(19)
(11)EP 3 338 987 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
26.06.2019 Bulletin 2019/26

(21)Application number: 17208261.2

(22)Date of filing:  18.12.2017
(51)International Patent Classification (IPC): 
B29C 45/14(2006.01)
B29L 31/30(2006.01)
B29K 709/08(2006.01)
B29C 33/14(2006.01)
B29L 31/34(2006.01)

(54)

MOLDING TOOL AND METHOD FOR FORMING AND BACK-INJECTING A BENDABLE SHEET

FORMWERKZEUG UND VERFAHREN ZUM FORMEN UND HINTERSPRITZEN EINER BIEGBAREN FOLIE

OUTIL DE MOULAGE ET PROCÉDÉ DE FORMATION ET DE RÉINJECTION D'UNE FEUILLE PLIABLE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 23.12.2016 DE 102016226214

(43)Date of publication of application:
27.06.2018 Bulletin 2018/26

(73)Proprietor: Faurecia Innenraum Systeme GmbH
76767 Hagenbach (DE)

(72)Inventors:
  • FAIK, Othmane
    67610 La Wantzenau (FR)
  • BELLAGAMBA, Stephen
    67000 Strasbourg (FR)

(74)Representative: Pfenning, Meinig & Partner mbB 
Patent- und Rechtsanwälte Joachimsthaler Straße 10-12
10719 Berlin
10719 Berlin (DE)


(56)References cited: : 
WO-A1-2009/012313
DE-A1- 10 004 735
JP-A- H1 134 154
KR-A- 20090 132 166
CN-A- 105 643 868
FR-A1- 2 667 818
JP-A- H08 267 504
  
  • JUNG-HO KIM ET AL: "Development of Film Fixing System for Improving Overlap Defects in the Film Insert Injection Molding Process", JOURNAL OF MANUFACTURING ENGINEERING & TECHNOLOGY, vol. 22, no. 3, 15 June 2013 (2013-06-15), pages 472-479, XP055471146, ISSN: 2233-6036, DOI: 10.7735/ksmte.2013.22.3.472
  • ERMERT MARTIN ET AL: "2. Projekt KuGlas - Hinterspritzen von Dünnglas und 3D Gläsern mit Kunststoff", INTERNET CITATION, 30 September 2013 (2013-09-30), pages 1-8, XP002731907, Retrieved from the Internet: URL:http://www.kunststoff-institut.de/down load/1921 [retrieved on 2014-10-28]
  
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description


[0001] The present invention relates to a molding tool for forming and back-injecting a bendable sheet for a vehicle interior. In addition, the present invention relates to a method for forming and back-injecting a bendable sheet.

[0002] It is known to fabricate back-injected decorative components for vehicle interiors. Such a process may comprise various steps of manufacturing. In a first step a sheet may be pre-formed under pressure and heat. In a second step the pre-formed sheet may be positioned in a molding cavity of an injection mold. In a third step the injection mold may be closed and the pre-formed sheet may be back-injected with a curable material to provide a support layer.

[0003] Document US 2005/0276874 A1 relates to a device and method for manufacturing a veneer layer sheet. The veneer layer sheet comprises one layer of wood veneer or other decorative material bonded to one layer of a backing material. The veneer layer sheet is pre-formed prior to a final thermoplastic-material injection step that provides a required supporting and coupling layer.

[0004] In this method and in other methods a step of pre-forming is necessary. Therefore, known methods have a disadvantage of a high process complexity and relating costs.

[0005] Document KR 2009 1322166 A relates to an injection molding device comprising a fixed and a movable mold, a mounting and supporting member, and an operating unit. The operating unit comprises a motion pin, a stopper and a return member.

[0006] The technical paper "Development of Film Fixing System" of Jung-Ho Kim relates to an injection molding process that involves filling the mold with polymer after thin films are fixed into the cavity. A molten plastic resin is injected into the cavity after films are attached to the side of the mold wall. Interior pins fix the film in the mold.

[0007] WO 2009/012313 A1 relates to a pin assembly for use in making a molded article using a coverstock and a polymer. The coverstock is located between a first section of a mold and a second section of a mold, a mold cavity being formed by the first and second mold section. The pin assembly includes a pin having a first end and a second end. The first end projects from the first mold section and toward the second mold section. The first end includes a chamfer. The pin assembly further includes a biasing member coupled to the pin and configured to bias the first end of the pin toward the second mold section. The biasing force presses the coverstock against the second section of the mold with the first end.

[0008] JP H08 267504 relates to a manufacturing method for an insert-molded article. The mold comprises a movable mold, to which an insert film is fixed, a fixed mold with an injection port of molten resin and fixing pins for pushing the insert film against the movable mold.

[0009] FR 2 667 8187 A1 relates to a plastic injection mold for the manufacture of decorated spectacle glasses. The mold comprises a fixed part (1) and a movable part separated by a joint face and two movable groove plates. The two movable groove plates are each mounted on a slide arranged on the fixed part of the mould.

[0010] DE 100 04 735 A1 relates to a method for producing a plastic moulded part. A molding device comprises a first and second mold forming a cavity, a system for locating facing materials in the cavity and a sealing member. A mechanism moves the seal in and out of the cavity and a nozzle or similar device feeds melt into partial cavities.

[0011] In view of the aforementioned state of the art, it is an objective of the present invention to provide a molding tool and a method to improve the fabrication of bent and back-injected flat materials. In particular, it is an objective of the invention to provide a tool which reduces process complexity. Another object of the invention may be to provide a tool that allows for back-injecting elastically deformable materials.

[0012] These objectives are achieved by a tool with the features of the independent claim 1 and by a method for forming and back-injecting a bendable sheet according to claim 11. Optional further features and further developments will become apparent from the dependent claims and the detailed description in conjunction with the accompanying drawings.

[0013] The proposed molding tool may be used for forming and back-injecting a bendable sheet for use in a vehicle interior. More in particular the tool may be used for forming and back-injecting an elastic sheet. The back injected sheet may be used for decorative purpose or for holding informative parts, for example, displays or instruments. The molding tool comprises a mold that comprises a first mold half and a second mold half. The first half is arranged opposite the second half and the two halves are forming a cavity for maintaining the bendable sheet and receiving a melt. Further, at least one of the halves comprises an opening or a groove for injecting a melt for back-injecting the bendable sheet. In addition, the molding tool comprises at least one pin for holding and/or positioning the bendable sheet and to form the sheet in a desired shape against the second mold half. The pin is elastically mounted to or in the first mold half and points towards the second half of the mold. Further, the pin is retractable in response to a force exerted on the pin by a pressure of the injected melt during back injection.

[0014] The pins may press the bendable sheet against the second half. During a closing phase of the mold, the pins may guide the deformation of the bendable sheet. Thus, the bendable sheet may be bent and may adopt the shape of the second mold half.

[0015] The proposed molding tool may comprise at least three retractable pins, preferably the pins are mounted in the half comprising the opening or the groove for injecting the melt. Thereby, the pins alone may hold the bendable sheet in a statically determined manner. When using three or more pins, an additional support, for example by a mold half, may not be necessary for holding the sheet. An additional support is particularly not necessary, when the sheet is positioned on top of the pins with respect to the gravitational force.

[0016] At least one of the pins may comprise a suction member at the end facing the second mold half for folding the bendable sheet. The suction member may prevent the bendable sheet from moving during forming and back-injecting. The suction member may also hold the bendable sheet when the second mold half is arranged below the first mold half, relative to the gravitational force.

[0017] According to a still further aspect of the invention, the application proposes a method for forming and back-injecting a bendable sheet using the aforementioned molding tool. The method may comprise the following steps, which do not need to be but may be performed in the listed order. The molding tool is provided. Further, a bendable sheet with a frontside and a backside is provided. The bendable sheet may be inserted into the cavity between the first half of the mold and the second half of the mold. For maintaining the bendable sheet at least one pin may be extended. In another step, the mold may be closed for bending the bendable sheet. During the closing process, the pin may hold the sheet in shape and/or bend the sheet and may be at least partially retracted. When the mold is closed, the pin may hold the sheet in shape by positioning the sheet against the second mold half. In another step, the melt is be injected under pressure to the backside of the bent sheet. The backside of the bent sheet is the side facing the first mold half. During the injection process, the melt may displace the pin such that the pin may be fully retracted into the first mold half. Thus, the bent sheet may be covered with a layer of the melt. The melt may also cover the backside of the bent sheet at the positions where the pins are retracted. In another step, the melt may be cured or cooled in order to solidify. Thus, the sheet may be held in shape by the back-injected layer. In general, the adhesion between the bendable sheet and the melt will be sufficient to hold the sheet in the desired form. An adhesion promoter may, however, be applied to the bendable sheet in order to provide a better adhesion. Otherwise an additional clamping part may fix the sheet to a part made out of the back-injected material, for example at the edge of the sheet.

[0018] The proposed molding tool and the proposed method enable a fast and reliable fabrication of a back-injected part. Two steps, the step of forming the sheet and the step of back-injecting the sheet can be performed with one tool. Further, the bent sheet is initially held in shape by the at least one pin, which holding function is taken over during the back-injection by the melt until the bent sheet is, at least mainly, supported by the back-injected layer. Known methods have the disadvantage that a sheet needs to be pre-formed in an additional tool. Therefore, the sheet must not be of an elastically deformable material, because it would loose its pre-formed shape when it is transferred from a tool for pre-forming to a tool for back-injecting. In the suggested tool, a forming and a back-injecting process may be performed in one tool and the sheet may be held in a deformed shape by the mold halves and/or at least one pin until it is supported by the back-injected layer. Thus, the sheet may be of an elastically deformable material.

[0019] When the mold is closed, the first mold half and the second mold half define the cavity for maintaining the bendable sheet and receiving the melt. Typically, the inner side of the second half of the mold has a shape corresponding to a visible side of the part, for example decorative covering component of a console, a door or an instrument panel. The mold also may include inserts for generating openings for knobs or buttons in consideration of the respective requirements. During the closing process, the mold halves may move towards each other. Only one mold half may move towards another mold half that is fixed relative to other parts of the tool or both mold halves may move relative to such other parts. The mold halves may apply a pressure to the bendable sheet. At least one of the mold halves, typically the first mold half and/or the pins may press the bendable sheet against one of the mold halves, typically the second mold half, and/or the extended pin to form the sheet in the desired shape. Sliders or parts of the first mold half may cover holes in the sheet or prevent the melt to reach specific areas of the sheet in order to obtain areas that are not covered by the melt.

[0020] Typically, the mold half comprising at least one pin further comprises at least one hole or bore to accommodate the pin. Preferably, the pin is placed in the hole or bore such that the pin may be completely retractable in the mold half. For retracting the pin elastically, the pin may comprise an elastically deformable material, for example a rubber. Additionally or alternatively, the pin may comprise a spring. Thus, during a closing process of the mold, the pin may maintain the bendable sheet and may be at least partially retracted.

[0021] In one embodiment, the spring of the pin may have a compression force that is inferior to the force exerted on the pin by the injected melt and/or a spring compression force is superior to a force needed to form the bendable sheet. Thus, the pin may be able to bend the sheet and may be retracted, when the layer is supported by the back-injected layer.

[0022] The spring compression force may depend on the properties of the melt, the area covered by the melt and/or on a cross-section, size and/or number of pins used.

[0023] In another embodiment, at least one pin may comprise a tiltably mounted head. Thus, the pin can adapt better to the bendable sheet when positioned against the second mold half. The tiltably mounted head may be connected with a ball joint or a cylindrical joint. Therefore, during the closing phase of the mold, a retraction of the pin into the hole or bore may be simplified.

[0024] Furthermore, a top of at least one pin may be divided into sections. A first section of the top may hold the bendable sheet and a second section of the top may provide a retracting force. The first surface may be a distal end of the pin. The second section may be a surface that is inclined with respect to the moving direction of the pin in order to provide a ramp for a melt flow that is perpendicular or mainly perpendicular to the moving direction of the pin. The first section may be flat and the second section may be cut at an angle. Thus, a retracting process of the pin due to the injected melt may be improved. The melt may apply a pressure onto the angled surface of the pin while the flat surface may be in contact with the sheet. Therefore, the spring or the elastic material may be compressed due to the pressure and the pin may be retracted. The melt may pass the head of the pin covering the bent sheet. The distal end may also have another shape, for example it may be spheric.

[0025] During the back-injecting process, the melt may be injected under a pressure through the opening or the groove of one of the halves. Typically, the pressure amounts to at least 100 bar, preferably at least 200 bar and/or at most 2000 bar, preferably at most 1500 bar.

[0026] The injected melt may be a plastic material, in particular a thermoplastic material, for example a polyolefine such as polypropylene, a polyamide, ABS or vinyl polymers.

[0027] In one embodiment, the material of the bendable sheet is glass or plastic. Using the suggested tool, bending and back-injecting a glass sheet may be enabled, because the pins may distribute the pressure for bending applied to the glass sheet. Of course, other sheet materials may be possible, for example PP, glass fibre, aluminium, plastic, wood, stone ceramic or acrylic glass.

[0028] The thickness of the bendable sheet is at least 0.01 mm, preferably at least 0,05 mm, more preferably at least 0,1 mm and/or at most 3 mm, preferably 2 mm, more preferably 1 mm.

[0029] Moreover, the features mentioned in relation to the molding tool for forming and back-injecting a bendable sheet also relate to the method for forming and back-injecting a bendable sheet and vice versa.

[0030] Exemplary embodiments will be described in conjunction with the following figures.
Fig. 1
shows a perspective view of a first half of a molding tool with extended pins,
Fig. 2
shows a side view of the first half of the molding tool,
Fig. 3
shows a perspective view of the first half of the molding tool with retracted pins,
Fig. 4 (a)
shows a schematic view of the pin comprising a spring,
Fig. 4 (b)
shows a schematic top view of a head of the pin,
Fig. 5 (a)
shows a schematic sectional view of the closed molding tool with the extended pin during an injection process,
Fig. 5 (b)
shows a schematic sectional view of the closed molding tool with the completely retracted pin during an injection process,
Fig. 6 (a) to
show a schematic sectional view of the molding tool during a
Fig. 6 (c)
bending process,
Fig. 7 (a)
shows a perspective view of an extended pin,
Fig. 7 (b)
shows a schematic view of the extended pin.


[0031] Fig. 1 shows a first mold half 1 of a molding tool for forming and back-injecting a bendable sheet. The first mold half 1 comprises bores 2 for accommodating retractable pins, as an example one of the pins is denoted with the reference sign 3. The pins 3 are shown in an extended position and point towards the second half of the mold (the second half of the mold is not shown). The first half of the mold 1 further comprises an opening for injecting a melt for back-injecting the bendable sheet. However, this opening is not shown in Fig. 1. The pins 3 comprise a tiltably mounted head 5 connected with a ball joint. However, in another embodiment, the head 5 may be connected with a cylindrical joint. The head 5 comprises a low friction surface at its upper surface 6. Thus, a back-injected bent sheet comprising a layer of cured melt may be easily removed after a bending and back-injecting process. Corresponding features are denoted using the same reference signs in Fig. 2 and the following figures.

[0032] In Fig. 2 the first mold half 1 is shown in a side view. The pins 3 are extended such that the pins can hold a bendable flat sheet. When the molding tool is open and the first and a second half of the mold have a maximum distance between each other, the pins 3 are extended in the shown position.

[0033] Fig. 3 shows the first mold half 1 with retracted pins 3. The pins 3 are completely embedded into the bores such that they do not protrude beyond the surface of the first mold half 1. During a closing phase of the mold, the sheet is bent (the bending process is described in more detail below). After the bending process, a melt is injected under pressure for back-injecting the bent sheet. Thereby, the melt displaces the pins by exerting a force on the pins. Therefore, the embedded position of the pins 3 shown in Fig. 3 corresponds to a closed position of the mold and after back-injecting the bent sheet. To enable a retraction of the pins 3, the pins 3 are mounted on a spring. However, in another embodiment the pins 3 may be mounted elastically in a different way, for example by using an elastic material.

[0034] Fig. 4 (a) illustrates a pin 3 comprising a head 5 and a spring 7. The head 5 of the pin 3 has a low friction surface, wherein the surface is divided into 2 sections 8, 9. Further, the surface of the pin is of a heat-resistant material, for example PTFE. The material of the different sections may differ from each other. The first section 8 is cut at an angle of 20 degrees. The section second 9 is flat. Thus, a retracting process of the pin 3 due to the injected melt may be improved. The melt can apply a pressure onto the angled section 8 while the flat section 9 may stay in contact with the bent sheet. The flat section 9 may have another shape that fits better to the shape of the bendable sheet after bending. Due to the pressure applied on the first section, the spring 7 can be compressed and the pin may be retracted, losing the contact with the bent sheet. The melt may pass the head of the pin covering the bent sheet.

[0035] Fig. 4 (b) shows a top view of the head 5 of the pin 3. The first section 8 is cut at the mentioned angle and the second section 9 is flat. This head 5 of the pin 3 comprises two sections 8, 9 each forming a semicircle. However, in another embodiment the head 5 may comprise more sections cut at different angles and/or having other shapes. The head may have a spheric shape or any shape that allows the force provided by the melt front to be, at least partly, transferred into the retraction direction of the pin. In Fig. 4(b) the diameter of the head 5 of the pin 3 amounts to 10 mm. However, the heads 5 of the pins 3 may have other diameters. A diameter of a bore 2 matches the diameter of the pins head 5, such that the pins 3 are retractable. A gap between the pins 3 and the surface 4 of the first mold half 1 may be sealed, such that melt may not enter the bore when the pins 3 are retracted and the melt is injected.

[0036] Fig. 5 (a) shows a closed mold 10 comprising the first mold half 1 and the second mold half 11 when a melt 12 is injected. The melt is a polypropylene. The bendable sheet 13 is arranged between the mold halves and the pins 3 maintain the bent sheet 11. More in particular, the sheet is positoned against the second mold half. Therefore, the pin 3 is partly extended and the head 5 of the pin 3 protrudes at least partially beyond the surface 4 of the first mold half 1. The arrow 14 shows the flow direction of the melt. The inclined surface of the pin is directed towards the melt front.

[0037] Fig. 5 (b) shows a schematic snapshot of an injection process, after the melt has displaced the pin 3. The pin 3 is retracted due to a force exerted on the surface of the head 5 of the pin 3 by the melt 12. The force compresses the spring 7 and the pin 3 is pressed into the bore 2 of the first mold half 1. In the shown embodiment, an injection pressure amounts to 800 bars.

[0038] The example of mold 10 shown in the figures 1 and 3 comprises twenty-eight pins 3 with a diameter of the head 5 of 10 mm.

[0039] Figures 6 (a), 6 (b) and 6 (c) show snapshots of a bending process of a bendable sheet 13 with the molding tool. In Fig. 6 (a) the molding tool is opened and the pins 3 are extended. A bendable sheet 13 is positioned between the first half 1 of the mold and the second half 11 of the mold. The pins 3 maintain the bendable sheet 13. In this example, the bendable sheet is a glass sheet. In the example shown, the thickness of the bendable sheet 13 is 0.8 mm. However, in another embodiment, the bendable sheet 13 can have another thickness.

[0040] Fig. 6 (b) shows a mold-closing step during the bending process, in which the pins 3 hold in position the glass sheet. The second half 11 of the mold moves toward the first half 1 of the mold. Thereby, the second mold half 11 applies at least locally a pressure to the bendable sheet 13. Where the pressure is too high, the retractable pins 3 can retract at least partly to avoid a damage of the bendable sheet because of local stresses. Further, the pins 3 comprise tiltably mounted heads 5, such that they are able to hold the sheet in position even though it is no longer in a flat shape.

[0041] Fig. 6 (c) shows a closed position of the molding tool, when the bending process is finished. The bendable sheet 13 is bent and adapted its shape to the shape of the mold. Between the first half 1 and the second half 11 of the mold is still a cavity for injecting the melt. The pins 3 are at least partially protruding beyond the surface of the first half 1 of the mold to hold the bent sheet 13 in shape. In another step the melt 12 will be injected into the cavity 15 to back-inject the bent sheet 13 (as described in Figs. 5 (a) and 5 (b)).

[0042] If the gravitational force in the figures 6 (a), 6(b) and 6 (c) is in the direction from the second mold half to the first mold half than the sheet may be solely supported by the pins. In other geometries, for example when the gravitational force is directed from the first mold half to the second mold half, additional support for the sheet is needed. Such additional support may be an edge of the second mold half. In a geometry where the gravitational force is in a direction parallel to the sheet, additional clamping of the sheet may be foreseen, for example suction pads or clamps in the head of the pins.

[0043] Figs. 7 (a) and 7 (b) illustrate an extended pin 3 in a perspective view and a schematic view. The pin comprises a tiltably mounted head 5 that is connected with a cylindrical joint 16. An upper surface 6 of the shown pin 3 only comprises one section that is angled with respect to the melt flow direction. A bore 2 comprises a diameter that complies with the diameter of the head 5. Therefore, the pin 3 is completely embeddable into the mold half 1.. A tiltably mounted head may improve the application of the sheet to the second mold half.


Claims

1. A molding tool for forming and back-injecting a bendable sheet (13) comprising

- a mold, comprising a first mold half (1) and a second mold half (11), wherein the first half (1) is arranged opposite the second half (11) forming a cavity for receiving the bendable sheet (13) and a melt, and

- at least one pin (3) for holding and/or positioning the bendable sheet (13) against the second half, wherein the pin (3) is elastically mounted to or in the first mold half (1) and points towards the second half (11) of the mold,

characterised in that
the pin (3) is retractable into the first mold half (1) in response to a force exerted on the pin (3) by a pressure of the injected melt (12) during back injecting the bendable sheet
and the at least one pin (3) comprises a tiltably mounted head (5).
 
2. The molding tool of claim 1, characterised in that the molding tool comprises at least three retractable pins.
 
3. The molding tool of claim 1 or 2, characterised in that at least one retractable pin (3) comprises a spring (7).
 
4. The molding tool of claim 3, characterised in that a spring compression force of the spring (7) is inferior to the force exerted on the retractable pin (3) by the injected melt (12) and/or a spring compression force is superior to a force needed to form the bendable sheet (13) .
 
5. The molding tool of one of the claims 1 to 4, characterised in that at least one pin (3) comprises a suction pad for holding the bendable sheet.
 
6. The molding tool of one of the previous claims, characterised in that the tiltably mounted head (5) is connected with a ball joint or a cylindrical joint (16).
 
7. The molding tool of one of the claims 1 to 6, characterised in that a top of the pins is divided into sections (8, 9), wherein at least one section is flat and at least another section is cut at an angle.
 
8. The molding tool of one of the previous claims, characterised in that the melt (12) is a plastic material.
 
9. The molding tool of one of the previous claims, characterised in that the material of the bendable sheet (13) comprises glass, metal, wood or plastic.
 
10. A method for forming and back-injecting a bendable sheet (13) using the molding tool of one of the claims 1 to 9 comprising the steps of:

- Providing the molding tool

- Providing a bendable sheet (13) with a frontside and a backside

- Inserting the bendable sheet (13) into the cavity between the first half (1) of the mold and the second half (11) of the mold

- Closing the mold for bending the bendable sheet (13), wherein at least one pin (3) is maintaining the sheet (13) and is at least partially retracted during the closing process,

- Holding the sheet (13) in shape

- Injecting a melt (12) under pressure on the backside of the bent sheet (13), wherein at least one pin (3) is retracted due to a force exerted on the pin (3) by the injected melt

- Curing the melt.


 
11. The method of claim 10, characterised in that at least one pin (3) comprises a spring (7) with a compression force, wherein the force exerted on the pin (3) by the injected melt (12) is superior to the compression force and/or the spring compression force is superior to a force needed to form the bendable sheet (13).
 


Ansprüche

1. Formwerkzeug zum Verformen und Hinterspritzen einer biegbaren Platte (13) umfassend

- eine Form, umfassend eine erste Formhälfte (1) und eine zweite Formhälfte (11), wobei die erste Formhälfte (1) einen Hohlraum zum Aufnehmen der biegbaren Platte (13) und einer Schmelze bildend gegenüber der zweiten Formhälfte (11) angeordnet ist,

- zumindest einen Stift (3) zum Halten und/oder Positionieren der biegbaren Platte (13) gegen die zweite Formhälfte , wobei der Stift (3) elastisch an oder in der ersten Formhälfte (1) angebracht ist und in Richtung der zweiten Formhälfte (11) zeigt,

dadurch gekennzeichnet, dass
während des Hinterspritzens der biegbaren Platte der Stift (3) durch eine durch den Druck der eingespritzten Schmelze (12) auf den Stift (3) aufgebrachte Kraft in die erste Formhälfte (1) einfahrbar ist
und der zumindest eine Stift (3) einen kippbar gelagerten Kopf (5) enthält.
 
2. Formwerkzeug gemäß Anspruch 1, dadurch gekennzeichnet, dass das Formwerkzeug zumindest drei einfahrbare Stifte umfasst.
 
3. Formwerkzeug gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, dass zumindest ein einfahrbarer Stift (3) eine Feder (7) umfasst.
 
4. Formwerkzeug gemäß Anspruch 3, dadurch gekennzeichnet, dass eine Federkompressionskraft der Feder (7) kleiner ist als die durch die eingespritzte Schmelze (12) auf den Stift (3) aufgebrachte Kraft und/oder dass eine Federkompressionskraft größer ist als eine Kraft, die nötig ist, um die biegbare Platte (13) zu verformen.
 
5. Formwerkzeug gemäß einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass zumindest ein Stift (3) einen Saugnapf zum Halten der biegbaren Platte umfasst.
 
6. Formwerkzeug gemäß einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der kippbar gelagerte Kopf (5) ein Kugelgelenk oder ein zylindrisches Gelenk (16) umfasst.
 
7. Formwerkzeug gemäß einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass eine Oberseite der Stifte in zwei Abschnitte (8, 9) eingeteilt ist, wobei zumindest ein Abschnitt eben ausgebildet ist und zumindest ein weiterer Abschnitt dazu abgewinkelt geschnitten ist.
 
8. Formwerkzeug gemäß einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Schmelze (12) einen Kunststoff umfasst.
 
9. Formwerkzeug gemäß einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die biegbare Platte (13) Glas, Metall, Holz oder Kunststoff umfasst.
 
10. Verfahren zum Verformen und Hinterspritzen einer biegbaren Platte (13) unter Verwendung des Formwerkzeugs gemäß einem der Ansprüche 1 bis 9 umfassend die folgenden Schritte:

- Bereitstellen des Formwerkzeugs,

- Bereitstellen einer biegbaren Platte (13) mit einer Vorder- und einer Rückseite,

- Einlegen der biegbaren Platte (13) in den Hohlraum zwischen der ersten (1) und der zweiten Formhälfte (11),

- Schließen der Form zum Biegen der biegbaren Platte (13), wobei zumindest ein Stift (3) die biegbare Platte (13) hält und während des Schließprozesses zumindest teilweise eingefahren wird,

- Halten der biegbaren Platte (13) in Form,

- Einspritzen einer Schmelze (12) unter Druck an die Rückseite der gebogenen Platte (13), wobei zumindest ein Stift (3) durch eine durch die eingespritzte Schmelze auf den Stift (3) aufgebrachte Kraft einfahrbar ist,

- Aushärten der Schmelze.


 
11. Verfahren gemäß Anspruch 10, dadurch gekennzeichnet, dass zumindest ein Stift (3) eine Feder (7) mit einer Federkompressionskraft umfasst, wobei die durch die eingespritzte Schmelze (12) auf den Stift (3) aufgebrachte Kraft größer ist als die Federkompressionskraft und/oder die Federkompressionskraft größer ist als eine Kraft, die nötig ist, um die biegbare Platte (13) zu verformen.
 


Revendications

1. Outil de moulage pour former et surmouler par rétro-injection une feuille pliable (13), comprenant :

- un moule, qui comprend une première moitié de moule (1) et une seconde moitié de moule (11), dans lequel la première moitié de moule (1) est agencée à l'opposé de la seconde moitié de moule (11) de manière à ce que ces moitiés de moule forment une cavité pour recevoir la feuille pliable (13) et une matière fondue ; et

- au moins une broche (3) pour maintenir et/ou positionner la feuille pliable (13) contre la seconde moitié de moule, dans lequel la broche (3) est montée élastiquement sur ou dans la première moitié de moule (1) et elle pointe en direction de la seconde moitié de moule (11) du moule ;

caractérisé en ce que :

la broche (3) peut être rétractée à l'intérieur de la première moitié de moule (1) en réponse à une force qui est exercée sur la broche (3) au moyen d'une pression de la matière fondue injectée (12) pendant le surmoulage par rétro-injection de la feuille pliable ; et

l'au moins une broche (3) comprend une tête montée de façon inclinable (5).


 
2. Outil de moulage selon la revendication 1, caractérisé en ce que l'outil de moulage comprend au moins trois broches pouvant être rétractées.
 
3. Outil de moulage selon la revendication 1 ou 2, caractérisé en ce qu'au moins une broche pouvant être rétractée (3) comprend un ressort (7).
 
4. Outil de moulage selon la revendication 3, caractérisé en ce qu'une force de compression élastique de ressort du ressort (7) est inférieure à la force qui est exercée sur la broche pouvant être rétractée (3) par la matière fondue injectée (12) et/ou une force de compression élastique de ressort est supérieure à une force qui est nécessaire pour former la feuille pliable (13).
 
5. Outil de moulage selon l'une des revendications 1 à 4, caractérisé en ce qu'au moins une broche (3) comprend un tampon d'aspiration formant ventouse pour maintenir la feuille pliable.
 
6. Outil de moulage selon l'une des revendications précédentes, caractérisé en ce que la tête montée de façon inclinable (5) est connectée à un joint à bille formant joint sphérique ou à un joint cylindrique (16).
 
7. Outil de moulage selon l'une des revendications 1 à 6, caractérisé en ce qu'une broche sommitale des broches est divisée selon des sections (8, 9), dans lequel au moins une section est plane et au moins une autre section est coupée selon un certain angle.
 
8. Outil de moulage selon l'une des revendications précédentes, caractérisé en ce que la matière fondue (12) est une matière plastique.
 
9. Outil de moulage selon l'une des revendications précédentes, caractérisé en ce que le matériau de la feuille pliable (13) comprend du verre, du métal, du bois ou de la matière plastique.
 
10. Procédé pour former et pour surmouler par rétro-injection une feuille pliable (13) en utilisant l'outil de moulage selon l'une des revendications 1 à 9, comprenant les étapes constituées par :

- la fourniture de l'outil de moulage ;

- la fourniture d'une feuille pliable (13) qui comporte un côté avant et un côté arrière ;

- l'insertion de la feuille pliable (13) à l'intérieur de la cavité entre la première moitié (1) du moule et la seconde moitié (11) du moule ;

- la fermeture du moule pour plier la feuille pliable (13), dans lequel au moins une broche (3) est en train de maintenir la feuille (13) et est au moins partiellement rétractée pendant le processus de fermeture ;

- le maintien de la feuille (13) en forme ;

- l'injection d'une matière fondue (12) sous pression sur le côté arrière de la feuille pliée (13), dans lequel au moins une broche (3) est rétractée du fait d'une force qui est exercée sur la broche (3) par la matière fondue injectée ; et

- le durcissement de la matière fondue.


 
11. Procédé selon la revendication 10, caractérisé en ce qu'au moins une broche (3) comprend un ressort (7) qui exerce une force de compression, dans lequel la force qui est exercée sur la broche (3) par la matière fondue injectée (12) est supérieure à la force de compression et/ou la force de compression élastique de ressort est supérieure à une force qui est nécessaire pour former la feuille pliable (13).
 




Drawing




















Cited references

REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description