesse variable (71) à un nombre de tours minimal dans une direction inverse sont réalisées de manière répétée et alternée,

    dans lequel une période (T) comportant l'instruction de nombre de tours minimal de direction avant (P1) et l'instruction suivante de nombre de tours minimal de direction inverse (P2) est constante, et

    dans lequel le rapport de l'instruction de nombre de tours minimal de direction avant (P1) et de l'instruction de nombre de tours minimal de direction inverse (P2) est modifié, de sorte qu'il soit possible de se rapprocher du nombre de tours de la plage ne pouvant pas être commandée.


     




    Drawing























    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description