(19)
(11)EP 3 333 031 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
22.05.2019 Bulletin 2019/21

(21)Application number: 17200745.2

(22)Date of filing:  09.11.2017
(51)International Patent Classification (IPC): 
B60T 17/18(2006.01)
B60T 7/12(2006.01)
B60T 8/17(2006.01)
B60T 13/66(2006.01)

(54)

BRAKE SYSTEM AND METHOD OF OPERATING

BREMSSYSTEM UND VERFAHREN ZUM BETRIEB

SYSTÈME DE FREINAGE ET SON PROCÉDÉ DE FONCTIONNEMENT


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 08.12.2016 US 201615373449

(43)Date of publication of application:
13.06.2018 Bulletin 2018/24

(73)Proprietor: Robert Bosch GmbH
70442 Stuttgart (DE)

(72)Inventors:
  • Li, Quingyuan
    Superior Twp., MI 48198 (US)
  • Zhou, Wenguang
    Novi, MI 48375 (US)
  • Irwan, Rosalin
    Ann Arbor, MI 48103 (US)


(56)References cited: : 
EP-A1- 1 671 865
EP-A1- 2 671 769
DE-A1- 10 342 937
JP-A- 2014 094 625
US-A1- 2003 020 327
EP-A1- 1 975 024
EP-A1- 3 056 398
DE-A1-102011 077 169
JP-A- 2016 147 644
US-A1- 2009 039 702
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    BACKGROUND



    [0001] The present invention relates to vehicle brake systems. It is known to provide a vehicle with a full-power brake system (also referred to as a "decoupled" or "brake-by-wire" system) in which driver applied force does not propagate to produce the actual braking force to the brake devices. Instead, fluid is pushed from the master cylinder into a simulator circuit while another mechanism provides the actual braking force. Although satisfactory for the intended purpose, a great number of valves and sensors must all be in working order to provide brake-by-wire operation, and it can be difficult to diagnose faults within the system.

    [0002] EP 1 671 865 A1 discloses a brake system according to the preamble of claim 1. A similar brake system is disclosed in JP 2014 094625 A.

    SUMMARY



    [0003] In one aspect, the invention provides a vehicle braking system including a master cylinder having an input side configured to receive an input from a brake pedal and an output side configured to provide a master cylinder output. At least one braking circuit has at least one wheel cylinder and a brake pressure generator separate from the brake pedal. A simulator circuit includes a pedal feel simulator coupled to the master cylinder output side through a switchable simulator valve, the pedal feel simulator providing a reaction force to the brake pedal when the switchable simulator valve is in an open position. At least one normally-open isolation valve is operable to close and isolate the at least one braking circuit from the master cylinder and the simulator circuit. A primary pressure sensor is operable to generate a braking request signal responsive to the input from the brake pedal. A controller is programmed to activate the brake pressure generator to apply a braking force to the at least one wheel cylinder of the braking circuit based on the braking request signal from the primary pressure sensor. The controller is programmed to close the at least one normally-open isolation valve during activation of the brake pressure generator so that the master cylinder is coupled to the simulator circuit and decoupled from the braking circuit. The controller is further programmed to identify an abnormal value for the braking request signal from the primary pressure sensor, and in response, the controller is programmed to open the at least one normally-open isolation valve and to observe a relationship between brake pedal actuation and pressure generated at the master cylinder output side using a secondary pressure sensor that is positioned in the braking circuit such that the controller determines whether the abnormal value is indicative of a primary pressure sensor malfunction or indicative of a malfunction of at least one of the pedal feel simulator and the switchable simulator valve.

    [0004] In another aspect, the invention provides a method of operating a vehicle braking system. An input is received from a brake pedal at an input side of a master cylinder and a master cylinder output is provided corresponding to the brake pedal input at an output side of the master cylinder output. By a controller signal, at least one normally-open isolation valve is closed to isolate the output side of the master cylinder from at least one braking circuit having at least one wheel cylinder. By a controller signal, a switchable simulator valve is opened to open a fluid connection between the master cylinder output side and a simulator circuit including a pedal feel simulator to provide a reaction force to the brake pedal. A braking request signal is generated with a primary pressure sensor responsive to the input from the brake pedal, the braking request signal being sent to a controller. A brake pressure generator of the at least one braking circuit, separate from the brake pedal, is driven with the controller responsive to the braking request signal to achieve braking at the at least one wheel cylinder. The controller identifies an abnormal value for the braking request signal from the primary pressure sensor. A controller signal is sent, in response to identifying the abnormal value, to open the at least one normally-open isolation valve and to observe a relationship between brake pedal actuation and pressure generated at the master cylinder output side using a secondary pressure sensor that is positioned in the braking circuit. The controller determines, based on the observed relationship, whether the abnormal value is indicative of a primary pressure sensor malfunction or indicative of a malfunction of at least one of the pedal feel simulator and the switchable simulator valve.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0005] 

    Fig. 1 is a schematic drawing of a vehicle braking system according to one aspect of the present invention. A diagnostic system configuration during initial braking is illustrated.

    Fig. 2 is a graph of sensed pressure versus input rod stroke, including a separation curve distinguishing normal response curves from hard pedal response curves.

    Fig. 3 is a flow diagram illustrating steps of a method according to one aspect of the invention.


    DETAILED DESCRIPTION



    [0006] Before any embodiments of the invention are explained in detail, it is to be understood that the invention is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the following drawings. The invention is capable of other embodiments and of being practiced or of being carried out in various ways.

    [0007] The braking system 10 of Fig. 1 includes a master cylinder 24 having an input side coupled with an input rod 25 to a brake pedal 28 to pressurize hydraulic fluid therein. The master cylinder 24 includes a first piston 261 that is coupled to the brake pedal 28 to move directly therewith. The first piston 261 pressurizes hydraulic fluid in a first chamber of the master cylinder 24 to be output from the first chamber at a first outlet 401. A second piston 262 of the master cylinder 24 can be moved under the influence of fluid pressurized in the first chamber by the first piston 261, without the second piston 262 having any direct connection to the first piston 261 or the brake pedal 28. The second piston 261 pressurizes hydraulic fluid in a second chamber of the master cylinder 24 to be output from the second chamber at a second outlet 402. A fluid reservoir 32 is in fluid communication with the first and second chambers of the master cylinder 24 until the brake pedal 28 is initially actuated, at which time the pistons 261, 262 block off the master cylinder chambers from the reservoir 32. A pedal travel sensor 36 is coupled to the brake pedal 28 and is operable to detect an amount of travel of the brake pedal 28, so that a corresponding signal can be sent to a controller (not shown). The controller can be a computer electrically coupled with each sensor and each electrically-operable valve of the braking system 10, to send signals thereto and/or receive signals therefrom to establish communication and control necessary to operate the braking system 10.

    [0008] The dual outputs 401, 402 of the master cylinder 24 are selectively in fluid communication with a first braking circuit and a second braking circuit, respectively. In the illustrated construction, each of the braking circuits includes a pair of brake devices or wheel cylinders WC operable to slow down the wheels of a vehicle on which the braking system 10 is provided. The wheel cylinders WC of a particular circuit can be associated with a set of front vehicle wheels, a set of rear vehicle wheels, or a set of diagonal vehicle wheels. Each braking circuit includes an inlet valve 44 and an outlet valve 48 associated with each respective wheel cylinder WC. The inlet valves 44 are normally-open and can be electrically closed by the controller to stop or limit pressurized hydraulic fluid supplied to the wheel cylinder WC. The outlet valves 48 are normally-closed and can be electrically opened by the controller to relieve pressurized hydraulic fluid at the wheel cylinder WC, to the reservoir 32. Each of the master cylinder outlets 401, 402 is coupled to one of the braking circuits through a normally-open isolation valve 521, 522. Each of the isolation valves 521, 522 is operable to be closed by the controller to fluidly separate or isolate the master cylinder 24, and thus the brake pedal 28, from the braking circuits having the wheel cylinders WC.

    [0009] Although the master cylinder 24 is capable of providing mechanical braking from the brake pedal 28 to the wheel cylinders WC of the two braking circuits, the system 10 can be provided with an alternate or auxiliary device, separate from the brake pedal 28 and referred to herein as a brake pressure generator 60, for generating hydraulic fluid pressure to the wheel cylinders WC for the requisite braking need. The brake pressure generator 60 can include a plunger or piston 62 drivable in a cylinder by an actuator such as an electric motor 64 operated by the controller. As such, the brake pressure generator 60 is operable to drive pressurized hydraulic fluid to the wheel cylinders WC of the first and second braking circuits. For example, an outlet 68 of the brake pressure generator 60 can be coupled, in parallel, to the first and second braking circuits through respective apply pressure control valves 721, 722. Each of the apply pressure control valves 721, 722 can be a controller-modulated solenoid valve (e.g., having a range of open positions, or receiving a pulse-width modulation signal to achieve a similar effect) operable to control the pressure supplied from the brake pressure generator 60 to the wheel cylinders WC of the given braking circuit. The apply pressure control valves 721, 722 can be coupled to respective brake fluid supply lines or passages, each of which extends between one of the isolation valves 521, 522 and the respective inlet valves 44 of the braking circuit. One or more pressure sensors 76 can be positioned along the fluid path between the brake pressure generator outlet 68 and the respective inlet valves 44 and operable to report the fluid pressure to the controller. The pressure sensor 76 can be referred to as an "active circuit" pressure sensor as it senses and reports the fluid pressure in the passage(s) coupled to the wheel cylinders WC, as contrasted with fluid pressure in the master cylinder 24 or a simulator circuit, which are not part of an active braking circuit during brake-by-wire operation. Additional sensors may be provided to monitor parameters of the piston 62 and/or the electric motor 64, and may include any one or more of: linear or angular position, electrical current, electrical voltage, force, torque, or temperature.

    [0010] In addition to the active braking components in the system 10, a simulator circuit is provided in fluid communication with the output side of the master cylinder 24. The simulator circuit is provided upstream of the isolation valves 521, 522, meaning the side nearer the master cylinder and remote from the braking circuits so that the simulator circuit is kept in fluid communication with the master cylinder 24 when the isolation valves 521, 522 are closed. The simulator circuit includes a pedal feel simulator 80 coupled to an outlet of the master cylinder 24 (e.g., the first outlet 401) through a switchable simulator valve 84. The simulator valve 84 can be a normally-closed switchable solenoid valve operable to be opened by the controller to establish fluid communication between the master cylinder outlet 401 and the pedal feel simulator 80. When the simulator valve 84 is open, fluid pushed out of the master cylinder chamber through the outlet 401 is passed into the pedal feel simulator 80, which has a biasing mechanism that provides a feedback force to the brake pedal 28. Thus, the simulator circuit mimics the feel of actuating the wheel cylinders WC when in fact the brake pedal 28 is decoupled by the isolation valves 521, 522 from the actual braking pressure activating the wheel cylinders WC in the braking circuits. A pressure sensor, referred to herein as the primary pressure sensor 88, is provided in fluid communication with the master cylinder 24 to detect a fluid pressure generated in one of the master cylinder chambers. For example, the primary pressure sensor 88 can be coupled to the second master cylinder outlet 402, upstream of the isolation valve 522. The primary pressure sensor 88 is operable to generate a braking request signal responsive to an input force from the brake pedal 28.

    [0011] Though not conducive to labeling in Fig. 1, it will be understood that each braking circuit extends from one of the isolation valves 521, 522 to the respective wheel cylinder(s) WC, and further includes the passages connecting to the brake pressure generator 60, and the respective passages connecting to the fluid reservoir 32, while the simulator circuit is a separate circuit, not part of either of the braking circuits, since fluid in the simulator circuit is not conveyed to contribute to actual braking force at the wheel cylinders WC.

    [0012] During normal operation of the braking system 10, the brake pedal 28 is decoupled from the wheel cylinders WC so that braking occurs fully in a primary brake-by-wire mode. When the driver depresses the brake pedal 28, the isolation valves 521, 522 are actuated to a closed position (opposite the position shown in Fig. 1) so that the master cylinder 24 and the simulator circuit are cut-off or isolated from the braking circuits. The simulator valve 84 is also switched open by the controller upon initial actuation of the brake pedal 28, which can be detected by the pedal travel sensor 36. A pressure increase occurs in the second master cylinder chamber and between the second outlet 402 and the second isolation valve 522 since the pedal 28 urges the pistons 261, 262 to move toward the closed-off second isolation valve 522. The pressure increase is measured or detected by the primary pressure sensor 88 and conveyed as a signal to the controller, which is programmed to use the information to determine the degree of actuation of the brake pressure generator 60 to achieve a target brake force as requested by the driver's actuation of the brake pedal 28. In some constructions, an output of the pedal travel sensor 36 is also considered by the controller along with the primary pressure sensor 88 in quantifying the driver's braking request. The controller can also provide variable manipulation of the apply pressure control valves 721, 722 to achieve a desired brake force and brake force balance in the braking circuits. Thus, in the illustrated construction, the motor 64 is energized as programmed by the controller to drive the piston 62 forward in the cylinder toward the outlet 68 so that fluid pressure is generated at the outlet and hydraulic fluid is moved from the brake pressure generator 60 toward the wheel cylinders WC, which may include one or more pistons incorporated into brake calipers so that the hydraulic fluid from the generator 60 causes the wheel cylinders WC to squeeze onto a brake disc. As can be interpreted from this description, the brake pressure generator 60 is controlled to achieve an amount of braking according to the driver's request, which is interpreted at least in part by the primary pressure sensor 88, which continuously measures how hard the driver is applying pressure to the brake pedal 28. In the event of a component failure or abnormality, the braking system 10 is designed to provide a back-up mode of operation in which the isolation valves 521, 522 return to their normally-open positions to allow the brake pedal 28 to actuate the wheel cylinders WC through the master cylinder 24. However, the invention provides a diagnostic routine to determine whether to transition to a direct mechanical push-through back-up mode or to a secondary brake-by-wire mode when a malfunction occurs in the primary, normal mode of brake-by-wire operation.

    [0013] During operation of the braking system 10, the controller is programmed to identify an abnormal value for the braking request signal generated from the primary pressure sensor 88. For example, the controller may be programmed with an expected range of values, and can identify when the value output from the primary pressure sensor 88 is outside of the expected range. The expected range can also be dependent upon another input, such as pedal travel or stroke determined by the pedal travel sensor 36. The controller is programmed to identify the abnormal value as a value which is unlikely or impossible to represent a factual reading of a properly-operating system. In other words, the primary pressure sensor 88 is not working properly to sense and report fluid pressure accurately, or the primary pressure sensor 88 is accurately sensing and reporting and the value is abnormal due to a mechanical failure such as a leak, a stuck simulator valve 84, or a stuck pedal feel simulator 80. Rather than abandon brake-by-wire operation of the braking system 10, the controller is programmed to take further action toward a resolution of the abnormal value from the primary pressure sensor 88.

    [0014] Upon identifying the abnormal value for the braking request at the initial onset of brake pedal actuation, the controller is programmed to put the braking system 10 into a diagnostic configuration as shown in Fig. 1. For the diagnostic configuration, the controller is programmed to open (i.e., not actuate closed) the first isolation valve 521 and may also be programmed to open the second isolation valve 522. This is atypical and opposite from the normal primary mode of operation in which both isolation valves 521, 522 are maintained closed by the controller while the brake pedal 28 is depressed. Opening the first isolation valve 521 places the simulator circuit, in particular the simulator valve 84 and the pedal feel simulator 80, in fluid communication with the corresponding braking circuit. As such, fluid communication is established between the simulator circuit and the pressure sensor 76 that is positioned in the braking circuit, in particular the pressure sensor 76 positioned between the brake pressure generator outlet 68 and the apply pressure control valves 721, 722. The pressure sensor 76 may be referred to herein as a "secondary" pressure sensor as it is used as a secondary or back-up sensor when the primary pressure sensor 88 gives an abnormal value. Optionally opening the second isolation valve 522 for the diagnostic configuration puts the primary pressure sensor 88 and the secondary pressure sensor 76 in fluid communication and allows their outputs to be compared.

    [0015] The controller is programmed to maintain the first apply pressure control valve 721 in an open position while the brake pedal 28 is depressed and the first isolation valve 521 is left open. Thus, the system 10 is put into a diagnostic mode or routine by which the controller can evaluate a relationship between brake pedal actuation and fluid pressure generated at the master cylinder output side, as measured by the secondary sensor 76 within the braking circuit. The controller can command the simulator valve 84 to be open during the diagnostic routine. The brake pressure generator 60 may provide a fluid volume boost to the braking circuit during the diagnostic mode. For example, the controller may be programmed to provide a predetermined actuation amount for the motor 64 to drive the piston 62 since the simulator circuit is being connected with the active braking circuit and potentially consuming an amount of fluid volume. In observing the relationship between brake pedal travel and the resulting fluid pressure increase, the information observed by the controller is represented by the graph of Fig. 2. The x-axis represents brake pedal actuation, or "input rod stroke" as labeled, from the pedal travel sensor 36, while the y-axis represents the sensed fluid pressure, in other words, the output of the secondary sensor 76. Fig. 2 illustrates a variety of exemplary plots or traces that may be observed by the controller during the diagnostic routine. The controller is programmed with a separation curve 100 that divides the potential graph area into two sides. When the results of the diagnostic routine place the collected data to the left of the separation curve 100, this indicates a "hard pedal" condition. In other words, the pressure rises significantly faster than expected as the brake pedal 28 is stroked. When the results of the diagnostic routine place the collected data to the right of the separation curve 100, this indicates a good check or satisfactory condition. The separation curve 100 may be defined in a particular region, such as a central region, of the total available travel range of the brake pedal 28 where the evaluated data points do not include the initial travel range or the final travel range of the brake pedal 28. The controller may also be programmed to not confirm satisfactory operation if the fluid pressure does not increase beyond a predetermined amount, indicative of a circuit leak.

    [0016] The diagnostic routine serves as a hardware check that allows the controller to determine whether the abnormal value from the primary pressure sensor 88 is due to a failure of the sensor 88 to perform, or is due to mechanical failure of the simulator circuit (e.g., simulator valve 84 not opening, pedal feel simulator 80 stuck and not receiving fluid). In the case of a mechanical failure in the simulator circuit, the braking system 10 may not be enabled to perform brake-by-wire braking, since the simulator circuit is required to accept the fluid from the master cylinder 24 when the braking pressure comes from a source other than the master cylinder 24. However, when the controller can determined based on the diagnostic routine that there is nothing mechanically wrong with the simulator circuit, the system 10 can be put into a secondary brake-by-wire mode by the controller. For example, though the primary pressure sensor 88 can no longer be relied upon, the controller may be programmed to get a braking request signal from an alternate sensor, such as the pedal travel sensor 36. This method of operation enables the braking system 10 to perform in a more sophisticated manner and achieve better performance, by retaining brake-by-wire operation when the primary pressure sensor 88 fails, as long as the operability of the simulator circuit hardware is confirmed in the diagnostic routine.

    [0017] The process carried out by the program of the controller as described above is visually represented in the flow diagram of Fig. 3. At step 200, the controller operates the braking system 10 in a first mode, which is the normal or primary brake-by-wire mode in which the braking force (i.e., hydraulic fluid pressure) to the wheel cylinders WC is produced by the brake pressure generator 60, not the master cylinder 24, in proportion to the driver's demand as manifested by the fluid pressure sensed by the primary pressure sensor 88. The apply pressure control valves 721, 722 may open and close as required to modulate the pressure to the two braking circuits. During step 200, the simulator valve 84 is open and the two isolation valves 521, 522 are closed. At step 204, the controller checks the output of the primary pressure sensor 88 to identify any abnormality. In the event an abnormality is detected, an error code is triggered at step 206 before continuing to step 208. Examples of the manner in which the controller detects the abnormality have been described above. If the output of the primary pressure sensor 88 is determined to be good, the braking system 10 continues operating in the first mode at step 200. At step 208, the controller puts the braking system 10 into a configuration for the diagnostic routine. This includes, during initial braking by the driver depressing upon the brake pedal 28, opening the apply pressure control valve 721 and leaving the isolation valve 521 open (i.e., avoiding or ceasing a signal to actuate closed) to establish fluid communication between the simulator circuit, the master cylinder outlet 401, and the secondary pressure sensor 76. In the configuration for the diagnostic routine at step 208, the simulator valve 84 is actuated to open. The braking system 10, in particular the program of the controller, then carries out the diagnostic routine to determine whether the abnormal output of the primary pressure sensor 88 can be attributed to a fault with the primary pressure sensor 88, or rather, a fault with the mechanical components, such as those of the simulator circuit. In some constructions, the second isolation valve 522 is also opened (i.e., not actuated closed) for the diagnostic configuration so that the primary pressure sensor 88 and the secondary pressure sensor 76 are in fluid communication, and their outputs compared.

    [0018] At step 212, the controller is programmed to compare the output of the secondary pressure sensor 76 to brake pedal travel, or input rod stroke, as measured by the pedal travel sensor 36 and provided as a signal to the controller. Thus, the controller can observe the relationship between brake pedal travel and the resulting fluid pressure increase and can compare this data to data stored in a memory of the controller (e.g., the data of the separation curve 100 of Fig. 2) to determine if the simulator hardware is in proper working condition at step 216. As described above, this can include determining whether a "hard pedal" condition has occurred in which very limited pedal travel results in an abundant fluid pressure increase. If this is the case, and the abnormality of the primary pressure sensor 88 was an abnormally high output, the controller determines that there is a mechanical fault in the simulator circuit that is preventing the pedal feel simulator 80 from receiving fluid in the designed manner, such as the pedal feel simulator 80 having an internal component (e.g., a spring) being stuck or the simulator valve 84 being stuck closed. When the controller determines that the simulator hardware is working properly, the process continues to step 220 to activate a secondary brake-by-wire mode as a back-up. When the controller determines that the simulator hardware is not working properly, the process continues to step 224 to deactivate brake-by-wire operation, thus activating a "coupled" or "direct" braking mode in which fluid pressure at the master cylinder 24 is propagated to the wheel cylinders WC, and the brake pressure generator 60 is left idle. For this mode of operation, the system valves default to their normally-biased positions. Also, when the simulator hardware is found to have a malfunction at step 216, the controller can trigger and store an error code at step 228. Rather than a generic "system fault" error, the error code can include information identifying that the simulator hardware experienced a fault. Thus, a service technician can more readily identify the source of the problem and more conveniently provide an appropriate repair or replacement. Optionally, the error code may be displayed to the driver in an instrument panel of the vehicle, either in a generic or specific format. The same can be true of the error code triggered at step 206.

    [0019] When the diagnostic routine proceeds to step 220 after confirming proper operation of the simulator hardware, the system 10 commences brake-by-wire operation in the secondary mode. In this mode, brake pedal actuation is detected by the pedal travel sensor 36, and the driver isolation valves 521, 522 are actuated to close and the simulator isolation valve 84 is actuated to open. As pedal feedback is provided by the pedal feel simulator 80, a braking request of the driver is sensed and reported to the controller by a sensor (e.g., the pedal travel sensor 36) other than the primary or secondary pressure sensors 88, 76. Brake force (i.e., hydraulic fluid pressure) corresponding to the braking request is generated by the brake pressure generator 60 and applied to the corresponding wheel cylinders WC through the respective apply pressure control valves 721,722.


    Claims

    1. A vehicle braking system (10) comprising:

    a master cylinder (24) having an input side configured to receive an input from a brake pedal (28) and an output side configured to provide a master cylinder output,

    at least one braking circuit having at least one wheel cylinder (WC) and a brake pressure generator separate from the brake pedal (28);

    a simulator circuit including a pedal feel simulator (80) coupled to the master cylinder output side through a switchable simulator valve (84), the pedal feel simulator (80) providing a reaction force to the brake pedal (28) when the switchable simulator valve (84) is in an open position;

    at least one normally-open isolation valve (522; 521) operable to close and isolate the at least one braking circuit from the master cylinder (24) and the simulator circuit;

    a primary pressure sensor (88) operable to generate a braking request signal responsive to the input from the brake pedal (28); and

    a controller programmed to activate the brake pressure generator (60) to apply a braking force to the at least one wheel cylinder (WC) of the braking circuit based on the braking request signal from the primary pressure sensor (88), the controller further being programmed to close the at least one normally-open isolation valve (522; 521) during activation of the brake pressure generator (60) so that the master cylinder (24) is coupled to the simulator circuit and decoupled from the braking circuit;

    wherein the controller is further programmed to identify an abnormal value for the braking request signal from the primary pressure sensor (88), and in response, the controller is programmed to open the at least one normally-open isolation valve (522; 521),

    characterized in that

    the controller is further programmed to observe a relationship between brake pedal actuation and pressure generated at the master cylinder output side using a secondary pressure sensor (76) that is positioned in the braking circuit such that the controller determines whether the abnormal value is indicative of a primary pressure sensor (88) malfunction or indicative of a malfunction of at least one of the pedal feel simulator (80) and the switchable simulator valve (84).


     
    2. The vehicle braking system (10) of claim 1, wherein the controller is programmed to switch from a primary brake-by-wire mode that utilizes the primary pressure sensor (88) as an input for the brake pressure generator (60) to a secondary brake-by-wire mode that utilizes a brake pedal travel sensor (36) as an input for the brake pressure generator (60) in response to the determination that the abnormal value is indicative of a malfunction of the primary pressure sensor (88) and not indicative of a malfunction of either of the pedal feel simulator (80) or the switchable simulator valve (84).
     
    3. The vehicle braking system (10) of claim 2, wherein the master cylinder (24) is a tandem master cylinder and the master cylinder output side includes a first outlet (401) from a first chamber pressurized by a first piston (261) adjacent the brake pedal (28) and further includes a second outlet (402) from a second chamber pressurized by a second piston (262) remote from the brake pedal (28).
     
    4. The vehicle braking system (10) of claim 3, wherein the at least one braking circuit includes first and second braking circuits respectively coupled to the first and second master cylinder outlets through respective first and second normally-open isolation valves (522; 521).
     
    5. The vehicle braking system (10) of claim 3, wherein the primary pressure sensor (88) is coupled to the second outlet (402) of the master cylinder (24).
     
    6. The vehicle braking system (10) of claim 3, wherein the pedal feel simulator (80) is coupled to the first outlet (401) of the master cylinder (24).
     
    7. The vehicle braking system (10) of claim 1, wherein the brake pressure generator (60) includes a motor-driven piston.
     
    8. The vehicle braking system (10) of claim 1, wherein the braking circuit further includes an apply pressure control valves (721 ; 722) in the form of a controller-modulated solenoid valve between an output of the brake pressure generator (60) and the at least one wheel cylinder (WC).
     
    9. The vehicle braking system (10) of claim 8, wherein the controller is programmed to hold the apply pressure control valve (721 ; 722) in an open position to establish fluid communication necessary to observe the relationship between brake pedal actuation and pressure generated at the master cylinder output side using the secondary pressure sensor (76).
     
    10. The vehicle braking system (10) of claim 1, wherein the controller is programmed to switch from a brake-by-wire mode that utilizes the primary pressure sensor (88) as an input for the brake pressure generator (60) to a secondary mechanical push-through back-up mode that utilizes the brake pedal (28) without using the brake pressure generator (60) or the pedal feel simulator (80) in response to the determination that the abnormal value is indicative of a malfunction of at least one of the pedal feel simulator (80) and the switchable simulator valve (84) rather than a malfunction of the primary pressure sensor (88).
     
    11. A method of operating a vehicle braking system (10), the method comprising:

    receiving an input from a brake pedal (28) at an input side of a master cylinder (24) and providing a master cylinder output corresponding to the brake pedal input at an output side of the master cylinder output;

    closing, by a controller signal, at least one normally-open isolation valve (522; 521) to isolate the output side of the master cylinder (24) from at least one braking circuit having at least one wheel cylinder (WC);

    opening, by a controller signal, a switchable simulator valve (84) to open a fluid connection between the master cylinder output side and a simulator circuit including a pedal feel simulator (80) to provide a reaction force to the brake pedal (28);

    generating a braking request signal with a primary pressure sensor (88) responsive to the input from the brake pedal (28), the braking request signal being sent to a controller;

    driving a brake pressure generator (60) of the at least one braking circuit, separate from the brake pedal (28), with the controller responsive to the braking request signal to achieve braking at the at least one wheel cylinder (WC);

    identifying with the controller an abnormal value for the braking request signal from the primary pressure sensor (88);

    sending a controller signal, in response to identifying the abnormal value, to open the at least one normally-open isolation valve (522; 521) and to observe a relationship between brake pedal actuation and pressure generated at the master cylinder output side using a secondary pressure sensor (76) that is positioned in the braking circuit; and

    determining with the controller, based on the observed relationship, whether the abnormal value is indicative of a primary pressure sensor (88) malfunction or indicative of a malfunction of at least one of the pedal feel simulator (80) and the switchable simulator valve (84).


     
    12. The method of claim 11, further comprising automatically switching via the controller from a primary brake-by-wire mode that utilizes the primary pressure sensor (88) as an input for the brake pressure generator (60) to a secondary brake-by-wire mode that utilizes a brake pedal travel sensor (36) as an input for the brake pressure generator (60) in response to the determination that the abnormal value is indicative of a malfunction of the primary pressure sensor (88) and not indicative of a malfunction of either of the pedal feel simulator (80) or the switchable simulator valve (84).
     
    13. The method of claim 11, wherein the brake pressure generator (60) outputs brake pressure to a first braking circuit through a first control valve and outputs brake pressure to a second braking circuit through a second control valve.
     
    14. The method of claim 13, further comprising modulating an opening amount of each of the first and second control valves with the controller to set a first pressure provided to a first set of wheel cylinders (WC) of the first braking circuit and a second set of wheel cylinders (WC) of the second braking circuit.
     
    15. The method of claim 13, further comprising holding at least one of the first and second control valves in an open position to establish fluid communication necessary to observe the relationship between brake pedal actuation and pressure generated at the master cylinder output side using the secondary pressure sensor (76).
     
    16. The method of claim 11, wherein the primary pressure sensor (88) detects fluid pressure at an outlet of the master cylinder (24) coupled to a second chamber pressurized by a second piston (262) remote from a first chamber having a first piston (261) coupled to the brake pedal (28).
     
    17. The method of claim 16, wherein the pedal feel simulator (80) is actuated from an outlet of the master cylinder (24) coupled to the first chamber.
     
    18. The method of claim 11, wherein driving a brake pressure generator (60) includes sending a control signal to an electric motor that drives a piston.
     
    19. The method of claim 11, further comprising switching from a brake-by-wire mode that utilizes the primary pressure sensor (88) as an input for the brake pressure generator (60) to a secondary mechanical push-through back-up mode that utilizes the brake pedal (28) without using the brake pressure generator (60) or the pedal feel simulator (80) in response to the determination that the abnormal value is indicative of a malfunction of at least one of the pedal feel simulator (80) and the switchable simulator valve (84) rather than a malfunction of the primary pressure sensor (88).
     


    Ansprüche

    1. Fahrzeugbremssystem (10), umfassend:

    einen Hauptbremszylinder (24), der eine Eingangsseite, die dazu ausgelegt ist, eine Eingabe von einem Bremspedal (28) zu empfangen, und eine Ausgangsseite, die dazu ausgelegt ist, eine Hauptbremszylinderausgabe bereitzustellen, aufweist,

    wenigstens einen Bremskreis, der wenigstens einen Radzylinder (WC) und einen von dem Bremspedal (28) getrennten Bremsdruckerzeuger aufweist,

    einen Simulatorkreis, der einen Pedalgefühl-Simulator (80) umfasst, der über ein umschaltbares Simulatorventil (84) mit der Hauptbremszylinderausgangsseite gekoppelt ist, wobei der Pedalgefühl-Simulator (80) das Bremspedal (28) mit einer Reaktionskraft versorgt, wenn sich das umschaltbare Simulatorventil (84) in einer geöffneten Stellung befindet,

    wenigstens ein normalerweise geöffnetes Absperrventil (522; 521), das in der Lage ist, zu schließen und den wenigstens einen Bremskreis von dem Hauptbremszylinder (24) und dem Simulatorkreis zu trennen,

    einen primären Drucksensor (88), der in der Lage ist, in Reaktion auf die von dem Bremspedal (28) kommende Eingabe ein Bremsanforderungssignal zu erzeugen, und

    eine Steuerung, die so programmiert ist, dass sie den Bremsdruckerzeuger (60) aktiviert, um eine Bremskraft auf den wenigstens einen Radzylinder (WC) des Bremskreises auf Grundlage des von dem primären Drucksensor (88) kommenden Bremsanforderungssignals auszuüben, wobei die Steuerung ferner so programmiert ist, dass sie während der Aktivierung des Bremsdruckerzeugers (60) das wenigstens eine normalerweise geöffnete Absperrventil (522; 521) schließt, so dass der Hauptbremszylinder (24) mit dem Simulatorkreis gekoppelt und von dem Bremskreis entkoppelt ist,

    wobei die Steuerung ferner so programmiert ist, dass sie einen abweichenden Wert für das von dem primären Drucksensor (88) kommende Bremsanforderungssignal erkennt, und die Steuerung so programmiert ist, dass sie in Reaktion darauf das wenigstens eine normalerweise geöffnete Absperrventil (522; 521) öffnet,

    dadurch gekennzeichnet, dass

    die Steuerung ferner so programmiert ist, dass sie einen Zusammenhang zwischen einer Bremspedalbetätigung und einem auf der Hauptbremszylinderausgangsseite erzeugten Druck unter Verwendung eines sekundären Drucksensors (76) beobachtet, der auf eine solche Weise in dem Bremskreis positioniert ist, dass die Steuerung bestimmt, ob der abweichende Wert eine Fehlfunktion des primären Drucksensors (88) anzeigt oder eine Fehlfunktion des Pedalgefühl-Simulators (80) und/oder des umschaltbaren Simulatorventils (84) anzeigt.


     
    2. Fahrzeugbremssystem (10) nach Anspruch 1, wobei die Steuerung so programmiert ist, dass sie in Reaktion auf die Bestimmung, dass der abweichende Wert eine Fehlfunktion des primären Drucksensors (88) anzeigt und keine Fehlfunktion des Pedalgefühl-Simulators (80) oder des umschaltbaren Simulatorventils (84) anzeigt, aus einem primären Brake-by-Wire-Modus, in dem der primäre Drucksensor (88) als Eingabe für den Bremsdruckerzeuger (60) genutzt wird, in einen sekundären Brake-by-Wire-Modus, in dem ein Bremspedalwegsensor (36) als Eingabe für den Bremsdruckerzeuger (60) genutzt wird, umschaltet.
     
    3. Fahrzeugbremssystem (10) nach Anspruch 2, wobei der Hauptbremszylinder (24) ein Tandemhauptbremszylinder ist und die Hauptbremszylinderausgangsseite einen ersten Auslass (401) aus einer ersten Kammer umfasst, die von einem angrenzend an das Bremspedal (28) gelegenen ersten Kolben (261) mit Druck beaufschlagt wird, und ferner einen zweiten Auslass (402) aus einer zweiten Kammer umfasst, die von einem entfernt von dem Bremspedal (28) gelegenen zweiten Kolben (262) mit Druck beaufschlagt wird.
     
    4. Fahrzeugbremssystem (10) nach Anspruch 3, wobei der wenigstens eine Bremskreis einen ersten und einen zweiten Bremskreis umfasst, die jeweils mit dem ersten beziehungsweise dem zweiten Hauptbremszylinderauslass über ein jeweiliges erstes beziehungsweise zweites normalerweise geöffnetes Absperrventil (522; 521) gekoppelt sind.
     
    5. Fahrzeugbremssystem (10) nach Anspruch 3, wobei der primäre Drucksensor (88) mit dem zweiten Auslass (402) des Hauptbremszylinders (24) gekoppelt ist.
     
    6. Fahrzeugbremssystem (10) nach Anspruch 3, wobei der Pedalgefühl-Simulator (80) mit dem ersten Auslass (401) des Hauptbremszylinders (24) gekoppelt ist.
     
    7. Fahrzeugbremssystem (10) nach Anspruch 1, wobei der Bremsdruckerzeuger (60) einen motorbetriebenen Kolben umfasst.
     
    8. Fahrzeugbremssystem (10) nach Anspruch 1, wobei der Bremskreis ferner ein Betätigungsdrucksteuerventil (721; 722) in Form eines steuerungsmodulierten Magnetventils zwischen einem Ausgang des Bremsdruckerzeugers (60) und dem wenigstens einen Radzylinder (WC) umfasst.
     
    9. Fahrzeugbremssystem (10) nach Anspruch 8, wobei die Steuerung so programmiert ist, dass sie das Betätigungsdrucksteuerventil (721; 722) in einer geöffneten Stellung hält, um eine fluidische Verbindung herzustellen, die erforderlich ist, um den Zusammenhang zwischen einer Bremspedalbetätigung und einem auf der Hauptbremszylinderausgangsseite erzeugten Druck unter Verwendung des sekundären Drucksensors (76) zu beobachten.
     
    10. Fahrzeugbremssystem (10) nach Anspruch 1, wobei die Steuerung so programmiert ist, dass sie in Reaktion auf die Bestimmung, dass der abweichende Wert eine Fehlfunktion des Pedalgefühl-Simulators (80) und/oder des umschaltbaren Simulatorventils (84) und keine Fehlfunktion des primären Drucksensors (88) anzeigt, aus einem Brake-by-Wire-Modus, in dem der primäre Drucksensor (88) als Eingabe für den Bremsdruckerzeuger (60) genutzt wird, in einen sekundären mechanischen Push-Through-Backup-Modus, in dem das Bremspedal (28) ohne Verwendung des Bremsdruckerzeugers (60) oder des Pedalgefühl-Simulators (80) genutzt wird, umschaltet.
     
    11. Verfahren zum Betrieb eines Fahrzeugbremssystems (10), wobei das Verfahren Folgendes umfasst:

    Empfangen einer Eingabe von einem Bremspedal (28) auf einer Eingangsseite eines Hauptbremszylinders (24) und Bereitstellen einer der Bremspedaleingabe entsprechenden Hauptbremszylinderausgabe auf einer Ausgangsseite des Hauptbremszylinderausgangs,

    Schließen wenigstens eines normalerweise geöffneten Absperrventils (522; 521) durch ein Steuerungssignal, um die Ausgangsseite des Hauptbremszylinders (24) von dem wenigstens einen Bremskreis zu trennen, der wenigstens einen Radzylinder (WC) aufweist,

    Öffnen eines umschaltbaren Simulatorventils (84) durch ein Steuerungssignal, um eine fluidische Verbindung zwischen der Hauptbremszylinderausgangsseite und einem Simulatorkreis zu öffnen, der einen Pedalgefühl-Simulator (80) umfasst, um das Bremspedal (28) mit einer Reaktionskraft zu versorgen,

    Erzeugen eines Bremsanforderungssignals mit einem primären Drucksensor (88) in Reaktion auf die von dem Bremspedal (28) kommende Eingabe, wobei das Bremsanforderungssignal an eine Steuerung gesendet wird,

    Ansteuern eines Bremsdruckerzeugers (60) des wenigstens einen von dem Bremspedal (28) getrennten Bremskreises, wobei die Steuerung in Reaktion auf das Bremsanforderungssignal ein Bremsen an dem wenigstens einen Radzylinder (WC) erreicht,

    mit der Steuerung Erkennen eines abweichenden Werts für das von dem primären Drucksensor (88) kommende Bremsanforderungssignal,

    Senden eines Steuerungssignals in Reaktion auf das Erkennen des abweichenden Werts, um das wenigstens eine normalerweise geöffnete Absperrventil (522; 521) zu öffnen und einen Zusammenhang zwischen einer Bremspedalbetätigung und einem auf der Hauptbremszylinderausgangsseite erzeugten Druck unter Verwendung eines sekundären Drucksensors (76), der in dem Bremskreis positioniert ist, zu beobachten und

    mit der Steuerung auf Grundlage des beobachteten Zusammenhangs Bestimmen, ob der abweichende Wert eine Fehlfunktion des primären Drucksensors (88) anzeigt oder eine Fehlfunktion des Pedalgefühl-Simulators (80) und/oder des umschaltbaren Simulatorventils (84) anzeigt.


     
    12. Verfahren nach Anspruch 11, ferner in Reaktion auf die Bestimmung, dass der abweichende Wert eine Fehlfunktion des primären Drucksensors (88) anzeigt und keine Fehlfunktion des Pedalgefühl-Simulators (80) oder des umschaltbaren Simulatorventils (84) anzeigt, umfassend das automatische Umschalten über die Steuerung aus einem primären Brake-by-Wire-Modus, in dem der primäre Drucksensor (88) als Eingabe für den Bremsdruckerzeuger (60) genutzt wird, in einen sekundären Brake-by-Wire-Modus, in dem ein Bremspedalwegsensor (36) als Eingabe für den Bremsdruckerzeuger (60) genutzt wird.
     
    13. Verfahren nach Anspruch 11, wobei der Bremsdruckerzeuger (60) über ein erstes Steuerventil einen Bremsdruck an einen ersten Bremskreis ausgibt und über ein zweites Steuerventil einen Bremsdruck an einen zweiten Bremskreis ausgibt.
     
    14. Verfahren nach Anspruch 13, ferner umfassend das jeweilige Modulieren eines Öffnungsumfangs des ersten und des zweiten Steuerventils, wobei die Steuerung einen ersten Druck einstellt, mit dem ein erster Satz Radzylinder (WC) des ersten Bremskreises und ein zweiter Satz Radzylinder (WC) des zweiten Bremskreises versorgt werden.
     
    15. Verfahren nach Anspruch 13, ferner umfassend das Halten des ersten und/oder des zweiten Steuerventils in einer geöffneten Stellung, um eine fluidische Verbindung herzustellen, die erforderlich ist, um den Zusammenhang zwischen einer Bremspedalbetätigung und einem auf der Hauptbremszylinderausgangsseite erzeugten Druck unter Verwendung des sekundären Drucksensors (76) zu beobachten.
     
    16. Verfahren nach Anspruch 11, wobei der primäre Drucksensor (88) einen Fluiddruck an einem Auslass des Hauptbremszylinders (24) erkennt, der mit einer zweiten Kammer gekoppelt ist, die von einem zweiten Kolben (262) mit einem Druck beaufschlagt wird, der entfernt von einer ersten Kammer gelegen ist, die einen ersten Kolben (261) aufweist, der mit dem Bremspedal (28) gekoppelt ist.
     
    17. Verfahren nach Anspruch 16, wobei der Pedalgefühl-Simulator (80) von einem mit der ersten Kammer gekoppelten Auslass des Hauptbremszylinders (24) betätigt wird.
     
    18. Verfahren nach Anspruch 11, wobei das Ansteuern eines Bremsdruckerzeugers (60) das Senden eines Steuerungssignals an einen Elektromotor umfasst, der einen Kolben ansteuert.
     
    19. Verfahren nach Anspruch 11, ferner in Reaktion auf die Bestimmung, dass der abweichende Wert eine Fehlfunktion des Pedalgefühl-Simulators (80) und/oder des umschaltbaren Simulatorventils (84) und keine Fehlfunktion des primären Drucksensors (88) anzeigt, umfassend das Umschalten aus einem Brake-by-Wire-Modus, in dem der primäre Drucksensor (88) als Eingabe für den Bremsdruckerzeuger (60) genutzt wird, in einen sekundären mechanischen Push-Through-Backup-Modus, in dem das Bremspedal (28) ohne Verwendung des Bremsdruckerzeugers (60) oder des Pedalgefühl-Simulators (80) genutzt wird.
     


    Revendications

    1. Système de freinage (10) de véhicule, comprenant :

    un maître-cylindre (24) ayant un côté entrée configuré pour recevoir une entrée provenant d'une pédale (28) de frein et un côté sortie configuré pour fournir une sortie de maître-cylindre,

    au moins un circuit de freinage comportant au moins un cylindre (WC) de roue et un générateur de pression de freinage séparé de la pédale (28) de frein ;

    un circuit de simulation comprenant un simulateur (80) de sensation de pédale accouplé au côté sortie du maître-cylindre par l'intermédiaire d'un clapet (84) commutable de simulateur, le simulateur (80) de sensation de pédale fournissant une force de réaction à la pédale (28) de frein quand le clapet (84) commutable de simulateur est dans la position ouverte ;

    au moins un clapet d'isolement (522 ; 521) normalement ouvert servant à fermer ledit circuit de freinage et à l'isoler du maître-cylindre (24) et du circuit de simulation ;

    un capteur (88) de pression primaire servant à créer un signal de demande de freinage en réaction à l'entrée provenant de la pédale (28) de frein ; et

    un boîtier de commande programmé pour activer le générateur (60) de pression de freinage afin d'appliquer une force de freinage audit cylindre (WC) de roue du circuit de freinage sur la base du signal de demande de freinage provenant du capteur (88) de pression primaire, le boîtier de commande étant en outre programmé pour fermer pendant l'activation du générateur (60) de pression de freinage ledit clapet d'isolement (522 ; 521) normalement ouvert de façon à ce que le maître-cylindre (24) soit accouplé au circuit de simulation et désaccouplé du circuit de freinage ;

    dans lequel le boîtier de commande est en outre programmé pour identifier une valeur anormale pour le signal de demande de freinage provenant du capteur (88) de pression primaire, et en réaction, le boîtier de commande est programmé pour ouvrir ledit clapet d'isolement (522 ; 521) normalement ouvert,

    caractérisé en ce que le boîtier de commande est en outre programmé pour observer la relation entre l'actionnement de la pédale de frein et la pression créée au niveau du côté sortie du maître-cylindre au moyen d'un capteur (76) de pression secondaire qui est placé dans le circuit de freinage de telle sorte que le boîtier de commande détermine si la valeur anormale révèle un dysfonctionnement du capteur (88) de pression primaire ou révèle un dysfonctionnement du simulateur (80) de sensation de pédale et/ou du clapet (84) commutable de simulateur.


     
    2. Système de freinage (10) de véhicule selon la revendication 1, dans lequel le boîtier de commande est programmé pour basculer d'un mode primaire de freinage à commande électronique qui utilise le capteur (88) de pression primaire comme entrée pour le générateur (60) de pression de freinage à un mode secondaire de freinage à commande électronique qui utilise un capteur (36) de course de la pédale de frein comme entrée pour le générateur (60) de pression de freinage en réaction à la constatation que la valeur anormale révèle un dysfonctionnement du capteur (88) de pression primaire et ne révèle pas de dysfonctionnement du simulateur (80) de sensation de pédale ou du clapet (84) commutable de simulateur.
     
    3. Système de freinage (10) de véhicule selon la revendication 2, dans lequel le maître-cylindre (24) est un maître-cylindre tandem et le côté sortie du maître-cylindre comprend une première sortie (401) à partir d'une première chambre mise sous pression par un premier piston (261) adjacent à la pédale (28) de frein et comprend en outre une seconde sortie (402) à partir d'une seconde chambre mise sous pression par un second piston (262) éloigné de la pédale (28) de frein.
     
    4. Système de freinage (10) de véhicule selon la revendication 3, dans lequel ledit circuit de freinage comprend un premier et un second circuit de freinage accouplés respectivement aux première et seconde sorties du maître-cylindre par le biais respectivement des premier et second clapets d'isolement (522 ; 521) normalement ouverts.
     
    5. Système de freinage (10) de véhicule selon la revendication 3, dans lequel le capteur (88) de pression primaire est accouplé à la seconde sortie (402) du maître-cylindre (24).
     
    6. Système de freinage (10) de véhicule selon la revendication 3, dans lequel le simulateur (80) de sensation de pédale est accouplé à la première sortie (401) du maître-cylindre (24).
     
    7. Système de freinage (10) de véhicule selon la revendication 1, dans lequel le générateur (60) de pression de freinage comprend un piston à moteur.
     
    8. Système de freinage (10) de véhicule selon la revendication 1, dans lequel le circuit de freinage comprend en outre des clapets de commande (721 ; 722) de pression d'application se présentant sous la forme d'une électrovanne, modulée par boîtier de commande, entre une sortie du générateur (60) de pression de freinage et ledit cylindre (WC) de roue.
     
    9. Système de freinage (10) de véhicule selon la revendication 8, dans lequel le boîtier de commande est programmé pour maintenir le clapet de commande (721 ; 722) de pression d'application dans la position ouverte afin d'établir la communication fluidique nécessaire pour observer la relation entre l'actionnement de la pédale de frein et la pression créée au niveau du côté sortie du maître-cylindre au moyen du capteur (76) de pression secondaire.
     
    10. Système de freinage (10) de véhicule selon la revendication 1, dans lequel le boîtier de commande est programmé pour basculer d'un mode de freinage à commande électronique qui utilise le capteur (88) de pression primaire comme entrée pour le générateur (60) de pression de freinage à un mode secondaire de secours à commande mécanique qui utilise la pédale (28) de frein sans utiliser le générateur (60) de pression de freinage ou le simulateur (80) de sensation de pédale en réaction à la constatation que la valeur anormale révèle un dysfonctionnement du simulateur (80) de sensation de pédale et/ou du clapet (84) commutable de simulateur plutôt qu'un dysfonctionnement du capteur (88) de pression primaire.
     
    11. Procédé pour faire fonctionner un système de freinage (10) de véhicule, le procédé comprenant les opérations consistant à :

    recevoir une entrée provenant d'une pédale (28) de frein au niveau du côté entrée d'un maître-cylindre (24) et fournir une sortie de maître-cylindre correspondant à l'entrée de pédale de frein au niveau du côté sortie de la sortie de maître-cylindre ;

    fermer, par un signal de boîtier de commande, au moins un clapet d'isolement (522 ; 521) normalement ouvert pour isoler le côté sortie du maître-cylindre (24) d'au moins un circuit de freinage comportant au moins un cylindre (WC) de roue ;

    ouvrir, par un signal de boîtier de commande, un clapet (84) commutable de simulateur pour ouvrir une connexion fluidique entre le côté sortie du maître-cylindre et un circuit de simulateur comprenant un simulateur (80) de sensation de pédale afin de fournir une force de réaction à la pédale (28) de frein ;

    créer un signal de demande de freinage avec un capteur (88) de pression primaire en réaction à l'entrée provenant de la pédale (28) de frein, le signal de demande de freinage étant envoyé à un boîtier de commande ;

    entraîner un générateur (60) de pression de freinage dudit circuit de freinage, séparé de la pédale (28) de frein, le boîtier de commande réagissant au signal de demande de freinage pour accomplir un freinage au niveau dudit cylindre (WC) de roue ;

    identifier avec le boîtier de commande une valeur anormale pour le signal de demande de freinage provenant du capteur (88) de pression primaire ;

    envoyer un signal de boîtier de commande, en réponse à l'identification de la valeur anormale, pour ouvrir ledit clapet d'isolement (522 ; 521) normalement ouvert et observer la relation entre l'actionnement de la pédale de frein et la pression créée au niveau du côté sortie du maître-cylindre au moyen d'un capteur (76) de pression secondaire qui est placé dans le circuit de freinage ; et

    déterminer avec le boîtier de commande, sur la base de la relation observée, si la valeur anormale révèle un dysfonctionnement du capteur (88) de pression primaire ou révèle un dysfonctionnement du simulateur (80) de sensation de pédale et/ou du clapet (84) commutable de simulateur.


     
    12. Procédé selon la revendication 11, comprenant en outre l'opération consistant à basculer automatiquement, par le biais du boîtier de commande, d'un mode primaire de freinage à commande électronique qui utilise le capteur (88) de pression primaire comme entrée pour le générateur (60) de pression de freinage à un mode secondaire de freinage à commande électronique qui utilise un capteur (36) de course de la pédale de frein comme entrée pour le générateur (60) de pression de freinage en réaction à la constatation que la valeur anormale révèle un dysfonctionnement du capteur (88) de pression primaire et ne révèle pas de dysfonctionnement du simulateur (80) de sensation de pédale ou du clapet (84) commutable de simulateur.
     
    13. Procédé selon la revendication 11, dans lequel le générateur (60) de pression de freinage fournit une pression de freinage à un premier circuit de freinage par le biais d'une première soupape de commande et fournit une pression de freinage à un second circuit de freinage par le biais d'une seconde soupape de commande.
     
    14. Procédé selon la revendication 13, comprenant en outre l'opération consistant à moduler la quantité d'ouverture de chacune des première et seconde soupapes de commande avec le boîtier de commande pour régler une première pression fournie à un premier jeu de cylindres (WC) de roue du premier circuit de freinage et à un second jeu de cylindres (WC) de roue du second circuit de freinage.
     
    15. Procédé selon la revendication 13, comprenant en outre l'opération consistant à maintenir au moins une des première et seconde soupapes de commande en position ouverte afin d'établir la communication fluidique nécessaire pour observer la relation entre l'actionnement de la pédale de frein et la pression créée au niveau du côté sortie du maître-cylindre au moyen du capteur (76) de pression secondaire.
     
    16. Procédé selon la revendication 11, dans lequel le capteur (88) de pression primaire détecte la pression du fluide au niveau de la sortie du maître-cylindre (24) accouplée à une seconde chambre mise sous pression par un second piston (262) éloigné d'une première chambre comportant un premier piston (261) accouplé à la pédale (28) de frein.
     
    17. Procédé selon la revendication 16, dans lequel le simulateur (80) de sensation de pédale est actionné à partir de la sortie du maître-cylindre (24) accouplée à la première chambre.
     
    18. Procédé selon la revendication 11, dans lequel entraîner le générateur (60) de pression de freinage comprend l'opération consistant à envoyer un signal de commande à un moteur électrique qui entraîne un piston.
     
    19. Procédé selon la revendication 11, comprenant en outre l'opération consistant à basculer d'un mode de freinage à commande électronique qui utilise le capteur (88) de pression primaire comme entrée pour le générateur (60) de pression de freinage à un mode secondaire de secours à commande mécanique qui utilise la pédale (28) de frein sans utiliser le générateur (60) de pression de freinage ou le simulateur (80) de sensation de pédale en réaction à la constatation que la valeur anormale révèle un dysfonctionnement du simulateur (80) de sensation de pédale et/ou du clapet (84) commutable de simulateur plutôt qu'un dysfonctionnement du capteur (88) de pression primaire.
     




    Drawing














    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description