(19)
(11)EP 3 351 727 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
09.09.2020 Bulletin 2020/37

(21)Application number: 18155348.8

(22)Date of filing:  18.12.2015
(51)International Patent Classification (IPC): 
F01D 5/14(2006.01)
F01D 5/28(2006.01)

(54)

GAS TURBINE ENGINE

GASTURBINE

TURBINE À GAZ


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 23.12.2014 US 201462095962 P

(43)Date of publication of application:
25.07.2018 Bulletin 2018/30

(62)Application number of the earlier application in accordance with Art. 76 EPC:
15201383.5 / 3040513

(73)Proprietor: United Technologies Corporation
Farmington, CT 06032 (US)

(72)Inventor:
  • ROBERTSON, Thomas J.
    Glastonbury, CT 06033 (US)

(74)Representative: Dehns 
St. Bride's House 10 Salisbury Square
London EC4Y 8JD
London EC4Y 8JD (GB)


(56)References cited: : 
WO-A1-2013/185044
US-A- 5 957 658
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    FIELD OF INVENTION



    [0001] The present disclosure relates to gas turbine engines, and, more specifically, to a bonded fan blade flowpath platform.

    BACKGROUND



    [0002] Some gas turbine engines include a fan section forward of the turbine section including fan blades. The fan blades may have spacers or platforms between blades at the inner flowpath. Integral metal platforms may add cost and weight to the gas turbine engine. Non-integral platforms secured to a fan hub frequently add weight and a cost to the gas turbine engine. Weight and cost are important considerations in the manufacturing of aircraft engines.

    [0003] A prior art gas turbine engine having the features of the preamble of claim 1 is disclosed in WO 2013/185044.

    SUMMARY



    [0004] The present invention provides a gas turbine engine in accordance with claim 1.

    [0005] Features of various embodiments are recited in the dependent claims.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0006] The subject matter of the present disclosure is particularly pointed out and distinctly claimed in the concluding portion of the specification. A more complete understanding of the present disclosure, however, may best be obtained by referring to the detailed description and claims when considered in connection with the figures, wherein like numerals denote like elements.

    FIG. 1 illustrates an exemplary gas turbine engine, in accordance with various embodiments;

    FIG. 2 illustrates a fan section of a gas turbine engine, in accordance with various embodiments;

    FIG 3 illustrates a fan having a molded platform bonded to the fan blades, in accordance with various embodiments;

    FIG. 4A illustrates a bottom view of a two-piece molded platform for a fan blade, in accordance with various embodiments;

    FIG. 4B illustrates a pin interface to interlock two pieces of a bonded platform, in accordance with various embodiments;

    FIG. 4C illustrates a hook-and-slot interface to interlock two pieces of a bonded platform, in accordance with various embodiments;

    FIG. 5A illustrates a ridge formed on a fan blade to radially retain a bonded platform, in accordance with various embodiments;

    FIG. 5B illustrates a platform coupled to a fan blade and retained axially by a ridge, in accordance with various embodiments;

    FIG. 6A illustrates a seal bonded to a two-piece blade platform, in accordance with various embodiments,

    FIG. 6B illustrates overlap between adjacent seals bonded to adjacent blade platforms, in accordance with various embodiments;

    FIG. 7 illustrates a fan blade having a platform bonded to the fan blade, in accordance with various embodiments.


    DETAILED DESCRIPTION



    [0007] The detailed description of exemplary embodiments herein makes reference to the accompanying drawings, which show exemplary embodiments by way of illustration. While these exemplary embodiments are described in sufficient detail to enable those skilled in the art to practice the exemplary embodiments of the disclosure, it should be understood that other embodiments may be realized and that logical changes and adaptations in design and construction may be made in accordance with this disclosure and the teachings herein. Thus, the detailed description herein is presented for purposes of illustration only and not limitation. The scope of the disclosure is defined by the appended claims. For example, the steps recited in any of the method or process descriptions may be executed in any order and are not necessarily limited to the order presented.

    [0008] Furthermore, any reference to singular includes plural embodiments, and any reference to more than one component or step may include a singular embodiment or step. Also, any reference to attached, fixed, connected or the like may include permanent, removable, temporary, partial, full and/or any other possible attachment option. Additionally, any reference to without contact (or similar phrases) may also include reduced contact or minimal contact. Surface shading lines may be used throughout the figures to denote different parts but not necessarily to denote the same or different materials.

    [0009] As used herein, "aft" refers to the direction associated with the tail (e.g., the back end) of an aircraft, or generally, to the direction of exhaust of the gas turbine. As used herein, "forward" refers to the direction associated with the nose (e.g., the front end) of an aircraft, or generally, to the direction of flight or motion.

    [0010] As used herein, "distal" refers to the direction radially outward, or generally, away from the axis of rotation of a turbine engine. As used herein, "proximal" refers to a direction radially inward, or generally, towards the axis of rotation of a turbine engine.

    [0011] In various embodiments and with reference to FIG. 1, a gas-turbine engine 20 is provided. Gas-turbine engine 20 may be a two-spool turbofan that generally incorporates a fan section 22, a compressor section 24, a combustor section 26 and a turbine section 28. Alternative engines may include, for example, an augmentor section among other systems or features. In operation, fan section 22 can drive coolant along a bypass flow-path B while compressor section 24 can drive coolant along a core flow-path C for compression and communication into combustor section 26 then expansion through turbine section 28. Although depicted as a turbofan gas-turbine engine 20 herein, it should be understood that the concepts described herein are not limited to use with turbofans as the teachings may be applied to other types of turbine engines including three-spool architectures.

    [0012] Gas-turbine engine 20 may generally comprise a low speed spool 30 and a high speed spool 32 mounted for rotation about an engine central longitudinal axis A-A' relative to an engine static structure 36 via several bearing systems 38, 38-1, and 38-2. It should be understood that various bearing systems 38 at various locations may alternatively or additionally be provided, including for example, bearing system 38, bearing system 38-1, and bearing system 38-2.

    [0013] Low speed spool 30 may generally comprise an inner shaft 40 that interconnects a fan 42, a low pressure (or first) compressor section 44 and a low pressure (or first) turbine section 46. Inner shaft 40 may be connected to fan 42 through a geared architecture 48 that can drive fan 42 at a lower speed than low speed spool 30. Geared architecture 48 may comprise a gear assembly 60 enclosed within a gear housing 62. Gear assembly 60 couples inner shaft 40 to a rotating fan structure. High speed spool 32 may comprise an outer shaft 50 that interconnects a high pressure (or second) compressor 52 and high pressure (or second) turbine 54. A combustor 56 may be located between high pressure compressor 52 and high pressure turbine 54. A mid-turbine frame 57 of engine static structure 36 may be located generally between high pressure turbine 54 and low pressure turbine 46. Mid-turbine frame 57 may support one or more bearing systems 38 in turbine section 28. Inner shaft 40 and outer shaft 50 may be concentric and rotate via bearing systems 38 about the engine central longitudinal axis A-A', which is collinear with their longitudinal axes. As used herein, a "high pressure" compressor or turbine experiences a higher pressure than a corresponding "low pressure" compressor or turbine.

    [0014] The core airflow C may be compressed by low pressure compressor section 44 then high pressure compressor 52, mixed and burned with fuel in combustor 56, then expanded over high pressure turbine 54 and low pressure turbine 46. Mid-turbine frame 57 includes airfoils 59 which are in the core airflow path. Turbines 46, 54 rotationally drive the respective low speed spool 30 and high speed spool 32 in response to the expansion.

    [0015] Gas-turbine engine 20 may be, for example, a high-bypass ratio geared aircraft engine. In various embodiments, the bypass ratio of gas-turbine engine 20 may be greater than about six (6:1). In various embodiments, the bypass ratio of gas-turbine engine 20 may be greater than ten (10:1). In various embodiments, geared architecture 48 may be an epicyclic gear train, such as a star gear system (sun gear in meshing engagement with a plurality of star gears supported by a carrier and in meshing engagement with a ring gear) or other gear system. Geared architecture 48 may have a gear reduction ratio of greater than about 2.3 (2.3:1) and low pressure turbine 46 may have a pressure ratio that is greater than about five (5:1). In various embodiments, the bypass ratio of gas-turbine engine 20 is greater than about ten (10:1). In various embodiments, the diameter of fan 42 may be significantly larger than that of the low pressure compressor section 44, and the low pressure turbine 46 may have a pressure ratio that is greater than about five (5:1). Low pressure turbine 46 pressure ratio may be measured prior to inlet of low pressure turbine 46 as related to the pressure at the outlet of low pressure turbine 46 prior to an exhaust nozzle. It should be understood, however, that the above parameters are exemplary of various embodiments of a suitable geared architecture engine and that the present disclosure contemplates other turbine engines including direct drive turbofans.

    [0016] With reference to FIG. 2, a fan section 22 of a gas turbine engine 20 is shown, in accordance with various embodiments. Fan 42 includes a plurality of fan blades 101. Each fan blade 101 may have a platform 102 coupled to the fan blade 101 at a proximal location. Platform 102 may form a portion of the proximal wall of core flow-path C. Fan blades 101 and platforms 102 may be spaced equally around engine central longitudinal axis A-A'.

    [0017] With reference to FIG 3, a perspective view of fan 42 having platform 102 bonded to fan blades 101 is shown, in accordance with various embodiments. A root 105 of each fan blade 101 engages walls of fan hub 103 to retain fan blade 101 during rotation. Platform 102 comprises a first platform half 104 and a second platform half 106.

    [0018] With reference to FIGs. 4A through 4C, platform 102 is shown with first platform half 104 and second platform half 106 coupled together to form platform 102. First platform half 104 may include stiffening members 108 in the form of ridges formed on bottom surface 109 of first platform half 104. Second platform half 106 also includes stiffening members 110 in the form of ridges formed on the bottom surface 111 of second platform half 106. The stiffening members may provide rigidity for platform 102. First platform half 104 and second platform half 106 may both be made from moldable materials such as a carbon and/or glass reinforced thermoset or thermoplastic. The material may be compression molded using an autoclave or injection molded by injecting material into a mold. The materials may be low cost, low weight materials shaped using low cost techniques. In that regard, platform 102 may reduce the weight and cost of a gas turbine engine. Platform 102 may also be coated with an erosion coating (e.g., polyurethane).

    [0019] First platform half 104 has a slot 114 configured to receive one or more hooks. Second platform half 106 includes a hook 112 configured to engage slot 114. With brief reference to FIG. 4C, first platform half 104 also includes a receiving member 120 and second platform half 106 includes receiving member 118 with the receiving members configured to receive one or more pins 116. When pin 116 is inserted through an opening defined by the overlap of receiving member 118 and receiving member 120, first platform half 104 and second platform half 106 may be mechanically coupled. In that regard, pin 116 and hook 112 serve to attach first platform half 104 to second platform half 106 and form platform 102.

    [0020] With reference to FIGs. 5A and 5B, a ridge formed on a fan blade to radially retain a bonded platform is shown, in accordance with various embodiments. A ridge 132 may be formed integrally with fan blade 101. Ridge 132 may include a forward segment 136 and an aft segment 134. Forward segment 136 may have a greater length than aft segment 134. Forward segment may also be tilted at an angle relative to aft segment 134 such that a kink 138 or elbow is formed between the segments. Forward segment 136 and aft segment 134 may thus provide retention for platform 102 in an axial direction (forward-to-aft direction).

    [0021] In various embodiments, first platform half 104 and second platform half 106 of platform 102 may be coupled to fan blade 101 with mounting cavity 140 defined by first platform half 104 following a contour of ridge 132 and fan blade 101. Similarly, mounting cavity 142 is defined by second platform half 106 and may follow a contour of ridge 132 and fan blade 101. The mounting cavities mounted over ridge 132 provide resistance to retain platform 102 in the y direction. FIG. 5B also further illustrates that stiffening member 108 and stiffening members 110 extend at an angle from bottom surface 109 and bottom surface 111, respectively.

    [0022] With reference to FIGs. 6A and 6B, a seal 141 bonded to a platform 102 is shown, in accordance with various embodiments. Seal 141 may be glued, bonded, or otherwise coupled to platform 102 using, for example, a rubber adhesive or epoxy. Seal 141 may be made from a fabric-reinforced silicone, for example. Seal 141 may include a tab 143 to allow adjacent seals 141 to overlap. With reference to FIG. 6B, overlap 144 occurs when an edge of a first seal 141 is allowed to slide into tab 143 of neighboring second seal 141. Overlapping seals 141 may extend around a circumference of fan 42 of FIG. 2 to provide sealing between platforms 102.

    [0023] With reference to FIG. 7, a fan blade 101 having a platform 102 bonded to the fan blade 101 is shown, in accordance with various embodiments. Platform 102 may be bonded to fan blade 101 by applying an adhesive (e.g., an adhesive paste, epoxy, glue, and/or adhesive film) on the side of bonding member 152 adjacent fan blade 101. Platform 102 may be pressed against fan blade 101 with adhesive pressing through indicator openings 150 to indicate that adhesive coverage is good at the location of each indicator opening 150. Root 105 of fan blade 101 may extend from platform 102 to allow for installation in fan hub 103, as shown in FIG. 3. Platform 102 is bonded to fan blade 101 and may not rely on other fasteners to fix platform 102 to fan blade 101.

    [0024] Benefits and other advantages have been described herein with regard to specific embodiments. Furthermore, the connecting lines shown in the various figures contained herein are intended to represent exemplary functional relationships and/or physical couplings between the various elements. It should be noted that many alternative or additional functional relationships or physical connections may be present in a practical system. However, the benefits, advantages, and any elements that may cause any benefit or advantage to occur or become more pronounced are not to be construed as critical, required, or essential features or elements of the disclosure. The scope of the disclosure is accordingly to be limited by nothing other than the appended claims, in which reference to an element in the singular is not intended to mean "one and only one" unless explicitly so stated, but rather "one or more." Moreover, where a phrase similar to "at least one of A, B, or C" is used in the claims, it is intended that the phrase be interpreted to mean that A alone may be present in an embodiment, B alone may be present in an embodiment, C alone may be present in an embodiment, or that any combination of the elements A, B and C may be present in a single embodiment; for example, A and B, A and C, B and C, or A and B and C.

    [0025] Systems, methods and apparatus are provided herein. In the detailed description herein, references to "various embodiments", "one embodiment", "an embodiment", "an example embodiment", etc., indicate that the embodiment described may include a particular feature, structure, or characteristic, but every embodiment may not necessarily include the particular feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with an embodiment, it is submitted that it is within the knowledge of one skilled in the art to affect such feature, structure, or characteristic in connection with other embodiments whether or not explicitly described. After reading the description, it will be apparent to one skilled in the relevant art(s) how to implement the disclosure in alternative embodiments.


    Claims

    1. A gas turbine engine (20), comprising:

    a fan section (22) comprising a fan blade (101) configured to rotate about an axis (A-A');

    a platform (102) adhesively bonded to the fan blade (101) using at least one of an adhesive paste or an adhesive film, wherein the platform (102) comprises a first platform half (104) and a second platform half (106);

    the first platform half (104) comprising a first receiving member (120) at a second end of the first platform half (104) opposite a first end of the first platform half (104);

    the second platform half (106) comprising a hook (112) formed at a first end of the second platform half (106) and a second receiving member (118) at a second end of the second platform half (106) opposite the first end of the second platform half (104);

    characterised in that the first platform half (104) comprises a slot (114) formed at the first end of the first platform half (104), the slot (114) Engaging the hook (112); and

    a pin (116) passing through the first receiving member (120) and the second receiving member (118).


     
    2. The gas turbine engine of claim 1, wherein the fan blade (101) comprises a ridge (132) configured to secure the platform (102) in at least one of an axial direction or a radial direction.
     
    3. The gas turbine engine of claim 2, further comprising a mounting member defined by the platform (102) and following a contour of the ridge (132).
     
    4. The gas turbine engine of claim 1, 2, or 3, further comprising indicator openings (150) formed through the platform (102) and configured to indicate adhesive coverage between the platform (102) and the fan blade (101).
     
    5. The gas turbine engine of any preceding claim, wherein the platform (102) is injection molded or compression molded.
     
    6. The gas turbine engine of any preceding claim, further comprising a seal (141) bonded to the platform (102).
     
    7. The gas turbine engine of any preceding claim, wherein the platform (102) comprises at least one of a thermoplastic or a thermoset with carbon or fiber glass reinforcement.
     


    Ansprüche

    1. Gasturbinentriebwerk (20), umfassend:

    einen Gebläseabschnitt (22), der eine Gebläseschaufel (101) umfasst, die konfiguriert ist, um sich um eine Achse (A-A') zu drehen;

    eine Plattform (102), die unter Verwendung von zumindest einem von einer Haftpaste oder einem Haftfilm haftend mit der Gebläseschaufel (101) verklebt ist, wobei die Plattform (102) eine erste Plattformhälfte (104) und eine zweite Plattformhälfte (106) umfasst;

    wobei die erste Plattformhälfte (104) ein erstes Aufnahmeelement (120) an einem zweiten Ende der ersten Plattformhälfte (104) gegenüber einem ersten Ende der ersten Plattformhälfte (104) umfasst;

    wobei die zweite Plattformhälfte (106) einen Haken (112), der an einem ersten Ende der zweiten Plattformhälfte (106) gebildet ist, und ein zweites Aufnahmeelement (118) an einem zweiten Ende der zweiten Plattformhälfte (106) gegenüber dem ersten Ende der zweiten Plattformhälfte (104) umfasst;

    dadurch gekennzeichnet, dass die erste Plattformhälfte (104) einen Schlitz (114) umfasst, der an dem ersten Ende der ersten Plattformhälfte (104) gebildet ist, wobei der Schlitz (114) den Haken (112) in Eingriff nimmt; und

    einen Stift (116), der das erste Aufnahmeelement (120) und das zweite Aufnahmeelement (118) durchläuft.


     
    2. Gasturbinentriebwerk nach Anspruch 1, wobei die Gebläseschaufel (101) eine Rippe (132) umfasst, die konfiguriert ist, um die Plattform (102) in zumindest einer von einer axialen Richtung oder einer radialen Richtung zu befestigen.
     
    3. Gasturbinentriebwerk nach Anspruch 2, ferner umfassend ein Montageelement, das durch die Plattform (102) definiert ist und einer Kontur der Rippe (132) folgt.
     
    4. Gasturbinentriebwerk nach Anspruch 1, 2 oder 3, ferner umfassend Indikatoröffnungen (150), die durch die Plattform (102) gebildet und konfiguriert sind, um Haftabdeckung zwischen der Plattform (102) und der Gebläseschaufel (101) anzugeben.
     
    5. Gasturbinentriebwerk nach einem vorhergehenden Anspruch, wobei die Plattform (102) spritzgegossen oder formgepresst ist.
     
    6. Gasturbinentriebwerk nach einem vorhergehenden Anspruch, ferner umfassend eine Dichtung (141), die mit der Plattform (102) verklebt ist.
     
    7. Gasturbinentriebwerk nach einem vorhergehenden Anspruch, wobei die Plattform (102) zumindest eines von einem Thermokunststoff oder einem Duroplast mit Kohle- oder Glasfaserverstärkung umfasst.
     


    Revendications

    1. Moteur à turbine à gaz (20), comprenant :

    une section de ventilateur (22) comprenant une pale de ventilateur (101) conçue pour tourner autour d'un axe (A-A') ;

    une plate-forme (102) liée de manière adhésive à la pale de ventilateur (101) à l'aide d'au moins l'un d'une colle adhésive ou d'un film adhésif, dans lequel la plate-forme (102) comprend une première moitié de plate-forme (104) et une seconde moitié de plate-forme (106) ;

    la première moitié de plate-forme (104) comprenant un premier élément récepteur (120) au niveau d'une seconde extrémité de la première moitié de plate-forme (104) en face d'une première extrémité de la première moitié de plate-forme (104) ;

    la seconde moitié de plate-forme (106) comprenant un crochet (112) formé au niveau d'une première extrémité de la seconde moitié de plate-forme (106) et un second élément récepteur (118) au niveau d'une seconde extrémité de la seconde moitié de plate-forme (106) en face de la première extrémité de la seconde moitié de plate-forme (104) ;

    caractérisé en ce que la première moitié de plateforme (104) comprend une fente (114) formée au niveau de la première extrémité de la première moitié de plate-forme (104), la fente (114) venant en prise avec le crochet (112) ; et

    une goupille (116) traversant le premier élément récepteur (120) et le second élément récepteur (118).


     
    2. Moteur à turbine à gaz selon la revendication 1, dans lequel la pale de ventilateur (101) comprend une crête (132) conçue pour fixer la plate-forme (102) dans au moins l'une parmi une direction axiale ou une direction radiale.
     
    3. Moteur à turbine à gaz selon la revendication 2, comprenant en outre un élément de montage défini par la plate-forme (102) et suivant un contour de la crête (132).
     
    4. Moteur à turbine à gaz selon la revendication 1, 2 ou 3, comprenant en outre des orifices témoins (150) formés à travers la plate-forme (102) et conçus pour indiquer la couverture adhésive existante entre la plate-forme (102) et la pale de ventilateur (101).
     
    5. Moteur à turbine à gaz selon une quelconque revendication précédente, dans lequel la plate-forme (102) est moulée par injection ou moulée par compression.
     
    6. Moteur à turbine à gaz selon une quelconque revendication précédente, comprenant en outre un joint (141) lié à la plate-forme (102).
     
    7. Moteur à turbine à gaz selon une quelconque revendication précédente, dans lequel la plate-forme (102) comprend au moins l'un parmi un thermoplastique ou un thermodurcissable avec renfort en carbone ou fibre de verre.
     




    Drawing





























    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description