(19)
(11)EP 3 342 702 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
06.05.2020 Bulletin 2020/19

(21)Application number: 17208539.1

(22)Date of filing:  19.12.2017
(51)International Patent Classification (IPC): 
B64C 3/28(2006.01)
H05B 3/14(2006.01)
B64D 15/12(2006.01)
B64C 11/20(2006.01)

(54)

EROSION STRIP INTEGRATED WITH CARBON ALLOTROPE-BASED DEICING/ANTI-ICING ELEMENTS

EROSIONSSTREIFEN MIT INTEGRIERTEN KOHLENSTOFF-ALLOTROP-BASIERTEN ENTEISUNGS-/VEREISUNGSSCHUTZELEMENTEN

BANDE D'ÉROSION INTÉGRÉE À DES ÉLÉMENTS DE DÉGIVRAGE/ANTI-GIVRAGE À BASE D'ALLOTROPE DE CARBONE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 29.12.2016 US 201615394179

(43)Date of publication of application:
04.07.2018 Bulletin 2018/27

(73)Proprietor: Goodrich Corporation
Charlotte, NC 28217-4578 (US)

(72)Inventors:
  • ZHAO, Wenping
    Glastonbury, CT 06033 (US)
  • BOTURA, Galdemir Cezar
    Akron, OH 44313 (US)
  • WILSON, Tommy M.
    Cuyahoga Falls, OH 44223 (US)
  • HARTZLER, Brad
    Doylestown, OH 44230 (US)
  • CHAUDHRY, Zaffir A.
    South Glastonbury, CT 06073 (US)

(74)Representative: Dehns 
St. Bride's House 10 Salisbury Square
London EC4Y 8JD
London EC4Y 8JD (GB)


(56)References cited: : 
WO-A1-2016/144683
US-A1- 2014 034 414
US-A1- 2016 221 680
US-A1- 2008 099 617
US-A1- 2014 034 633
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    BACKGROUND



    [0001] Certain aircraft surfaces-helicopter rotor blades, aircraft engine fan blades, and other aircraft leading edges-are often subject to foreign object damage (FOD) from materials such as sand, rain, and other debris. Hence, these surfaces are often equipped with an erosion shield made from a hardened material. An aircraft moving through clouds is also subjected to ice formation, and anti-icing or de-icing devices must be used to remove or prevent ice from accumulating on exterior surfaces of the aircraft. A metallic heater is typically located behind the erosion strip to provide ice protection. However, separate erosion shield-heater units require a two-step process for assembly or repair.

    [0002] Carbon nanotubes (CNTs) are allotropes of carbon having a generally cylindrical nanostructure, and have a variety of uses in nanotechnology, electronics, optics and other materials sciences. CNTs are both thermally and electrically conductive. Due to these properties, CNTs can be used as heaters to prevent icing on aircraft or other vehicles. Carbon allotrope heaters are uniquely beneficial for de-icing because of their high efficiency, light weight and ability to be molded into specific shapes, and durability.

    [0003] US 2008/0099617 discloses an electrothermal heater mat for de-icing of an aerodynamic surface. US 2014/0034414 discloses an electric heater for integration into an acoustic panel. US 2014/0034633 discloses laminated resistive heaters comprising a carbon nanotube layer. US 2016/0221680 discloses a configuration to provide uniform heat distribution of resistive heaters. WO 2016/144683 discloses a heater mat assembly for a blade.

    SUMMARY



    [0004] An erosion shield assembly (for example, made by the method described herein) includes an erosion shield, (e.g. an erosion shield configured to form to a leading edge of an aircraft surface), a carbon allotrope heater attached to an inner surface of the erosion shield, and an adhesive layer between the carbon allotrope heater and the erosion shield. The carbon allotrope heater includes at least one layer of a carbon allotrope material, a first region with a first resistance in which electrical components are connected as a circuit in series and a second region with a second resistance difference from the first resistance.

    [0005] A method of making an erosion shield assembly (for example, the assembly described herein) includes configuring an erosion shield to form to an aircraft leading edge, bonding a carbon allotrope heater to an inner surface of the erosion shield using an adhesive layer, and configuring a first region of the carbon allotrope heater to have a first resistance by connecting electrical components contained therein as a circuit in series, and configuring a second region of the carbon allotrope heater to have a second resistance difference from the first resistance. The carbon allotrope heater includes at least one layer of a carbon allotrope material.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0006] 

    FIG. 1 is a cross-sectional view of an erosion shield assembly.

    FIG. 2 is a cross-sectional view of an enlarged section of the erosion shield assembly.

    FIG. 3 is a cross-sectional view of an alternative embodiment of the erosion shield assembly.


    DETAILED DESCRIPTION



    [0007] The disclosed erosion shield assembly includes a carbon nanotube (CNT) or other carbon allotrope-based heater. The CNT heater is highly conformable and is therefore easily bonded to the inner surface of the erosion shield, which must take on the exact curvature of the underlying aircraft surface. The combined assembly is a line replaceable unit (LRU), and is more quickly installed and repaired than separate units. Further, the integration of the CNT heater within the erosion shield allows for increased heating efficiency of the aircraft surface and provides protection for the heater itself.

    [0008] FIG. 1 is a cross-sectional view of erosion shield assembly 10 formed to an aircraft leading edge 12. Erosion shield assembly 10 includes a breeze side 14 and bond side 16. Breeze side 14 faces an external environment subject to FOD and icing. Bond side 16 is attached to leading edge 12. Erosion shield assembly further includes a first region 18 surrounding the tip of leading edge 12, and a second region 20 extending away from the tip of leading edge 12. Leading edge 12 can include the leading edge of a helicopter rotor blade, engine fan blade, aircraft wing, or any aircraft leading edge that may be exposed to either FOD or icing.

    [0009] FIG. 2 is an enlarged view of erosion shield assembly 10. Erosion shield assembly 10 includes erosion shield 22, adhesive layer 24, carbon allotrope heater 26, and pre-preg layer 28. Erosion shield 22 includes inner surface 30. Carbon allotrope heater 26 is bonded to inner surface 30 of erosion shield 22 by adhesive layer 24. Pre-preg layer 28 can be bonded to an inner surface 32 of carbon allotrope heater 26, and can be attached to leading edge 12.

    [0010] Erosion shield 22 can be a metallic, alloy-based, conformable coating, or rubber-type material designed to protect leading edge 12 from FOD. Adhesive layer 24 can be any commercially available or other film adhesive. Pre-preg layer 28 is a fabric that is impregnated with a polymer resin, such as an epoxy, a phenolic polymer, or a bismaleimide polymer.

    [0011] Carbon allotrope heater 26 includes at least one layer containing a carbon allotrope material, such as carbon nanotubes (CNTs), which have a generally cylindrical structure. The CNT layer can be formed from CNTs suspended in a matrix, a dry CNT fiber, or a CNT yarn material, to name a few non-limiting examples. In other embodiments, the carbon allotrope material of carbon allotrope heater 26 includes graphene, graphene nanoribbons (GNRs), or other suitable carbon allotropes. Graphene has a two-dimensional honeycomb lattice structure, and GNRs are strips of graphene with ultra-thin widths.

    [0012] In some embodiments, carbon allotrope heater 26 includes a plurality of layers of a carbon allotrope material. The plurality of carbon allotrope layers can be arranged in groups to create a plurality of heated zones (not shown) within the erosion shield assembly 10.

    [0013] Carbon allotrope heater 26 is connected to a power source 34 by wires (not shown). Power source 34 provides direct current (DC) or alternating current (AC) depending on the type and size of the aircraft. The electrical resistivity of the material used in carbon allotrope heater 26 can be modified so that it is compatible with the existing power source on a given aircraft. In some embodiments, the electrical resistivity of carbon allotrope heater 26 ranges from about 0.03 Ω/sq to about 3.0 Ω/sq based on the type of aircraft and the location and size of the aircraft leading edge. The varied resistivity of carbon allotropes is discussed in the following copending applications:
    U.S. Patent Application Ser. No. 15/368,271, "Method to Create Carbon Nanotube Heaters with Varying Resistance"; U.S. Patent Application Ser. No. 15/373,370, "Pressurized Reduction of CNT Resistivity"; U.S. Patent Application Ser. No. 15/373,363, "Adjusting CNT Resistance using Perforated CNT Sheets"; and U.S. Patent Application Ser. No. 15/373,371, "Reducing CNT Resistivity by Aligning CNT Particles in Films."

    [0014] In an aspect of the disclosure, carbon allotrope heater 26 can be configured to have a uniform electrical resistance, such that it has either high or low resistance. In the aspect of FIG. 2, for example, carbon allotrope heater 26 has a uniform resistance in both the first region 18 and the second region 20 of erosion shield assembly 10.

    [0015] FIG. 3 is an enlarged view of erosion shield assembly 110 in which carbon allotrope heater 126 is configured to have a variable resistance. Carbon allotrope heater 126 has a different resistance in the first region 118 than it does in the second region 120 of erosion shield assembly 110. A higher resistance can be achieved if the electrical components of first region 118 are connected as a circuit in series (as claimed herein), while a lower resistance can be achieved if the electrical components are connected as a circuit in parallel. The resistance of first region 118 can be made to be either higher or lower than that of second region 120 because in some conditions, the portion of carbon allotrope heater 126 surrounding the tip of leading edge 112 requires more power to provide adequate ice protection.

    [0016] A method of making erosion shield assembly 10 includes configuring the erosion shield to form to leading edge 12 of an aircraft. Carbon allotrope heater 26 is bonded to inner surface 30 of erosion shield 22 using adhesive layer 24. Pre-preg layer 28 can be attached to inner surface 32 of carbon allotrope heater 26. The assembled components (erosion shield 22, adhesive layer 24, carbon allotrope heater 26, and pre-preg layer 28) are then cured using, for example, an autoclave or out-of-autoclave (OOA) manufacturing process. Erosion shield assembly 10 is then able to be attached to leading edge 12 of an aircraft. In another embodiment, carbon allotrope heater 26 and pre-preg layer 28 are bonded together and subsequently formed to inner surface 30 of erosion shield 22 using a process such as thermoforming.

    [0017] Erosion shield assembly 10 has several benefits. First, the integral nature of the assembly allows for a single-step installation or removal process, reducing the "down time" of an aircraft. If the assembly is in need of repair or replacement, the components-the erosion shield and the carbon allotrope heater-can be repaired or replaced simultaneously or separately. Further, carbon allotropes are easily conformed to fit any shape or curvature of the erosion shield.

    [0018] Another benefit of the erosion shield assembly is that carbon allotrope heaters are lightweight and have a lighter thermal mass, making them very efficient at converting energy to heat. The carbon allotrope heater may be carbon nanotubes, graphene and graphene nanoribbons, which are all sufficiently lighter than metals or alloys used in traditional heaters. Carbon allotrope heaters can also be configured to have varied resistance and resistivity based on the aircraft size, available power, and the location of the leading edge on the aircraft.

    Discussion of Possible Embodiments



    [0019] The following are non-exclusive descriptions of possible embodiments of the present invention.

    [0020] An erosion shield assembly (e.g. made by the method as herein described) includes an erosion shield, (e.g. an erosion shield configured to form to a leading edge of an aircraft surface) a carbon allotrope heater attached to an inner surface of the erosion shield, and an adhesive layer between the carbon allotrope heater and the erosion shield. The carbon allotrope heater includes at least one layer of a carbon allotrope material. A first region of the carbon allotrope heater has a first resistance in which electrical components are connected as a circuit in series, and a second region of the carbon allotrope has a second resistance difference from the first resistance.

    [0021] The erosion shield assembly of the preceding paragraph can optionally include, additionally and/or alternatively, any one or more of the following features, configurations and/or additional components:
    The assembly includes a pre-preg layer configured to attach to an inner surface of the carbon allotrope layer.

    [0022] The carbon allotrope heater includes a plurality of carbon allotrope layers.

    [0023] The carbon allotrope material is, or comprises, a carbon nanotube material.

    [0024] The carbon nanotube material is, includes, or comprises, carbon nanotubes suspended in a matrix.

    [0025] The carbon nanotube material is, includes, or comprises, a dry carbon nanotube fiber.

    [0026] The carbon nanotube material is, includes, or comprises, a carbon nanotube yarn.

    [0027] The carbon allotrope heater is connected to a power source.

    [0028] The carbon allotrope heater has an electrical resistivity ranging from about 0.03 Ω/sq to about 3.0 Ω/sq.

    [0029] The erosion shield is formed from a material selected from the group consisting of titanium, stainless steel, nickel, rubber, neoprene, and combinations thereof.

    [0030] A method of making an erosion shield assembly (e.g. the assembly described herein) includes configuring an erosion shield to form to an aircraft leading edge, bonding a carbon allotrope heater to an inner surface of the erosion shield using an adhesive layer. The method includes configuring a first region of the carbon allotrope heater to have a first resistance by connecting electrical components contained therein as a circuit in series, and configuring a second region of the carbon allotrope heater to have a second resistance difference from the first resistance. The carbon allotrope heater includes at least one layer of a carbon allotrope material.

    [0031] The method of the preceding paragraph can optionally include, additionally and/or alternatively, any one or more of the following features, configurations and/or additional components:
    The method includes bonding a pre-preg layer to an inner surface of the carbon allotrope heater.

    [0032] The method includes curing the erosion shield assembly.

    [0033] The method includes forming the carbon allotrope heater from a plurality of carbon allotrope layers.

    [0034] The method includes forming the carbon allotrope material from carbon nanotubes.

    [0035] The method includes connecting the carbon allotrope heater to a power source.

    [0036] The method includes forming the erosion shield from a material selected from the group consisting of titanium, stainless steel, nickel, rubber, neoprene, and combinations thereof.

    [0037] While the invention has been described with reference to an exemplary embodiment(s), it will be understood by those skilled in the art that changes may be made without departing from the scope of the invention. Therefore, it is intended that the invention not be limited to the particular embodiment(s) disclosed, but that the invention will include all embodiments falling within the scope of the appended claims.


    Claims

    1. An erosion shield assembly 10, 110 comprising:

    an erosion shield 22 configured to form to a leading edge 12, 112 of an aircraft surface;

    a carbon allotrope heater 26, 126 attached to an inner surface 30 of the erosion shield 22, the carbon allotrope heater 26, 126 comprising at least one layer of a carbon allotrope material; and

    an adhesive layer 24 between the carbon allotrope heater 26, 126 and the erosion shield 22;

    characterized in that the carbon allotrope heater 26, 126 has a first region 18, 118 with a first resistance in which electrical components are connected as a circuit in series, and a second region 20, 120 with a second resistance different from the first resistance.


     
    2. The assembly of claim 1 further comprising: a pre-preg layer 28 configured to attach to an inner surface 32 of the carbon allotrope layer.
     
    3. The assembly of claim 1 or claim 2, wherein the carbon allotrope heater 26, 126 comprises a plurality of carbon allotrope layers.
     
    4. The assembly of any preceding claim, wherein the carbon allotrope material is a carbon nanotube material.
     
    5. The assembly of claim 4, wherein the carbon nanotube material comprises carbon nanotubes suspended in a matrix, a dry carbon nanotube fiber, and/or a carbon nanotube yarn.
     
    6. The assembly of any preceding claim, wherein the carbon allotrope heater 26, 126 has an electrical resistivity ranging from 0.03 Ω/sq to 3.0 Ω/sq.
     
    7. The assembly of any preceding claim, wherein the erosion shield 22 is formed from a material selected from the group consisting of titanium, stainless steel, nickel, rubber, neoprene, and combinations thereof.
     
    8. A method of making an erosion shield assembly 10, 110 comprising:

    configuring an erosion shield 22 to form to an aircraft leading edge 12, 112; and

    bonding a carbon allotrope heater 26, 126 to an inner surface 30 of the erosion shield 22, the carbon allotrope heater 26, 126 comprising at least one layer of a carbon allotrope material;

    wherein the carbon allotrope heater 26, 126 is bonded to the inner surface 30 of the erosion shield 22 using an adhesive layer 24,

    characterised in that said method comprises configuring a first region 18, 118 of the carbon allotrope heater 26, 126 to have a first resistance by connecting electrical components contained therein as a circuit in series, and configuring a second region 20, 120 of the carbon allotrope heater 26, 126 to have a second resistance different from the first resistance.


     
    9. The method of claim 8 further comprising: bonding a pre-preg layer 28 to an inner surface 32 of the carbon allotrope heater 26, 126.
     
    10. The method of claim 8 or claim 9 further comprising: curing the erosion shield assembly 10, 110.
     
    11. The method of any one of claims 8 to 10 further comprising: forming the carbon allotrope heater 26, 126 from a plurality of carbon allotrope layers.
     
    12. The method of any one of claims 8 to 11 further comprising: forming the carbon allotrope material from carbon nanotubes.
     
    13. The method of any one of claims 8 to 12 further comprising: connecting the carbon allotrope heater 26, 126 to a power source 34.
     
    14. The method of any one of claims 8 to 13 further comprising: forming the erosion shield 22 from a material selected from the group consisting of titanium, stainless steel, nickel, rubber, neoprene, and combinations thereof.
     


    Ansprüche

    1. Erosionsschutzbaugruppe 10, 110, umfassend:

    einen Erosionsschutz 22, der dazu konfiguriert ist, eine Vorderkante 12, 112 einer Flugzeugoberfläche zu bilden;

    eine Kohlenstoff-Allotrop-Heizeinrichtung 26, 126, die an eine Innenfläche 30 des Erosionschutzes 22 angebracht ist, wobei die Kohlenstoff-Allotrop-Heizeinrichtung 26, 126 mindestens eine Schicht eines Kohlenstoff-Allotrop-Materials umfasst; und

    eine Haftschicht 24 zwischen der Kohlenstoff-Allotrop-Heizeinrichtung 26, 126 und dem Erosionsschutz 22;

    dadurch gekennzeichnet, dass die Kohlenstoff-Allotrop-Heizeinrichtung 26, 126 einen ersten Bereich 18, 118 mit einem ersten Widerstand, in dem elektrische Komponenten als ein Schaltkreis in Reihe verbunden sind, und einen zweiten Bereich 20, 120 mit einem zweiten Widerstand, der sich von dem ersten Widerstand unterscheidet, aufweist.


     
    2. Baugruppe nach Anspruch 1, ferner umfassend: eine Prepreg-Schicht 28, die dazu konfiguriert ist, an eine Innenfläche 32 der Kohlenstoff-Allotrop-Schicht angebracht zu sein.
     
    3. Baugruppe nach Anspruch 1 oder Anspruch 2, wobei die Kohlenstoff-Allotrop-Heizeinrichtung 26, 126 eine Vielzahl von Kohlenstoff-Allotrop-Schichten umfasst.
     
    4. Baugruppe nach einem der vorstehenden Ansprüche, wobei das Kohlenstoff-Allotrop-Material ein Kohlenstoffnanoröhrchenmaterial ist.
     
    5. Baugruppe nach Anspruch 4, wobei das Kohlenstoffnanoröhrchenmaterial in eine Matrix, eine trockene Kohlenstoffnanoröhrchenfaser und/oder ein Kohlenstoffnanoröhrchengarn suspendierte Kohlenstoffnanoröhrchen umfasst.
     
    6. Baugruppe nach einem der vorstehenden Ansprüche, wobei die Kohlenstoff-Allotrop-Heizeinrichtung 26, 126 eine elektrische Resistivität im Bereich von 0,03 Ω/sq bis 3,0 Ω/sq aufweist.
     
    7. Baugruppe nach einem der vorstehenden Ansprüche, wobei der Erosionsschutz 22 aus einem Material gebildet wird, das ausgewählt ist aus der Gruppe bestehend aus Titan, Edelstahl, Nickel, Kautschuk, Neopren und Kombinationen davon.
     
    8. Verfahren zum Herstellen einer Erosionsschutzbaugruppe 10, 110, umfassend:

    Konfigurieren eines Erosionsschutzes 22, um eine Flugzeugvorderkante 12, 112 zu bilden; und

    Bonden einer Kohlenstoff-Allotrop-Heizeinrichtung 26, 126 an eine Innenfläche 30 des Erosionsschutzes 22, wobei die Kohlenstoff-Allotrop-Heizeinrichtung 26, 126 mindestens eine Schicht eines Kohlenstoff-Allotrop-Materials umfasst;

    wobei die Kohlenstoff-Allotrop-Heizeinrichtung 26, 126 unter Verwendung einer Haftschicht 24 an die Innenfläche 30 des Erosionsschutzes 22 gebondet ist,

    dadurch gekennzeichnet, dass das Verfahren das Konfigurieren eines ersten Bereichs 18, 118 der Kohlenstoff-Allotrop-Heizeinrichtung 26, 126, derart, dass sie einen ersten Widerstand aufweist, und zwar durch Verbinden der darin enthaltenen elektrischen Komponenten als einen in Reihe geschalteten Schaltkreis, und das Konfigurieren eines zweiten Bereichs 20, 120 der Kohlenstoff-Allotrop-Heizeinrichtung 26, 126, derart, dass sie einen zweiten Widerstand aufweist, der sich von dem ersten Widerstand unterscheidet, umfasst.


     
    9. Verfahren nach Anspruch 8, ferner umfassend: Bonden einer Prepreg-Schicht 28 an eine Innenfläche 32 der Kohlenstoff-Allotrop-Heizeinrichtung 26, 126.
     
    10. Verfahren nach Anspruch 8 oder Anspruch 9, ferner umfassend: Aushärten der Erosionsschutzbaugruppe 10, 110.
     
    11. Verfahren nach einem der Ansprüche 8 bis 10, ferner umfassend: Bilden der Kohlenstoff-Allotrop-Heizeinrichtung 26, 126 aus einer Vielzahl von Kohlenstoff-Allotrop-Schichten.
     
    12. Verfahren nach einem der Ansprüche 8 bis 11, ferner umfassend: Bilden des Kohlenstoff-Allotrop-Materials aus Kohlenstoffnanoröhrchen.
     
    13. Verfahren nach einem der Ansprüche 8 bis 12, ferner umfassend: Verbinden der Kohlenstoff-Allotrop-Heizeinrichtung 26, 126 mit einer Stromquelle 34.
     
    14. Verfahren nach einem der Ansprüche 8 bis 13, ferner umfassend: Bilden des Erosionsschutzes 22 aus einem Material, das ausgewählt ist aus der Gruppe bestehend aus Titan, Edelstahl, Nickel, Kautschuk, Neopren und Kombinationen davon.
     


    Revendications

    1. Ensemble de protection anti-érosion 10, 110 comprenant :

    une protection anti-érosion 22 configurée pour former un bord d'attaque 12, 112 d'une surface d'aéronef ;

    un réchauffeur d'allotrope de carbone 26, 126 fixé à une surface intérieure 30 de la protection anti-érosion 22, le réchauffeur d'allotrope de carbone 26, 126 comprenant au moins une couche d'un matériau d'allotrope de carbone ; et

    une couche adhésive 24 entre le réchauffeur d'allotrope de carbone 26, 126 et la protection anti-érosion 22 ;

    caractérisé en ce que le réchauffeur d'allotrope de carbone 26, 126 a une première région 18, 118 avec une première résistance dans laquelle les composants électriques sont reliés en tant que circuit en série, et une seconde région 20, 120 avec une seconde résistance différente de la première résistance.


     
    2. Ensemble selon la revendication 1, comprenant en outre : une couche de préimprégné 28 configurée pour se fixer à une surface intérieure 32 de la couche d'allotrope de carbone.
     
    3. Ensemble selon la revendication 1 ou la revendication 2, dans lequel le réchauffeur d'allotrope de carbone 26, 126 comprend une pluralité de couches d'allotrope de carbone.
     
    4. Ensemble selon une quelconque revendication précédente, dans lequel le matériau d'allotrope de carbone est un matériau de nanotube de carbone.
     
    5. Ensemble selon la revendication 4, dans lequel le matériau de nanotube de carbone comprend des nanotubes de carbone en suspension dans une matrice, une fibre de nanotube de carbone sèche et/ ou un fil de nanotube de carbone.
     
    6. Ensemble selon une quelconque revendication précédente, dans lequel le réchauffeur d'allotrope de carbone 26, 126 a une résistivité électrique allant de 0,03 Ω/sq à 3,0 Ω/sq.
     
    7. Ensemble selon une quelconque revendication précédente, dans lequel la protection anti-érosion 22 est formée à partir d'un matériau choisi dans le groupe constitué de titane, acier inoxydable, nickel, caoutchouc, néoprène, et leurs combinaisons.
     
    8. Procédé de fabrication d'un ensemble protection anti-érosion 10, 110 comprenant :

    la configuration d'une protection anti-érosion 22 pour former un bord d'attaque d'aéronef 12, 112 ; et

    la liaison d'un réchauffeur d'allotrope de carbone 26, 126 à une surface intérieure 30 de la protection anti-érosion 22, le réchauffeur d'allotrope de carbone 26, 126 comprenant au moins une couche d'un matériau d'allotrope de carbone ;

    dans lequel le réchauffeur d'allotrope de carbone 26, 126 est lié à la surface intérieure 30 de la protection anti-érosion 22 en utilisant une couche adhésive 24,

    caractérisé en ce que ledit procédé comprend la configuration d'une première région 18, 118 du réchauffeur d'allotrope de carbone 26, 126 pour avoir une première résistance en reliant les composants électriques contenus à l'intérieur en tant que circuit en série, et la configuration d'une seconde région 20, 120 du réchauffeur d'allotrope de carbone 26, 126 pour avoir une seconde résistance différente de la première résistance.


     
    9. Procédé selon la revendication 8, comprenant en outre : la liaison d'une couche de préimprégné 28 à une surface intérieure 32 du réchauffeur d'allotrope de carbone 26, 126.
     
    10. Procédé selon la revendication 8 ou la revendication 9, comprenant en outre : le durcissement de l'ensemble protection anti-érosion 10, 110.
     
    11. Procédé selon l'une quelconque des revendications 8 à 10, comprenant en outre : la formation du réchauffeur d'allotrope de carbone 26, 126 à partir d'une pluralité de couches d'allotrope de carbone.
     
    12. Procédé selon l'une quelconque des revendications 8 à 11, comprenant en outre : la formation du matériau d'allotrope de carbone à partir de nanotubes de carbone.
     
    13. Procédé selon l'une quelconque des revendications 8 à 12, comprenant en outre : la liaison du réchauffeur d'allotrope de carbone 26, 126 à une source d'alimentation 34.
     
    14. Procédé selon l'une quelconque des revendications 8 à 13, comprenant en outre : la formation de la protection anti-érosion 22 à partir d'un matériau choisi dans le groupe constitué de titane, acier inoxydable, nickel, caoutchouc, néoprène et leurs combinaisons.
     




    Drawing














    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description