(19)
(11)EP 3 332 404 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
23.09.2020 Bulletin 2020/39

(21)Application number: 15868673.3

(22)Date of filing:  10.12.2015
(51)International Patent Classification (IPC): 
G09F 9/30(2006.01)
H01L 25/075(2006.01)
G02F 1/1335(2006.01)
H01L 33/50(2010.01)
(86)International application number:
PCT/CN2015/097026
(87)International publication number:
WO 2017/020471 (09.02.2017 Gazette  2017/06)

(54)

DISPLAY DEVICE AND FABRICATING METHOD

ANZEIGEVORRICHTUNG UND HERSTELLUNGSVERFAHREN

DISPOSITIF D'AFFICHAGE ET PROCÉDÉ DE FABRICATION


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 04.08.2015 CN 201510471654

(43)Date of publication of application:
13.06.2018 Bulletin 2018/24

(73)Proprietor: BOE Technology Group Co., Ltd.
Beijing 100015 (CN)

(72)Inventors:
  • HE, Xiaolong
    Beijing 100176 (CN)
  • ZHANG, Bin
    Beijing 100176 (CN)
  • SHU, Shi
    Beijing 100176 (CN)
  • YAO, Qi
    Beijing 100176 (CN)
  • CAO, Zhanfeng
    Beijing 100176 (CN)
  • YOO, Seong Yeol
    Beijing 100176 (CN)

(74)Representative: Cohausz & Florack 
Patent- & Rechtsanwälte Partnerschaftsgesellschaft mbB Bleichstraße 14
40211 Düsseldorf
40211 Düsseldorf (DE)


(56)References cited: : 
WO-A1-2014/068440
CN-A- 102 023 380
CN-A- 104 819 404
CN-A- 105 096 749
US-A1- 2005 146 258
US-A1- 2014 367 633
WO-A1-2015/026033
CN-A- 103 278 876
CN-A- 104 932 136
KR-A- 20120 078 883
US-A1- 2014 339 495
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    CROSS-REFERENCES TO RELATED APPLICATIONS



    [0001] This PCT patent application claims priority of Chinese Patent Application No. 201510471654.7, filed on August 4, 2015.

    TECHNICAL FIELD



    [0002] The disclosed subject matter generally relates to the display technologies and, more particularly, relates to a display device, and a related fabricating method.

    BACKGROUND



    [0003] Along with the development of display technology, outdoor large-screen display becomes a popular display research area. The size of conventional liquid crystal display (LCD) is limited by the fabricating process of display substrate and the driving method of thin-film-transistor. So it is difficult to achieve a large-screen outdoor LCD display. The outdoor large-screen displays are generally light emitting diode (LED) chip array displays. However, the light emitting diode chip of LED chip array displays has a wide emission spectrum, resulting in a narrow color gamut of the display device.

    [0004] Accordingly, it is desirable to provide a display device, and a related fabricating method.

    [0005] US patent application US 2014/339495 A1 discloses a light emitting device including a micro LED device bonded to a bottom electrode, a top electrode in electrical contact with the micro LED device, and a wavelength conversion layer around the micro LED device.

    [0006] US patent application US 2014/367633 A1 discloses a display which includes a substrate including an array of pixels with each pixel including multiple subpixels, and wherein each subpixel within a pixel is designed for a different color emission spectrum. An array of micro LED device pairs are mounted within each subpixel to provide redundancy. An array of wavelength conversions layers comprising phosphor particles are formed over the array of micro LED device pairs for tunable color emission spectrum.

    [0007] International patent application WO 2015/026033 A1 discloses a display device including a lower substrate disposed with a line electrode at an upper portion thereof, a plurality of semiconductor light emitting devices electrically connected to the line electrode to generate light, a wavelength converter disposed on the semiconductor light emitting device to convert a wavelength of light generated from the semiconductor light emitting device, and a conductive adhesive layer comprising conductors configured to electrically connect the lower substrate to the semiconductor light emitting device and a body configured to surround the conductors, wherein the semiconductor light emitting device has a composition formula of InxAlyGal-x-yN (O≤x≤1, 0≤y≤1, 0≤x+y≤1).

    BRIEF SUMMARY



    [0008] In accordance with various embodiments, the disclosed subject matter provides a display device and a related fabricating method.

    [0009] On aspect of the disclosed subject matter provides a display device. The display device comprising: a substrate; a plurality of display units on the substrate; wherein each of the plurality of display units comprises: a first color sub-pixel, comprising a first quantum dot material and a first light source in a first isolating channel, wherein the first color sub-pixel is configured to provide a first color light by stimulating the first quantum dot material with the first light source; a second color sub-pixel, comprising a second quantum dot material and a second light source in a second isolating channel, wherein the second color sub-pixel is configured to provide a second color light by stimulating the second quantum dot material with the second light source; wherein each of the first isolating channel and the second isolating channel comprises an isolating wall perpendicular to the substrate and an isolating layer parallel to the substrate, and the isolating wall and the isolating layer are integrated, and wherein the first isolating channel and the second isolating channel are for optical isolating the first color sub-pixel and the second color sub-pixel from each other.

    [0010] In some embodiments, the first quantum dot material and the second quantum dot material comprise nanoparticles made of Group II-VI or Group III-V elements.

    [0011] In some embodiments, the first quantum dot material and the second quantum dot material are same quantum dot material but have different sizes.

    [0012] In some embodiments, the first color light is red light and the second color light is green light; the first quantum dot material comprises nanoparticles of CuInSe or InP; and the second quantum dot material comprises nanoparticles of CuInS.

    [0013] In some embodiments, each of the plurality of display units further comprises a third color sub-pixel that comprises a third light source and a third quantum dot material, wherein the third subunit is configured to provide a third color light by stimulating the third quantum dot material with the third light source.

    [0014] In some embodiments, the third color light is blue light; the third light source is a ultraviolet (UV) light source; and the third quantum dot material comprises nanoparticles of ZnS or CdS.

    [0015] In some embodiments, each of the plurality of display units further comprises a third color sub-pixel that comprises a third light source and a transparent material, wherein the transparent material transmits a third color light emitting from the third light source.

    [0016] In some embodiments, the first light source, the second light source and the third light source are blue LED light sources.

    [0017] In some embodiments, each of the plurality of display units further comprises isolating channels for optical isolating the first color sub-pixel, the second color sub-pixel and the third color sub-pixel from each other.

    [0018] In some embodiments, each isolating channels have reflecting inner surfaces for reflecting light.

    [0019] In some embodiments, each of the plurality of display units further comprises a light filter layer.

    [0020] In some embodiments, the display device further comprises: a driving circuit connecting with the plurality of light sources; and a heat sink plate located on the driving circuit.

    [0021] Another aspect of the disclosed subject matter provides a method for fabricating the disclosed display device. The method comprises: providing a substrate; and setting a plurality of light sources consisting of light emitting diodes on the substrate; forming a plurality of first color sub-pixels by forming a first quantum dot material associated with a first subset of the plurality of light sources; and forming a plurality of second color sub-pixels by forming a second quantum dot material associated with a second subset of the plurality of light sources; wherein the first quantum dot material and one light source of the first subset are located in a first isolating channel, and the second quantum dot material and one light source of the second subset are located in a second isolating channel; wherein each of the plurality of first color sub-pixels can provide a first color light by stimulating the first quantum dot material with one corresponding light source in the first subset of the plurality of light sources; and wherein each of the plurality of the second color sub-pixels can provide a second color light by stimulating the second quantum dot material with one corresponding light source in the second subset of the plurality of light sources; wherein each of the first isolating channel and the second isolating channel comprises an isolating wall perpendicular to the substrate and an isolating layer parallel to the substrate, and the isolating wall and the isolating layer are integrated, and wherein the first isolating channel and the second isolating channel are for optical isolating the plurality of first color sub-pixels and the plurality of second color sub-pixels from each other.

    [0022] In some embodiments, the first quantum dot material comprise nanoparticles of a material in a first size range; and the second quantum dot material comprise nanoparticles of the material in a second size range.

    [0023] In some embodiments, the method further comprises forming a plurality of third color sub-pixels by forming a third quantum dot material associated with a third subset of the plurality of light sources; wherein each of the plurality of third color sub-pixels can provide a third color light by stimulating the third quantum dot material with one corresponding light source in the third subset of the plurality of light sources.

    [0024] In some embodiments, the method further comprises forming a plurality of third color sub-pixels by forming a transparent material associated with a third subset of the plurality of light sources; wherein each of the plurality of third color sub-pixels can provide a third color light by transmits a third color light emitting from one corresponding light source in the third subset of the plurality of light sources through the transparent material.

    [0025] The method further comprises forming a plurality of isolating channels to isolate the plurality of first color sub-pixels, and the plurality of second color sub-pixels from each other.

    [0026] In some embodiments, the method further comprises forming reflecting inner surfaces for each isolating channel.

    [0027] In some embodiments, the method further comprises setting a driving circuit connecting with the plurality of light sources.

    [0028] In some embodiments, the method further comprises setting a heat sink plate located under the driving circuit.

    [0029] In some embodiments, the method further comprises forming a light filter layer on the plurality of isolating channels.

    [0030] In some embodiments, the method further comprises forming a cover layer on the plurality of isolating channels.

    [0031] Other aspects of the present disclosure can be understood by those skilled in the art in light of the description, the claims, and the drawings of the present disclosure.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0032] Various objects, features, and advantages of the disclosed subject matter can be more fully appreciated with reference to the following detailed description of the disclosed subject matter when considered in connection with the following drawings, in which like reference numerals identify like elements. It should be noted that the following drawings are merely examples for illustrative purposes according to various disclosed embodiments and are not intended to limit the scope of the present disclosure which is only limited by the appended claims.

    FIG. 1 is a schematic structure diagram of an exemplary display unit of a display device in accordance with some embodiments of the disclosed subject matter;

    FIG. 2 is a schematic structure diagram of another exemplary display unit of the display device in accordance with some embodiments of the disclosed subject matter;

    FIG. 3 shows an exemplary method for fabricating a display device in accordance with some embodiments of the disclosed subject matter; and

    FIG. 4 shows another exemplary method for fabricating a display device in accordance with some embodiments of the disclosed subject matter.


    DETAILED DESCRIPTION



    [0033] For those skilled in the art to better understand the technical solution of the disclosed subject matter, reference will now be made in detail to exemplary embodiments of the disclosed subject matter, which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts.

    [0034] In accordance with various embodiments, the disclosed subject matter provides a display device, and a related fabricating method.

    [0035] On aspect of the disclosed subject matter provides a display device. The display device can comprise a substrate and a plurality of display units on the substrate. Each of the plurality of display units comprises: a first color sub-pixel, comprising a first quantum dot material and a first light source, wherein the first color sub-pixel is configured to provide a first color light by stimulating the first quantum dot material with the first light source; and a second color sub-pixel, comprising a second quantum dot material and a second light source, wherein the second color sub-pixel is configured to provide a second color light by stimulating the second quantum dot material with the second light source.

    [0036] In some embodiments, the display device comprises a substrate and multiple display units above the substrate. For example, FIGS. 1 and 2 show schematic structure diagrams of two exemplary display units of a display device in accordance with some embodiments of the disclosed subject matter.

    [0037] As illustrated in FIG. 1, a first exemplary display unit can include multiple light sources 101 and multiple quantum dot material regions 102. In some embodiments, a display unit can include three subunits. Each subunit corresponds to a color sub-pixel, and can include a light source 101 and a quantum dot material region 102.

    [0038] The material constituting the quantum dot material region 102 includes quantum dot material. In some embodiments, the quantum dots material can have photoluminescence ability. The quantum dot material can be provided around the light exiting surfaces of one or more light sources 101. For example, one quantum dot material region 102 can correspond to one light source 101, which can make a high resolution and a small mixed light influence. As another example, one quantum dot material region 102 can correspond to multiple light sources 101, which can make a low resolution and relatively large pixels. As yet another example, multiple quantum dot material regions 102 can correspond to one light source 101, which can make a high brightness.

    [0039] In some embodiments, quantum dot material is a solid material that multiple quantum dots 103 are uniformly distributed therein. The solid material encases one or more light sources 101. In some embodiments, the solid material also comprises photoresist.

    [0040] In some embodiments, light source 101 is used to emit light for stimulating multiple quantum dots 103. The wavelength of the light emitted from light source 101 is generally no more than 450nm. In some embodiments, light sources 101 can be ultraviolet (UV) light sources or blue light-emitting-diode (LED) light sources. Normally, a short wavelength light can stimulate the quantum dot material to produce longer wavelength light.

    [0041] In some embodiments, the quantum dot material can produce color light when multiple quantum dots 103 are in excited states. In some embodiments, the display device can provide high color gamut light and keep a low power consumption by exciting quantum dots 103.

    [0042] In some embodiments, quantum dot 103 can be nanocrystal, which is a nanoparticle made of Group II-VI or Group III-V elements. For example, quantum dot 103 can be nanocrystal of cadmium selenide (CdSe),indium phosphide (InP), copper indium gallium selenide (CuInSe), copper indium sulfur (CuInS), or other suitable quantum dot material. In some embodiments, the quantum dot material can also include single layer or multi-layer of coated cadmium sulfur (CdS) or zinc sulfur (ZnS).

    [0043] A quantum dot 103 can include electron-hole pairs. The number of the electron-hole pairs is an integer, for example, between 1 to 100. So a charge of a quantum dot 103 is an integer multiple of the elementary charge. The particle size of a quantum dot 103 is generally between 1nm to lOnm. In a quantum dot 103, due to the quantum confinement of the electrons and holes, the continuous band structure of single electron or hole no longer exists, the quantum dot 103 can have a discrete-level energy structure which is more like a molecular property. Therefore, a stimulated quantum dot 103 can emit light.

    [0044] In some embodiments, quantum dot material region 102 includes a first color region, a second color region, and a third color region. The first color region can emit red light when quantum dots 103 in the first color region are in the excited states, the second color region can emit green light when quantum dots 103 in the second color region are in the excited state, the third color region can emit blue light when quantum dots 103 in the third color region are in the excited state.

    [0045] In some embodiments, quantum dot 103 can have quantum size effect. For same quantum dot material, a quantom dot has a large size can emit light with longer wavelength. For example, a 5nm-7nm CdSe particle can emit red light, while a 3nm-5nm CdSe particle can emit green light.

    [0046] In some embodiments, different quantum dot materials can be used for emitting different color light. For example, nanoparticles of CuInSe or InP can be used for emitting red light, nanoparticles of CuInS can be used for emitting green light. In such example, the sizes of the nanoparticles can in a range of 8nm-12 nm. As another example, a UV light source can make 2nm-4nm ZnS or CdS nanoparticles to emit blue light.

    [0047] In some embodiments, a color filter layer is located above the display unit. The color filter layer can include multiple color areas corresponding to the first color region, the second color region, and the third color region. The color filter layer is used to adjust the light emitted from the quantum dot material region for making a white light when the quantum dots 103 are in the excited states. Therefore, a color display function can be realized.

    [0048] In some embodiments, the display unit can further comprise isolating wall 104 for isolating light between neighboring color regions. Isolating wall 104 can avoid the interferences between different quantum dot material regions 102, thereby improve the contrast of the display device.

    [0049] In some embodiments, the display unit can further comprise isolating layer 105 below light source 101. Isolating layer 105 and multiple isolating walls 104 can be integrated to form multiple isolating channels, and quantum dot material can be located in the multiple isolating channels. In some embodiments, the material of isolating wall 104 and isolating layer 105 can include a black resin material. The multiple isolating channels can be used for optical isolating adjacent subunits.

    [0050] In some embodiments, the inner surfaces of isolating wall 104 and/or the inner surface of isolation layer 105 can be light reflecting surfaces for reflecting the light emitted from light source 101 and quantum dot material region 102.

    [0051] In some embodiments, the display unit can further comprise driving circuit 106 and heat sink plate 107. Driving circuit 106 is connected with multiple light sources 101, and is located above heat sink plate 107. Driving circuit 106 can be used for supplying driving signals to multiple light sources 101, and heat sink plate 107 can be used for heat dissipation of driving circuit 106 and the display unit.

    [0052] Turing to FIG. 2, a schematic structure diagram of a second exemplary display unit of a display device is shown in accordance with some embodiments of the disclosed subject matter.

    [0053] As illustrated, comparing to the first exemplary display unit described above in FIG. 1, the second exemplary display unit also includes a first color region, a second color region, but does not include a third region. Instead, a transparent region 108 is included in the second exemplary display unit.

    [0054] In some embodiments, transparent region 108 can include one light source 101 and an optical layer surrounding the light source 101. The optical layer is a transparent material, such as a transparent resin material. Transparent region 108 can be used for transmitting the light emitted from the light source 101 and the transparent material can make the emitted light soft and uniform.

    [0055] In some embodiments, the light source 101 in transparent region 108 includes a blue light emitting diode. So the first color region can emit red light when quantum dots 103 in the first color region are in the excited states, the second color region can emit green light when quantum dots 103 in the second color region are in the excited state, and the transparent region 108 can transmit blue light from the blue light emitting diode.

    [0056] In some embodiments, the light sources 101 in all three regions can be blue LED light sources. The display unit corresponds to a pixel and the three subunits correspond to three color sub-pixels.

    [0057] Accordingly, a display device is provided. The display device can include a substrate and multiple display units above the substrate. The multiple display units can include multiple display units shown in FIG. 1, and/or multiple display units shown in FIG. 2. A display unit can include multiple light sources and multiple quantum dot material regions. A quantum dot material region can include quantum dot material surrounding a light source. The quantum dot material can produce color light when the quantum dot material is stimulated by the light emitted from the light source. The display device can provide high color gamut light and keep a low power consumption by exciting quantum dots.

    [0058] Another aspect of the disclosed subject matter provides a method for fabricating the disclosed display device. As illustrated in FIG. 3, the method can comprise: providing a substrate at P100; setting a plurality of light sources on the substrate at P200; forming a plurality of first color sub-pixels at P300 by forming a first quantum dot material associated with a first subset of the plurality of light sources; and forming a plurality of second color sub-pixels at P400 by forming a second quantum dot material associated with a second subset of the plurality of light sources. Wherein each of the plurality of first color sub-pixels can provide a first color light by stimulating the first quantum dot material with one corresponding light source in the first subset of the plurality of light sources. And each of the plurality of the second color sub-pixels can provide a second color light by stimulating the second quantum VO/VO 161358EP dot material with one corresponding light source in the second subset of the plurality of light sources.

    [0059] Turning to FIG. 4, another exemplary method for fabricating a display device described above is shown in accordance with some embodiments of the disclosed subject matter.

    [0060] As illustrated, the method can start at S 100 by providing a substrate. In some embodiments, the substrate can be any suitable substrate, such as a glass substrate, a plastic substrate, a metal foil substrate, a flexible substrate, etc.

    [0061] At S200, a heat sink plate can be formed on the substrate. In some embodiments, the heat sink plate can be any suitable material that has a good thermal conductivity, such as copper, silver, aluminum alloy, or any other suitable composite materials.

    [0062] At S300, a driving circuit connecting with multiple light sources can be formed on the heat sink plate. In some embodiments, the driving circuit can provide control signals to the multiple light sources. The multiple light sources can be uniformly distributed on the substrate in a two dimensional basis. The multiple light sources are any suitable light emitting diodes, such as blue light-emitting-diode (LED) light sources, ultraviolet (UV) LED light sources, etc. In some embodiments, each light source can be a light source for a red-green-blue (RGB) sub-pixel of the display device.

    [0063] At S400, multiple display units can be formed. The multiple display units can be uniformly distributed on the substrate in a two dimensional basis. Each display unit corresponds to a RGB pixel of the display device. Each display unit includes three subunits that correspond to red sub-pixel, green sub-pixel and blue sub-pixel respectively.

    [0064] In some embodiments, each subunit include a isolating channel and a corresponding light source in the isolating channel. In some embodiments, an isolating channel can include an isolating layer parallel to the substrate, and one or more isolating walls perpendicular to the substrate. The isolating layer and the one or more isolating walls can include a black resin material. In some embodiments, the isolating channels can be formed by any suitable method, such as photolithography method, bonding method, and/or mold injection method. The isolating channels can optically isolate adjacent subunits.

    [0065] At 500, a first quantum dot material can be formed in multiple subunits in each of the multiple display units. The first quantum dot material can be formed surrounding the light exiting surface of the light source located in the first isolating channel. The first quantum dot material can provide a first color light when the first quantum dot material is stimulated by the light emitted from the light source located in the first isolating channel.

    [0066] At 600, a second quantum dot material can be formed in multiple subunits in each of the multiple display units. The second quantum dot material can be formed surrounding the light exiting surface of the light source located in the second isolating channel. The second quantum dot material can provide a second color light when the second quantum dot material is stimulated by the light emitted from the light source located in the second isolating channel.

    [0067] At S700, a third material can be formed in multiple third subunits in each of the multiple display units. The third material can be formed surrounding the light exiting surface of the light source located in the third isolating channel.

    [0068] In some embodiments, the third material can be a third quantum dot material. The third quantum dot material can provide a third color light when the third quantum dot material is stimulated by the light emitted from the light source located in the third isolating channel.

    [0069] In some embodiments, the third material can be a transparent material. The transparent material can be any suitable transparent material, such as a transparent resin material. Transparent material can transmit a third color light emitted from the light source located in the third isolating channel.

    [0070] In some embodiments, the first color light is a red light, the second color light is a green light, and the third color light is a blue light. The first subunits are red sub-pixels, the second subunits are green sub-pixels, and the third subunits are blue sub-pixels.

    [0071] In some embodiments, the first quantum dot material, the second quantum dot material, the third quantum dot material, and/or the transparent material can be formed by any suitable process, such as injection process, coating process, or attaching process. For example, the first quantum dot material, the second quantum dot material, the third quantum dot material, and/or the transparent material can be formed by a micro-injection method, such as inkjet method or rotating printing method.

    [0072] At S800, a light filter layer and/or a cover layer can be formed on the multiple display units. In some embodiments, the color filter layer can be used to adjust the colors of light emitted from the multiple display units. In some embodiments, the cover layer can be used for protecting the display device.

    [0073] It should be noted that the above steps of the flow diagrams of FIGS. 3 and 4 can be executed or performed in any order or sequence not limited to the order and sequence shown and described in the figures. Also, some of the above steps of the flow diagrams of FIGS. 3 and 4 can be executed or performed substantially simultaneously where appropriate or in parallel to reduce latency and processing times. Furthermore, it should be noted that FIGS. 3 and 4 are provided as examples only. At least some of the steps shown in the figures may be performed in a different order than represented, performed concurrently, or altogether omitted. Some additional steps not shown in the figures may be performed between any of the steps shown in the figure.

    [0074] The provision of the examples described herein (as well as clauses phrased as "such as," "e.g.," "including," and the like) should not be interpreted as limiting the claimed subject matter to the specific examples; rather, the examples are intended to illustrate only some of many possible aspects.

    [0075] Accordingly, a display device, and a related fabricating method are provided.

    [0076] Although the disclosed subject matter has been described and illustrated in the foregoing illustrative embodiments, it is understood that the present disclosure has been made only by way of example, and that numerous changes in the details of embodiment of the disclosed subject matter can be made without departing from the spirit and scope of the disclosed subject matter, which is only limited by the claims which follow. Features of the disclosed embodiments can be combined and rearranged in various ways.


    Claims

    1. A display device, comprising:
    a substrate; and

    a plurality of display units on the substrate;

    wherein each of the plurality of display units comprises:

    a first color sub-pixel, comprising a first quantum dot material and a first light source (101) located in a first isolating channel, wherein the first color sub-pixel is configured to provide a first color light by stimulating the first quantum dot material with the first light source (101);

    a second color sub-pixel, comprising a second quantum dot material and a second light source (101) located in a second isolating channel, wherein the second color sub-pixel is configured to provide a second color light by stimulating the second quantum dot material with the second light source (101); and

    wherein each light source (101) is a light emitting diode,

    characterised in that

    each of the first isolating channel and the second isolating channel comprises an isolating wall (104) perpendicular to the substrate and an isolating layer (105) parallel to the substrate, and the isolating wall (104) and the isolating layer (105) are integrated, and wherein the first isolating channel and the second isolating channel are for optical isolating the first color sub-pixel and the second color sub-pixel from each other.


     
    2. The display device of claim 1, wherein the first quantum dot material and the second quantum dot material comprise nanoparticles made of Group II-VI or Group III-V elements.
     
    3. The display device of claim 1, wherein the first quantum dot material and the second quantum dot material are same quantum dot material but have different sizes.
     
    4. The display device of claim 1, wherein:
    the first color light is red light and the second color light is green light;
    the first quantum dot material comprises nanoparticles of CuInSe or InP; and
    the second quantum dot material comprises nanoparticles of CulnS.
     
    5. The display device of claim 1, wherein each of the plurality of display units further comprises a third color sub-pixel that comprises a third light source (101) and a third quantum dot material, wherein the third subunit is configured to provide a third color light by stimulating the third quantum dot material with the third light source (101).
     
    6. The display device of claim 5, wherein:

    the third color light is blue light;

    the third light source (101) is a ultraviolet (UV) light source; and

    the third quantum dot material comprises nanoparticles of ZnS or CdS.


     
    7. The display device of claim 1, wherein each of the plurality of display units further comprises a third color sub-pixel that comprises a third light source (101) and a transparent material, wherein the transparent material transmits a third color light emitting from the third light source (101),
    preferably, the first light source (101), the second light source (101) and the third light source (101) are blue LED light sources.
     
    8. The display device of claim 5, wherein each of the plurality of display units further comprises a third isolating channel, wherein the third quantum dot material and the third light source (101) are located in the third isolating channel, the third isolating channel comprises an isolating wall (104) perpendicular to the substrate and an isolating layer (105) parallel to the substrate, the isolating wall (104) and the isolating layer (105) are integrated, and the third isolating channel is for optical isolating the third color sub-pixel from the first color sub-pixel and the second color sub-pixel,
    preferably, each isolating channels have reflecting inner surfaces for reflecting light.
     
    9. The display device of claim 1, wherein each of the plurality of display units further comprises a light filter layer;

    optionally, a driving circuit (106) connecting with the plurality of light sources (101); and

    a heat sink plate (107) located on the driving circuit (106).


     
    10. A method for fabricating a display device, the method comprising:

    providing a substrate;

    setting a plurality of light sources (101) consisting of light emitting diodes on the substrate;

    forming a plurality of first color sub-pixels by forming a first quantum dot material associated with a first subset of the plurality of light sources (101);

    forming a plurality of second color sub-pixels by forming a second quantum dot material associated with a second subset of the plurality of light sources (101); and

    wherein the first quantum dot material and one light source of the first subset are located in a first isolating channel, and the second quantum dot material and one light source of the second subset are located in a second isolating channel;

    wherein each of the plurality of first color sub-pixels can provide a first color light by stimulating the first quantum dot material with one corresponding light source (101) in the first subset of the plurality of light sources (101); and

    wherein each of the plurality of the second color sub-pixels can provide a second color light by stimulating the second quantum dot material with one corresponding light source (101) in the second subset of the plurality of light sources (101); characterised in that

    each of the first isolating channel and the second isolating channel comprises an isolating wall (104) perpendicular to the substrate and an isolating layer (105) parallel to the substrate, and the isolating wall (104) and the isolating layer (105) are integrated, and wherein the first isolating channel and the second isolating channel are for optical isolating the plurality of first color sub-pixels and the plurality of second color sub-pixels from each other.


     
    11. The method of claim 10, wherein :

    the first quantum dot material comprise nanoparticles of a material in a first size range; and

    the second quantum dot material comprise nanoparticles of the material in a second size range.


     
    12. The method of claim 10, further comprising:

    forming a plurality of third color sub-pixels by forming a third quantum dot material associated with a third subset of the plurality of light sources (101);

    wherein each of the plurality of third color sub-pixels can provide a third color light by stimulating the third quantum dot material with one corresponding light source (101) in the third subset of the plurality of light sources (101);

    optionally,

    forming a plurality of third color sub-pixels by forming a transparent material associated with a third subset of the plurality of light sources (101);

    wherein each of the plurality of third color sub-pixels can provide a third color light by transmitting a third color light emitting from one corresponding light source (101) in the third subset of the plurality of light sources (101) through the transparent material; and wherein the third quantum dot material and the one corresponding light source are located in a third isolating channel, the third isolating channel comprises an isolating wall (104) perpendicular to the substrate and an isolating layer (105) parallel to the substrate, the isolating wall (104) and the isolating layer (105) are integrated, and the third isolating channel is for optical isolating the plurality of third color sub-pixels from the plurality of first color sub-pixels and the plurality of second color sub-pixels.


     
    13. The method of claim 10, further comprising forming reflecting inner surfaces for each isolating channel,
    optionally, the method further comprising forming a light filter layer on the plurality of isolating channels,
    optionally, the method further comprising forming a cover layer on the plurality of isolating channels.
     
    14. The method of claim 10, further comprising setting a driving circuit (106) connecting with the plurality of light sources (101).
     
    15. The method of claim 14, further comprising setting a heat sink plate (107) located under the driving circuit (106).
     


    Ansprüche

    1. Anzeigevorrichtung, aufweisend:

    ein Substrat; und

    mehrere Anzeigeeinheiten auf dem Substrat;

    wobei jede der mehreren Anzeigeeinheiten aufweist:

    ein erstes Farb-Subpixel, das ein erstes Quantenpunktmaterial und eine erste Lichtquelle (101) umfasst, die in einem ersten isolierenden Kanal angeordnet sind,

    wobei das erste Farb-Subpixel konfiguriert ist, um durch Anregen des ersten Quantenpunktmaterials mit der ersten Lichtquelle (101) ein Licht einer ersten Farbe vorzusehen;

    ein zweites Farb-Subpixel, das ein zweites Quantenpunktmaterial und eine zweite Lichtquelle (101) umfasst, die in einem zweiten isolierenden Kanal angeordnet sind,

    wobei das zweite Farb-Subpixel konfiguriert ist, um durch Anregen des zweiten Quantenpunktmaterials mit der zweiten Lichtquelle (101) ein Licht einer zweiten Farbe vorzusehen; und

    wobei jede Lichtquelle (101) eine lichtemittierende Diode ist,

    dadurch gekennzeichnet, dass

    jeder von dem ersten isolierenden Kanal und dem zweiten isolierenden Kanal eine isolierende Wand (104) senkrecht zu dem Substrat und eine isolierende Schicht (105) parallel zu dem Substrat aufweist, und

    die isolierende Wand (104) und die isolierende Schicht (105) integriert sind, und wobei der erste isolierende Kanal und der zweite isolierende Kanal dazu dienen, das erste Farb-Subpixel und das zweite Farb-Subpixel voneinander optisch zu isolieren.


     
    2. Anzeigevorrichtung nach Anspruch 1, wobei das erste Quantenpunktmaterial und das zweite Quantenpunktmaterial Nanopartikel umfassen, die aus Elementen der Gruppe II-VI oder der Gruppe III-V hergestellt sind.
     
    3. Anzeigevorrichtung nach Anspruch 1, wobei das erste Quantenpunktmaterial und das zweite Quantenpunktmaterial dasselbe Quantenpunktmaterial sind, jedoch unterschiedliche Größen haben.
     
    4. Anzeigevorrichtung nach Anspruch 1, wobei:

    das Licht der ersten Farbe rotes Licht ist und das Licht der zweiten Farbe grünes Licht ist; das erste Quantenpunktmaterial Nanopartikel aus CuInSe oder

    InP umfasst; und das zweite Quantenpunktmaterial Nanopartikel aus CuInS umfasst.


     
    5. Anzeigevorrichtung nach Anspruch 1, wobei jede der mehreren Anzeigeeinheiten ferner ein drittes Farb-Subpixel umfasst, das eine dritte Lichtquelle (101) und ein drittes Quantenpunktmaterial umfasst, wobei die dritte Sub-Einheit konfiguriert ist, um ein Licht einer dritten Farbe durch Anregen des dritten Quantenpunktmaterials mit der dritten Lichtquelle (101) vorzusehen.
     
    6. Anzeigevorrichtung nach Anspruch 5, wobei:

    das Licht der dritten Farbe blaues Licht ist;

    die dritte Lichtquelle (101) eine ultraviolette (UV) Lichtquelle ist; und

    das dritte Quantenpunktmaterial Nanopartikel aus ZnS oder CdS umfasst.


     
    7. Anzeigevorrichtung nach Anspruch 1, wobei jede der mehreren Anzeigeeinheiten ferner ein drittes Farb-Subpixel umfasst, das eine dritte Lichtquelle (101) und ein transparentes Material umfasst, wobei das transparente Material ein Licht einer dritten Farbe überträgt, das von der dritten Lichtquelle (101) emittiert wird,
    vorzugsweise die erste Lichtquelle (101), die zweite Lichtquelle (101) und die dritte Lichtquelle (101) blaue LED-Lichtquellen sind.
     
    8. Anzeigevorrichtung nach Anspruch 5, wobei jede der mehreren Anzeigeeinheiten ferner einen dritten isolierenden Kanal aufweist, wobei das dritte Quantenpunktmaterial und die dritte Lichtquelle (101) in dem dritten isolierenden Kanal angeordnet sind, der dritte isolierende Kanal eine isolierende Wand (104) senkrecht zu dem Substrat und eine isolierende Schicht (105) parallel zu dem Substrat aufweist, die isolierende Wand (104) und die isolierende Schicht (105) integriert sind und der dritte isolierende Kanal dazu dient, das dritte Farb-Subpixel von dem ersten Farb-Subpixel und von dem zweiten Farb-Subpixel optisch zu isolieren,
    vorzugsweise hat jeder isolierende Kanal reflektierende Innenflächen zur Lichtreflexion.
     
    9. Anzeigevorrichtung nach Anspruch 1, wobei jede der mehreren Anzeigeeinheiten ferner eine Lichtfilterschicht aufweist;
    wobei wahlweise eine Treiberschaltung (106) mit den mehreren Lichtquellen (101) verbunden ist; und
    eine Kühlkörperplatte (107) auf der Treiberschaltung (106) angeordnet ist.
     
    10. Verfahren zum Herstellen einer Anzeigevorrichtung, wobei das Verfahren umfasst:

    Vorsehen eines Substrats;

    Setzen mehrerer Lichtquellen (101), die auf lichtemittierenden Dioden basieren, auf das Substrat;

    Bilden mehrerer erster Farb-Subpixel durch Bilden eines ersten Quantenpunktmaterials, das einem ersten Teilsatz der mehreren Lichtquellen (101) zugeordnet ist;

    Bilden mehrerer zweiter Farb-Subpixel durch Bilden eines zweiten Quantenpunktmaterials, das einem zweiten Teilsatz der mehreren Lichtquellen (101) zugeordnet ist; und

    wobei das erste Quantenpunktmaterial und eine Lichtquelle des ersten Teilsatzes in einem ersten isolierenden Kanal angeordnet werden und das zweite Quantenpunktmaterial und eine Lichtquelle des zweiten Teilsatzes in einem zweiten isolierenden Kanal angeordnet werden;

    wobei jedes der mehreren ersten Farb-Subpixel ein Licht einer ersten Farbe durch Anregen des ersten Quantenpunktmaterials mit einer entsprechenden Lichtquelle (101) in dem ersten Teilsatz der mehreren Lichtquellen (101) vorsehen kann; und

    wobei jedes der mehreren zweiten Farb-Subpixel ein Licht einer zweiten Farbe durch Anregen des zweiten Quantenpunktmaterials mit einer entsprechenden Lichtquelle (101) in dem zweiten Teilsatz der mehreren Lichtquellen (101) vorsehen kann; dadurch gekennzeichnet, dass

    jeder von dem ersten isolierenden Kanal und dem zweiten isolierenden Kanal eine isolierende Wand (104) senkrecht zu dem Substrat und eine isolierende Schicht (105) parallel zu dem Substrat aufweist, und die isolierende Wand (104) und die isolierende Schicht (105) integriert sind, und wobei der erste isolierende Kanal und der zweite isolierende Kanal dazu dient, die mehreren ersten Farb-Subpixel und die mehreren zweiten Farb-Subpixel voneinander optisch zu isolieren.


     
    11. Verfahren nach Anspruch 10, wobei:

    das erste Quantenpunktmaterial Nanopartikel eines Materials in einem ersten Größenbereich umfasst; und

    das zweite Quantenpunktmaterial Nanopartikel des Materials in einem zweiten Größenbereich umfasst.


     
    12. Verfahren nach Anspruch 10, ferner umfassend:

    Bilden mehrerer dritter Farb-Subpixel durch Bilden eines dritten Quantenpunktmaterials, das einem dritten Teilsatz der mehreren Lichtquellen (101) zugeordnet ist;

    wobei jedes der mehreren dritten Farb-Subpixel ein Licht einer dritten Farbe durch Anregen des dritten Quantenpunktmaterials mit einer entsprechenden Lichtquelle (101) in dem dritten Teilsatz der mehreren Lichtquellen (101) vorsehen kann;

    wahlweise,

    Bilden mehrerer dritter Farb-Subpixel durch Bilden eines transparenten Materials, das einem dritten Teilsatz der mehreren Lichtquellen (101) zugeordnet ist;

    wobei jedes der mehreren dritten Farb-Subpixel ein Licht einer dritten Farbe vorsehen kann, indem ein Licht einer dritter Farbe, das von einer entsprechenden Lichtquelle (101) in dem dritten Teilsatz der mehreren Lichtquellen (101) emittiert wird, durch das transparente Material hindurch übertragen wird; und

    wobei das dritte Quantenpunktmaterial und die eine entsprechende Lichtquelle in einem dritten isolierenden Kanal angeordnet werden,

    der dritte isolierende Kanal eine isolierende Wand (104) senkrecht zu dem Substrat und eine isolierende Schicht (105) parallel zu dem Substrat aufweist, die isolierende Wand (104) und die isolierende Schicht (105) integriert sind und der dritte isolierende Kanal dazu dient, die mehreren dritten Farb-Subpixel von den mehreren ersten Farb-Subpixeln und von den mehreren zweiten Farb-Subpixeln optisch zu isolieren.


     
    13. Verfahren nach Anspruch 10, ferner ein Bilden reflektierender Innenflächen für jeden isolierenden Kanal umfassend,
    wobei das Verfahren wahlweise ferner ein Bilden einer Lichtfilterschicht auf den mehreren isolierenden Kanälen umfasst,
    wobei das Verfahren wahlweise ferner ein Bilden einer Deckschicht auf den mehreren isolierenden Kanälen umfasst.
     
    14. Verfahren nach Anspruch 10, ferner ein Setzen einer Treiberschaltung (106) umfassend, die mit den mehreren Lichtquellen (101) verbunden wird.
     
    15. Verfahren nach Anspruch 14, ferner umfassend:
    Setzen einer Kühlkörperplatte (107), die unter der Treiberschaltung (106) angeordnet wird.
     


    Revendications

    1. Dispositif d'affichage, comprenant :

    un substrat ; et

    une pluralité d'unités d'affichage sur le substrat ;

    dans lequel chacune de la pluralité d'unités d'affichage comprend :

    un premier sous-pixel de couleur, comprenant un premier matériau de boîte quantique et une première source de lumière (101) située dans un premier canal d'isolation, dans lequel le premier sous-pixel de couleur est configuré pour fournir une première lumière colorée par stimulation du premier matériau de boîte quantique avec la première source de lumière (101) ;

    un deuxième sous-pixel de couleur, comprenant un deuxième matériau de boîte quantique et une deuxième source de lumière (101) située dans un deuxième canal d'isolation, dans lequel le deuxième sous-pixel de couleur est configuré pour fournir une deuxième lumière colorée par stimulation du deuxième matériau de boîte quantique avec la deuxième source de lumière (101) ; et

    dans lequel chaque source de lumière (101) est une diode électroluminescente,

    caractérisé en ce que chacun du premier canal d'isolation et du deuxième canal d'isolation comprend une paroi d'isolation (104) perpendiculaire au substrat et une couche d'isolation (105) parallèle au substrat, et la paroi d'isolation (104) et la couche d'isolation (105) sont intégrées, et dans lequel le premier canal d'isolation et le deuxième canal d'isolation servent à une isolation optique du premier sous-pixel de couleur et du deuxième sous-pixel de couleur l'un de l'autre.


     
    2. Dispositif d'affichage selon la revendication 1, dans lequel le premier matériau de boîte quantique et le deuxième matériau de boîte quantique comprennent des nanoparticules faites d'éléments des groupes II à VI ou des groupes III à V.
     
    3. Dispositif d'affichage selon la revendication 1, dans lequel le premier matériau de boîte quantique et le deuxième matériau de boîte quantique sont le même matériau de boîte quantique, mais ont des dimensions différentes.
     
    4. Dispositif d'affichage selon la revendication 1, dans lequel :
    la première lumière colorée est une lumière rouge et la deuxième lumière colorée est une lumière verte ; le premier matériau de boîte quantique comprend des nanoparticules de CuInSe ou d'InP ; et le deuxième matériau de boîte quantique comprend des nanoparticules de CuInS.
     
    5. Dispositif d'affichage selon la revendication 1, dans lequel chacune de la pluralité d'unités d'affichage comprend en outre un troisième sous-pixel de couleur qui comprend une troisième source de lumière (101) et un troisième matériau de boîte quantique, dans lequel la troisième sous-unité est configurée pour fournir une troisième lumière colorée par stimulation du troisième matériau de boîte quantique avec la troisième source de lumière (101).
     
    6. Dispositif d'affichage selon la revendication 5, dans lequel :

    la troisième lumière colorée est une lumière bleue ;

    la troisième source de lumière (101) est une source de lumière ultraviolette (UV) ; et

    le troisième matériau de boîte quantique comprend des nanoparticules de ZnS ou de CdS.


     
    7. Dispositif d'affichage selon la revendication 1, dans lequel chacune de la pluralité d'unités d'affichage comprend en outre un troisième sous-pixel de couleur qui comprend une troisième source de lumière (101) et un matériau transparent, dans lequel le matériau transparent transmet une troisième lumière colorée émettant depuis la troisième source de lumière (101),
    de préférence, la première source de lumière (101), la deuxième source de lumière (101) et la troisième source de lumière (101) sont des sources de lumière à DEL bleues.
     
    8. Dispositif d'affichage selon la revendication 5, dans lequel chacune de la pluralité d'unités d'affichage comprend en outre un troisième canal d'isolation, dans lequel le troisième matériau de boîte quantique et la troisième source de lumière (101) sont situés dans le troisième canal d'isolation, le troisième canal d'isolation comprend une paroi d'isolation (104) perpendiculaire au substrat et une couche d'isolation (105) parallèle au substrat, la paroi d'isolation (104) et la couche d'isolation (105) sont intégrées, et le troisième canal d'isolation sert à isoler optiquement le troisième sous-pixel de couleur du premier sous-pixel de couleur et du deuxième sous-pixel de couleur,
    de préférence, chaque canal d'isolation a des surfaces internes réfléchissantes pour réfléchir la lumière.
     
    9. Dispositif d'affichage selon la revendication 1, dans lequel chacune de la pluralité d'unités d'affichage comprend en outre une couche de filtrage de lumière ;
    facultativement, un circuit d'excitation (106) se connectant à la pluralité de sources de lumière (101) ; et
    une plaque d'absorption de chaleur (107) située sur le circuit d'excitation (106).
     
    10. Procédé de fabrication d'un dispositif d'affichage, le procédé comprenant :

    la fourniture d'un substrat ;

    le placement d'une pluralité de sources de lumière (101) constituées de diodes électroluminescentes sur le substrat ;

    la formation d'une pluralité de premiers sous-pixels de couleur par formation d'un premier matériau de boîte quantique associé à un premier sous-ensemble de la pluralité de sources de lumière (101) ;

    la formation d'une pluralité de deuxièmes sous-pixels de couleur par la formation d'un deuxième matériau de boîte quantique associé à un deuxième sous-ensemble de la pluralité de sources de lumière (101) ; et

    dans lequel le premier matériau de boîte quantique et une source de lumière du premier sous-ensemble sont situés dans un premier canal d'isolation, et le deuxième matériau de boîte quantique et une source de lumière du deuxième sous-ensemble sont situés dans un deuxième canal d'isolation ;

    dans lequel chacun de la pluralité de premiers sous-pixels de couleur peut fournir une première lumière colorée par stimulation du premier matériau de boîte quantique avec une source de lumière correspondante (101) dans le premier sous-ensemble de la pluralité de sources de lumière (101) ; et

    dans lequel chacun de la pluralité des deuxièmes sous-pixels de couleur peut fournir une deuxième lumière colorée par stimulation du deuxième matériau de boîte quantique avec une source de lumière correspondante (101) dans le deuxième sous-ensemble de la pluralité de sources de lumière (101) ; caractérisé en ce que

    chacun du premier canal d'isolation et du deuxième canal d'isolation comprend une paroi d'isolation (104) perpendiculaire au substrat et une couche d'isolation (105) parallèle au substrat, et la paroi d'isolation (104) et la couche d'isolation (105) sont intégrées, et dans lequel le premier canal d'isolation et le deuxième canal d'isolation servent à l'isolation optique de la pluralité de premier sous-pixels de couleur et de la pluralité de deuxièmes sous-pixels de couleur les uns des autres.


     
    11. Procédé selon la revendication 10, dans lequel :

    le premier matériau de boîte quantique comprend des nanoparticules d'un matériau dans une première plage de dimensions ; et

    le deuxième matériau de boîte quantique comprend des nanoparticules du matériau dans une seconde plage de dimensions.


     
    12. Procédé selon la revendication 10, comprenant en outre :

    la formation d'une pluralité de troisièmes sous-pixels de couleur par formation d'un troisième matériau de boîte quantique associé à un troisième sous-ensemble de la pluralité de sources de lumière (101) ;

    dans lequel chacun de la pluralité de troisièmes sous-pixels de couleur peut fournir une troisième lumière colorée par stimulation du troisième matériau de boîte quantique avec une source de lumière correspondante (101) dans le troisième sous-ensemble de la pluralité de sources de lumière (101) ;

    facultativement,

    la formation d'une pluralité de troisièmes sous-pixels de couleur par formation d'un matériau transparent associé à un troisième sous-ensemble de la pluralité de sources de lumière (101) ;

    dans lequel chacun de la pluralité de troisièmes sous-pixels de couleur peut fournir une troisième lumière colorée par transmission d'une troisième lumière colorée émettant depuis d'une source de lumière correspondante (101) dans le troisième sous-ensemble de la pluralité de sources de lumière (101) à travers le matériau transparent ; et

    dans lequel le troisième matériau de boîte quantique et la source de lumière correspondante sont situés dans un troisième canal d'isolation, le troisième canal d'isolation comprend une paroi d'isolation (104) perpendiculaire au substrat et une couche d'isolation (105) parallèle au substrat, la paroi d'isolation (104) et la couche d'isolation (105) sont intégrées, et le troisième canal d'isolation sert à isoler optiquement la pluralité de troisièmes sous-pixels de couleur de la pluralité de premiers sous-pixels de couleur et de la pluralité de deuxièmes sous-pixels de couleur.


     
    13. Procédé selon la revendication 10, comprenant en outre la formation de surfaces internes réfléchissantes pour chaque canal d'isolation,
    facultativement, le procédé comprenant en outre la formation d'une couche de filtrage de lumière sur la pluralité de canaux d'isolation,
    facultativement, le procédé comprenant en outre la formation d'une couche de revêtement sur la pluralité de canaux d'isolation.
     
    14. Procédé selon la revendication 10, comprenant en outre la pose d'un circuit d'excitation (106) se connectant à la pluralité de sources de lumière (101).
     
    15. Procédé selon la revendication 14, comprenant en outre
    la pose d'une plaque d'absorption de chaleur (107) située en dessous du circuit d'excitation (106).
     




    Drawing














    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description