(19)
(11)EP 3 350 570 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
29.07.2020 Bulletin 2020/31

(21)Application number: 16770114.3

(22)Date of filing:  25.08.2016
(51)International Patent Classification (IPC): 
G01N 21/03(2006.01)
G01D 5/14(2006.01)
G01N 21/31(2006.01)
(86)International application number:
PCT/US2016/048635
(87)International publication number:
WO 2017/048475 (23.03.2017 Gazette  2017/12)

(54)

PATH LENGTH CALIBRATION SYSTEM AND METHOD

PFADLÄNGENKALIBRIERUNGSSYSTEM UND -VERFAHREN

SYSTÈME ET PROCÉDÉ D'ÉTALONNAGE DE LONGUEUR DE TRAJET


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 18.09.2015 US 201562220536 P
11.03.2016 US 201662306793 P

(43)Date of publication of application:
25.07.2018 Bulletin 2018/30

(60)Divisional application:
20179928.5

(73)Proprietor: Thermo Electron Scientific Instruments LLC
Madison, WI 53711 (US)

(72)Inventors:
  • ASHMEAD, Damian, W.
    Madison, WI 53711 (US)
  • HOWARD, James, V.
    Madison, WI 53711 (US)
  • KIM, Kevin, K.
    Madison, WI 53711 (US)
  • BRAASCH, Andrew, Martin
    Madison, WI 53711 (US)

(74)Representative: Boult Wade Tennant LLP 
Salisbury Square House 8 Salisbury Square
London EC4Y 8AP
London EC4Y 8AP (GB)


(56)References cited: : 
EP-A1- 2 166 313
US-A1- 2014 008 539
US-B2- 8 223 338
US-A1- 2006 049 826
US-B1- 7 088 095
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    FIELD OF THE INVENTION



    [0001] The invention is generally related to path length calibration for an apparatus for measuring an optical property of a sample.

    BACKGROUND



    [0002] Liquids, mixtures, solutions and reacting mixtures are often characterized using optical techniques such as spectrophotometry. In order to characterize samples of these liquids, the liquid is usually contained in a vessel referred to as a cell or cuvette, two or more of whose sides are of optical quality and permit the passage of those wavelengths needed to characterize the liquid contained therein. When dealing with very small sample volumes of, for example, from 1 to 2 microliters, it is difficult to create cells or cuvettes small enough to be filled and permit the industry standard 1 cm optical path to be used. It is also difficult and/or time consuming to clean these cells or cuvettes for use with another sample.

    [0003] As shown in FIG. 1, micro-volume UV/Vis spectrophotometers described, for example, in US Patent No. 6,628,382 B2, measure the absorbance of microliter amounts of liquid samples via a sample retention technology which enables containing a liquid sample by its surface tension between surfaces 2 and 7. The liquid sample forms a column 9 between a light receiving sample interface 7 typically coupled to a first optical conduit such as an optical fiber 11, and a light transmitting sample interface 2, which is typically coupled to a second optical conduit such as an optical fiber 6. The upper 2 and lower 7 sample interfaces can be moved in relation to one another to create multiple known path lengths that are typically less than or equal to 1 mm, thereby expanding the dynamic range of the spectrophotometer for a particular sample, as described in US Patent No. 8,223,338 B2. Light 3 from a light source coming through the fiber 6 contained in and flush with surface 2 (also referenced herein as the upper sample interface, or first pedestal surface) radiates downward through the liquid sample column 9 and is collected by the fiber 11 in the lower surface 7 (also referenced herein as the second pedestal surface) of the lower sample interface 4 and sent on to the analysis spectrometer for absorbance measurements.

    [0004] The placement of the liquid sample is achieved by the user manually pipetting a sample (typically a microliter or two) directly onto the lower sample interface. The absorbance of the sample is measured by taking the negative log of the ratio of the amount of light (I0) transmitted through the system in the absence of the sample and the amount of light (I) transmitted through the system when the sample is present in the sampling interface. Under normal conditions, the amount of light transmitted through the system when the sample is present in the sampling interface is directly proportional to the path length and the concentration of the sample, in accordance with the Beer-Lambert law.

    [0005] As the use of micro-volume spectrophotometers expands and new applications arise, the need to accurately measure sample absorbance at shorter path lengths to accommodate samples with higher light absorbance properties is increasing. Presently available micro-volume UV/Vis spectrophotometers (e.g., NanoDrop™, Thermo Electron Scientific Instruments, Madison WI) can establish an absolute measurement path length that is accurate to approximately ±20 µm. Samples with higher light absorbance properties, however, can require measuring absorbance at path lengths as short as 30 µm.

    [0006] Therefore, there is a need for an improved path length calibration system and method.

    [0007] US 7088095 discloses a magnetic linear displacement sensor comprising a Hall transducer element having a sensor plate surface and at least one magnet having a lengthwise dimension along which said Hall element detects a magnetic field component orthogonal to the sensor plate surface during displacement sensing.

    [0008] EP 2166313 discloses a magnetic sensor for determining a position of a transmitter magnet along a path with a plurality of sensor elements, as well as control electronics for obtaining a sensor element signal of one of the sensor elements.

    SUMMARY



    [0009] According to the invention, there is provided an apparatus for measuring a property of a sample in accordance with claim 1. The apparatus includes a magnet, a base plate, a mechanical stop coupled to the base plate, and a second pedestal surface mechanically coupled to said base plate and configured to receive a liquid sample. The second pedestal surface is coupled to a spectrometer, wherein said second pedestal surface is further operable so as to adjust a separation between the first and the second pedestal surfaces at a variable distance (P) to pull the liquid sample into a column so as to be contained by surface tension, or to squeeze the sample during optical analysis, thereby providing an optical path for photometric or spectrometric measurement. The apparatus further includes a magnetic flux sensor located such that a null plane of north and south magnetic flux fields of the magnet is centered on the magnetic flux sensor while the mechanical stop is in physical contact with the swing arm. The apparatus also includes a processor adapted to calibrate the point for minimum optical path length by utilizing a threshold magnetic flux field emitted from the magnet and detected by the magnetic flux sensor. In some embodiments, the apparatus further includes a first optical conduit coupled to the first pedestal surface. In certain embodiments, the apparatus further includes a second optical conduit coupled to the second pedestal surface. The apparatus can further include a bracket configured to permit translational movement of said second optical conduit parallel to a longitudinal axis of said second optical conduit. The magnetic flux sensor can be, for example, a linear Hall effect sensor or a giant magnetoresistive (GMR) sensor.

    [0010] In certain embodiments, the first optical conduit includes a transmitting end and the second optical conduit includes a receiving end, with said transmitting end of said first optical conduit and said receiving end of said second optical conduit providing the optical path for photometric or spectrometric measurement. In certain other embodiments, the first optical conduit includes a receiving end and the second optical conduit includes a transmitting end, with said receiving end of said first optical conduit and said transmitting end of said second optical conduit providing the optical path for photometric or spectrometric measurement.

    [0011] The magnet is coupled to the swing arm, and the magnetic flux sensor is coupled to the base plate, or the magnetic flux sensor is coupled to the swing arm, and the magnet is coupled to the base plate.

    [0012] In certain embodiments, the bracket can further include a position sensor that provides feedback so as to enable precision displacement between said first and said second pedestal surfaces so as to enable said variable distance (P). In these specific embodiments, the position sensor can further establish a reference position when a translation control system initializes upon startup or upon being interrupted by an opto-interrupter device coupled to said second optical conduit.

    [0013] In some embodiments, the apparatus can measure absorbances in a range of between about 0.005 Absorbance Units and about 2.0 Absorbance Units for any given optical path length. The first and second optical conduits can include at least one optical fiber selected from: a single-mode fiber, a polarization maintaining fiber, and a multi-mode fiber. The light source can be configured to provide optical wavelengths in a range of between about 190 nm and about 850 nm.

    [0014] According to the invention, there is provided a method of measuring an optical property of a sample in accordance with claim 14. The method includes coupling a second pedestal surface to said base plate, the second pedestal surface configured to receive a liquid sample and further operable so as to adjust a separation between said first and said second pedestal surfaces at a variable distance (P) to pull said liquid sample into a column so as to be contained by surface tension, or to squeeze the sample during optical analysis, thereby providing an optical path for photometric or spectrometric measurement. The method also includes locating the magnetic flux sensor between north and south magnetic flux fields of the magnet such that the magnetic flux reaching the sensor while the mechanical stop is in physical contact with the swing arm provides a linear range of output of the magnetic flux sensor, and utilizing a threshold magnetic flux field emitted from the magnet and detected by the magnetic flux sensor to calibrate the point for minimum optical path length. The magnetic flux sensor and its location are as described above.

    [0015] This invention has many advantages, such as enabling more accurate measurements of sample absorbance at shorter path lengths to accommodate samples with higher light absorbance properties.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0016] 

    FIG.1 is an illustration of a cutaway section of the optical path in a prior art spectrophotometer.

    FIG. 2 is an illustration of a side view of an embodiment of a spectrophotometer according to the invention shown in the "closed" position.

    FIG. 3 is an illustration of a perspective view of an embodiment of a spectrophotometer according to the invention shown in the "open" position.

    FIG. 4 is an illustration of a rear view of an embodiment of a spectrophotometer according to the invention shown in the "closed" position.

    FIG. 5 is a schematic illustration of signal processing of the linear Hall effect sensor readout used to establish an accurate position corresponding to zero path length.

    FIG. 6 is a graph of linear Hall effect sensor output (V) as a function of magnetic field flux (mT).

    FIG. 7 is a flowchart of the method of establishing an accurate position corresponding to zero path length.

    FIG. 8 is a graph of ADC value of conditioned linear Hall effect sensor signal (counts) as a function of stepper motor position (counts).

    FIG. 9 is a graph of baseline corrected and exponential averaged data (counts) as a function of stepper motor position (counts).

    FIGS. 10A-10C are flowcharts of initial path length calibration (FIG. 10A), zero path length implementation (FIG. 10B) and zero path length refresh (FIG. 10C).

    FIG. 11 is another illustration of a side view of an embodiment of a spectrophotometer according to the invention.

    FIG. 12 is another schematic illustration of a side view of an embodiment of a spectrophotometer according to the invention.

    FIGS. 13A-13B are illustrations of the range of displacement of the lower optical fiber connector, from maximum (FIG. 13A) to minimum (FIG. 13B).

    FIGS. 14A-14B are perspective bottom views of a spectrometer according to the invention showing of the range of displacement of the opto-interrupter device, from a position above the "home" position (FIG. 14A) to the "home" position (FIG. 14B).

    FIGS. 15A-15B are bottom plan views of a spectrometer according to the invention showing of the range of displacement of the opto-interrupter device, from a position above the "home" position (FIG. 15A) to the "home" position (FIG. 15B).



    [0017] Like reference numerals refer to corresponding parts throughout the several views of the drawings.

    DETAILED DESCRIPTION OF EMBODIMENTS



    [0018] In the description of the invention herein, it is understood that a word appearing in the singular encompasses its plural counterpart, and a word appearing in the plural encompasses its singular counterpart, unless implicitly or explicitly understood or stated otherwise. Furthermore, it is understood that for any given component or embodiment described herein, any of the possible candidates or alternatives listed for that component may generally be used individually or in combination with one another, unless implicitly or explicitly understood or stated otherwise. Moreover, it is to be appreciated that the figures, as shown herein, are not necessarily drawn to scale, wherein some of the elements may be drawn merely for clarity of the invention. Also, reference numerals may be repeated among the various figures to show corresponding or analogous elements. Additionally, it will be understood that any list of such candidates or alternatives is merely illustrative, not limiting, unless implicitly or explicitly understood or stated otherwise. In addition, unless otherwise indicated, numbers expressing quantities of ingredients, constituents, reaction conditions and so forth used in the specification and claims are to be understood as being modified by the term "about."

    [0019] Accordingly, unless indicated to the contrary, the numerical parameters set forth in the specification and attached claims are approximations that may vary depending upon the desired properties sought to be obtained by the subject matter presented herein. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of the claims, each numerical parameter should at least be construed in light of the number of reported significant digits and by applying ordinary rounding techniques. Notwithstanding that the numerical ranges and parameters setting forth the broad scope of the subject matter presented herein are approximations, the numerical values set forth in the specific examples are reported as precisely as possible. Any numerical values, however, inherently contain certain errors necessarily resulting from the standard deviation found in their respective testing measurements.

    [0020] Turning now to the drawings, FIGS. 2-3 are side views of an example apparatus in accordance with an embodiment of the invention. In particular, the apparatus, as illustrated in FIG. 3 and generally designated by the reference numeral 50, is shown in an "open" position in which a liquid drop analyte or reference sample of less than about 10 µl, more often less than about 2 µl, is dispensed or aspirated onto a lower platform surface 15 (also referenced herein as the second pedestal surface). As discussed in more detail below, such an "open" position enables easy access to the ends of the surfaces, e.g., surface 15, which contain the liquid samples and also enable a user to easily clean such surfaces and to mount a new sample within the apparatus when desired.

    [0021] Thus, in the "open" position of FIG. 3, the dispensing of a liquid sample of less than about 10 µl, often less than about 2 µl, can often be delivered by way of a pipetting means (not shown), such as, but not limited to, a Finnpipette® from Thermo Fisher Scientific of Waltham, Mass. The pipetted liquid is thus delivered to the lower platform 15, which is often configured as a pedestal or anvil-like surface that may include the end of a custom or commercial SMA fiber optic connector 16s, and of which, also may in some applications, be treated with a material known by those of ordinary skill in the art to prevent over spreading of the applied liquid drop analyte or reference sample (not shown).

    [0022] Thereafter, upon the application of liquid drop, the apparatus 50, as now shown in FIG. 2, is angularly moved by a user to be in the "closed" position, so as to result in the upper pedestal or anvil-like surface 13 (also referenced herein as the first pedestal surface), as specifically referenced in FIG. 3, also often the end of a custom or commercial SMA fiber optic connector 12s, to be brought into contact with a dispensed liquid drop sample (not shown) to constrain a desired liquid drop sample therebetween with lower surface 15, also specifically referenced in FIG. 3, in a surface tension mode at a variable distance (p) to pull the liquid sample into a column 9 (as shown in FIG. 1) so as to be contained by surface tension, or to squeeze the sample during optical analysis, thereby providing an optical path for photometric or spectrometric measurement.

    [0023] As shown by the open position of FIG. 3 resulting in the closed position of FIG. 2, such an angular movement of the swing arm 54 is enabled by the mechanical coupling of a hinge rod 56 configured therethrough bores in both the swing arm 54 and in the hinge spacer block 57, with hinge spacer block 57 being rigidly fixed with respect to base plate 52. Accordingly, the fiber optic connector 12s, which contains surface 13, and of which is mounted within and passes through a bore in swing arm 54, also angularly rotates with respect to a base plate 52 about hinge rod 56 in order to come into contact with a liquid drop sample dispensed on surface 15. A mechanical stop 53 coupled to the base plate 52 provides a desired position against which the lower surface of the arm 54 abuts when the arm is rotated so as to provide for the contact and measurement of liquid drop sample.

    [0024] As also illustrated in FIGS. 2 and 3, a pair of optical conduits, such as, for example, an upper optical fiber 18a (also referenced herein as the first optical conduit) and a lower optical fiber 18b (also referenced herein as the second optical conduit) and disposed within respective connectors, e.g., connectors 12s and 16s, enable optical communication by way of being diametrically opposed with one another in their operating position, i.e., the "closed position" illustrated in FIG. 2. It is to be noted that such optical conduits, e.g., optical fibers 18a and 18b, can be of any type, such as, single-mode fibers, polarization maintaining fibers, but preferably multi-mode fibers.

    [0025] In certain embodiments of the apparatus 50, as shown in FIG. 2, the first optical conduit 18a is the transmitting end 12t, with or without an optical fiber forming the first optical conduit 18a, and the optical connector 16a of the second optical conduit 18b is thereceiving end 16r, with or without an optical fiber forming the second optical conduit 18b, with said transmitting end 12t of said first optical conduit 18a and said receiving end 16r of said second optical conduit 18b providing the optical path for photometric or spectrometric measurement. In certain other embodiments of the apparatus 60, as shown in FIG. 11, the first optical conduit 18a is the receiving end 12r, with or without an optical fiber forming the first optical conduit 18a, and the optical connector 16s of the second optical conduit 18b is the transmitting end 16t, with or without an optical fiber forming the second optical conduit 18b, with said receiving end 12r of said first optical conduit 18a and said transmitting end 16t of said second optical conduit 18b providing the optical path for photometric or spectrometric measurement.

    [0026] Turning now exclusively to FIG. 2 so as to describe the precise positioning of the surfaces 15 and 13 for measurement of a desired sample, it is to be noted that the lower optical fiber holder 16s for the lower optical fiber 18b also serves as a shaft for a linear actuator, as described in greater detail below. Although the upper optical fiber connector 12s (and consequently the coupled optical conduit fiber 18a) is fixed with respect to the swing arm 54, the lower optical fiber connector 16s (and consequently the lower optical conduit, e.g., fiber 18b) may translate, parallel to its axis (e.g., along the vertical direction), so as to enable the spacing between the two optical fibers to be varied. The range of displacement of the lower optical fiber connector 16s from the maximum to the minimum optical spacing between the two optical fibers is shown in FIGS. 13A and 13B, respectively. The base plate 52 is provided with a linear actuator that is mounted thereto so as provide for the precise translation of the lower optical fiber connector 16s. As shown in FIG. 2, the linear actuator may include a motor 62 that is secured to the base plate 52 by means of fasteners 65 (such as, for instance, screws, posts, pins, rivets, etc. with or without associated bushings). The fasteners may also include extended motor mounting screws and may pass through bushings 68 which provide a slidable mechanical engagement with a plate or bracket 64, as further described below.

    [0027] As generally illustrated in FIG. 2, the motor is designed to produce a rotational motion of a threaded nut (not shown) which bears on a mating threaded shaft portion (not shown) of the lower optical fiber holder 16s. The lower fiber optic connector 16s replaces and/or serves as the actuator shaft of the linear actuator. The rotation of the internally threaded screw against the externally threaded shaft portion, as driven in either direction by the motor 62, causes controlled translation of the lower fiber optic connector 16s and the disposed optical conduit, e.g., 18b housed therein. The position of the lower fiber optic connector 16s is stabilized by a plate or bracket 64 which is mechanically coupled to the motor 62. The plate or bracket 64 may have holes or slots (not shown) through which the bushings 68 and the fasteners, such as screws 65, pass. The fasteners 65 may comprise extended motor mounting screws. The motor 62 may be further secured to the base plate 52 by additional fasteners (not shown).

    [0028] As a beneficial arrangement, the motor 62 may be a commercially available motor or linear actuator or linear translator motor. As but one example, a linear actuator motor assembly is available from Haydon Switch Instruments of Waterbury Conn. USA as part no. 28H43-05-036. The actuator shaft of a standard off-the-shelf linear actuator or linear translator apparatus may need to be replaced by the lower fiber optic holder 16s, as described herein.

    [0029] As shown in FIG. 4, a position sensor 82 and opto-interrupter device 79' (also referenced herein as a "home flag") coupled to the second optical conduit 18b, which are used to establish a "home" position, are located beneath the lower pedestal surface where the optical path length is established and a measurement is made. The opto-interrupter device 79' is mechanically coupled to the lower optical fiber holder 16s (shown in FIG. 3) and translates linearly through the bracket 64. The displacement range of the opto-interrupter device 79' is shown in FIGS. 14A-B, and 15A-B, from a position above the "home" position, shown in FIGS. 14A and 15A, to the "home" position shown in FIGS. 14B and 15B, where the LED beam 82' of the position sensor 82 is interrupted by the opto-interrupter device 79'. While the accuracy and repeatability of the sensor is approximately ±5 µm, experimentation and analysis has shown that the resulting absolute path length accuracy can vary by as much as ±20 µm between the upper and lower pedestal surfaces due to wear over time and thermal expansion of the components in the mechanism. At longer path lengths, 1.00 mm - 0.100 mm, this is overcome with the use of differential absorbance measurements, where the difference in absorbance of the sample measured at 2 path lengths is used to determine the true absorbance of the sample, taking advantage of the system's ability to control the relative position of the moving pedestal surface to approximately ±4 µm. In other words, while the absolute path length accuracy may be in error by as much as 20 µm from the target, the system is capable of controlling the distance moved between two path lengths to within approximately 4 µm. However, at path lengths less than 0.100 mm, the use of the differential absorbance method is not practical, as the allowable difference in the distance between path lengths becomes substantially shorter than the path lengths themselves. Likewise, as the allowable difference in the distance between path lengths decreases, even a relative positional accuracy of 4 µm becomes a substantial error.

    [0030] As discussed above, as the use of micro-volume spectrophotometers in the market expands and new applications are developed, the need to increase the dynamic range of the spectrophotometer has increased. Such applications are now requiring path lengths as small as 30 µm for taking accurate photometric measurements of liquid samples. In order to overcome the absolute positioning error of the system described above, it was determined that a more appropriate reference or "home" position would be the exact position where the upper and lower pedestals first make contact, or the zero path length position. If this position can be detected accurately and perhaps more importantly, with high precision, a measurement of the path length can then be made that is much less sensitive to the effects of thermal expansion and/or component wear.

    [0031] Several ways to accomplish this zero path length calibration have been disclosed in US patent publication US 2014/0008539 A1 of Coffin et al.. In one embodiment, an apparatus for measuring an optical property of a sample includes a first pedestal surface coupled to i) a swing arm and to ii) a light source, a magnet, a base plate, a mechanical stop coupled to the base plate, and a second pedestal surface mechanically coupled to said base plate and configured to receive a liquid sample. The second pedestal surface is coupled to a spectrometer, wherein said second pedestal surface is further operable so as to adjust a separation between the first and the second pedestal surfaces at a variable distance (P) to pull the liquid sample into a column so as to be contained by surface tension, or to squeeze the sample during optical analysis, thereby providing an optical path for photometric or spectrometric measurement. The apparatus further includes a magnetic flux sensor located between north and south magnetic flux fields of the magnet such that the magnetic flux reaching the sensor while the mechanical stop is in physical contact with the swing arm provides a linear range of output of the magnetic flux sensor. The apparatus also includes a processor adapted to calibrate the point for minimum optical path length by utilizing a threshold magnetic flux field emitted from the magnet and detected by the magnetic flux sensor. The apparatus can further include a first optical conduit coupled to the first pedestal surface, a second optical conduit coupled to the second pedestal surface, and, optionally, a bracket configured to permit translational movement of said second optical conduit parallel to a longitudinal axis of said second optical conduit. In one improved apparatus 50 for detecting the contact position of the upper 13 and lower 15 pedestals, as shown in FIGS. 2-3, a linear Hall effect sensor 10 is fixed to the base plate 52 and a magnet 1 is fixed to the swing arm 54. The magnet 1 is positioned such that the null plane of its north and south magnet flux fields is relatively centered on the linear Hall effect sensor 10. The linear Hall effect sensor 10 is positioned to detect a change in the magnetic flux field emitted from the magnet 1 as the swing arm 54 is lifted by the lower pedestal 15 first making contact with the upper pedestal 13. Post processing of the linear Hall effect sensor 10 readout is then used to establish an accurate position corresponding to zero path length. Alternative magnetic sensors to detect a change in the magnetic flux emitted from the magnet 1 include giant magnetoresistive (GMR) sensors that output a change in resistance in response to a change in magnetic flux field.

    [0032] In another embodiment of the apparatus 60, as shown in FIG. 12, the linear Hall effect sensor 10 is coupled to the swing arm 54, and the magnet 1 is coupled to the base plate 52.

    [0033] In one embodiment, the operation of the linear Hall effect sensor 10 is shown in FIG. 5 and described in the following steps:
    1. 1) A cylindrical bar magnet 1 is installed in the swing arm 54 of the spectrophotometer 50, oriented as shown in FIG. 5, with the N pole up.
    2. 2) The location of the magnet 1 is such that with the swing arm 54 down, the midpoint of the magnet body is on the horizontal axis of the linear Hall effect sensor 10.
    3. 3) The linear Hall effect sensor 10 is located in the base plate 52 of the spectrophotometer 50. Suitable linear Hall effect sensors are available, for example, from Melexis (Melexis NV, Belgium) under part number MLX90215.
    4. 4) The linear Hall effect sensor 10 reacts only to the magnetic flux of the magnet 1 in the X direction.
    5. 5) The nominal magnetic flux in the X direction should be equal to zero with the swing arm 54 in physical contact with the mechanical stop 53 (the "down" position).
    6. 6) However, due to imperfections in magnetization of the cylindrical bar magnet 1 and positional tolerance allowances in the assembly, the actual magnetic flux reaching the linear Hall effect sensor can be non-zero. Therefore, the linear Hall effect sensor is programmed with adequate sensitivity and offset, as described below, to provide a linear range of output voltage over the expected range of static flux, that is, the magnetic flux reaching the sensor when the swing arm is down.
    7. 7) A low pass filter is applied to remove noise from the linear Hall effect sensor output. The low pass filter is optimized for noise reduction while maintaining an adequate response time for measuring the change in magnetic flux as the swing arm is moved with the stepper motor operating at 100 steps/sec.
    8. 8) The filtered signal is amplified by -10X to increase sensitivity to flux change.
    9. 9) An offset voltage keeps the amplified signal within the linear range of the op-amp and analog-to-digital converter (ADC). The offset voltage is controlled by a microprocessor, and the offset is swept over the available range to find a point where the output is near the center of the ADC input range (0-3.3V). As shown in FIG. 6, the line annotaded as "Analog Conditioned" shows the final system transfer function (flux to voltage) after the offset is adjusted for a case where the static flux is 20 milliTesla (mT). Note that sensitivity is substantially increased for small changes in flux near the quiescent operating point.
    10. 10) The conditioned signal is then digitized by the ADC at 12 bits resolution.
    11. 11) Optionally, a digital filter and a detection algorithm are implemented on the microprocessor.
    12. 12) Resulting performance characteristics: A) approximately 5 ADC counts per micron of swing arm travel; B) variation in swing arm position when swing arm movement is detected (also referenced herein as "zero path length") is ±2 µm.


    [0034] A flowchart of zero path length detection is shown in FIG. 7. An example of ADC values of conditioned linear Hall effect sensor signal and baseline corrected and exponential averaged data are shown in FIGS. 8 and 9, respectively. It is apparent from the data shown in FIGS. 8 and 9 that the swing arm moves substantially before zero path length is triggered. This movement is necessary in order for the magnetic flux to change at the location of the linear Hall effect sensor. However, this displacement is tolerable as long as the arm displacement is reasonably close to the actual point where the mechanical stop was in physical contact with the swing arm, and the displacement is repeatable. To balance these requirements, "tb" was set to equal a value of -4, that is, four counts below the exponentially averaged baseline. The absolute value of the threshold magnetic flux field corresponding to tb=-4 varies with offset adjustments. In one embodiment, the threshold magnetic flux field was equal to 0.012 mT at the linear Hall effect sensor. The exponential averaging weighing factor is 0.03 in the digital filtering and zero path length detection algorithm detailed below. As with the electronic filter shown in FIG. 5, this digital filter coefficient was selected as a compromise between noise reduction and phase delay, while maintaining repeatability.

    Digital Filtering and Zero Path Length Detection Algorithm



    [0035] 
    1. 1. Two programmable parameters: tw, and tb
    2. 2. For raw data X0, X1, X2...Xn (ADC counts of Melexis sensor scaled voltage)
    3. 3. Sum=0, D0=0, EA0=0
    4. 4. For n>0
      1. 1. Compute Cumulative Sum: Sum=Sum+Xn
      2. 2. Compute Cumulative Average: CAn=Sum/(n+1)
      3. 3. Compute Baseline Corrected Input: Dn=Xn-CAn
      4. 4. Compute Exponential Average: EAn=(1-tw)EAn-1+wDn
    5. 5. For each step n of the motor if Ean>tb then arm has moved.


    [0036] In one embodiment, a method of measuring an optical property of a sample includes coupling a first pedestal surface and a magnet to a swing arm and to a light source, and coupling a mechanical stop and a magnetic flux sensor to a base plate. The method further includes coupling a second pedestal surface to said base plate, the second pedestal surface configured to receive a liquid sample and further operable so as to adjust a separation between said first and said second pedestal surfaces at a variable distance (P) to pull said liquid sample into a column so as to be contained by surface tension, or to squeeze the sample during optical analysis, thereby providing an optical path for photometric or spectrometric measurement. The method also includes locating the magnetic flux sensor between north and south magnetic flux fields of the magnet such that the magnetic flux reaching the sensor while the mechanical stop is in physical contact with the swing arm provides a linear range of output of the magnetic flux sensor, and utilizing a threshold magnetic flux field emitted from the magnet and detected by the magnetic flux sensor to calibrate the point for minimum optical path length. An exemplary zero path length detection method, shown in FIG. 7, includes the following steps:
    1. 1. Move lower fiber connector 16s to the home position of optical flag 79'. (Home motor to optical flag)
      1. a. establishes the zero reference for all subsequent stepper motor movement
    2. 2. Optimize offset voltage
      1. a. offset voltage adjustment is processor controlled (Digipot)
      2. b. start at 0VDC offset and read ADC value
      3. c. increment offset voltage and read ADC value, stopping incrementing offset voltage when ADC value is in a range of between 2200 and 2400 counts
    3. 3. Coarse search for zero path length
      1. a. starting at motor step position 0, obtain baseline ADC value
      2. b. move motor position 500 steps to new position
      3. c. read ADC value at new position
      4. d. stop moving motor when ADC value changes by 200 counts from baseline value
      5. e. define fine search range from 500 steps below to 500 steps above the end motor position from coarse search
    4. 4. Fine search for zero path length
      1. a. from the starting position in the fine search range, start moving the motor at 100 steps/second
      2. b. at each step position - read the ADC value
      3. c. compute baseline correction and exponential average (EA)
      4. d. stop moving when EA ≤ threshold magnetic flux level (tb)
      5. e. return value of motor step position when motor stops. The returned value is referred to as "tc."


    [0037] An embodiment of the path length calibration method is shown in FIGS. 10A-C. An exemplary initial path length calibration, as shown in FIG 10A, includes the following steps:
    1. 1. Find the zero path length position at power up
      1. a. at instrument power up, execute Find Zero Path Length routine (mh=1 command) as described above and shown in FIG. 7. - returns "tc" value
    2. 2. Find path length positions
      1. a. use home position found with home flag during Find Zero Path Length routine
      2. b. measure a liquid known photometric standard, such as potassium dichromate, or a mixture of nicotinic acid and potassium nitrate
      3. c. find stepper motor positions that correspond to desired optical path lengths, for example, the stepper motor position at which the measured absorbance of the photometric standard is 0.740 Absorbance units (corresponding to a known path length of 1000 µm), and other multiples thereof (e.g., stepper motor positions at 0.0222, 0.037, 0.074, and 0.148 Absorbance Units)
      4. d. store stepper motor positions as P0, P1, P2, ...Pn - in firmware: tp(P0, P1, P2, ... Pn)
    3. 3. Store zero path length position
      1. a. store zero path length position at time of calibration
      2. b. set "tc" value = "tz" value


    [0038] An exemplary implementation of zero path length, as shown in FIG 10B, includes the following steps:
    1. 1. Find zero path length position at power up
      1. a. at instrument power up, execute Find Zero Path Length routine (mh=1 command) as described above and shown in FIG. 7 - returns "tc" value
    2. 2. Adjust calibration positions
      1. a. calculate difference in zero path length position found during instrument power up and zero path length position found during initial path length calibration (described above and shown in FIG. 10A)
      2. b. adjust each path length stepper motor position by the difference in zero path length positions to account for path length drift - new path length position = Pn + (tc-tz)
    3. 3. Refresh zero path length after a determined period of time, such as 4 hours
      1. a. if the previously found zero path length position "tc" is more than 4 hours old, then
      2. b. execute a Refresh Zero Path Length routine as described below and shown in FIG. 10C
      3. c. overwrite old "tc" value with new "tc" value
      4. d. readjust calibration positions as described above with new "tc" value


    [0039] An exemplary refresh zero path length calibration ("tc=1 command), as shown in FIG 10C, includes the following steps:
    1. 1. Coarse search for zero path length
      1. a. starting at 4000 steps below previous tc value - obtain baseline ADC value
      2. b. step motor position 500 steps to new position
      3. c. read ADC value at new position
      4. d. stop moving motor when ADC value changes by 200 counts from baseline value
      5. e. define Fine Search Range from 500 steps below to 500 steps above the end position from coarse search
    2. 2. Fine search for zero path length
      1. a. from the starting position in the Fine Search Range, start moving the motor at 100 steps/second
      2. b. at each step position, read the ADC value
      3. c. compute baseline correction and exponential average (EA)
      4. d. stop moving when EA ≤ threshold magnetic flux level (tb)
      5. e. return value of motor step position when motor stops. The returned value is referred to as "tc" and overwrites the previous "tc" value.


    [0040] One alternative implementation method is to eliminate the use of the home flag and position sensor located below the stepper motor as a reference position and use the zero path length position discovered during a modified zero path length detection (mh=1) routine to establish a zero position. Path length calibration positions would then reference the zero path length position rather than the home position. Another alternative is to eliminate the path length calibration process, which stores discrete stepper motor positions based on a reference position for each path length of interest, and rely on the zero path length position and pitch of the lead screw to determine the number of motor steps require to achieve any desired path length.

    [0041] While the invention has been described with reference to exemplary embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications will be appreciated by those skilled in the art to adapt a particular instrument, situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the appended claims.


    Claims

    1. An apparatus for measuring an optical property of a sample, the apparatus comprising:

    a. a swing arm (54);

    b. a light source;

    c. a first pedestal surface (13) coupled to i) the swing arm (54) and to ii) the light source;

    d. a magnet (1);

    e. a base plate (52);

    f. a mechanical stop (53) coupled to the base plate (52);

    g. a spectrometer;

    h. a second pedestal surface (15) mechanically coupled to said base plate (52) and configured to receive a liquid sample, said second pedestal surface (15) being coupled to the spectrometer, wherein said second pedestal surface (15) is further operable so as to adjust a separation between said first and said second pedestal surfaces (13, 15) at a variable distance (P) to pull said liquid sample into a column (9) so as to be contained by surface tension, or to squeeze the sample during optical analysis, thereby providing an optical path for photometric or spectrometric measurement;

    i. a magnetic flux sensor (10) located such that a null plane of north and south magnetic flux fields of the magnet (1) is centered on the magnetic flux sensor (10) while the mechanical stop (53) is in physical contact with the swing arm (54), and wherein the magnet (1) is coupled to the swing arm (54), and the magnetic flux sensor (10) is coupled to the base plate (52) or wherein the magnetic flux sensor (10) is coupled to the swing arm (54), and the magnet (1) is coupled to the base plate (52);

    j. a processor adapted to calibrate the point for minimum optical path length by utilizing a threshold magnetic flux field emitted from the magnet (1) and detected by the magnetic flux sensor (10);

    k. a microprocessor configured to control an offset voltage of the magnetic flux sensor output; and

    l. an analog-to-digital converter configured to digitize the offset magnetic flux sensor output.


     
    2. The apparatus of claim 1, wherein the first pedestal surface (13) is coupled to a first optical conduit (18a).
     
    3. The apparatus of claim 2, wherein the second pedestal surface (15) is coupled to a second optical conduit (18b).
     
    4. The apparatus of claim 3, wherein said first and said second optical conduits (18a, 18b) comprise at least one optical fiber selected from: a single-mode fiber, a polarization maintaining fiber, and a multi-mode fiber.
     
    5. The apparatus of claim 3, further including a bracket (64) configured to permit translational movement of said second optical conduit (18b) parallel to a longitudinal axis of said second optical conduit (18b).
     
    6. The apparatus of Claim 5, wherein said bracket (64) further comprises a position sensor (82) that provides feedback so as to enable precision displacement between said first and said second pedestal surfaces (13, 15) so as to enable said variable distance (P).
     
    7. The apparatus of claim 6, comprising an opto-interrupter device (79') and a translation control system, wherein said position sensor (82) is further configured to establish a reference position when the translation control system initializes upon startup or upon being interrupted by the opto-interrupter device (79') coupled to said second optical conduit (18b).
     
    8. The apparatus of claim 3, wherein the first optical conduit (18a) includes a transmitting end (12t) and the second optical conduit (18b) includes a receiving end (16r), with said transmitting end (12t) of said first optical conduit (18a) and said receiving end (16r) of said second optical conduit (18b) providing the optical path for photometric or spectrometric measurement.
     
    9. The apparatus of claim 3, wherein the first optical conduit (18a) includes a receiving end (12r) and the second optical conduit (18b) includes a transmitting end (12t), with said receiving end (12r) of said first optical conduit (18a) and said transmitting end (12t) of said second optical conduit (18b) providing the optical path for photometric or spectrometric measurement.
     
    10. The apparatus of claim 1, wherein the magnetic flux sensor (10) is a linear Hall effect sensor.
     
    11. The apparatus of claim 1, wherein the magnetic flux sensor (10) is a giant magnetoresistive (GMR) sensor.
     
    12. The apparatus of any of the preceding claims, wherein said apparatus measures absorbances in a range of between about 0.005 Absorbance Units and about 2.0 Absorbance Units for any given optical path length.
     
    13. The apparatus of any of the preceding claims, wherein the light source is configured to provide optical wavelengths in a range of between about 190 nm and about 850 nm.
     
    14. A method of measuring an optical property of a sample, the method comprising:

    a. coupling a first pedestal surface (13) and a magnet (1) to a swing arm (54) and to a light source; or coupling the first pedestal surface (13) and a magnetic flux sensor (10) to the swing arm (54) and to a light source;

    b. coupling a mechanical stop (53) and a magnetic flux sensor (10) to a base plate (52); or coupling the mechanical stop (53) and the magnet (1) to a base plate (52);

    c. coupling a second pedestal surface (15) to said base plate (52), the second pedestal surface (15) configured to receive a liquid sample and further operable so as to adjust a separation between said first and said second pedestal surfaces (13, 15) at a variable distance (P) to pull said liquid sample into a column (9) so as to be contained by surface tension, or to squeeze the sample during optical analysis, thereby providing an optical path for photometric or spectrometric measurement;

    d. locating the magnetic flux sensor (10) such that a null plane of north and south magnetic flux fields of the magnet (1) is centered on the magnetic flux sensor (10) while the mechanical stop (53) is in physical contact with the swing arm (54) and wherein the magnet (1) is coupled to the swing arm (54), and the magnetic flux sensor (10) is coupled to the base plate (52) or wherein the magnetic flux sensor (10) is coupled to the swing arm (54), and the magnet (1) is coupled to the base plate (52); and

    e. utilizing a threshold magnetic flux field emitted from the magnet (1) and detected by the magnetic flux sensor (10) to calibrate the point for minimum optical path length, wherein this step comprises:

    applying a low pass filter to the magnetic flux sensor output;

    amplifying the filtered magnetic flux sensor output;

    applying offset voltage to the filtered amplified magnetic flux sensor output;

    digitizing the offset filtered amplified magnetic flux sensor output.


     
    15. The method of claim 14, wherein the magnetic flux sensor (10) is a linear Hall effect sensor.
     
    16. The method of claim 14, wherein the magnetic flux sensor (10) is a giant magnetoresistive (GMR) sensor.
     


    Ansprüche

    1. Einrichtung zum Messen einer optischen Eigenschaft einer Probe, wobei die Einrichtung umfasst:

    a. einen Schwenkarm (54);

    b. eine Lichtquelle;

    c. eine erste Sockeloberfläche (13), die mit i) dem Schwenkarm (54) und ii) der Lichtquelle gekoppelt ist;

    d. einen Magneten (1);

    e. eine Grundplatte (52);

    f. einen mechanischen Anschlag (53), der mit der Grundplatte (52) gekoppelt ist;

    g. ein Spektrometer;

    h. eine zweite Sockeloberfläche (15), die mit der Grundplatte (52) mechanisch gekoppelt und konfiguriert ist, um eine Flüssigkeitsprobe zu empfangen, wobei die zweite Sockeloberfläche (15) mit dem Spektrometer gekoppelt ist, wobei die zweite Sockeloberfläche (15) ferner betriebsfähig ist, um eine Trennung zwischen der ersten und der zweiten Sockeloberfläche (13, 15) mit einem variablen Abstand (P) anzupassen, um die Flüssigkeitsprobe in eine Säule (9) zu ziehen, um durch Oberflächenspannung zurückgehalten zu werden, oder um die Probe während einer optischen Analyse zusammenzupressen, wobei dadurch ein optischer Weg für eine photometrische oder spektrometrische Messung bereitgestellt wird;

    i. einen Magnetflusssensor (10), der derart angeordnet ist, dass eine Null-Ebene der Nord- und Süd-Magnetflussfelder des Magneten (1) auf dem Magnetflusssensor (10) zentriert ist, während der mechanische Anschlag (53) in physischem Kontakt mit dem Schwenkarm (54) ist, und wobei der Magnet (1) mit dem Schwenkarm (54) gekoppelt ist und der Magnetflusssensor (10) mit der Grundplatte (52) gekoppelt ist, oder wobei der Magnetflusssensor (10) mit dem Schwenkarm (54) gekoppelt ist und der Magnet (1) mit der Grundplatte (52) gekoppelt ist;

    j. einen Prozessor, der geeignet ist, den Punkt für die minimale Länge des optischen Wegs durch Nutzen eines Schwellenmagnetflussfelds zu kalibrieren, das von dem Magneten (1) emittiert und durch den Magnetflusssensor (10) erfasst wird;

    k. einen Mikroprozessor, der konfiguriert ist, um eine Offset-Spannung der Magnetflusssensorausgabe zu steuern; und

    l. ein Analog-Digital-Wandler, der konfiguriert ist, um die Offset-Magnetflusssensorausgabe zu digitalisieren.


     
    2. Einrichtung nach Anspruch 1, wobei die erste Sockeloberfläche (13) mit einer ersten optischen Leitung (18a) gekoppelt ist.
     
    3. Einrichtung nach Anspruch 2, wobei die zweite Sockeloberfläche (15) mit einer zweiten optischen Leitung (18b) gekoppelt ist.
     
    4. Einrichtung nach Anspruch 3, wobei die erste und die zweite optische Leitung (18a, 18b) wenigstens eine optische Faser umfassen, die ausgewählt ist aus:
    einer Einmodenfaser, einer polarisationserhaltenden Faser und einer Mehrmodenfaser.
     
    5. Einrichtung nach Anspruch 3, die ferner eine Halterung (64) beinhaltet, die konfiguriert ist, um eine Translationsbewegung der zweiten optischen Leitung (18b) parallel zu einer Längsachse der zweiten optischen Leitung (18b) zuzulassen.
     
    6. Einrichtung nach Anspruch 5, wobei die Halterung (64) ferner einen Positionssensor (82) umfasst, der eine Rückmeldung bereitstellt, um eine Feinverschiebung zwischen der ersten und der zweiten Sockeloberfläche (13, 15) zu ermöglichen, um den variablen Abstand (P) zu ermöglichen.
     
    7. Einrichtung nach Anspruch 6, die eine Opto-Unterbrecher-Vorrichtung (79') und ein Translationssteuersystem umfasst, wobei der Positionssensor (82) ferner konfiguriert ist, um einen Referenzpunkt festzulegen, wenn das Translationssteuersystem, nachdem es anläuft oder durch die Opto-Unterbrecher-Vorrichtung (79') initialisiert, die mit der zweiten optischen Leitung (18b) gekoppelt ist unterbrochen wird.
     
    8. Einrichtung nach Anspruch 3, wobei die erste optische Leitung (18a) ein Übertragungsende (12t) beinhaltet und die zweite optische Leitung (18b) ein Empfangsende (16r) beinhaltet, wobei das Übertragungsende (12t) der ersten optischen Leitung (18a) und das Empfangsende (16r) der zweiten optischen Leitung (18b) den optischen Weg für die photometrische oder spektrometrische Messung bereitstellen.
     
    9. Einrichtung nach Anspruch 3, wobei die erste optische Leitung (18a) ein Empfangsende (12r) beinhaltet und die zweite optische Leitung (18b) ein Übertragungsende (12t) beinhaltet, wobei das Empfangsende (12r) der ersten optischen Leitung (18a) und das Übertragungsende (12t) der zweiten optischen Leitung (18b) den optischen Weg für die photometrische oder spektrometrische Messung bereitstellen.
     
    10. Einrichtung nach Anspruch 1, wobei der Magnetflusssensor (10) ein linearer Hall-Effekt-Sensor ist.
     
    11. Einrichtung nach Anspruch 1, wobei der Magnetflusssensor (10) ein Riesenmagnetowiderstand(giant magnetoresistive - GMR)sensor ist.
     
    12. Einrichtung nach einem der vorhergehenden Ansprüche, wobei die Einrichtung dekadische Extinktionen in einem Bereich zwischen ungefähr 0,005 Extinktionseinheiten und ungefähr 2,0 Extinktionseinheiten für eine beliebige gegebene Länge des optischen Wegs misst.
     
    13. Einrichtung nach einem der vorhergehenden Ansprüche, wobei die Lichtquelle konfiguriert ist, um optische Wellenlängen in einem Bereich zwischen ungefähr 190 nm und ungefähr 850 nm bereitzustellen.
     
    14. Verfahren zum Messen einer optischen Eigenschaft einer Probe, wobei das Verfahren umfasst:

    a. Koppeln einer ersten Sockeloberfläche (13) und eines Magneten (1) mit einem Schwenkarm (54) und mit einer Lichtquelle; oder Koppeln der ersten Sockeloberfläche (13) und eines Magnetflusssensors (10) mit dem Schwenkarm (54) und mit der Lichtquelle;

    b. Koppeln eines mechanischen Anschlags (53) und eines Magnetflusssensors (10) mit einer Grundplatte (52); oder Koppeln des mechanischen Anschlags (53) und des Magneten (1) mit einer Grundplatte (52);

    c. Koppeln einer zweiten Sockeloberfläche (15) mit der Grundplatte (52), wobei die zweite Sockeloberfläche (15) konfiguriert ist, um eine Flüssigkeitsprobe zu empfangen, und ferner betriebsfähig ist, um eine Trennung zwischen der ersten und der zweiten Sockeloberfläche (13, 15) mit einem variablen Abstand (P) anzupassen, um die Flüssigkeitsprobe in eine Säule (9) zu ziehen, um durch Oberflächenspannung zurückgehalten zu werden, oder um die Probe während der optischen Analyse zusammenzupressen, wobei dadurch ein optischer Weg für die photometrische oder spektrometrische Messung bereitgestellt wird;

    d. Anordnen des Magnetflusssensors (10) derart, dass eine Null-Ebene der Nord- und Süd-Magnetflussfelder des Magneten (1) auf dem Magnetflusssensor (10) zentriert ist, während der mechanische Anschlag (53) in physischem Kontakt mit dem Schwenkarm (54) ist, und wobei der Magnet (1) mit dem Schwenkarm (54) gekoppelt ist und der Magnetflusssensor (10) mit der Grundplatte (52) gekoppelt ist, oder wobei der Magnetflusssensor (10) mit dem Schwenkarm (54) gekoppelt ist und der Magnet (1) mit der Grundplatte (52) gekoppelt ist;

    e. Nutzen eines Schwellenmagnetflussfelds, das von dem Magneten (1) emittiert und durch den Magnetflusssensor (10) erfasst wird, um den Punkt für die minimale optische Weglänge zu kalibrieren, wobei dieser Schritt umfasst:

    Anwenden eines Tiefpassfilters auf die Magnetflusssensorausgabe;

    Verstärken der gefilterten Magnetflusssensorausgabe;

    Anwenden einer Offset-Spannung an die gefilterte verstärkte Magnetflusssensorausgabe;

    Digitalisieren der Offset-gefilterten verstärkten Magnetflusssensorausgabe.


     
    15. Verfahren nach Anspruch 14, wobei der Magnetflusssensor (10) ein linearer Hall-Effekt-Sensor ist.
     
    16. Verfahren nach Anspruch 14, wobei der Magnetflusssensor (10) ein Riesenmagnetowiderstand(GMR)sensor ist.
     


    Revendications

    1. Appareil de mesure d'une propriété optique d'un échantillon, l'appareil comprenant :

    a. un bras oscillant (54) ;

    b. une source de lumière ;

    c. une première surface de socle (13) accouplée i) au bras oscillant (54) et ii) à la source de lumière ;

    d. un aimant (1) ;

    e. une plaque de base (52) ;

    f. une butée mécanique (53) accouplée à la plaque de base (52) ;

    g. un spectromètre ;

    h. une seconde surface de socle (15) accouplée mécaniquement à ladite plaque de base (52) et conçue pour recevoir un échantillon liquide, ladite seconde surface de socle (15) étant accouplée au spectromètre, ladite seconde surface de socle (15) pouvant en outre fonctionner de manière à régler une séparation entre lesdites première et seconde surfaces de socle (13, 15) à une distance variable (P) pour tirer ledit échantillon de liquide dans une colonne (9) de manière à ce qu'il soit contenu par la tension superficielle, ou de manière à presser l'échantillon pendant l'analyse optique, fournissant ainsi un chemin optique pour la mesure photométrique ou spectrométrique ;

    i. un capteur de flux magnétique (10) situé de telle sorte qu'un plan nul des champs de flux magnétique nord et sud de l'aimant (1) est centré sur le capteur de flux magnétique (10) alors que la butée mécanique (53) est en contact physique avec le bras oscillant (54), et l'aimant (1) est accouplé au bras oscillant (54), et le capteur de flux magnétique (10) est accouplé à la plaque de base (52) ou le capteur de flux magnétique (10) est accouplé au bras oscillant (54), et l'aimant (1) est accouplé à la plaque de base (52) ;

    j. un processeur apte à étalonner le point de longueur de chemin optique minimale en utilisant un champ de flux magnétique seuil émis par l'aimant (1) et détecté par le capteur de flux magnétique (10) ;

    k. un microprocesseur configuré pour commander une tension de décalage de la sortie du capteur de flux magnétique ; et

    l. un convertisseur analogique-numérique configuré pour numériser la sortie du capteur de flux magnétique décalé.


     
    2. Appareil selon la revendication 1, la première surface de socle (13) étant accouplée à un premier conduit optique (18a).
     
    3. Appareil selon la revendication 2, la seconde surface de socle (15) étant accouplée à un second conduit optique (18b).
     
    4. Appareil selon la revendication 3, lesdits premier et second conduits optiques (18a, 18b) comprenant au moins une fibre optique choisie parmi : une fibre monomode, une fibre de maintien de la polarisation et une fibre multimode.
     
    5. Appareil selon la revendication 3, comportant en outre un support (64) conçu pour permettre un mouvement de translation dudit second conduit optique (18b) parallèlement à un axe longitudinal dudit second conduit optique (18b).
     
    6. Appareil selon la revendication 5, ledit support (64) comprenant en outre un capteur de position (82) qui fournit une rétroaction de manière à valider un déplacement de précision entre lesdites première et seconde surfaces de socle (13, 15) de manière à valider ladite distance variable (P).
     
    7. Appareil selon la revendication 6, comprenant un dispositif opto-interrupteur (79') et un système de commande de translation, ledit capteur de position (82) étant en outre configuré pour établir une position de référence lorsque le système de commande de translation s'initialise au démarrage ou lorsqu'il est interrompu par le dispositif opto-interrupteur (79') couplé audit second conduit optique (18b).
     
    8. Appareil selon la revendication 3, le premier conduit optique (18a) comportant une extrémité d'émission (12t) et le second conduit optique (18b) comportant une extrémité de réception (16r), ladite extrémité d'émission (12t) dudit premier conduit optique (18a) et ladite extrémité de réception (16r) dudit second conduit optique (18b) fournissant le chemin optique pour une mesure photométrique ou spectrométrique.
     
    9. Appareil selon la revendication 3, le premier conduit optique (18a) comportant une extrémité de réception (12r) et le second conduit optique (18b) comportant une extrémité d'émission (12t), ladite extrémité de réception (12r) dudit premier conduit optique (18a) et ladite extrémité d'émission (12t) dudit second conduit optique (18b) fournissant le chemin optique pour une mesure photométrique ou spectrométrique.
     
    10. Appareil selon la revendication 1, le capteur de flux magnétique (10) étant un capteur à effet Hall linéaire.
     
    11. Appareil selon la revendication 1, le capteur de flux magnétique (10) étant un capteur à magnétorésistance géante (GMR).
     
    12. Appareil selon l'une quelconque des revendications précédentes, ledit appareil mesurant les absorbances dans une plage comprise entre environ 0,005 unité d'absorbance et environ 2,0 unités d'absorbance pour toute longueur de chemin optique donnée.
     
    13. Appareil selon l'une quelconque des revendications précédentes, la source de lumière étant configurée pour fournir des longueurs d'onde optiques dans une plage comprise entre environ 190 nm et environ 850 nm.
     
    14. Procédé de mesure d'une propriété optique d'un échantillon, le procédé comprenant :

    a. l'accouplement d'une première surface de socle (13) et d'un aimant (1) à un bras oscillant (54) et à une source de lumière ; ou l'accouplement de la première surface de socle (13) et d'un capteur de flux magnétique (10) au bras oscillant (54) et à une source de lumière ;

    b. l'accouplement d'une butée mécanique (53) et d'un capteur de flux magnétique (10) à une plaque de base (52) ; ou l'accouplement de la butée mécanique (53) et de l'aimant (1) à une plaque de base (52) ;

    c. l'accouplement d'une seconde surface de socle (15) à ladite plaque de base (52), la seconde surface de socle (15) étant conçue pour recevoir un échantillon liquide et pouvant en outre fonctionner de manière à régler une séparation entre lesdites première et seconde surfaces de socle (13, 15) à une distance variable (P) pour tirer ledit échantillon liquide dans une colonne (9) de manière à être contenu par la tension superficielle, ou de manière à presser l'échantillon pendant l'analyse optique, fournissant ainsi un chemin optique pour la mesure photométrique ou spectrométrique ;

    d. le positionnement du capteur de flux magnétique (10) de telle sorte qu'un plan nul des champs de flux magnétique nord et sud de l'aimant (1) est centré sur le capteur de flux magnétique (10) alors que la butée mécanique (53) est en contact physique avec le bras oscillant (54) et l'aimant (1) est accouplé au bras oscillant (54), et le capteur de flux magnétique (10) est accouplé à la plaque de base (52) ou le capteur de flux magnétique (10) est couplé au bras oscillant (54) et l'aimant (1) est accouplé à la plaque de base (52) ; et

    e. l'utilisation d'un champ de flux magnétique seuil émis par l'aimant (1) et détecté par le capteur de flux magnétique (10) pour étalonner le point de longueur de chemin optique minimale, cette étape comprenant :

    l'application d'un filtre passe-bas à la sortie du capteur de flux magnétique ;

    l'amplification de la sortie du capteur de flux magnétique filtrée ;

    l'application d'une tension décalée à la sortie du capteur de flux magnétique amplifiée filtrée ;

    la numérisation de la sortie du capteur de flux magnétique amplifiée filtrée décalée.


     
    15. Procédé selon la revendication 14, le capteur de flux magnétique (10) étant un capteur à effet Hall linéaire.
     
    16. Procédé selon la revendication 14, le capteur de flux magnétique (10) étant un capteur à magnétorésistance géante (GMR).
     




    Drawing



























































    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description