(19)
(11)EP 3 341 559 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
09.10.2019 Bulletin 2019/41

(21)Application number: 16760825.6

(22)Date of filing:  25.08.2016
(51)International Patent Classification (IPC): 
E21B 33/08(2006.01)
E21B 21/08(2006.01)
(86)International application number:
PCT/NL2016/050592
(87)International publication number:
WO 2017/039434 (09.03.2017 Gazette  2017/10)

(54)

SEALING AND CONTROLLING OF FLUID PRESSURE IN AN ANNULAR FLUID PASSAGEWAY IN A WELLBORE RELATED PROCESS

ABDICHTEN UND STEUERN EINES FLUIDDRUCKS IN EINEM RINGFÖRMIGEN FLUIDDURCHGANG IN EINEM BOHRLOCHPROZESS

ÉTANCHÉISATION ET COMMANDE D'UNE PRESSION DE FLUIDE DANS UN PASSAGE DE FLUIDE ANNULAIRE DANS UN PROCÉDÉ LIÉ À UN PUITS DE FORAGE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 28.08.2015 NL 2015363

(43)Date of publication of application:
04.07.2018 Bulletin 2018/27

(73)Proprietor: Itrec B.V.
3115 HH Schiedam (NL)

(72)Inventors:
  • BAKKER, Thomas Walburgis
    7900 AP Hoogeveen (NL)
  • VAN OG, Gerardus Godefridus Johannes
    7900 AP Hoogeveen (NL)
  • ROODENBURG, Joop
    3115 HH Schiedam (NL)

(74)Representative: EP&C 
P.O. Box 3241
2280 GE Rijswijk
2280 GE Rijswijk (NL)


(56)References cited: : 
WO-A1-93/23654
US-A- 2 670 225
US-A1- 2013 192 847
US-B2- 8 347 983
GB-A- 2 233 365
US-A- 4 821 799
US-B1- 8 844 617
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description


    [0001] The present invention relates to the field of performing wellbore related processes, e.g. drilling into subterranean formations, e.g. subsea formations, e.g. in view of hydrocarbons exploration or geothermal well drilling, etc.

    [0002] In the field, e.g. in the course of so-called closed mud or other drilling fluid circulation processes, e.g. in Managed Pressure Drilling (MPD), underbalanced drilling, etc. , use is made of rotating control devices (RCDs) having internal sealing elements. Examples thereof are e.g. disclosed in US 8 347 983.

    [0003] In US 8 347 983 a method for sealing and controlling fluid pressure in an annular fluid passageway in a wellbore related process is disclosed. In the method a fluid, drilling mud, passes through the annular fluid passageway around a drilling tubulars string. Use is made of an annular fluid passageway sealing device, which sealing device comprises:
    • a housing,
    • a chamber within said housing,
    • a lower chamber end member delimiting said chamber at a lower end thereof,
    • an upper chamber end member delimiting said chamber at an upper end thereof,
    wherein the lower and upper chamber end member are each provided with an opening therein, which openings are aligned on an axis of the sealing device and are dimensioned so that the drilling tubulars string passes along said axis through said chamber and said chamber end members,
    wherein the housing is provided with:
    • an inlet in communication with said chamber to introduce liquid into said chamber,
    • an outlet in communication with said chamber to discharge liquid from said chamber,
    wherein further use is made of a liquid pump that feeds liquid into said chamber via said inlet, e.g. circulates liquid through said chamber via said inlet and outlet,
    wherein the liquid within the chamber is in direct contact with the drilling tubulars string passing through the chamber.

    [0004] In US 8 347 983 the introduction of liquid into the chamber and/or the circulation through said chamber, aims to transfer some of the drilling mud pressure that is exerted onto the lower chamber end member, or lower sealing element to the upper sealing element or elements, so that a load sharing of the lower and upper end members is achieved.

    [0005] The present invention aims to provide an improved method and sealing device or at least an alternative.

    [0006] The present invention provides a method according to the preamble of claim 1, which is characterized in that the inlet and the outlet are vertically offset from each other, wherein the inlet feeds into a feed zone of the chamber adjacent the lower chamber end member and wherein the outlet discharges from a discharge zone of the chamber adjacent the upper chamber end member,
    and in that the chamber is provided with one or more narrow annular gap defining members that are arranged between said vertically spaced apart feed zone and discharge zone and that envelope the drilling tubular string,
    and in that the one or more narrow annular gap defining members define in combination with the drilling tubular string an elongated and radially narrow annular gap through which said circulating liquid passes from the feed zone to the discharge zone,
    and in that the circulated liquid is a high viscosity liquid,
    and in that the circulation of said high viscosity liquid and the narrow annular gap are such that shear of the high viscosity liquid is induced in said elongated and radially narrow annular gap, resulting in a pressure drop between said feed zone and said discharge zone such that high viscosity liquid pressure in said feed zone assists the lower chamber end member in absorbing the wellbore related fluid pressure in said annular fluid passageway.

    [0007] In practice, e.g. due to some horizontal plane motion (swirling) of the drilling tubulars string relative to the one or more narrow annular gap defining members and/or due to some bending/misalignment of the drilling tubulars string the narrow gap may not be perfectly uniform around the drilling tubulars string. These imperfections, which will mostly vary over time, still allow for a reliable establishing of the desired pressure drop and thereby maintaining a desired pressure in the feed zone of the chamber to assist the lower chamber end member in absorbing the drilling fluid, e.g. mud, pressure in the annular passageway. At the same time the inventive approach allows to reduce any drilling fluid induced load on the upper chamber end member as well, e.g. the pressure drop being such that in the discharge zone an ambient or near ambient pressure is present.

    [0008] Due to the assistance provided by the high viscosity liquid pressure in the feed zone, any wear of the lower chamber end member, e.g. a resilient stripper member, may be significantly reduced. The same benefit may apply to the upper chamber end member, e.g. embodied as resilient stripper member.

    [0009] In an embodiment the entire, or nearly entire, e.g. 80%, of the pressure difference between the wellbore related fluid in the annular fluid passageway on the one hand and the ambient pressure, e.g. above the upper chamber end member, on the other hand, is absorbed by pressure in the feed zone, with the pressure drop over the length of the narrow gap equaling said pressure difference or portion thereof.

    [0010] In an embodiment the pressure in the feed zone equals, or is controlled to be equal to, the wellbore related fluid pressure in the annular passageway directly beneath the lower chamber end member, so that this lower chamber end member is effectively not or not significantly loaded in axial direction, thus vertically load balanced. This complete balancing of vertical loads on the lower chamber end member greatly reduces any wear of the lower chamber end member, e.g. when designed as a resilient end member contacting the drilling tubulars string, e.g. as a resilient stripper member.

    [0011] It is envisaged that the lower chamber end member, preferably balanced in axial or vertical direction as explained above, may or will act primarily as a scraper that scrapes drilling fluid, e.g. mud, from the drilling tubulars string so as to avoid or reduce entry of drilling fluid into the chamber of the sealing device and mixing thereof with the high viscous liquid circulated through the mixing device.. For example the lower chamber end member is embodied as a resilient stripper member, e.g. as known in the art.

    [0012] Preferably the lower chamber end member and/or upper chamber end member, each or in combination, have a pressure rating such that in case of the mentioned high viscous liquid circulation being absent and/or no pressure drop being established by the narrow gap for other causes, the lower and/or upper chamber end members, alone or in combination, are able to withstand the pressure of the wellbore related fluid in the annular fluid passageway. So these end members, alone or in combination, can act as a conventional stripper seal member as known also from non-pressure assisted RCD devices. For example the pressure rating of the lower chamber end member and/or upper chamber end member, each or in combination, is at least 68,9 bar (1000 psi) (dynamic), e.g. at least 172,3 bar (2500 psi) (dynamic).

    [0013] In an embodiment, as preferred, the wellbore related fluid pressure in the annular fluid passageway is measured, e.g. directly beneath the lower chamber end member, and the high viscosity liquid pressure in the feed zone is controlled in response to this measurement of the wellbore related fluid pressure by means of variation of the circulation of said high viscosity liquid and/or of the narrow annular gap. It will be appreciated that a computerized control unit may be provided that is linked to a pressure sensor for measuring the wellbore related fluid pressure in the annular fluid passageway on the one hand and to the pump and/or any control device - if present - of the one or more narrow annular gap defining members on the other hand. For example a routine is programmed into the control unit to automatically effect a variation of the high viscosity liquid pressure in the feed zone when the wellbore related fluid pressure in the annular fluid passageway changes. A further pressure sensor, also linked to the computerized control unit, may be provided to measure the liquid pressure in the feed zone, e.g. included in a control loop.

    [0014] In practical embodiments, it is envisaged that the narrow annular gap has a radial width of between 0.5 and 3.0 millimeters, e.g. between 0.5 and 1.5 millimeters, e.g. about 1 millimeter. For example this nominal size of the narrow annular gap is envisaged for drilling tubular strings having a diameter between 4 and 8 inches, e.g. 7 inch drilling tubulars. For example this nominal size of the narrow annular gap is envisaged for drilling tubular strings having a diameter between 101.6 and 203.2 millimeters, e.g. 177.8 millimeters drilling tubulars.

    [0015] In practical embodiments, it is envisaged that the elongated and narrow annular gap has a length of at least 0.3 meter, e.g. at least 0.5 meter. It will be appreciated that a suitable length will for example depend on the pressure difference to be handled by the sealing device, etc.

    [0016] In practical embodiments, it is envisaged that the high viscosity liquid has a viscosity of at least 500.000 Centipoise (cP), e.g. at least 1.000.000 Centipoise (cP) .

    [0017] In practical embodiments, it is envisaged that the high viscosity liquid contains bentonite, e.g. a mixture of bentonite and water, e.g. said mixture further containing calcium carbonate.

    [0018] In practical embodiments, it is envisaged that the lower and/or upper chamber end members are embodied with one or more resilient stripper members frictionally engaging the drilling tubulars string. As indicated above such resilient, e.g. rubber, stripper members are known in the art. Examples of suitable stripper members and details thereof are e.g. disclosed in mentioned US 8,347,983.

    [0019] In practical embodiments the lower and/or upper chamber end members are rotatably mounted in the housing allowing the rotatably mounted lower and/or upper chamber end members to revolve in unison with a rotation of the drilling tubulars string. This rotary mounting of the end member or end members, e.g. multiple end members mounted on a common tubular rotary carrier, allows to further reduce wear of the end member as the end member will be able to rotate along with the drilling tubulars string, e.g. during drilling.

    [0020] In practical embodiments a storage vessel is provided wherein a volume of high viscosity liquid is stored, which storage vessel is connected to the circulation pump in order to compensate liquid loss via the sealing device. It is preferred that the lower and/or upper chamber end members are designed to scrape along the drilling tubulars string so as to scrape adhering high viscosity liquid from the string, yet this may not be entirely perfect resulting in a loss of said liquid that needs to be replenished.

    [0021] In practical embodiments it is envisaged that the high viscous liquid may become mixed with drilling fluid, e.g. mud that adhered to the drilling tubulars string (e.g. during tripping out). This may impair the properties of the high viscous liquid, e.g. be detrimental to the sealing device and/or circulation pump. In embodiments the viscous liquid in the system or part thereof may be replaced, e.g. at intervals or based on an analysis of the liquid, by new or cleaned liquid. In an embodiment a contamination, e.g. cuttings, separation device is integrated in the return of the liquid from the sealing device to the pump.

    [0022] In practical embodiments the drilling tubulars string is composed of drilling tubulars that are at one or each end therefor provided with larger-diameter tool joint portion having a larger diameter than the main body or pipe body of the tubular. In an embodiment it is envisaged that the elongated and radially narrow annular gap is defined between this larger-diameter tool joint portion and the one or more narrow annular gap defining members. For example the chamber has such a length that during tripping the drilling tubulars string in and out of the wellbore always at least one tool joint is located in the chamber so as to form the desired narrow gap. In practical embodiments the chamber may be at least 30 ft., e.g. at least 40 ft. In an embodiment the sealing device is used in an offshore drilling process, e.g. wherein the sealing device is arranged above water, e.g. as part of a riser string.

    [0023] In an embodiment, preferably for use with a drilling tubulars string having larger-diameter tool joints at least one narrow annular gap defining member is embodied as a fixed diameter member, e.g. said fixed diameter member being removably mounted in the housing allowing arrangement of a fixed diameter member adapted to the diameter of the tool joint portions of the drilling tubular string.

    [0024] It is noted that the drilling tubulars string may also be composed of drilling tubulars that have flush ends, or connected by a flush intermediate coupling, therefore lacking larger diameter tool joints, e.g. at least over a section of the length of the string.

    [0025] The drilling tubular string could be for example a string of drill pipes, but may e.g. also be a string of casing sections.

    [0026] It is noted that the drilling tubulars string may also be formed by a coiled tubing type drill string, preferably having a uniform diameter over the length thereof or at least over a significant section of the length of the coiled tubing string.

    [0027] In a preferred embodiment at least one, preferably each, narrow annular gap defining member is embodied as a controllable variable diameter member that is adapted to controllably vary the diameter thereof. For example the variable diameter member can be set, or allowed to be expanded, to a diameter indicated as a tool joint passage diameter allowing for the passage of a tool joint portion in the drilling tubulars string, e.g. said diameter being somewhat greater than the tool joint diameter. For example, e.g. in combination with the ability to assume a tool joint passage diameter, the variable diameter member can be set to a tubular main body diameter wherein an effective narrow annular gap is present between the main body of a drilling tubular (so less than of the tool joint) and the variable diameter member.

    [0028] In an embodiment at least one, preferably each, narrow annular gap defining member is embodied as an inflatable and deflatable variable diameter member adapted to controllably vary the diameter. For example the inflation is done by means of pneumatic pressure, e.g. with pressurized air being fed in controlled manner to the variable diameter member in order to reduce the effective diameter of the member.

    [0029] In an embodiment the inflatable and deflatable variable diameter member comprises a tubular bladder of resilient material, e.g. of rubber or other materials, e.g. as discussed in US 8347983 for the stripper members, delimiting the narrow annular gap.

    [0030] In a preferred embodiment the elongated and narrow gap is delimited by a series of multiple gap sections in axial array. For example multiple controllable variable diameter members are arranged in series between the feed zone and the discharge zone, each adapted to controllably vary the diameter. For example the series of multiple controllable variable diameter members is longer than the length of a larger diameter tool joint in the passing drilling tubulars string. This for example allows for a method wherein - for the passage of a tool joint - first one or more variable diameter members at the upper or lower end of the series (depending on the direction of the string) are brought into a tool joint passage diameter and then the more central variable diameters so as to achieve a peristaltic motion of the series allowing for the passage of the tool joint. During this peristaltic motion it may, if desired, be possible to maintain an effective shear inducing gap between one or more of the variable diameter members and the drilling tubulars string.

    [0031] In a preferred embodiment multiple controllable variable diameter members are provided between the feed zone and the discharge zone, each adapted to controllably vary the diameter, are arranged in series between the feed zone and the discharge zone, each controllable variable diameter members being independently controllable.

    [0032] In a preferred embodiment multiple controllable variable diameter members are provided between the feed zone and the discharge zone, each adapted to controllably vary the diameter. These variable diameter members are arranged in series. In a preferred embodiment multiple controllable variable diameter members are mounted in a common carrier, e.g. a common carrier that is exchangeable mounted in the housing of the sealing device, e.g. a common carrier that is rotatably mounted in the housing.

    [0033] In an embodiment one or more controllable variable diameter members are rotatably mounted in the housing, e.g. allowing the one or more members to rotate along with the drilling tubulars string, e.g. in case of any contact between them so as to reduce any wear of the variable diameter members.

    [0034] In an embodiment a diverter housing is mounted below the sealing device, e.g. as is known in Managed Pressure Drilling or other closed mud circulation drilling techniques. The diverter housing may have a central passage through which the drilling tubulars string passes and forming the annular fluid passageway around a drilling tubulars string, and said diverter housing having a lateral port in communication with said annular fluid passageway.

    [0035] In an embodiment the sealing device comprises multiple chambers in series, separated by intermediate chamber end members and each chamber being provided with the narrow gap members as discussed herein.

    [0036] The present invention also relates to a system for sealing and controlling fluid pressure in an annular fluid passageway in a wellbore related process, wherein a wellbore related fluid passes through the annular fluid passageway around a drilling tubulars string, e.g. in a closed fluid circulation wellbore related process, e.g. in a managed pressure drilling process, which system comprises an annular fluid passageway sealing device, which sealing device comprises:
    • a housing,
    • a chamber within said housing,
    • a lower chamber end member delimiting said chamber at a lower end thereof,
    • an upper chamber end member delimiting said chamber at an upper end thereof,
    wherein the lower and upper chamber end member are each provided with an opening therein, which openings are aligned on an axis of the sealing device and are dimensioned so that - in operation - the drilling tubulars string passes along said axis through said chamber and said chamber end members,
    wherein the lower chamber end member is arranged to be exposed, at least partially, to wellbore related fluid pressure in said annular fluid passageway,
    wherein the housing is provided with:
    • an inlet in communication with said chamber to introduce a liquid into said chamber,
    • an outlet in communication with said chamber to discharge said liquid from said chamber,
    wherein the system further comprises a pump that is adapted to feed said liquid into said chamber via said inlet, said liquid being discharged via said outlet and returned to the pump so that - in operation - said liquid is circulated through said chamber via said inlet and outlet,
    wherein the sealing device is embodied such that the liquid circulated through the chamber is in direct contact with the drilling tubulars string passing through the chamber, characterized in that the inlet and the outlet are vertically offset from each other, wherein the inlet feeds into a feed zone of the chamber adjacent the lower chamber end member and wherein the outlet discharges from a discharge zone of the chamber adjacent the upper chamber end member,
    and in that the chamber is provided with one or more narrow annular gap defining members that are arranged between said vertically spaced apart feed zone and discharge zone and that - in operation - envelope the drilling tubular string,
    and in that the one or more narrow annular gap defining members define - in operation - in combination with the drilling tubular string an elongated and radially narrow annular gap through which said circulating liquid passes from the feed zone to the discharge zone,
    and in that the circulated liquid is a high viscosity liquid,
    and in that the circulation of said high viscosity liquid and the narrow annular gap are such that - in operation - shear of the high viscosity liquid is induced in said elongated and radially narrow annular gap, resulting in a pressure drop between said feed zone and said discharge zone such that high viscosity liquid pressure in said feed zone assists the lower chamber end member in absorbing the wellbore related fluid pressure in said annular fluid passageway.

    [0037] The present invention also relates to a method for performing a wellbore related process, wherein a wellbore related fluid passes through the annular fluid passageway around a drilling tubulars string drilling and wherein a fluid pressure is present in said annular fluid passageway, e.g. managed pressure drilling, wherein use is made of a system as described herein for sealing and controlling said fluid pressure in the annular fluid passageway.

    [0038] The present invention also relates to a rotating control device for sealing and controlling a fluid pressure in an annular fluid passageway during a wellbore related process, e.g. in a closed fluid circulation wellbore related process, e.g. in a managed pressure drilling process, said rotating control device comprising:
    • a housing,
    • a chamber within said housing,
    • a lower chamber end member delimiting said chamber at a lower end thereof,
    • an upper chamber end member delimiting said chamber at an upper end thereof,
    wherein the lower and upper chamber end member are each provided with an opening therein, which openings are aligned on an axis of the sealing device and are dimensioned so that - in operation - the drilling tubulars string passes along said axis through said chamber and said chamber end members,
    wherein the lower chamber end member is arranged to be exposed, at least partially, to wellbore related fluid pressure in said annular fluid passageway,
    wherein the housing is provided with:
    • an inlet in communication with said chamber to introduce a liquid into said chamber,
    • an outlet in communication with said chamber to discharge said liquid from said chamber,
    wherein a pump that is connectable to the inlet in order to feed said liquid into said chamber via said inlet, said liquid being discharged via said outlet and returned to the pump so that - in operation - said liquid is circulated through said chamber via said inlet and outlet,
    wherein the rotating control device is embodied such that the liquid circulated through the chamber is in direct contact with the drilling tubulars string passing through the chamber,
    characterized in that the inlet and the outlet are vertically offset from each other, wherein the inlet feeds into a feed zone of the chamber adjacent the lower chamber end member and wherein the outlet discharges from a discharge zone of the chamber adjacent the upper chamber end member,
    and in that the chamber is provided with one or more narrow annular gap defining members that are arranged between said vertically spaced apart feed zone and discharge zone and that - in operation - envelope the drilling tubular string,
    and in that the one or more narrow annular gap defining members define - in operation - in combination with the drilling tubular string an elongated and radially narrow annular gap through which said circulating liquid passes from the feed zone to the discharge zone,
    and in that the circulated liquid is a high viscosity liquid,
    and in that the circulation of said high viscosity liquid and the narrow annular gap are such that - in operation - shear of the high viscosity liquid is induced in said elongated and radially narrow annular gap, resulting in a pressure drop between said feed zone and said discharge zone such that high viscosity liquid pressure in said feed zone assists the lower chamber end member in absorbing the wellbore related fluid pressure in said annular fluid passageway.

    [0039] The invention also relates to a method for closed fluid circulation drilling of a wellbore, wherein use is made of a system and/or sealing device as described herein. For example the drilling tubulars string, e.g. a drill pipes string or a casing string, is rotatably driven, e.g. by a top drive device. In another example the drilling tubulars string is a coiled tubing string.

    [0040] The present invention also relates to a closed fluid circulation drilling rig comprising a system and/or sealing device as described herein, for example wherein the rig comprises a top drive device to rotatably drive the drilling tubulars string, e.g. a drill pipes string or a casing string composed of interconnected tubulars provided with tool joint portions, during drilling of the wellbore.

    [0041] The invention also relates to the combination a system as described herein for sealing and controlling fluid pressure in an annular fluid passageway in a wellbore related process, wherein a wellbore related fluid passes through the annular fluid passageway around a drilling tubulars string, and a drilling tubulars string passing along said axis through said chamber and said chamber end members, wherein the one or more narrow annular gap defining members define in combination with the drilling tubular string an elongated and radially narrow annular gap through which - in operation - said circulating liquid passes from the feed zone to the discharge zone.

    [0042] In an embodiment the drilling tubulars string comprises interconnected drilling tubulars each having a tubular main body and at one or each end thereof a tool joint portion of greater diameter than said tubular main body, wherein at least one, preferably each, narrow annular gap defining member is embodied as a controllable variable diameter member (82-85) adapted to controllably vary the diameter to a tool joint passage diameter allowing for the passage of a tool joint portion in the drilling tubulars string and a tubular main body diameter wherein an effective narrow annular gap is present between the main body of a drilling tubular and the variable diameter member.

    [0043] The invention will now be described with reference to the appended drawings. In the drawings:

    Fig. 1 shows schematically a first embodiment of a system according to the invention for sealing and controlling fluid pressure in an annular fluid passageway in a wellbore related process,

    Fig. 2 shows schematically a second embodiment of a system according to the invention for sealing and controlling fluid pressure in an annular fluid passageway in a wellbore related process,

    Fig. 3 shows schematically a third embodiment of a system according to the invention for sealing and controlling fluid pressure in an annular fluid passageway in a wellbore related process,

    Fig. 4a shows schematically the exchangeable rotary carrier with chamber end members and variable diameter members of the system of figure 3,

    Fig. 4b shows schematically the stationary housing of the sealing device and the diverter housing of the system of figure 3,

    Fig. 5 shows in top view and cross section a tubular resilient bladder of the system of figure 3,

    Fig. 6 illustrates the sealing device of the system of figure 3.



    [0044] In figure 1 a drilling tubulars string 1 is depicted. The string 1 may be a coiled tubing string.

    [0045] Also illustrated is a diverter housing 10 and a sealing device 20, also known to the skilled person as rotating control device (RCD).

    [0046] The diverter housing 10 is mounted below the sealing device 20, e.g. connected thereto by bolted flanges or a clamping device, e.g. a hydraulic clamping device.

    [0047] The skilled person recognizes that a diverter housing 10 and sealing device 20 are often used in Managed Pressure Drilling or other closed mud circulation drilling techniques.

    [0048] The diverter housing 10 has a central passage through which the drilling tubulars string 1 passes and forms the annular fluid passageway 11 around a drilling tubulars string. For example in offshore drilling this passageway connects to the annular fluid passageway between a subsea riser and the string 1.

    [0049] The diverter housing 10 has a lateral port 12 in communication with the annular fluid passageway 11. This lateral port 12 diverts drilling fluid, e.g. mud and cuttings from the annular passageway. For example a choke manifold connects to the port 12 to allow control of the wellbore related fluid pressure. Downstream of the choke manifold separation equipment may be provided to remove cutting from the mud, allowing the mud to be returned into the wellbore via the drilling tubular string 1.

    [0050] In an embodiment the diverter housing 10 is integral with then housing of the sealing device 20, so the sealing device then has a lateral port 12 to divert drilling fluid.

    [0051] In closed circulation drilling techniques it is envisaged that at the height of the diverter housing 10 the pressure of the drilling fluid, e.g. mud, can be controlled, e.g. by a choke manifold downstream of the diverter housing 10, instead of being ambient as in an open mud circulation system. In order to allow for control of the wellbore related fluid, e.g. drilling mud, the sealing device 20 is provided.

    [0052] In practical applications the sealing device 20 and diverter 10 may be arranged on top of a Blow Out Preventer (BOP). In another application these components (possibly integrated) can be arranged on top of a telescopic joint for offshore drilling. I

    [0053] The sealing device 20 comprises:
    • a housing 21,
    • a chamber 22 within said housing 21,
    • a lower chamber end member 23 delimiting said chamber 22 at a lower end thereof,
    • an upper chamber end member 24 delimiting said chamber 22 at an upper end thereof.


    [0054] The lower and upper chamber end members 23, 24 are each provided with an opening therein and these openings are aligned on an axis 26 of the sealing device 20 and are dimensioned so that - in operation - the drilling tubulars string 1 passes along this axis 26 through said chamber 22 and said chamber end members 23, 24.

    [0055] It is illustrated that the lower and upper chamber end members 23, 24 are embodied with one or more resilient stripper members frictionally engaging the drilling tubulars string 1. As indicated above such resilient, e.g. rubber, stripper members are known in the art. Often a cone shape stripper member is employed. Examples of suitable stripper members and details thereof are e.g. disclosed in mentioned US 8,347,983.

    [0056] As will be appreciated the lower chamber end member 23 is arranged to be exposed, at least partially, to the wellbore related fluid pressure in the annular fluid passageway 11.

    [0057] The lower chamber end member 23, e.g. embodied as cone shaped resilient stripper member, could be arranged at the height of the lateral port 12.

    [0058] The housing 21 is provided with:
    • an inlet 27 in communication with the chamber 22 to introduce a liquid into the chamber,
    • an outlet 28 in communication with the chamber 22 to discharge said liquid from the chamber 22.


    [0059] The system further comprises a pump 40 that is adapted to feed the liquid into the chamber 22 via the inlet 27. This liquid is discharged via the outlet 28 and then returned to the pump 40 so that - in operation - this liquid is circulated through the chamber 22 via the inlet 27 and the outlet 28.

    [0060] As can be seen the sealing device 20 is embodied such that the liquid circulated through the chamber 22 is in direct contact with the drilling tubulars string 1 passing through the chamber 22.

    [0061] As can be seen the inlet 27 and the outlet 28 are vertically offset from each other. The inlet 27 feeds into a feed zone 30 of the chamber 22 adjacent the lower chamber end member 23. The outlet 28 discharges from a discharge zone 31 of the chamber 22 that is adjacent the upper chamber end member 24.

    [0062] The chamber is further bounded by one or more narrow annular gap defining members 35, here effectively one gap defining member 35 formed as an elongated throat or reduced diameter section of the housing body of the sealing device.

    [0063] The gap defining member 35 is arranged between the vertically spaced apart feed zone 30 and discharge zone 31. As can be seen - in operation - the gap defining member 35 envelopes the drilling tubular string 1.

    [0064] The one or more narrow annular gap defining members, here member 35, define - in operation - in combination with the drilling tubular string 1 an elongated and radially narrow annular gap 36 through which the circulating liquid passes from the feed zone 30 to the discharge zone 31. The radial width of this gap 36 is shown exaggerated in figure 1 and will in practical embodiments be between 0.5 and 3.0 millimeters, e.g. between 0.5 and 1.5 millimeters, e.g. about 1 millimeter. For example this nominal size of the narrow annular gap is envisaged for drilling tubular strings having a diameter between 4 and 8 inches, e.g. 7 inch drilling tubulars. For example this nominal size of the narrow annular gap is envisaged for drilling tubular strings having a diameter between 101.6 and 203.2 millimeters, e.g. 177.8 millimeters drilling tubulars.

    [0065] In practical embodiments, the elongated and narrow annular gap 36 may have a length of at least 0.3 meter, e.g. at least 0.5 meter, e.g. about 0.6 meters as suggested in figure 1. It will be appreciated that a suitable length will for example depend on the pressure difference to be handled by the sealing device 20, etc.

    [0066] The circulated liquid is a high viscosity liquid, e.g. containing bentonite, e.g. a mixture of bentonite and water, e.g. said mixture further containing calcium carbonate. For example the high viscosity liquid has a viscosity of at least 0.5x106 Centipoise (cP), e.g. at least 1.0 x106 Centipoise (cP) . It is noted that bentonite is commonly used as component of drilling mud and therefore it use in the high viscous liquid to be circulated is advantageous.

    [0067] In operation of the sealing device 20 with the pump 40 the circulation of the high viscosity liquid and the narrow annular gap are such that shear of the high viscosity liquid is induced in the elongated and radially narrow annular gap 36, resulting in a pressure drop between the feed zone 30 and the discharge zone 31 such that high viscosity liquid pressure in the feed zone 30 assists the lower chamber end member 23 in absorbing the wellbore related fluid pressure in the annular fluid passageway 11.

    [0068] The pump 40 could e.g. be a piston pump with one or more pistons for circulation of the liquid. A possible alternative is e.g. a screw pump.

    [0069] For example in an embodiment the entire pressure difference between the wellbore related fluid in the annular fluid passageway 11 below the lower chamber end member 23 on the one hand and the ambient pressure, here above the upper chamber end member 24, on the other hand, is absorbed by pressure in the feed zone, with the pressure drop over the length of the narrow gap 36 equaling said pressure difference thereof. Of course a residual above atmospheric pressure could exist at the level of the discharge chamber, with the upper member 24 being loaded by the remaining difference to ambient pressure.

    [0070] It will appreciated that in order to achieve the desired pressure drop the gap 36 may have a rather significant length for practical wellbore related operations. In offshore application such a length may well be acceptable, e.g. when the drill floor is significantly above waterline, but land drilling rigs may equally accommodate long length sealing devices.

    [0071] Figure 1 further illustrates the presence of a storage vessel 50 wherein a volume of high viscosity liquid is stored. This storage vessel is connected to the circulation pump 40 in order to compensate liquid loss via the sealing device 20. It is preferred that the lower and/or upper chamber end members 23, 24 are designed to scrape along the drilling tubulars string so as to scrape adhering high viscosity liquid from the string, yet this may not be entirely perfect resulting in a loss of said liquid that needs to be replenished.

    [0072] As in practical wellbore related processes the fluid in the passageway 11 may vary, the figure 1 illustrates a pressure sensor 60 to measure the wellbore related fluid pressure in the annular fluid passageway 11, e.g. directly beneath the lower chamber end member 23.

    [0073] It is envisaged that the high viscosity liquid pressure in the feed zone 30 is controlled in response to this measurement of the wellbore related fluid pressure by means of variation of the circulation of said high viscosity liquid and/or of the narrow annular gap (the latter not in figure 1).

    [0074] A computerized control unit 65 is provided that is linked to the pressure sensor 60 and to the pump 40 on the other hand. For example a routine is programmed into the control unit to automatically effect a variation of the high viscosity liquid pressure in the feed zone when the wellbore related fluid pressure in the annular fluid passageway changes. A further pressure sensor 66, also linked to the computerized control unit 65, is provided to measure the liquid pressure in the feed zone 30, e.g. included in a control loop. It is also illustrated that yet another pressure sensor 67 is provided to measure the pressure in the discharge zone 31, this sensor also being linked to the control unit. On the basis of sensors 66, 67 the established pressure drop can be monitored.

    [0075] Figure 2 depicts a second embodiment wherein the same components are provided with the same reference numerals.

    [0076] In figure 2 it is illustrated that the drilling tubular string 1 is composed of drilling tubulars 2, 3, 4, 5 that are at one or each end therefor provided with larger-diameter tool joint portion 6, 7, 8 having a larger diameter than the main body or pipe body of the respective tubular.

    [0077] In this embodiment it is envisaged or possible that the elongated and radially narrow annular gap 36 is defined between this larger-diameter tool joint portion, here portion 7, on the one hand and the one or more narrow annular gap defining members 35 . It is illustrated that the chamber 22, or series of adjoining chambers in a non-depicted embodiment, has such a length that during tripping the drilling tubulars string in and out of the wellbore always at least one tool joint 6, 7, 8 is located in the chamber 22 so as to form the desired narrow gap 36.

    [0078] In figure 2 it is illustrated that, like in figure 1, the narrow annular gap defining member 35 is embodied as a fixed diameter member, so without provision to vary the diameter thereof whilst operative in the sealing device 20.

    [0079] The fixed diameter member 35 here is removably mounted in the housing 21 which allows to exchange one member 35 for another having a different fixed diameter in order to adapt the sealing device 20 to the tubulars of the drill string, here to the diameter of the tool joint portions of the drilling tubular string 1.

    [0080] It is illustrated here that the end members 23, 24 form an assembly with the removably mounted fixed diameter member, so that these members 23, 24 are exchanged as well along with the member 35 in case of handling another diameter tubular string.

    [0081] It is illustrated here that the stationary housing 21 is provided rotary bearings 37, 38 that rotatably support, about axis of the device 20, a tubular receiver for the exchangeable assembly of the one or more narrow passage defining members 35 and, as preferred, the lower and upper chamber end members 23, 24. This causes that both the end members 23, 24 as well as the one or more narrow passage defining members 35 are rotatable about the axis of the sealing device and thus able to revolve along with any rotation of the drilling tubulars string 1.

    [0082] In an embodiment a lubricant circulation is provided for one or more of the bearings 37, 38, e.g. oil being circulated along each of the bearings.

    [0083] In an embodiment the sealing device 20 is provided with a coolant circuit for circulating a coolant, e.g. glycol, through one or more components of the sealing device 20 in order to remove heat, e.g. to cool the bearings 37, 38.

    [0084] Figure 3 depicts a third embodiment wherein the same components are provided with the same reference numerals as in figures 1 and/or 2.

    [0085] The exchangeable assembly 80 is shown in figure 4a and is rotatably mounted in the stationary part of the housing 21 shown in figure 4b. As in figure 2 the housing 21, via bearings 37, 38, rotatably supports a tubular receiver 39 into which the assembly 80 can be inserted (from above).

    [0086] The assembly 80 is composed of a common tubular rotary carrier 81 that supports at the lower and upper ends thereof the lower and upper chamber end members 23, 24 respectively.

    [0087] In addition the carrier 81 here supports a series of multiple controllable variable diameter members 82, 83, 84, 85.

    [0088] Each controllable variable diameter members 82, 83, 84, 85 is adapted to controllably vary the inner diameter thereof.

    [0089] Here each member 82, 83, 84, 85 is embodied as an inflatable and deflatable variable diameter member that is adapted to controllably vary the inner diameter. In the depicted embodiments each of the inflatable and deflatable variable diameter members 82, 83, 84, 85 comprises a tubular bladder of resilient material, e.g. of (natural) rubber or other materials, e.g. oil-resistant polyurethane, e.g. as discussed in US 8347983 for the stripper members, delimiting the narrow annular gap. A variable volume chamber 88, 89, 90, 91, is present on the outside of the bladder, between the bladder and the tubular carrier 81.

    [0090] The inflation, and thereby reduction of the inner diameter, of the members 82, 83, 84, 85 is done by means of pneumatic or hydraulic pressure. Here a source 90 of pressurized fluid, e.g. air or hydraulic liquid, is depicted. The inflation/deflation of each member 82, 83, 84, 85 is governed independently, here by provision of a respective valve 91, 92, 93, 94 and a respective pressure sensor 95, 96, 97, 98.

    [0091] For example each of the variable diameter members 82, 83, 84, 85 can be set, or allowed to be expanded by the pressure of the circulated liquid, to a diameter indicated as a tool joint passage diameter allowing for the passage of a tool joint portion in the drilling tubulars string 1, e.g. said diameter being somewhat greater than the tool joint diameter. For example, e.g. in combination with the ability to assume a tool joint passage diameter, the variable diameter member can be set to a tubular main body diameter wherein an effective narrow annular gap is present between the main body of a drilling tubular (so less than of the tool joint) and the variable diameter member.

    [0092] The series of multiple controllable variable diameter members 82, 83, 84, 85 is longer than the length of a larger diameter tool joint in the passing drilling tubulars string. This for example allows for a method wherein - for the passage of a tool joint - first one or more variable diameter members at the upper or lower end of the series (depending on the direction of the string) are brought into a tool joint passage diameter and then the more central variable diameters so as to achieve a peristaltic motion of the series allowing for the passage of the tool joint. During this peristaltic motion it may, if desired, be possible to maintain an effective shear inducing gap between one or more of the variable diameter members and the drilling tubulars string.

    [0093] As indicated it is preferred for the variable diameter members 82 - 85 to be embodied as resilient material devices. In an alternative the one or more variable diameter members comprise one or more rigid members that are mobile by means of one or more associated actuators in order to create the desired gap with the drilling tubulars string.

    [0094] In yet another alternative, a resilient tubular variable diameter member is varied with respect to its inner diameter by controlled twisting of the member as the one edge is twisted relative to the other edge. This approach is resembles the disclosure of US 8844617 as far as the diameter variation is concerned.

    [0095] In preferred embodiments the circulated liquid is a Newtonian liquid, e.g. containing bentonite.

    [0096] In an alternative embodiment the circulated liquid is a shear thickening liquid, wherein the shear induced by the narrow gap causes the liquid to thicken and thus increase the flow resistance. It is envisaged that once this liquid leaves the narrow gap, the shear is reduced and thereby the liquid will return to a less viscous state allowing it to be discharged via the outlet and returned to the pump. The pump is preferably designed to avoid the shear thickening effect from being induced by the pump itself, e.g. a piston pump being used with suitably chosen piston(s).

    [0097] In an alternative embodiment the liquid is a magnetorheological liquid, which liquid includes magnetic or magnetisable particles. This will require the provision of the sealing device with a thickened state inducing arrangement that includes a magnetic field assembly that establishes a magnetic field to which said magnetic or magnetisable particles respond and thereby induce and/or maintain the thickened state of said liquid, or at least assist in said inducing and/or maintaining of the thickened state. In such an embodiment it is envisaged that, if desired, the magnetic field is varied by provision of a suitable magnetic field assembly in order to influence the viscosity of the liquid. In another embodiment, or in combination therewith, one or more permanent magnets are used to create a magnetic field. In an embodiment the magnetic field assembly is included in the control of the pressure in the feed zone, e.g. the field being varied in response to a measure pressure of the wellbore related fluid in the passageway.

    [0098] One could envisage a liquid that is both shear thickening and magnetorheological. If a magnetorheological liquid is used the magnetic effect is an additional source for a pressure drop along the narrow gap in addition to the shear induced pressure drop.


    Claims

    1. A method for sealing and controlling fluid pressure in an annular fluid passageway (11) in a wellbore related process, wherein a wellbore related fluid passes through the annular fluid passageway around a drilling tubulars string (1), e.g. in a closed fluid circulation wellbore related process, e.g. in a managed pressure drilling process, wherein use is made of an annular fluid passageway sealing device, which sealing device (20) comprises:

    - a housing (21),

    - a chamber (22) within said housing,

    - a lower chamber end member (23) delimiting said chamber at a lower end thereof,

    - an upper chamber end member (24) delimiting said chamber at an upper end thereof,

    wherein the lower and upper chamber end members (23,24) are each provided with an opening therein, which openings are aligned on an axis (26) of the sealing device and are dimensioned so that the drilling tubulars string (1) passes along said axis through said chamber (22) and said chamber end members (23,24),
    wherein the lower chamber end member (23) is exposed, at least partially, to wellbore related fluid pressure in said annular fluid passageway,
    wherein the housing (21) is provided with:

    - an inlet (27) in communication with said chamber (22) to introduce a liquid into said chamber,

    - an outlet (28) in communication with said chamber (22) to discharge said liquid from said chamber,

    wherein further use is made of a pump (40) that feeds said liquid into said chamber (22) via said inlet (27), said liquid being discharged via said outlet (28) and returned to the pump so that said liquid is circulated through said chamber via said inlet and outlet,
    wherein the liquid circulated through the chamber (22) is in direct contact with the drilling tubulars string (1) passing through the chamber,
    characterized in that
    the inlet (27) and the outlet (28) are vertically offset from each other, wherein the inlet feeds into a feed zone (30) of the chamber adjacent the lower chamber end member (23) and wherein the outlet (28) discharges from a discharge zone (31) of the chamber adjacent the upper chamber end member (24),
    and in that
    the chamber (22) is provided with one or more narrow annular gap defining members (35; 82-85) that are arranged between said vertically spaced apart feed zone (30) and discharge zone (31) and that envelope the drilling tubular string (1),
    and in that
    the one or more narrow annular gap defining members (35; 82-85) define in combination with the drilling tubulars string (1) an elongated and radially narrow annular gap (36) through which said circulating liquid passes from the feed zone (30) to the discharge zone (31),
    and in that
    the circulated liquid is a high viscosity liquid,
    and in that
    the circulation of said high viscosity liquid and the elongated and radially narrow annular gap (36) are such that shear of the high viscosity liquid is induced in said elongated and radially narrow annular gap, resulting in a pressure drop between said feed zone (30) and said discharge zone (31) such that high viscosity liquid pressure in said feed zone (30) assists the lower chamber end member in absorbing the wellbore related fluid pressure in said annular fluid passageway, preferably entirely balances said wellbore related fluid pressure.
     
    2. Method according to claim 1, wherein the wellbore related fluid pressure in said annular fluid passageway (11) is measured (60), and wherein the high viscosity liquid pressure in said feed zone (30) is controlled in response to said measured the wellbore related fluid pressure by means of variation of the circulation of said high viscosity liquid and/or of the narrow annular gap (36).
     
    3. Method according to claim 1 or 2, wherein said narrow annular gap (36) is a radial width of between 0.5 and 3.0 millimeters, e.g. between 0.5 and 1.5 millimeters, e.g. about 1 millimeter.
     
    4. Method according to any of claims 1 - 3, wherein the high viscosity liquid has a viscosity of at least 0.5 x106 Centipoise (cP), e.g. at least 1.0 x106 Centipoise (cP).
     
    5. Method according to any of claims 1 - 4, wherein the lower and/or upper chamber end members (23,24) are embodied with one or more resilient stripper members frictionally engaging the drilling tubulars string.
     
    6. Method according to any of claims 1 - 5, wherein the lower and/or upper chamber end members (23,24) are rotatably mounted (37,38) in the housing allowing the rotatably mounted lower and/or upper chamber end members to revolve in unison with a rotation of the drilling tubulars string.
     
    7. Method according to any of claims 1 - 6, wherein a storage vessel (50) is provided wherein a volume of high viscosity liquid is stored, which storage vessel is connected to the circulation pump (40) in order to compensate liquid loss via the sealing device.
     
    8. Method according to any of claims 1 - 7, wherein the drilling tubulars string (1) is composed of drilling tubulars (2-5) that are at one or each end thereof provided with larger-diameter tool joint portion (6-8), and wherein an elongated and radially narrow annular gap (36) is defined between at least one larger-diameter tool joint portion (7) and the one or more narrow annular gap defining members (35).
     
    9. Method according to any of the claims 1 - 8, wherein at least one, preferably each, narrow annular gap defining member is embodied as a controllable variable diameter member (82-85) adapted to controllably vary the diameter, e.g. to a tool joint passage diameter allowing for the passage of a tool joint portion (6-8) in the drilling tubulars string and a tubular main body diameter wherein an effective narrow annular gap is present between the main body of a drilling tubular (2-5) and the variable diameter member (82-85).
     
    10. Method according to any of the claims 1 - 9, wherein at least one, preferably each, narrow annular gap defining member (82-85) is embodied as an inflatable and deflatable variable diameter member adapted to controllably vary the diameter.
     
    11. Method according to any of the claims 1 - 10, wherein the elongated and narrow gap is delimited by a series of multiple gap sections (82-85), e.g. wherein multiple controllable variable diameter members, each adapted to controllably vary the diameter, are arranged in series between the feed zone and the discharge zone.
     
    12. Method according to any of the claims 1 - 11, wherein multiple controllable variable diameter members (82-85), each adapted to controllably vary the diameter, are arranged in series between the feed zone and the discharge zone, e.g. each controllable variable diameter members (82-85) being independently controllable, and wherein said multiple controllable variable diameter members are mounted in a common carrier (80), e.g. a common carrier that is exchangeable mounted in the housing, e.g. a common carrier (80) that is rotatably mounted in the housing.
     
    13. Method according to any of the claims 1 - 12, wherein a diverter housing (10) is mounted below the sealing device, said diverter housing having a central passage through which the drilling tubulars string passes and forming the annular fluid passageway around a drilling tubulars string, and said diverter housing having a lateral port in communication with said annular fluid passageway.
     
    14. A system for sealing and controlling fluid pressure in an annular fluid passageway (11) in a wellbore related process, wherein a wellbore related fluid passes through the annular fluid passageway around a drilling tubulars string, e.g. in a closed fluid circulation wellbore related process, e.g. in a managed pressure drilling process, which system comprises an annular fluid passageway sealing device, which sealing device (20) comprises:

    - a housing (21),

    - a chamber (22) within said housing,

    - a lower chamber end member (23) delimiting said chamber at a lower end thereof,

    - an upper chamber end member (24) delimiting said chamber at an upper end thereof,

    wherein the lower and upper chamber end members (23,24) are each provided with an opening therein, which openings are aligned on an axis (26) of the sealing device and are dimensioned so that - in operation - the drilling tubulars string (1) passes along said axis through said chamber and said chamber end members,
    wherein the lower chamber end member (23) is arranged to be exposed, at least partially, to wellbore related fluid pressure in said annular fluid passageway,
    wherein the housing is provided with:

    - an inlet (27) in communication with said chamber to introduce a liquid into said chamber,

    - an outlet (28) in communication with said chamber to discharge said liquid from said chamber,

    wherein the system further comprises a pump (40) that is adapted to feed said liquid into said chamber via said inlet (27), said liquid being discharged via said outlet (28) and returned to the pump so that - in operation - said liquid is circulated through said chamber via said inlet and outlet,
    wherein the sealing device (20) is embodied such that the liquid circulated through the chamber is in direct contact with the drilling tubulars string (1) passing through the chamber,
    characterized in that
    the inlet (27) and the outlet (28) are vertically offset from each other, wherein the inlet is adapted to feed into a feed zone (30) of the chamber adjacent the lower chamber end member (23) and wherein the outlet (28) is adapted to discharge from a discharge zone (31) of the chamber adjacent the upper chamber end member (24),
    and in that
    the chamber (22) is provided with one or more narrow annular gap defining members (35; 82-85) that are arranged between said vertically spaced apart feed zone and discharge zone and that - in operation - envelope the drilling tubular string (1),
    and in that
    the one or more narrow annular gap defining members (35; 82-85) define - in operation - in combination with the drilling tubular string an elongated and radially narrow annular gap (36) through which said circulating liquid passes from the feed zone to the discharge zone,
    and in that
    the circulated liquid is a high viscosity liquid,
    and in that
    the circulation of said high viscosity liquid and the narrow annular gap (36) are such that - in operation - shear of the high viscosity liquid is induced in said elongated and radially narrow annular gap, resulting in a pressure drop between said feed zone and said discharge zone such that high viscosity liquid pressure in said feed zone assists the lower chamber end member in absorbing the wellbore related fluid pressure in said annular fluid passageway.
     
    15. In combination a system according to claim 14 for sealing and controlling fluid pressure in an annular fluid passageway in a wellbore related process, wherein a wellbore related fluid passes through the annular fluid passageway around a drilling tubulars string, and a drilling tubulars string passing along said axis through said chamber and said chamber end members, wherein the one or more narrow annular gap defining members (35; 82-85) define in combination with the drilling tubular string an elongated and radially narrow annular gap (36) through which - in operation - said circulating liquid passes from the feed zone to the discharge zone.
     


    Ansprüche

    1. Verfahren zum Abdichten und Steuern eines Fluiddrucks in einem ringförmigen Fluiddurchgang (11) bei einem bohrlochbezogenen Vorgang, wobei ein bohrlochbezogenes Fluid durch den ringförmigen Fluiddurchgang um einen Bohrrohrstrang (1) verläuft, zum Beispiel bei einem bohrlochbezogenen Vorgang mit einem geschlossenen Fluidkreislauf, zum Beispiel bei einem Bohrvorgang mit gesteuertem Druck, wobei eine Dichtvorrichtung mit einem ringförmigen Fluiddurchgang verwendet wird, wobei die Dichtvorrichtung (20) umfasst:

    - ein Gehäuse (21),

    - eine Kammer (22) innerhalb des Gehäuses,

    - ein unteres Kammerendelement (23), welches die Kammer an einem unteren Ende davon begrenzt,

    - ein oberes Kammerendelement (24), welches die Kammer an einem oberen Ende davon begrenzt,

    wobei das obere und das untere Kammerendelement (23, 24) jeweils mit einer Öffnung darin versehen sind, wobei die Öffnungen zu einer Achse (26) der Dichtvorrichtung ausgerichtet sind und derart bemessen sind, dass der Bohrrohrstrang (1) entlang der Achse durch die Kammer (22) und die Kammerendelemente (23, 24) verläuft,
    wobei das untere Kammerendelement (23) zumindest teilweise einem bohrlochbezogenen Fluiddruck in dem ringförmigen Fluiddurchgang ausgesetzt ist,
    wobei das Gehäuse (21) versehen ist mit:

    - einem Einlass (27) in Verbindung mit der Kammer (22), um eine Flüssigkeit in die Kammer einzuleiten,

    - einen Auslass (28) in Verbindung mit der Kammer (22), um die Flüssigkeit aus der Kammer abzulassen,

    wobei ferner eine Pumpe (40) verwendet wird, welche die Flüssigkeit in die Kammer (22) über den Einlass (27) fördert, wobei die Flüssigkeit über den Auslass (28) abgelassen wird und zu der Pumpe zurückgeführt wird, sodass die Flüssigkeit durch die Kammer über den Einlass und den Auslass zirkuliert,
    wobei die Flüssigkeit, welche durch die Kammer (22) zirkuliert, in direktem Kontakt mit dem Bohrrohrstrang (1) ist, welcher durch die Kammer verläuft,
    dadurch gekennzeichnet, dass
    der Einlass (27) und der Auslass (28) vertikal versetzt zueinander sind, wobei der Einlass in eine Zuführungszone (30) der Kammer benachbart zu dem unteren Kammerendelement (23) führt, und wobei der Auslass (28) von einer Ablasszone (31) der Kammer benachbart zu dem oberen Kammerendelement (24) ablässt,
    und dass
    die Kammer (22) mit einem oder mehreren eine enge ringförmige Lücke definierenden Elementen (35; 82-85) versehen ist, welche zwischen der vertikal getrennt beabstandet angeordneten Zuführungszone (30) und Ablasszone (31) angeordnet sind und welche den Bohrrohrstrang (1) umhüllen,
    und dass
    das eine oder die mehreren eine enge ringförmige Lücke definierenden Elemente (35; 82-85) in Verbindung mit dem Bohrrohrstrang (1) eine längliche und radial enge ringförmige Lücke (36) definieren, durch welche die zirkulierende Flüssigkeit von der Zuführungszone (30) zu der Ablasszone (31) verläuft,
    und dass
    die zirkulierte Flüssigkeit eine Flüssigkeit mit hoher Viskosität ist,
    und dass
    die Zirkulation der Flüssigkeit mit hoher Viskosität und die längliche und radial enge ringförmige Lücke (36) derart sind, dass ein Scheren der Flüssigkeit mit hoher Viskosität in der länglichen und radial engen ringförmigen Lücke herbeigeführt wird, was zu einem Druckverlust zwischen der Zuführungszone (30) und der Ablasszone (31) führt, sodass ein Druck der Flüssigkeit mit hoher Viskosität in der Zuführungszone (30) das untere Kammerendelement unterstützt, den bohrlochbezogenen Fluiddruck in dem ringförmigen Fluiddurchgang aufzunehmen, vorzugsweise den bohrlochbezogenen Fluiddruck gänzlich ausgleicht.
     
    2. Verfahren nach Anspruch 1, wobei der bohrlochbezogene Fluiddruck in dem ringförmigen Fluiddurchgang (11) gemessen (60) wird, und wobei der Druck der Flüssigkeit mit hoher Viskosität in der Zuführungszone (30) als Antwort auf den gemessenen bohrlochbezogenen Fluiddruck mittels einer Veränderung der Zirkulation der Flüssigkeit mit hoher Viskosität und/oder der engen ringförmigen Lücke (36) gesteuert wird.
     
    3. Verfahren nach Anspruch 1 oder 2, wobei die enge ringförmige Lücke (36) eine radiale Breite zwischen 0,5 und 3,0 Millimetern aufweist, zum Beispiel zwischen 0,5 und 1,5 Millimetern, oder zum Beispiel näherungsweise 1 Millimeter.
     
    4. Verfahren nach einem der Ansprüche 1 bis 3, wobei die Flüssigkeit mit hoher Viskosität eine Viskosität von mindestens 0,5 x 106 Centipoise (cP) aufweist, zum Beispiel zumindest 1,0 x 106 Centipoise (cP).
     
    5. Verfahren nach einem der Ansprüche 1 bis 4, wobei das untere und/oder obere Kammerendelement (23, 24) mit einem oder mehreren elastischen Abstreifelementen ausgestaltet sind, welche den Bohrrohrstrang reibend koppeln.
     
    6. Verfahren nach einem der Ansprüche 1 bis 5, wobei das untere und/oder obere Kammerendelement (23, 24) drehbar in dem Gehäuse angebracht (37, 38) sind, was den drehbar angebrachten unteren und/oder oberen Kammerendelementen ermöglicht, sich in Einklang mit einer Drehung des Bohrrohrstrangs zu drehen.
     
    7. Verfahren nach einem der Ansprüche 1 bis 6, wobei ein Lagerbehälter (50) vorgesehen ist, worin ein Volumen einer Flüssigkeit mit hoher Viskosität gelagert wird, wobei der Lagerbehälter mit der Zirkulationspumpe (40) verbunden ist, um einen Flüssigkeitsverlust über die Dichtvorrichtung zu kompensieren.
     
    8. Verfahren nach einem der Ansprüche 1 bis 7, wobei der Bohrrohrstrang (1) aus Bohrrohren (2-5) gebildet wird, welche an einem oder jedem Ende davon mit einem Werkzeugverbindungsabschnitt (6-8) mit größerem Durchmesser versehen sind, und wobei eine längliche und radial enge ringförmige Lücke (36) zwischen zumindest einem Werkzeugverbindungsabschnitt (7) mit größerem Durchmesser und dem einen oder den mehreren eine enge ringförmige Lücke definierenden Elemente (35) definiert wird.
     
    9. Verfahren nach einem der Ansprüche 1 bis 8, wobei mindestens ein, vorzugsweise jedes, eine enge ringförmige Lücke definierendes Element als ein Element (82-85) mit steuerbarem veränderlichen Durchmesser ausgeführt ist, welches ausgestaltet ist, den Durchmesser gesteuert zu verändern, zum Beispiel für einen Werkzeugverbindungsdurchgangsdurchmesser, welcher den Durchgang eines Werkzeugverbindungsabschnitts (6-8) in dem Bohrrohrstrang ermöglicht, und einen Rohrhauptkörperdurchmesser, wobei eine effektive enge ringförmige Lücke zwischen dem Hauptkörper eines Bohrrohrs (2-5) und dem Element (82-85) mit variablem Durchmesser vorhanden ist.
     
    10. Verfahren nach einem der Ansprüche 1 bis 9, wobei mindestens ein, vorzugsweise jedes, eine enge ringförmige Lücke definierendes Element (82-85) als ein aufblasbares und entleerbares Element mit veränderlichem Durchmesser ausgeführt ist, welches ausgestaltet ist, den Durchmesser gesteuert zu verändern.
     
    11. Verfahren nach einem der Ansprüche 1 bis 10, wobei die längliche und enge Lücke durch eine Reihe von mehreren Lückenabschnitten (82-85) begrenzt wird, wobei zum Beispiel mehrere steuerbare Elemente mit veränderlichem Durchmesser, wobei jedes ausgestaltet ist, den Durchmesser gesteuert zu verändern, in Reihe zwischen der Zuführungszone und der Ablasszone angeordnet sind.
     
    12. Verfahren nach einem der Ansprüche 1 bis 11, wobei mehrere Elemente mit steuerbarem veränderlichem Durchmesser (82-85), wobei jedes ausgestaltet ist, den Durchmesser gesteuert zu verändern, in Reihe zwischen der Zuführungszone und der Ablasszone angeordnet sind, zum Beispiel ist jedes Element (82-85) mit steuerbarem veränderlichen Durchmesser unabhängig steuerbar, und wobei die mehreren Elemente mit steuerbarem veränderlichen Durchmesser in einem gemeinsamen Träger (80) angebracht sind, zum Beispiel einem gemeinsamen Träger, welcher austauschbar in dem Gehäuse angebracht ist, zum Beispiel einem gemeinsamen Träger (80), welcher drehbar in dem Gehäuse angebracht ist.
     
    13. Verfahren nach einem der Ansprüche 1 bis 12, wobei ein Umleitgehäuse (10) unterhalb der Dichtvorrichtung angebracht ist, wobei das Umleitgehäuse einen mittleren Durchgang aufweist, durch welchen der Bohrrohrstrang verläuft, und den ringförmigen Fluiddurchgang um einen Bohrrohrstrang ausbildet, und wobei das Umleitgehäuse einen seitlichen Anschluss in Verbindung mit dem ringförmigen Fluiddurchgang aufweist.
     
    14. System zum Abdichten und Steuern eines Fluiddrucks in einem ringförmigen Fluiddurchgang (11) bei einem bohrlochbezogenen Vorgang, wobei ein bohrlochbezogenes Fluid durch den ringförmigen Fluiddurchgang um einen Bohrrohrstrang verläuft, zum Beispiel bei einem bohrlochbezogenen Vorgang mit einer geschlossenen Fluidzirkulation, zum Beispiel bei einem Bohrvorgang mit gesteuertem Druck, wobei das System eine Dichtvorrichtung mit einem ringförmigen Fluiddurchgang umfasst, wobei die Dichtvorrichtung (20) umfasst:

    - ein Gehäuse (21),

    - eine Kammer (22) innerhalb des Gehäuses,

    - ein unteres Kammerendelement (23), welches die Kammer an einem unteren Ende davon begrenzt,

    - ein oberes Kammerendelement (24), welches die Kammer an einem oberen Ende davon begrenzt,

    wobei das untere und das obere Kammerendelement (23,24) jeweils mit einer Öffnung darin versehen sind, wobei die Öffnungen zu einer Achse (26) der Dichtvorrichtung ausgerichtet sind und derart bemessen sind, dass - im Betrieb - der Bohrrohrstrang (1) entlang der Achse durch die Kammer und die Kammerendelemente verläuft,
    wobei das untere Kammerendelement (23) ausgestaltet ist, zumindest teilweise dem bohrlochbezogenen Fluiddruck in dem ringförmigen Fluiddurchgang ausgesetzt zu sein,
    wobei das Gehäuse versehen ist mit:

    - einem Einlass (27) in Verbindung mit der Kammer, um eine Flüssigkeit in die Kammer einzuleiten,

    - einem Auslass (28) in Verbindung mit der Kammer, um die Flüssigkeit aus der Kammer abzulassen,

    wobei das System ferner eine Pumpe (40) umfasst, welche ausgestaltet ist, die Flüssigkeit in die Kammer über den Einlass (27) zu führen, wobei die Flüssigkeit über den Auslass (28) abgelassen wird und zu der Pumpe zurückgeführt wird, sodass - im Betrieb - die Flüssigkeit durch die Kammer über den Einlass und den Auslass zirkuliert wird,
    wobei die Dichtvorrichtung (20) derart ausgeführt ist, dass die Flüssigkeit, welche durch die Kammer zirkuliert, in direktem Kontakt mit dem Bohrrohrstrang (1) ist, welcher durch die Kammer verläuft,
    dadurch gekennzeichnet, dass
    der Einlass (27) und der Auslass (28) vertikal voneinander versetzt sind, wobei der Einlass ausgestaltet ist, in eine Zuführungszone (30) der Kammer benachbart zu dem unteren Kammerendelement (23) zuzuführen, und wobei der Auslass (28) ausgestaltet ist, aus der Ablasszone (31) der Kammer benachbart zu dem oberen Kammerendelement(24) abzulassen,
    und dass
    die Kammer (22) mit einem oder mehreren eine enge ringförmige Lücke definierenden Elementen (35; 82-85) versehen ist, welche zwischen der vertikal getrennt beabstandet angeordneten Zuführungszone und Ablasszone angeordnet sind und welche - im Betrieb - den Bohrrohrstrang (1) umhüllen,
    und dass
    das eine oder die mehreren eine enge ringförmige Lücke definierenden Elemente (35; 82-85) - im Betrieb - in Verbindung mit dem Bohrrohrstrang eine längliche und radial enge ringförmige Lücke (36) definieren, durch welche die zirkulierende Flüssigkeit von der Zuführungszone zu der Ablasszone verläuft,
    und dass
    die zirkulierte Flüssigkeit eine Flüssigkeit mit hoher Viskosität ist,
    und dass
    die Zirkulation der Flüssigkeit mit hoher Viskosität in der engen ringförmigen Lücke (36) derart ist, dass - im Betrieb - ein Scheren der Flüssigkeit mit hoher Viskosität in der länglichen und radial engen ringförmigen Lücke herbeigeführt wird, was zu einem Druckverlust zwischen der Zuführungszone und der Ablasszone führt, sodass ein Druck der Flüssigkeit mit hoher Viskosität in der Zuführungszone das untere Kammerendelement unterstützt, den bohrlochbezogenen Fluiddruck in dem ringförmigen Fluiddurchgang zu absorbieren.
     
    15. Kombination eines Systems nach Anspruch 14 zum Abdichten und Steuern eines Fluiddrucks in einem ringförmigen Fluiddurchgang bei einem bohrlochbezogenen Vorgang, wobei ein bohrlochbezogenes Fluid durch den ringförmigen Fluiddurchgang um einen Bohrlochstrang verläuft, und eines Bohrlochstrangs, welcher entlang der Achse durch die Kammer und die Kammerendelemente verläuft, wobei das eine oder die mehreren eine enge ringförmige Lücke definierenden Elemente (35; 82-85) in Verbindung mit dem Bohrrohrstrang eine längliche und radial enge ringförmige Lücke (36) definieren, durch welche - im Betrieb - die zirkulierende Flüssigkeit von der Zuführungszone zu der Ablasszone verläuft.
     


    Revendications

    1. Procédé d'étanchéisation et de commande d'une pression de fluide dans un passage de fluide annulaire (11) dans un procédé associé à un puits de forage, dans lequel un fluide associé à un puits de forage passe dans le passage de fluide annulaire autour d'un train de tubulaires de forage (1), par exemple dans un processus de circulation de fluide fermée associé à un puits de forage, par exemple dans un processus de forage à pression gérée, dans lequel on utilise un dispositif d'étanchéisation du passage de fluide annulaire, lequel dispositif d'étanchéisation (20) comprend :

    - un logement (21),

    - une chambre (22) à l'intérieur dudit logement,

    - un élément d'extrémité de chambre inférieur (23) délimitant ladite chambre à son extrémité inférieure,

    - un élément d'extrémité de chambre supérieur (24) délimitant ladite chambre à son extrémité supérieure,

    dans lequel les éléments d'extrémité de chambre inférieur et supérieur (23, 24) sont pourvus chacun d'une ouverture, lesquelles ouvertures sont alignées sur un axe (26) du dispositif d'étanchéisation et sont dimensionnés de telle sorte que le train de tubulaires de forage (1) passe le long dudit axe à travers ladite chambre (22) et lesdits éléments d'extrémité de chambre (23, 24),
    dans lequel l'élément d'extrémité de chambre inférieur (23) est exposé, au moins en partie, à la pression de fluide associée au puits de forage dans ledit passage de fluide annulaire,
    dans lequel le logement (21) est pourvu :

    - d'une entrée (27) en communication avec ladite chambre (22) pour introduire un liquide dans ladite chambre,

    - d'une sortie (28) en communication avec ladite chambre (22) pour décharger ledit liquide depuis ladite chambre,

    dans lequel on utilise en outre une pompe (40) qui amène ledit liquide dans ladite chambre (22) via ladite entrée (27), ledit liquide étant déchargé via ladite sortie (28) et renvoyé dans la pompe de sorte que ledit liquide circule à travers ladite chambre via lesdites entrée et sortie,
    dans lequel le liquide circulant à travers la chambre (22) est en contact direct avec le train de tubulaires de forage (1) passant à travers la chambre,
    caractérisé en ce que
    l'entrée (27) et la sortie (28) sont décalées verticalement l'une par rapport à l'autre, l'entrée donnant dans une zone d'alimentation (30) de la chambre adjacente à l'élément d'extrémité de chambre inférieur (23) et la sortie (28) déchargeant depuis une zone de décharge (31) adjacente à l'élément d'extrémité de chambre supérieur (24),
    et en ce que
    la chambre (22) est pourvue d'un ou plusieurs éléments définissant un espace annulaire étroit (35 ; 82-85) qui sont agencés entre lesdites zones d'alimentation (30) et zone de décharge (31) espacées verticalement et qui enveloppent le train de tubulaires de forage (1),
    et en ce que
    les un ou plusieurs éléments définissant un espace annulaire étroit (35 ; 82-85) définissent en combinaison avec le train de tubulaires de forage (1) un espace annulaire allongé et radialement étroit (36) par lequel ledit liquide en circulation passe de la zone d'alimentation (30) à la zone de décharge (31),
    et en ce que
    le liquide en circulation est un liquide à viscosité élevée,
    et en ce que
    la circulation du liquide à viscosité élevée et l'espace annulaire allongé et radialement étroit (36) sont tels que le cisaillement du liquide à viscosité élevée est induit dans ledit espace annulaire allongé et radialement étroit, entraînant une chute de pression entre ladite zone d'alimentation (30) et ladite zone de décharge (31) de telle sorte qu'une pression du liquide à viscosité élevée dans ladite zone d'alimentation (30) aide l'élément d'extrémité de chambre inférieur à absorber la pression de fluide associée au puits de forage dans ledit passage de fluide annulaire, de préférence équilibre entièrement ladite pression de fluide associée au puits de forage.
     
    2. Procédé selon la revendication 1, dans lequel on mesure (60) la pression de fluide associée au puits de forage dans ledit passage de fluide annulaire (11), et dans lequel on contrôle la pression du liquide à viscosité élevée dans ladite zone d'alimentation (30) en fonction de ladite pression de fluide mesurée associée au puits de forage en faisant varier la circulation dudit liquide à viscosité élevée et/ou l'espace annulaire étroit (36).
     
    3. Procédé selon les revendications 1 ou 2, dans lequel ledit espace annulaire étroit (36) a une largeur radiale comprise entre 0,5 et 3,0 millimètres, par exemple entre 0,5 et 1,5 millimètre, par exemple d'environ 1 millimètre.
     
    4. Procédé selon l'une quelconque des revendications 1 à 3, dans lequel le liquide à viscosité élevée a une viscosité d'au moins 0,5 x 106 centipoises (cP), par exemple d'au moins 1,0 x 106 centipoises (cP).
     
    5. Procédé selon l'une quelconque des revendications 1 à 4, dans lequel les éléments d'extrémité de chambre inférieur et/ou supérieur (23, 24) présentent un ou plusieurs éléments de garniture d'étanchéisation qui viennent en prise à frottement avec le train de tubulaires de forage.
     
    6. Procédé selon l'une quelconque des revendications 1 à 5, dans lequel les éléments d'extrémité de chambre inférieur et/ou supérieur (23, 24) sont montés de façon rotative (37, 38) dans le logement, ce qui permet aux éléments d'extrémité de chambre inférieur et/ou supérieur montés de façon rotative de tourner de concert avec la rotation du train de tubulaires de forage.
     
    7. Procédé selon l'une quelconque des revendications 1 à 6, dans lequel il est prévu un réservoir de stockage (50) dans lequel est stocké un volume de liquide à viscosité élevée, lequel réservoir de stockage est relié à la pompe de circulation (40) afin de compenser les pertes de liquide via le dispositif d'étanchéisation.
     
    8. Procédé selon l'une quelconque des revendications 1 à 7, dans lequel le train de tubulaires de forage (1) est composé de tubulaires de forage (2-5) qui sont pourvus à une ou chacune de leurs extrémités d'une partie de raccord de tige de plus grand diamètre (6-8), et dans lequel un espace annulaire allongé et radialement étroit (36) est définie entre au moins une partie de raccord de tige de plus grand diamètre (7) et les un ou plusieurs éléments définissant un espace annulaire étroit (35).
     
    9. Procédé selon l'une quelconque des revendications 1 à 8, dans lequel au moins un, de préférence chaque, élément définissant un espace annulaire étroit se présente sous la forme d'un élément de diamètre variable contrôlable (82-85) adapté pour faire varier son diamètre de façon contrôlée, par exemple jusqu'à un diamètre de passage de raccord de tige permettant le passage d'une partie de raccord de tige (6-8) dans le train de tubulaires de forage et un diamètre de corps principal de tubulaire dans lequel un espace annulaire étroit efficace est présent entre le corps principal d'un tubulaire de forage (2-5) et l'élément de diamètre variable (82-85).
     
    10. Procédé selon l'une quelconque des revendications 1 à 9, dans lequel au moins un, de préférence chaque, élément définissant un espace annulaire étroit (82-85) se présente sous la forme d'un élément de diamètre variable gonflable et dégonflable adapté pour faire varier son diamètre de façon contrôlée.
     
    11. Procédé selon l'une quelconque des revendications 1 à 10, dans lequel l'espace allongé et étroit est délimité par une série de plusieurs sections d'espace (82-85), par exemple dans lequel plusieurs éléments de diamètre variable contrôlable, adaptés chacun pour faire varier son diamètre de façon contrôlée, sont agencés en série entre la zone d'alimentation et la zone de décharge.
     
    12. Procédé selon l'une quelconque des revendications 1 à 11, dans lequel plusieurs éléments de diamètre variable contrôlable (82-85), adaptés chacun pour faire varier son diamètre de façon contrôlée, sont agencés en série entre la zone d'alimentation et la zone de décharge, par exemple chaque élément de diamètre variable contrôlable (82-85) étant contrôlable séparément, et dans lequel lesdits plusieurs éléments de diamètre variable contrôlable sont montés dans un support commun (80), par exemple un support commun qui est monté de façon échangeable dans le logement, par exemple un support commun (80) qui est monté de façon rotative dans le logement.
     
    13. Procédé selon l'une quelconque des revendications 1 à 12, dans lequel un logement de dérivation (10) est monté sous le dispositif d'étanchéisation, ledit logement de dérivation comportant un passage central dans lequel passe le train de tubulaires de forage et formant le passage de fluide annulaire autour d'un train de tubulaires de forage, et ledit logement de dérivation comportant un orifice latéral en communication avec ledit passage de fluide annulaire.
     
    14. Système d'étanchéisation et de commande d'une pression de fluide dans un passage de fluide annulaire (11) dans un procédé associé à un puits de forage, dans lequel un fluide associé à un puits de forage passe dans le passage de fluide annulaire autour d'un train de tubulaires de forage, par exemple dans un processus de circulation de fluide fermée associé à un puits de forage, par exemple dans un processus de forage à pression gérée, lequel système comprend un dispositif d'étanchéisation du passage de fluide annulaire, lequel dispositif d'étanchéisation (20) comprend :

    - un logement (21),

    - une chambre (22) à l'intérieur dudit logement,

    - un élément d'extrémité de chambre inférieur (23) délimitant ladite chambre à son extrémité inférieure,

    - un élément d'extrémité de chambre supérieur (24) délimitant ladite chambre à son extrémité supérieure,

    dans lequel les éléments d'extrémité de chambre inférieur et supérieur (23, 24) sont pourvus chacun d'une ouverture, lesquelles ouvertures sont alignées sur un axe (26) du dispositif d'étanchéisation et sont dimensionnés de telle sorte que (en service) le train de tubulaires de forage (1) passe le long dudit axe à travers ladite chambre et lesdits éléments d'extrémité de chambre,
    dans lequel l'élément d'extrémité de chambre inférieur (23) est agencé de manière à être exposé, au moins en partie, à la pression de fluide associée au puits de forage dans ledit passage de fluide annulaire,
    dans lequel le logement (21) est pourvu :

    - d'une entrée (27) en communication avec ladite chambre pour introduire un liquide dans ladite chambre,

    - d'une sortie (28) en communication avec ladite chambre pour décharger ledit liquide depuis ladite chambre,

    dans lequel le système comprend en outre une pompe (40) qui est adaptée pour amener ledit liquide dans ladite chambre via ladite entrée (27), ledit liquide étant déchargé via ladite sortie (28) et renvoyé dans la pompe de sorte que (en service) ledit liquide circule à travers ladite chambre via lesdites entrée et sortie,
    dans lequel le dispositif d'étanchéisation (20) se présente de telle sorte que le liquide circulant à travers la chambre est en contact direct avec le train de tubulaires de forage (1) passant à travers la chambre,
    caractérisé en ce que
    l'entrée (27) et la sortie (28) sont décalées verticalement l'une par rapport à l'autre, l'entrée étant adaptée pour donner dans une zone d'alimentation (30) de la chambre adjacente à l'élément d'extrémité de chambre inférieur (23) et la sortie (28) étant adaptée pour décharger depuis une zone de décharge (31) adjacente à l'élément d'extrémité de chambre supérieur (24),
    et en ce que
    la chambre (22) est pourvue d'un ou plusieurs éléments définissant un espace annulaire étroit (35 ; 82-85) qui sont agencés entre lesdites zones d'alimentation et zone de décharge espacées verticalement et qui (en service) enveloppent le train de tubulaires de forage (1),
    et en ce que
    les un ou plusieurs éléments définissant un espace annulaire étroit (35 ; 82-85) définissent (en service) en combinaison avec le train de tubulaires de forage un espace annulaire allongé et radialement étroit (36) par lequel ledit liquide en circulation passe de la zone d'alimentation à la zone de décharge,
    et en ce que
    le liquide en circulation est un liquide à viscosité élevée,
    et en ce que
    la circulation dudit liquide à viscosité élevée et l'espace annulaire étroit (36) sont tels que (en service) le cisaillement du liquide à viscosité élevée est induit dans ledit espace annulaire allongé et radialement étroit, entraînant une chute de pression entre ladite zone d'alimentation et ladite zone de décharge de telle sorte qu'une pression du liquide à viscosité élevée dans ladite zone d'alimentation aide l'élément d'extrémité de chambre inférieur à absorber la pression de fluide associée au puits de forage dans ledit passage de fluide annulaire.
     
    15. En combinaison, système selon la revendication 14 d'étanchéisation et de commande d'une pression de fluide dans un passage de fluide annulaire dans un procédé associé à un puits de forage, dans lequel un fluide associé à un puits de forage passe dans le passage de fluide annulaire autour d'un train de tubulaires de forage, et train de tubulaires de forage passant le long dudit axe à travers ladite chambre et lesdits éléments d'extrémité de chambre, dans lequel les un ou plusieurs éléments définissant un espace annulaire étroit (35 ; 82-85) définissent en combinaison avec le train de tubulaires de forage un espace annulaire allongé et radialement étroit (36) par lequel (en service) ledit liquide en circulation passe de la zone d'alimentation à la zone de décharge.
     




    Drawing























    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description