(19)
(11)EP 3 345 708 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
13.10.2021 Bulletin 2021/41

(21)Application number: 17204979.3

(22)Date of filing:  01.12.2017
(51)International Patent Classification (IPC): 
B23K 1/00(2006.01)
B23K 1/20(2006.01)
B23K 101/06(2006.01)
B23K 1/008(2006.01)
B23K 101/00(2006.01)
(52)Cooperative Patent Classification (CPC):
B23K 2101/001; B23K 2101/06; B23K 1/0018; B23K 35/304; B23K 1/20; B23K 1/008; B23K 35/0244; C22C 19/057; C22C 19/056

(54)

METHOD OF FEEDING A BRAZE FILLER TO A JOINT, BRAZED ARTICLE, AND BRAZE ASSEMBLY

VERFAHREN ZUM BRINGEN EINES LÖTZUSATZ ZU EINER VERBINDUNG, GELÖTETER ARTIKEL UND LÖTANORDNUNG

PROCÉDÉ D'AMENÉE D'UN MATÉRIEL D'APPORT DE BRASURE DANS UN JOINT, ARTICLE BRASÉ ET ENSEMBLE POUR BRASAGE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 09.12.2016 US 201615373895

(43)Date of publication of application:
11.07.2018 Bulletin 2018/28

(73)Proprietor: General Electric Company
Schenectady, NY 12345 (US)

(72)Inventors:
  • CUI, Yan
    Greenville, SC South Carolina 29615 (US)
  • HENDERSON, Brian Leslie
    Greenville, SC South Carolina 29615 (US)
  • TOLLISON, Brian Lee
    Greenville, SC South Carolina 29615 (US)
  • KOTTILINGAM, Srikanth Chandrudu
    Greenville, SC South Carolina 29615 (US)

(74)Representative: BRP Renaud & Partner mbB Rechtsanwälte Patentanwälte Steuerberater 
Königstraße 28
70173 Stuttgart
70173 Stuttgart (DE)


(56)References cited: : 
WO-A1-2007/003692
US-A- 3 078 551
WO-A1-2007/070989
US-A1- 2016 287 052
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    FIELD OF THE INVENTION



    [0001] The present embodiments are directed to methods of brazing, brazed articles, and brazing assemblies. More specifically, the present embodiments are directed to a method of feeding a braze filler to a joint, a brazed article and a braze assembly, for brazing a braze gap between two surfaces.

    BACKGROUND OF THE INVENTION



    [0002] Tooling lugs, located in the outer side wall of turbine nozzles, are a pair of handles with two holes. The function of the holes in the tooling lugs is to connect with the pins in the fixture to hold the nozzle for machining. During machining, a datum plane is used as a reference surface to locate all of the other positions. The tolerance between the tooling lugs and datum plane is very important, because it is directly related to the other machining tolerances and to the part assembly.

    [0003] When the position or the diameter of a hole of a tooling lug is outside of a predetermined tolerance, the hole is conventionally plugged and re-drilled. The predetermined tolerance may be less than about 2.5 mm (about 0.10"). Conventionally, the hole is plugged by welding, but this may cause distortion or micro-cracking in the superalloy material of the tooling lug.

    [0004] Brazing is a process of filling a void space within a metal item or between two or more metal items. A filler braze metal material melts and flows into a joint between the two metal items or into a crack or gap within a metal item. The filler braze metal material has a lower melting point than the metal items such that the metal items do not melt during the brazing process. The filler braze metal material ideally flows into the joint, crack, or gap by capillary action. The filler metal is heated to slightly above its melting (liquidus) temperature in a suitable atmosphere, usually in an inert atmosphere environment or in a vacuum furnace, to melt and flow, and then cools to fill the crack or gap or join the two metal items together. Brazing is capable of joining the same or different metals with considerable strength.

    [0005] US 8,560,079 B2 (background for the present invention) describes joining a first component and a second component together to form an assembly by brazing, with placing a surface of the first component proximate to a surface of the second component to form a gap therebetween, introducing a liquid braze material into the gap from at least one of the surface of the first component or the surface of the second component such that the braze material is drawn into the gap by capillary action, wherein a recess for the brazing material is located in at least one of the first and second components, the recess being in fluid communication with a plurality of apertures in the at least one surface. US 3,078,551 A describes a method of making a tube and plate connection.

    BRIEF DESCRIPTION OF THE INVENTION



    [0006] A method of feeing a braze filler to a joint according to the present invention is defined in claim 1, and includes heating a brazing material in a braze chamber of a first component to a braze temperature to melt the brazing material. The brazing material flows from the braze chamber, through at least one internal channel of the first component, and into a braze gap between the first component and a second component to braze the first component to the second component.

    [0007] A brazed article according to the present invention is defined in claim 5, and includes a first component having a braze chamber and at least one internal channel extending from the braze chamber to an external surface of the first component, a second component having at least one braze surface separated from the external surface of the first component by a braze gap, and a braze material in the braze gap. The first component is brazed to the second component by the braze material in the braze gap.

    [0008] A braze assembly according to the present invention is defined in claim 8, and includes a first component having a braze chamber and at least one internal channel extending from the braze chamber to an external surface of the first component, a second component having at least one braze surface separated from the external surface of the first component by a braze gap, and a brazing material in the braze chamber.

    [0009] Other features and advantages of the present invention will be apparent from the following more detailed description, taken in conjunction with the accompanying drawings which illustrate, by way of example, the principles of the invention.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0010] 

    FIG. 1 is a schematic cross sectional view of a first component and a second component in an embodiment of the present disclosure.

    FIG. 2 is a schematic cross sectional view of a braze assembly including the first component and the second component of FIG. 1 in an embodiment of the present disclosure.

    FIG. 3 is a schematic cross sectional view of a brazed article from the braze assembly of FIG. 2 in an embodiment of the present disclosure.

    FIG. 4 is a schematic cross sectional view of a first component and a second component in another embodiment of the present disclosure.

    FIG. 5 is a schematic cross sectional view of another braze assembly in an embodiment of the present disclosure.

    FIG. 6 is a schematic cross sectional view of a brazed article from the braze assembly of FIG. 5 in an embodiment of the present disclosure.

    FIG. 7 is a perspective view of a second component in an embodiment of the present disclosure.



    [0011] Wherever possible, the same reference numbers will be used throughout the drawings to represent the same parts.

    DETAILED DESCRIPTION OF THE INVENTION



    [0012] Provided is a method of brazing, a brazed article, and a brazing assembly including a braze chamber and a braze gap.

    [0013] Embodiments of the present disclosure, for example, in comparison to concepts failing to include one or more of the features disclosed herein, permit a high-quality, narrow-gap braze, provide a high-quality braze joint, provide a narrow-gap braze joint with a tight tolerance, provide a different method for feeding braze filler to a joint, provide a braze filler in the form of a powder with no binder, apply well to nickel-based braze fillers that are difficult to form into structures, such as wires and rings, due to very low ductility, achieve a predetermined exact braze gap size design, eliminate a detrimental phase, such as a eutectic phase, promote easier part assembly, easily control design during production, or a combination thereof.

    [0014] Referring to FIG. 1, a first component 10 is formed and arranged to have an external surface 12 a predetermined distance away from a braze surface 14 of a second component 16. The predetermined distance defines a braze gap 18 between the external surface 12 of the first component 10 and the braze surface 14 of the second component 16. The first component 10 includes a braze chamber 20 and at least one internal channel 22 providing fluid communication between the braze chamber 20 and the external surface 12 of the first component 10, and hence the braze gap 18. A connector 24 between the first component 10 and the second component 16 may be applied to maintain the relative location of the first component 10 with respect to the second component 16, thereby maintaining the braze gap 18. In some embodiments, the connector 24 is a tack weld.

    [0015] FIG. 2 shows a braze assembly 30 including the first component 10, the second component 16, and a brazing material 32 located in the braze chamber 20 of the first component. The brazing material 32 is provided in a quantity sufficient to flow and fill the volume of void space the braze gap 18 upon heating the brazing material 32 to a braze temperature sufficient to melt the brazing material 32.

    [0016] FIG. 3 shows a brazed article 40 including the first component 10 brazed to the second component 16 by a braze material 42 in the braze gap 18. The braze material 42 has solidified from the melted brazing material 32 after heating the brazing material 32 in the braze chamber 20 to a braze temperature to melt the brazing material 32, permitting the melted brazing material 32 to flow into the internal channel 22 and then into the braze gap 18, and allowing the liquid brazing material 32 to cool to a solid braze material 42.

    [0017] FIG. 4 shows an alternative design of a first component 10 in a second component 16. The first component 10 includes internal channels 22 at more than one location along the length of the first component 10. When brazing a braze gap 18 of sufficient length, the addition of internal channels 22 at different locations along the length of the first component 10, and hence at different locations along the length of the braze gap 18, reduces the amount of time for the brazing material 32 to flow and fill the braze gap 18, thereby reducing the brazing time.

    [0018] In FIG. 5, the first component 10 includes an extension 50 to give the first component 10 a length greater than the length of the second component 16. This extension 50 permits more brazing material 32 to be placed in the braze chamber 20 prior to brazing. After brazing, enough braze material 42 remains in the braze chamber 20 to extend at least into the bottom of the extension 50. This allows a complete plug to be formed in the brazed article 40 after machining off the extension 50 and any braze material 42 extending into the extension 50 as shown in FIG. 6, rather than having a void space in a portion of the braze chamber 20 of the brazed article 40 as shown in FIG. 3.

    [0019] In some embodiments, the second component 16 is a tooling lug of a turbine nozzle 60, and the lug hole 62 provides the braze surface 14 for brazing to a first component 10, as shown in FIG. 7.

    [0020] Methods of the present disclosure are capable of achieving a controlled braze gap 18 with tight tolerances with an internal braze material feeding system in a first component 10 for braze joint design and fabrication. The size of a braze gap 18 may be hard to control. Methods of the present disclosure are capable of successfully providing a narrow gap braze.

    [0021] In some embodiments, the size of the braze gap 18 is highly uniform with a tight tolerance. Control of the size of the braze gap 18 permits achievement of a good quality braze joint. For example, a braze gap 18 with tight tolerance may be very important for the braze joint to achieve the desired excellent mechanical properties. Braze gap 18 uniformity control may require machining the mating pieces to high tolerances and complementary contours. High tolerance machining may require experienced machining vendors with high quality machines.

    [0022] In some embodiments, control of the braze gap 18 is capable of eliminating a detrimental phase in the braze material 42, such as a eutectic phase. According to the present invention, the width of the braze gap 18 is in the range of about 10 µm to about 100 µm (about 0.4 mil to about 4.0 mil), alternatively about 10 µm to about 80 µm (about 0.4 mil to about 3.2 mil), alternatively about 10 µm to about 50 µm (about 0.4 mil to about 2.0 mil), alternatively about 30 µm to about 80 µm (about 1.2 mil to about 3.2 mil), or any range or sub-range therebetween. According to the present invention the width of the braze gap 18 is selected to promote flow of the melted brazing material 32 by capillary action in the braze gap 18.

    [0023] The external surface 12 and the braze surface 14 may have any complementary contour to provide a uniform braze gap 18. In some embodiments, the external surface 12 and the braze surface 14 are complementary curved surfaces. In some embodiments, the external surface 12 and the braze surface 14 are complementary cylindrical surfaces. In some such embodiments, the first component 10 has a cylindrical geometry. In some embodiments, the external surface 12 and the braze surface 14 are complementary planar surfaces.

    [0024] The braze chamber 20 may have any geometry that is accessible to supply brazing material 32 and is able to contain the brazing material 32 until the time of brazing. In some embodiments, the braze chamber 20 is substantially cylindrical and formed as a counter-bore by machining. The braze chamber 20 is sized to have sufficient volume to hold sufficient brazing material 32 to fill the braze gap 18 with braze material 42. In some embodiments, the braze chamber 20 may have walls with an irregular geometry. Although the braze chamber 20 is shown as extending below the bottom of the internal channels 22 in FIG. 1 through FIG. 6, the bottom of the braze chamber 20 may alternatively be aligned with the bottom of the internal channels 22 or be located above the bottom of the internal channels 22.

    [0025] The at least one internal channel 22 may have any geometry that provides fluid communication between the braze chamber 20 and the external surface 12. In some embodiments, the internal channel 22 has a cylindrical geometry. In some embodiments, the diameter of the cylindrical internal channel 22 is in the range of about 0.5 mm to about 5 mm (about 20 mil to about 200 mil), alternatively about 0.75 mm to about 3.8 mm (about 30 mil to about 150 mil), alternatively about 1.0 mm to about 2.5 mm (about 40 mil to about 100 mil), or any range or sub-range therebetween. In some embodiments, the internal channel 22 has an irregular geometry. In some embodiments, the cross sectional area of the cylindrical internal channel 22 is in the range of about 0.2 mm2 to about 20 mm2 (about 300 mil2 to about 30,000 mil2), alternatively about 0.5 mm2 to about 11 mm2 (about 800 mil2 to about 17,000 mil2), alternatively about 0.8 mm2 to about 5 mm2 (about 1,200 mil2 to about 8,000 mil2), or any range or sub-range therebetween.

    [0026] The at least one internal channel 22 is preferably a plurality of internal channels 22. The number of internal channels 22 is preferably selected based on the size of the first component 10, with more internal channels 22 being used for larger first components 10. The number of internal channels 22 in the first component may be in the range of two to twelve, alternatively three to ten, alternatively four to eight, any number therein, or any range or sub-range therebetween.

    [0027] The first component 10 and the second component 16 may be formed of any material capable of being brazed. In some embodiments, the first component 10 and the second component 16 have substantially the same composition. In some embodiments, the first component 10 and the second component 16 have different compositions. In some embodiments, the first component 10 and the second component 16 are formed of a superalloy material. In some embodiments, the superalloy material is a cobalt-based superalloy, a nickel-based superalloy, or an iron-based superalloy.

    [0028] In some embodiments, the superalloy material has a composition by weight of up to about 15% chromium (Cr), up to about 10% cobalt (Co), up to about 4% tungsten (W), up to about 2% molybdenum (Mo), up to about 5% titanium (Ti), up to about 3% aluminum (Al), up to about 3% tantalum (Ta), incidental impurities, and a balance of Ni.

    [0029] In some embodiments, the superalloy material has a composition by weight of about 14% Cr, about 9.5% Co, about 3.8% W, about 1.5% Mo, about 4.9% Ti, about 3.0% Al, about 0.1% carbon (C), about 0.01% boron (B), about 2.8% Ta, incidental impurities, and a balance of Ni.

    [0030] In some embodiments, the superalloy material has a composition by weight of up to about 10% Cr, up to about 8% Co, up to about 4% Ti, up to about 5% Al, up to about 6% W, up to about 5% Ta, incidental impurities, and a balance of Ni.

    [0031] In some embodiments, the superalloy material has a composition by weight of about 9.75% Cr, about 7.5% Co, about 3.5% Ti, about 4.2% Al, about 6.0% W, about 1.5% Mo, about 4.8% Ta, about 0.08% C, about 0.009% zirconium (Zr), about 0.009% B, incidental impurities, and a balance of Ni.

    [0032] In some embodiments, the superalloy material has a composition by weight of up to about 8% Co, up to about 7% Cr, up to about 6% Ta, up to about 7% Al, up to about 5% W, up to about 3% rhenium (Re), up to about 2% Mo, incidental impurities, and a balance of Ni.

    [0033] In some embodiments, the superalloy material has a composition by weight of about 7.5% Co, about 7.0% Cr, about 6.5% Ta, about 6.2% Al, about 5.0% W, about 3.0% Re, about 1.5% Mo, about 0.15% Hf, about 0.05% C, about 0.004% B, about 0.01% yttrium (Y), incidental impurities, and a balance of Ni.

    [0034] In some embodiments, the superalloy material has a composition by weight of up to about 10% Cr, up to about 8% Co, up to about 5% Al, up to about 4% Ti, up to about 2% Mo, up to about 6% W, up to about 5% Ta, incidental impurities, and a balance of Ni.

    [0035] In some embodiments, the superalloy material has a composition by weight of about 9.75% Cr, about 7.5% Co, about 4.2% Al, about 3.5% Ti, about 1.5% Mo, about 6.0% W, about 4.8% Ta, about 0.5% niobium (Nb), about 0.15% Hf, about 0.05% C, about 0.004% B, incidental impurities, and a balance of Ni.

    [0036] In some embodiments, the superalloy material has a composition by weight of up to about 10% Co, up to about 8% Cr, up to about 10% W, up to about 6% Al, up to about 3% Ta, up to about 2% Hf, incidental impurities, and a balance of Ni.

    [0037] In some embodiments, the superalloy material has a composition by weight of about 9.5% Co, about 8.0% Cr, about 9.5% W, about 0.5% Mo, about 5.5% Al, about 0.8% Ti, about 3.0% Ta, about 0.1% Zr, about 1.0% C, about 0.15% Hf, incidental impurities, and a balance of Ni.

    [0038] In some embodiments, the first component 10, in combination with the braze material 42, serves as a plug for the second component 16. In some embodiments, the plug fills a through-hole in the second component 16. In some embodiments, the plug fills a counter-bore in the second component 16.

    [0039] The brazing material 32 is, according to the present invention, a braze powder.

    [0040] The brazing material 32 is nickel-based, and may include copper, aluminum, silicon, silver, and/or gold, depending on the application. According to the present invention, the method is conducive to nickel-based braze fillers of very low ductility that are difficult to form into certain shapes, such as, for example, wires or rings.

    [0041] In some embodiments, a brazed article 40 has one, more than one, or all of the following characteristics. The first component 10 and the second component 16 are assembled with a tight tolerance. The brazing material 32 is supplied to the braze gap via an internal braze system, preferably including a braze chamber 20 and at least one internal channel 22. A braze filler metal in the form of a powder is used as the brazing material 32. Nickel-based braze fillers in powder form, are well-suited for the present invention. An internal braze material holder, or braze chamber 20, machined into the first component 10, is connected to an external surface 12 of the first component 10 by at least one internal channel 22. The braze chamber 20 holds the brazing material 32 prior to brazing. The internal channels 22 are machined into the first component 10 to connect the braze gap 18 and the braze chamber 20. A tack weld may be used to hold the first component 10 and the second component 16 prior to brazing. Braze paste may be applied to the external surface 12 or the braze surface 14 prior to brazing. A portion or all of the first component 10 may be machined out or may be left as-is after the brazing. The internal channels 22 may be part of the braze joint of the brazed article 40 after brazing.

    [0042] Any appropriate method of heating the brazing material 32 may be used. In some embodiments, the brazing process is performed on the braze assembly 30 by heating the first component 10 locally by an induction heating system in an inert gas environment, such as an argon box. In other embodiments, the entire braze assembly 30 may be heated, such as in a vacuum furnace.

    [0043] In some embodiments, a method includes one, more than one, or all of the following steps: forming the external surface 12 of the first component 10, forming the braze surface 14 of the second component 16, forming the braze chamber 20 in the first component 10, forming at least one internal channel 22 in the first component 10, assembling the first component 10 and the second component 16 together, tack welding the first component 10 to the second component 16, loading brazing material 32 into the braze chamber 20, heating the brazing material 32 in the braze chamber 20, and allowing the braze assembly 30 to cool to form the brazed article 40.

    [0044] In some embodiments, a braze thermal cycle is used to heat the brazing material 32 to a braze temperature. In some embodiments, the braze thermal cycle is automated. According to the present invention, the brazing material 32 is a braze powder.

    [0045] In some embodiments, the braze powder has a composition by weight of about 7.0% Cr, about 4.5% Si, about 3.1% B, about 0.2% phosphorus (P), incidental impurities, and a balance of Ni.

    [0046] In one embodiment, the braze powder has a composition, by weight percentage, of about 15.0% Cr, about 3.6% B, about 0.02% P, incidental impurities, and a balance of Ni.

    [0047] In one embodiment, the braze powder has a composition, by weight percentage, of about 19.0% Cr, about 10.1% silicon (Si), about 0.03% B, about 0.02% P, incidental impurities, and a balance of Ni.

    [0048] In one embodiment, the braze powder has a composition, by weight percentage, of about 14.0% Cr), about 10.0% Co, about 10.0% Al, about 2.75% B, about 2.75% Ta, about to 2.5% Y, incidental impurities, and a balance of Ni.

    [0049] In one embodiment, the braze powder has a composition, by weight percentage, of between 13.0 and about 14.0% Cr, between about 9.0% and 10.0% Co, between about 3.5% and about 3.8% Al, between about 2.25% and about 2.75% B, incidental impurities, and a balance of Ni.

    [0050] In some embodiments, the braze thermal cycle includes a braze temperature of about 1080 °C (about 1975 °F) and/or a braze time of about 30 minutes.

    [0051] After brazing by a method of the present disclosure, a brazed article 40 was cut in half for metallurgical evaluation of the macrostructure of the braze joint. A high quality, tight gap braze joint was observed to have been obtained, as indicated by solid metallurgical bonding between the first component 10 and the second component 16, no lack of braze material in the gap, no cracks in the first component 10, the second component 16, or the braze joint, and no through-wall porosities in the braze joint.

    [0052] While the invention has been described with reference to one or more embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention as defined in the appended claims.


    Claims

    1. A method of feeding a braze filler to a j oint, said method comprising:

    heating a brazing material (32) in a braze chamber (20) of a first component (10) to a braze temperature to melt the brazing material (32) such that the brazing material (32) flows from the braze chamber (20), through at least one internal channel (22) of the first component (10), and

    into a braze gap (18) between the first component (10) and a second component (16) to braze the first component (10) to the second component (16), wherein the first component (10) is substantially cylindrical and sits in a substantially cylindrical aperture in the second component (16);

    wherein the braze gap (18) has a width in the range of 10 µm to 100 µm (0.4 mil to 4.0 mil) such that the brazing material (32) flows by capillary action in the braze gap (18); and

    wherein the brazing material (32) is a nickel-based braze powder.


     
    2. The method of claim 1 further comprising tack welding the first component (10) to the second component (16) prior to heating the brazing material (32) in the braze chamber (20).
     
    3. The method of any one of claims 1 to 2, wherein each of the at least one internal channel (22) has a cross sectional area in the range of 0.2 mm2 to 20 mm2 (300 mil2 to 30,000 mil2).
     
    4. The method of any one of claims 1 to 3 further comprising placing a braze filler in the braze gap (18) prior to heating.
     
    5. A brazed article (40) comprising:

    a first component (10) having a braze chamber (20) and at least one internal channel (22) extending from the braze chamber (20) to an external surface (12) of the first component (10);

    a second component (16) having at least one braze surface (14) separated from the external surface (12) of the first component (10) by a braze gap (18);

    a braze material (42) in the braze gap (18), wherein the braze material (42) is solidified from the melted brazing material, and wherein the brazing material is a nickel-based braze powder;

    wherein the first component (10) is brazed to the second component (16) by the braze material (42) in the braze gap (18); and

    wherein the braze gap (18) has a width in the range of 10 µm to 100 µm (0.4 mil to 4.0 mil), wherein the first component (10) is substantially cylindrical and sits in a substantially cylindrical aperture in the second component (16).


     
    6. The brazed article (40) of claim 5, wherein each of the at least one internal channel (22) has a cross sectional area in the range of 0.2 mm2 to 20 mm2 (300 mil2 to 30,000 mil2).
     
    7. The brazed article (40) of any one of claims 5 to 6, wherein the at least one internal channel (22) is in the range of two to twelve internal channels (22) in number.
     
    8. A braze assembly (30) comprising:

    a first component (10) having a braze chamber (20) and at least one internal channel (22) extending from the braze chamber (20) to an external surface (12) of the first component (10);

    a second component (16) having at least one braze surface (14) separated from the external surface (12) of the first component (10) by a braze gap (18);

    a brazing material (32) in the braze chamber (20), wherein the brazing material is a nickel-based braze powder; and

    wherein the braze gap (18) has a width in the range of 10 µm to 100 µm (0.4 mil to 4.0 mil), wherein the first component (10) is substantially cylindrical and sits in a substantially cylindrical aperture in the second component (16).


     
    9. The braze assembly (30) of claim 8, wherein the at least one internal channel (22) is in the range of two to twelve internal channels (22) in number.
     
    10. The braze assembly (30) of any one of claims 8 to 9, wherein the nickel-based braze powder includes copper, aluminum, silicon, silver, and/or gold.
     
    11. The method of any one of claims 1 to 4, the braze article according to any one of claims 5 to 7, or the braze assembly of any one of claims 8 to 10, wherein

    (a) the braze powder has a composition by weight of about 7.0% Cr, about 4.5% Si, about 3.1% B, about 0.2% phosphorus (P), incidental impurities, and a balance of Ni;

    (b) the braze powder has a composition, by weight percentage, of about 15.0% Cr, about 3.6% B, about 0.02% P, incidental impurities, and a balance of Ni;

    (c) the braze powder has a composition, by weight percentage, of about 19.0% Cr, about 10.1% silicon (Si), about 0.03% B, about 0.02% P, incidental impurities, and a balance of Ni;

    (d) the braze powder has a composition, by weight percentage, of about 14.0% Cr), about 10.0% Co, about 10.0% Al, about 2.75% B, about 2.75% Ta, about to 2.5% Y, incidental impurities, and a balance of Ni; or

    (e) the braze powder has a composition, by weight percentage, of between 13.0 and about 14.0% Cr, between about 9.0% and 10.0% Co, between about 3.5% and about 3.8% Al, between about 2.25% and about 2.75% B, incidental impurities, and a balance of Ni.


     


    Ansprüche

    1. Verfahren zum Zuführen eines Hartlots zu einer Verbindungsstelle, wobei das Verfahren umfasst:

    Erwärmen eines Lötmaterials (32) in einer Lötkammer (20) einer ersten Komponente (10) auf eine Löttemperatur, um das Lötmaterial (32) zu schmelzen, sodass das Lötmaterial (32) aus der Lötkammer (20) durch mindestens einen inneren Kanal (22) der ersten Komponente (10) und in einen Lötspalt (18) zwischen der ersten Komponente (10) und einer zweiten Komponente (16) fließt, um die erste Komponente (10) an die zweite Komponente (16) zu löten, wobei die erste Komponente (10) im Wesentlichen zylindrisch ist und in einer im Wesentlichen zylindrischen Öffnung in der zweiten Komponente (16) sitzt;

    wobei der Lötspalt (18) eine Breite im Bereich von 10 µm bis 100 µm (0,4 mil bis 4,0 mil) aufweist, sodass das Lötmaterial (32) durch Kapillarwirkung in den Lötspalt (18) fließt; und

    wobei das Lötmaterial (32) ein nickelbasiertes Lötpulver ist.


     
    2. Verfahren nach Anspruch 1, ferner umfassend Heftschweißen der ersten Komponente (10) an die zweite Komponente (16) vor dem Erwärmen des Lötmaterials (32) in der Lötkammer (20).
     
    3. Verfahren nach einem der Ansprüche 1 bis 2, wobei jeder des mindestens einen inneren Kanals (22) eine Querschnittsfläche im Bereich von 0,2 mm2 bis 20 mm2 (300 mil2 bis 30.000 mil2) aufweist.
     
    4. Verfahren nach einem der Ansprüche 1 bis 3, ferner umfassend das Platzieren eines Hartlots in dem Lötspalt (18) vor dem Erwärmen.
     
    5. Gelöteter Artikel (40), umfassend:

    eine erste Komponente (10) mit einer Lötkammer (20) und mindestens einem inneren Kanal (22), der sich von der Lötkammer (20) zu einer äußeren Oberfläche (12) der ersten Komponente (10) erstreckt;

    eine zweite Komponente (16) mit mindestens einer Lötoberfläche (14), die von der äußeren Oberfläche (12) der ersten Komponente (10) durch einen Lötspalt (18) getrennt ist;

    ein Lötmaterial (42) in dem Lötspalt (18), wobei das Lötmaterial (42) aus dem geschmolzenen Lötmaterial verfestigt ist, und wobei das Lötmaterial ein nickelbasiertes Lötpulver ist;

    wobei die erste Komponente (10) durch das Lötmaterial (42) in dem Lötspalt (18) an die zweite Komponente (16) gelötet ist; und

    wobei der Lötspalt (18) eine Breite im Bereich von 10 µm bis 100 µm (0,4 mil bis 4,0 mil) aufweist, wobei die erste Komponente (10) im Wesentlichen zylindrisch ist und in einer im Wesentlichen zylindrischen Öffnung in der zweiten Komponente (16) sitzt.


     
    6. Gelöteter Artikel (40) nach Anspruch 5, wobei jeder des mindestens einen inneren Kanals (22) eine Querschnittsfläche im Bereich von 0,2 mm2 bis 20 mm2 (300 mil2 bis 30.000 mil2) aufweist.
     
    7. Gelöteter Artikel (40) nach einem der Ansprüche 5 bis 6, wobei der mindestens eine innere Kanal (22) in einer Anzahl im Bereich von zwei bis zwölf inneren Kanälen (22) vorliegt.
     
    8. Lötanordnung (30), umfassend:

    eine erste Komponente (10) mit einer Lötkammer (20) und mindestens einem inneren Kanal (22), der sich von der Lötkammer (20) zu einer äußeren Oberfläche (12) der ersten Komponente (10) erstreckt;

    eine zweite Komponente (16) mit mindestens einer Lötoberfläche (14), die von der äußeren Oberfläche (12) der ersten Komponente (10) durch einen Lötspalt (18) getrennt ist;

    ein Lötmaterial (32) in der Lötkammer (20), wobei das Lötmaterial ein nickelbasiertes Lötpulver ist; und

    wobei der Lötspalt (18) eine Breite im Bereich von 10 µm bis 100 µm (0,4 mil bis 4,0 mil) aufweist, wobei die erste Komponente (10) im Wesentlichen zylindrisch ist und in einer im Wesentlichen zylindrischen Öffnung in der zweiten Komponente (16) sitzt.


     
    9. Lötanordnung (30) nach Anspruch 8, wobei der mindestens eine innere Kanal (22) in einer Anzahl im Bereich von zwei bis zwölf inneren Kanälen (22) vorliegt.
     
    10. Lötanordnung (30) nach einem der Ansprüche 8 bis 9, wobei das nickelbasierte Lötpulver Kupfer, Aluminium, Silicium, Silber und/oder Gold einschließt.
     
    11. Verfahren nach einem der Ansprüche 1 bis 4, gelöteter Artikel nach einem der Ansprüche 5 bis 7 oder Lötanordnung nach einem der Ansprüche 8 bis 10, wobei

    (a) das Lötpulver eine Zusammensetzung von etwa 7,0 Gew.-% Cr, etwa 4,5 Gew.-% Si, etwa 3,1 Gew.-% B, etwa 0,2 Gew.-% Phosphor (P), zufälligen Verunreinigungen und einen Rest Ni aufweist;

    (b) das Lötpulver eine Zusammensetzung von etwa 15,0 Gew.-% Cr, etwa 3,6 Gew.-% B, etwa 0,02 Gew.-% P, zufälligen Verunreinigungen und einem Rest Ni aufweist;

    (c) das Lötpulver eine Zusammensetzung von etwa 19,0 Gew.-% Cr, etwa 10,1 Gew.-% Silicium (Si), etwa 0,03 Gew.-% B, etwa 0,02 Gew.-% P, zufälligen Verunreinigungen und einen Rest Ni aufweist;

    (d) das Lötpulver eine Zusammensetzung von etwa 14,0 Gew.-% Cr), etwa 10,0 Gew.-% Co, etwa 10,0 Gew.-% Al, etwa 2,75 Gew.-% B, etwa 2,75 Gew.-% Ta, etwa bis 2,5 Gew.-% Y, zufälligen Verunreinigungen und einen Rest Ni aufweist; oder

    (e) das Lötpulver eine Zusammensetzung von zwischen 13,0 und etwa 14,0 Gew.-% Cr, zwischen etwa 9,0 Gew.-% und 10,0 Gew.-% Co, zwischen etwa 3,5 Gew.-% und etwa 3,8 Gew.-% Al, zwischen etwa 2,25 Gew.-% und etwa 2,75 Gew.-% B, zufälligen Verunreinigungen und einen Rest Ni aufweist.


     


    Revendications

    1. Procédé d'alimentation d'un apport de brasure à un joint, ledit procédé comprenant :

    le chauffage d'un matériau de brasage (32) dans une chambre de brasure (20) d'un premier composant (10) à une température de brasure pour fondre le matériau de brasage (32) de telle sorte que le matériau de brasage (32) s'écoule de la chambre de brasure (20), à travers au moins un canal interne (22) du premier composant (10), et dans un espace de brasure (18) entre le premier composant (10) et un deuxième composant (16) pour braser le premier composant (10) au deuxième composant (16), dans lequel le premier composant (10) est essentiellement cylindrique et se trouve dans une ouverture essentiellement cylindrique dans le deuxième composant (16) ;

    dans lequel l'espace de brasure (18) a une largeur dans la plage de 10 µm à 100 µm (0,4 mil à 4,0 mil) de telle sorte que le matériau de brasage (32) s'écoule par action capillaire dans l'espace de brasure (18) ; et

    dans lequel le matériau de brasage (32) est une poudre à braser à base de nickel.


     
    2. Procédé selon la revendication 1 comprenant en outre le soudage par points du premier composant (10) au deuxième composant (16) avant chauffage du matériau de brasage (32) dans la chambre de brasure (20).
     
    3. Procédé selon l'une quelconque des revendications 1 à 2, dans lequel chacun parmi l'au moins un canal interne (22) a une aire en coupe transversale dans la plage de 0,2 mm2 à 20 mm2 (300 mil2 à 30 000 mil2).
     
    4. Procédé selon l'une quelconque des revendications 1 à 3 comprenant en outre la mise en place d'un apport de brasure dans l'espace de brasure (18) avant chauffage.
     
    5. Article brasé (40) comprenant :

    un premier composant (10) ayant une chambre de brasure (20) et au moins un canal interne (22) s'étendant de la chambre de brasure (20) à une surface externe (12) du premier composant (10) ;

    un deuxième composant (16) ayant au moins une surface de brasure (14) séparée de la surface externe (12) du premier composant (10) par un espace de brasure (18) ;

    un matériau de brasure (42) dans l'espace de brasure (18), dans lequel le matériau de brasure (42) est solidifié à partir du matériau de brasage fondu, et dans lequel le matériau de brasage est une poudre à braser à base de nickel ;

    dans lequel le premier composant (10) est brasé au deuxième composant (16) par le matériau de brasure (42) dans l'espace de brasure (18) ; et

    dans lequel l'espace de brasure (18) a une largeur dans la plage de 10 µm à 100 µm (0,4 mil à 4,0 mil), dans lequel le premier composant (10) est essentiellement cylindrique et se trouve dans une ouverture essentiellement cylindrique dans le deuxième composant (16).


     
    6. Article brasé (40) selon la revendication 5, dans lequel chacun parmi l'au moins un canal interne (22) a une aire en coupe transversale dans la plage de 0,2 mm2 à 20 mm2 (300 mil2 à 30 000 mil2).
     
    7. Article brasé (40) selon l'une quelconque des revendications 5 à 6, dans lequel l'au moins un canal interne (22) est dans la plage de deux à douze canaux internes (22) en nombre.
     
    8. Ensemble à braser (30) comprenant :

    un premier composant (10) ayant une chambre de brasure (20) et au moins un canal interne (22) s'étendant de la chambre de brasure (20) à une surface externe (12) du premier composant (10) ;

    un deuxième composant (16) ayant au moins une surface de brasure (14) séparée de la surface externe (12) du premier composant (10) par un espace de brasure (18) ;

    un matériau de brasage (32) dans la chambre de brasure (20), dans lequel le matériau de brasage est une poudre à braser à base de nickel ; et

    dans lequel l'espace de brasure (18) a une largeur dans la plage de 10 µm à 100 µm (0,4 mil à 4,0 mil), dans lequel le premier composant (10) est essentiellement cylindrique et se trouve dans une ouverture essentiellement cylindrique dans le deuxième composant (16).


     
    9. Ensemble à braser (30) selon la revendication 8, dans lequel l'au moins un canal interne (22) est dans la plage de deux à douze canaux internes (22) en nombre.
     
    10. Ensemble à braser (30) selon l'une quelconque des revendications 8 à 9, dans lequel la poudre à braser à base de nickel inclut du cuivre, de l'aluminium, du silicium, de l'argent, et/ou de l'or.
     
    11. Procédé selon l'une quelconque des revendications 1 à 4, article à braser selon l'une quelconque des revendications 5 à 7, ou ensemble à braser selon l'une quelconque des revendications 8 à 10, dans lequel

    (a) la poudre à braser a une composition en poids d'environ 7,0 % de Cr, environ 4,5 % de Si, environ 3,1 % de B, environ 0,2 % de phosphore (P), des impuretés fortuites, et un solde de Ni ;

    (b) la poudre à braser a une composition, en pourcentage en poids, d'environ 15,0 % de Cr, environ 3,6 % de B, environ 0,02 % de P, des impuretés fortuites, et un solde de Ni ;

    (c) la poudre à braser a une composition, en pourcentage en poids, d'environ 19,0 % de Cr, environ 10,1 % de silicium (Si), environ 0,03 % de B, environ 0,02 % de P, des impuretés fortuites, et un solde de Ni ;

    (d) la poudre à braser a une composition, en pourcentage en poids, d'environ 14,0 % de Cr), environ 10,0 % de Co, environ 10,0 % d'Al, environ 2,75 % de B, environ 2,75 % de Ta, environ 2,5 % d'Y, des impuretés fortuites, et un solde de Ni ; ou

    (e) la poudre à braser a une composition, en pourcentage en poids, d'entre 13,0 et environ 14,0 % de Cr, entre environ 9,0 % et 10,0 % de Co, entre environ 3,5 % et environ 3,8 % d'Al, entre environ 2,25 % et environ 2,75 % de B, des impuretés fortuites, et un solde de Ni.


     




    Drawing




















    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description