(19)
(11)EP 3 352 507 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
04.11.2020 Bulletin 2020/45

(21)Application number: 18152347.3

(22)Date of filing:  18.01.2018
(51)International Patent Classification (IPC): 
H04W 48/16(2009.01)
H04W 72/04(2009.01)

(54)

METHOD AND APPARATUS FOR DETERMINING COMMUNICATION BEAM

VERFAHREN UND VORRICHTUNG ZUR BESTIMMUNG EINES KOMMUNIKATIONSSTRAHLS

PROCÉDÉ ET APPAREIL PERMETTANT DE DÉTERMINER UN FAISCEAU DE COMMUNICATION


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 18.01.2017 CN 201710035919

(43)Date of publication of application:
25.07.2018 Bulletin 2018/30

(73)Proprietor: Beijing Xiaomi Mobile Software Co., Ltd.
Beijing 100085 (CN)

(72)Inventor:
  • HUANG, Jiangtao
    Beijing, Beijing 100085 (CN)

(74)Representative: dompatent von Kreisler Selting Werner - Partnerschaft von Patent- und Rechtsanwälten mbB 
Deichmannhaus am Dom Bahnhofsvorplatz 1
50667 Köln
50667 Köln (DE)


(56)References cited: : 
WO-A1-2016/165128
US-A1- 2013 039 345
US-A1- 2013 155 847
US-A1- 2009 285 159
US-A1- 2013 051 364
US-A1- 2013 258 885
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    TECHNICAL FIELD



    [0001] The present disclosure relates to the field of computer communication technology, and more particularly, to a method and an apparatus for determining a communication beam.

    BACKGROUND



    [0002] With the development of communication technology, a wireless communication network gradually evolves towards a 5G (Fifth Generation) network, that is, the fifth generation of wireless communication system. The key of the 5G network communication is the usage of beamforming technology, which has a communication process basically as follows: a transmitting terminal, such as a base station gNB, uses a large-scale antenna array to align with a position where a receiving terminal, such as user equipment UE is located, sends a high-frequency beam propagated along a specific direction; after receiving the above beam, the receiving terminal establishes a communication connection with the transmitting terminal, so as to transmit and receive information through the above beam.

    [0003] In the related art, when a plurality of terminals exist in a coverage area of a beam, all these terminals are likely to select the beam to access a network, which causes overload of the beam and thus a corresponding channel is congested, thereby reducing information transmission quality of the terminal and affecting user experience of the terminal.

    [0004] EP 3 280 068 A1 discloses an information transmission method used in a millimeter-wave high-frequency-band cellular communications system. A user terminal (UE) receives a beam indication signal on at least one beam that is sent by a base station, wherein the beam indication signal carries identity information of the beam on which the signal is located. The UE then proceeds to select, among the received beams, a primary beam to be used by the base station to send a downlink signal, which is based on signal quality of the at least one beam.

    [0005] US 2013/258885 A1 discloses an event-driven beam selection method. If UpLink beam feedback information is not received from the base station within a preset time period, beam selection is carried out by measuring the signal intensity of DownLink reference signals.

    [0006] US 2013/039345 A1 relates to the determination of a preferred transmission/reception beam pair of preferred transmission beams and further the detection of any beam selection error such that optimal beam direction can be ensured.

    [0007] US 2013/051364 A1 is directed to a beam selection method comprising a transmitting stage and a receiving stage, wherein the selection is based on channel information of at least one transmission beam from a receiving stage.

    [0008] US 2009/285159 A1 describes techniques for selecting a serving sector for a terminal based on server selection information which may be set based on the load of the sector. The terminal may also determine received signal qualities of the sectors and then select one of the sectors as a serving sector based on the server selection information and the received signal qualities of the sectors.

    SUMMARY



    [0009] In view of this, the present disclosure provides a method and an apparatus for determining a communication beam, such that user equipment may reasonably select the communication beam, thereby improving information transmission performance of the user equipment, as defined by the independent claims.

    [0010] The technical solutions provided by the embodiments of the present disclosure may have the following advantageous effect.

    [0011] In the present disclosure, when the user equipment receives a plurality of communication beams, the beam information of each received beam is acquired, so that the user equipment can reasonably select a target beam for accessing the network according to the above beam information, thus ensuring reliability of network connection of the user equipment, enhancing information transmission performance, and improving user experience of the user equipment.

    [0012] In the present disclosure, the user equipment may acquire the beam information of the received beams when the user equipment is ready to access a network; when the user equipment is in an idle state; when the user equipment receives beam scheduling information sent by a transmitting terminal of a first beam in case of accessing a network through the first beam; when a signal intensity of a first beam is lower than a preset intensity threshold value, or when a signal descending rate of the first beam is higher than a preset rate threshold value, in case of the user equipment accessing a network through the first beam; or under other triggering conditions, so as to minimize the power consumption of detection of the beam, select the most reasonable communication beam to connect to the network timely and effectively as far as possible, and improve the network information transmission performance of the user equipment.

    [0013] In the present disclosure, after detecting a beam identification and a signal intensity of each received beam, the signal intensities of the received beams may be ordered in a preset order to obtain an intensity ordered list, which facilitates the user equipment to select the target beam more quickly, and improves the efficiency of selecting the communication beam.

    [0014] In the present disclosure, when the user equipment is ready to access a network, the user equipment may select a received beam with a largest signal intensity as a target beam according to the intensity ordered list, to ensure the reliability of the network connection of the user equipment.

    [0015] In the present disclosure, when determining the target beam, the selection of the beam may be performed by considering the current state information of the user equipment in combination with the above intensity ordered list, so as to avoid channel congestion of the communication beam due to that a plurality of user equipment access the network through the same communication beam, ensure that the user equipment has excellent information transmission performance, and further improve the user experience.

    [0016] In the present disclosure, if the user equipment fails to select the first beam with the currently strongest signal to connect the network, a second beam with a signal intensity next to the first beam may be determined as a received beam with a highest priority according to the intensity ordered list, such that the user equipment determines the second beam as the target beam, thus ensuring that the user equipment smoothly accesses the network, and enhancing the network connection experience of the user equipment.

    [0017] In the present disclosure, if the current data transmission state of the user equipment through the first beam is poor, the user equipment may reselect the target beam for data transmission according to the above-described intensity ordered list, thus ensuring the data transmission performance of the user equipment, and enhancing the information transmission experience of the user equipment.

    [0018] In the present disclosure, when reselecting the target beam according to the above-described intensity ordered list, the user equipment may automatically re-determine the second beam with a signal intensity next to the first beam as the target beam, thus improving the intelligence degree of the user equipment for selecting the communication beam.

    [0019] In the present disclosure, when reselecting the target beam according to the above-described intensity ordered list, the user equipment may also receive a set of beams to be selected sent by a transmitting terminal of the first beam. Since the beam identification of the communication beam with excellent network performance currently is recorded in the set of beams to be selected, the user equipment may determine the received beam with excellent network performance currently as the target beam after matching the above intensity ordered list according to the above set of beams to be selected, thus improving the selection efficiency and effectiveness of the communication beam.

    [0020] In the present disclosure, after the user equipment selects the first beam, if it is found that it is unable to connect to the network through the first beam or the data transmission state is poor, even if the first beam is detected as a beam with the currently strongest signal, it is rejected to determine the first beam as the received beam with the highest priority within a preset time range upon re-determining the priority of the first beam, which effectively prevents the user equipment from selecting the first beam as the target beam, enhances the validity of the beam selection, improves the intelligent degree of the user equipment, and enhances the user experience of the user equipment.

    [0021] It is to be understood that both the foregoing general description and the following detailed description are exemplary only and are not restrictive of the present disclosure.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0022] The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments consistent with the present disclosure and, together with the description, serve to explain the principles of the present disclosure.

    Fig. 1-1 is a schematic diagram of a scenario of determining a communication beam according to an exemplary aspect of the present disclosure;

    Fig. 1-2 is a schematic diagram of another scenario of determining a communication beam according to an exemplary aspect of the present disclosure;

    Fig. 2 is a flow chart of a method for determining a communication beam according to an exemplary aspect of the present disclosure;

    Fig. 3 is a flow chart of another method for determining a communication beam according to an exemplary aspect of the present disclosure;

    Fig. 4 is a flow chart of another method for determining a communication beam according to an exemplary aspect of the present disclosure;

    Fig. 5-1 is a flow chart of another method for determining a communication beam according to an exemplary aspect of the present disclosure;

    Fig. 5-2 is a flow chart of another method for determining a communication beam according to an exemplary aspect of the present disclosure;

    Fig. 6 is a flow chart of another method for determining a communication beam according to an exemplary aspect of the present disclosure;

    Fig. 7 is a flow chart of a method for determining a communication beam according to an exemplary aspect;

    Fig. 8 is a flow chart of another method for determining a communication beam according to an exemplary aspect;

    Fig. 9 is a block diagram of an apparatus for determining a communication beam according to an exemplary aspect of the present disclosure;

    Fig. 10 is a block diagram of another apparatus for determining a communication beam according to an exemplary aspect of the present disclosure;

    Fig. 11 is a block diagram of another apparatus for determining a communication beam according to an exemplary aspect of the present disclosure;

    Fig. 12 is a block diagram of another apparatus for determining a communication beam according to an exemplary aspect of the present disclosure;

    Fig. 13 is a block diagram of another apparatus for determining a communication beam according to an exemplary aspect of the present disclosure;

    Fig. 14 is a block diagram of another apparatus for determining a communication beam according to an exemplary aspect of the present disclosure;

    Fig. 15 is a block diagram of another apparatus for determining a communication beam according to an exemplary aspect of the present disclosure;

    Fig. 16 is a block diagram of another apparatus for determining a communication beam according to an exemplary aspect of the present disclosure;

    Fig. 17 is a block diagram of another apparatus for determining a communication beam according to an exemplary aspect of the present disclosure;

    Fig. 18 is a block diagram of an apparatus for determining a communication beam according to an exemplary aspect;

    Fig. 19 is a block diagram of another apparatus for determining a communication beam according to an exemplary aspect

    Fig. 20 is a structural schematic diagram of an apparatus for determining a communication beam according to an exemplary aspect; and

    Fig. 21 is a structural schematic diagram of an apparatus for determining a communication beam according to an exemplary aspect.


    DETAILED DESCRIPTION



    [0023] Reference will now be made in detail to exemplary aspects, examples of which are illustrated in the accompanying drawings. The following description refers to the accompanying drawings in which the same numbers in different drawings represent the same or similar elements unless otherwise represented. The implementations set forth in the following description of exemplary aspects do not represent all implementations consistent with the present disclosure. Instead, they arc merely examples of apparatuses and methods consistent with aspects related to the present disclosure as recited in the appended claims.

    [0024] The terms used herein are merely for describing a particular aspect, rather than limiting the present disclosure. As used in the present disclosure and the appended claims, terms in singular forms such as "a", "said" and "the" are intended to also include plural forms, unless explicitly dictated otherwise. It should also be understood that the term "and/or" used herein means any one or any possible combination of one or more associated listed items.

    [0025] It should be understood that, although it may describe information with a term first, second, or third, etc., the information is not limited by these terms. These terms are merely for distinguishing among information of the same kind. For example, without departing from the scope of the present disclosure, a first information may also be referred to as a second information. Similarly, a second information may also be referred to as a first information. Depending on the context, a term "if' as used herein can be interpreted as "when", "where" or "in response to".

    [0026] The method for determining a communication beam provided by the present disclosure is applied to a 5G network or a network communication system using a high frequency beam for communication in future. The above-mentioned high-frequency beam generally refers to a beam formed by an electromagnetic wave of a frequency band above 6 GHz. In the case of a 5G network communication system, the application scenario of the embodiments of the present disclosure is that: one user equipment may receive two or more communication beams, which may be from the same transmitting terminal, such as a 5G base station gNB, or from different transmitting terminals. Fig. 1-1 is a schematic diagram of a scenario of determining a communication beam according to an exemplary embodiment of the present disclosure. With reference to Fig. 1-1, the user equipment 100 may simultaneously detect two received beams, and the above beams are from different 5G base stations 200, respectively.

    [0027] In the aspects of the present disclosure, the involved execution subject may include a base station serving as a beam transmitting terminal and user equipment UE serving as a beam receiving terminal. In the aspects, the above beam transmitting terminal may be a base station, a sub base station, and the like. The user equipment UE may be a user terminal, a user node, a mobile terminal, a tablet computer, or other electronic devices with a mobile communication function. In a particular implementing process, the base station and the user equipment are independent from each other while communicated with each other, and they achieve the technical solutions provided by the embodiments of the present disclosure together. Hereinafter, a method for determining a communication beam provided by the present disclosure will be described by taking the user equipment as an example.

    [0028] Fig. 2 is a flow chart of a method for determining a communication beam according to an exemplary aspect. With reference to Fig. 2, the method is applied to user equipment, and may include following steps.

    [0029] In step 11, when at least two received beams are detected, beam information of the received beams is acquired.

    [0030] In the present disclosure, when one user equipment receives two or more communication beams at the same time, beam information of each received beam may be determined. In the present disclosure, each of the above-described beam information at least includes: a beam identification, and a signal intensity of the beam. In the aspect, the beam identification of the received beam may be determined based on a frequency or a wavelength of the beam.

    [0031] With respect to the timing of acquiring the information of the received beam, the user equipment may maintain the detection of each received beam under an idle state. For example, the signal intensity of each received beam is periodically detected according to a preset time period, such as a preset time interval of 2s, 3s and etc.

    [0032] The user equipment may also detect the beam information of each received beam under at least one of the following first, second and third triggering conditions.

    [0033] The first triggering condition refers to: when the user equipment is ready to access the network.

    [0034] For example, when the user equipment sends a network connection request through a randomly selected received beam, the detection of the received beam is triggered.

    [0035] The second triggering condition refers to: in case of accessing a network through a first beam, when the user equipment receives beam scheduling information sent by a transmitting terminal of the first beam. The beam scheduling information is used to indicate the user equipment to measure the signal intensities of beams of other frequency points.

    [0036] The user equipment in the 5G network supports the scheduling of the 5G base station gNB. That is, the user equipment may receive the beam scheduling information sent by the transmitting terminal (i.e., the 5G base station) of the first beam, when accessing the network through the first beam. The beam scheduling information is used to indicate that the user equipment may access the network through beams of other frequency points, to allow the user equipment to measure the signal intensities of the beams of other frequency points.

    [0037] The third triggering condition refers to: in case of the user equipment accessing a network through a first beam, when a signal intensity of the first beam is lower than a preset intensity threshold value, or when a signal descending rate of the first beam is higher than a preset rate threshold value. For example, when the user equipment accesses the network through the first beam, it is detected that the signal intensity of the first beam is rapidly reduced below the preset intensity threshold value in a very short time.

    [0038] Fig. 3 is a flow chart of another method for determining a communication beam according to an exemplary aspect. The above step 11 may include the following steps.

    [0039] In step 111, a signal intensity and a beam identification of each of the received beams are acquired.

    [0040] In a 5G network, the user equipment may detect the frequency point of each received beam according to a built-in antenna array, whereby the beam identification of the received beam may be represented as a corresponding wavelength or frequency of the frequency point. The user equipment may determine a signal intensity of each received beam through a built-in power monitoring module.

    [0041] In the present disclosure, the correspondence relationship between the beam identifications and the signal intensities of the received beams may be recorded using a beam information list, as shown in Table 1:
    Table 1
    Beam identificationSignal intensity
    f1 P1
    f2 P2
    f3 P3


    [0042] Table 1 illustratively shows the relationship between the beam identifications and the signal intensities of three received beams. The beam identification of each received beam is represented by the frequency f of the frequency point of the received beam.

    [0043] In step 112, the signal intensities of the received beams are arranged in a preset order, to obtain an intensity ordered list.

    [0044] After the signal intensity of each received beam is determined, the signal intensity of each received beam may be ordered according to a preset order, for example, a descending order (from large to small) or an ascending order (from small to large). The signal intensity of each received beam is ordered so as to obtain the intensity ordered list.

    [0045] By way of example, it is assumed that the three received beams as shown in Table 1 are arranged according to the descending order of the signal intensities, then the obtained intensity ordered list is as shown in Table 2.
    Table 2
    Sequence number of intensityBeam identificationSignal intensity
    1 f2 P2
    2 f1 P1
    3 f3 P3


    [0046] In step 12, a target beam is selected according to the beam information of the received beams.

    [0047] In an aspect of the present disclosure, when the user equipment is ready to access the network, a received beam with a largest signal intensity may be determined as a target beam directly according to the above intensity ordered list of the received beams. As shown in Table 2, the received beam with the beam identification of f2 is determined as the target beam, thus ensuring the reliability of the network connection.

    [0048] In another aspect of the present disclosure, Fig. 4 is refereed to. Fig. 4 is a flow chart of another method for determining a communication beam according to an exemplary aspect of the present disclosure. The above step 12 may include the following steps.

    [0049] In step 121, current state information of the user equipment is determined.

    [0050] In the present disclosure, the current state information of the user equipment may be network connection state information or data transmission state information.

    [0051] The network connection state information of the user equipment may be acquired during the process that the user equipment determines a beam to be selected to access the network. The above network connection state information may include: network connection success and network connection failure.

    [0052] When the user equipment utilizes the selected beam for data transmission, data transmission state information may be acquired. The above data transmission state information is used to indicate a communication quality of the data transmission by the user equipment through the selected beam, which may be represented by a data transmission error probability or a preset level, such as good, moderate, poor, or the like.

    [0053] In the aspects of the present disclosure, current state information of the user equipment may be detected in at least two following cases.

    [0054] In the first case, Fig. 5-1 referred to. Fig. 5-1 is a flow chart of another method for determining a communication beam according to an exemplary aspect. The above step 121 may be specifically embodied as follows.

    [0055] In step 121-1, when the user equipment selects a first beam with a currently strongest signal according to the intensity ordered list to connect a network, network connection state information of the user equipment is determined.

    [0056] Still taking the above table 2 as an example, the beam identification of the above first beam is f2.

    [0057] In the aspects of the present disclosure, when the user equipment selects a first beam with a largest signal intensity based on the above signal intensity list to connect the network, the network connection failure may occur or the network connection may be interrupted after accessing the network. For example, all responses to the network connection request continuously sent by the user equipment through the first beam are failed. At this time, it may be determined that the current network state information of the user equipment includes: the network connection failure, and the beam identification of the first beam.

    [0058] The reason of the failure of network connection may be that the accessing devices within the coverage area of the first beam are too many, resulting in an overload of the first beam, and thus the transmitting terminal of the first beam rejects another more user equipment to access the network through the first beam. Fig. 1-2 is a schematic diagram of another application scenario of determining a communication beam according to an exemplary embodiment. Referring to Fig. 1-2, there may be a plurality of user equipment UEs which are accessing or waiting to access the network within the coverage area of the first beam, resulting in the overload of the first beam.

    [0059] In the second case, Fig. 5-2 is referred to. Fig. 5-2 is a flow chart of another method for determining a communication beam according to an exemplary aspect. The above step 121 may be specifically embodied as follows.

    [0060] In step 121-2, when the user equipment transmits data through a first beam, data transmission state information of the user equipment is determined.

    [0061] In the aspects of the present disclosure, the user equipment may monitor the data transmission condition of the data transmission link in real time after selecting the first beam with the largest signal intensity to access the network according to the above signal intensity list. For example, the data transmission rate may be monitored, the case where PDU (Protocol Data Unit) CRC (Cyclic Redundancy Check) error happens may be monitored, the case where HARQ (Hybrid Automatic Repeat reQuest) feedback information is NACK may be monitored, and the like.

    [0062] In the aspect, the above Cyclic Redundancy Check is used to check whether data is altered or transmission error occurs in the data transmission process.

    [0063] The above HARQ feedback information is information fed back to the base station when it is determined whether retransmission is required according to the analysis of the PDU after the user equipment acquires the PDU, such as a downlink sub-frame, transmitted by the downlink data transmission link. The HARQ feedback information transmitted by the user equipment to the base station includes NACK or ACK. When the above HARQ feedback information is NACK, it represents that the received data is error and the retransmission of data is requested. On the contrary, when the above HARQ feedback information is ACK, it represents that the received data is correct and no retransmission of data is required.

    [0064] The current state information of data transmission through the first beam by the user equipment is determined according to the monitoring situation.

    [0065] In step 122, priorities of the received beams are determined according to the current state information of the user equipment and the intensity ordered list.

    [0066] In the present disclosure, in the application scenario described above, the user equipment not only selects the target beam simply according to the signal intensity, but also refers to the current state information in combination with the signal intensity of each received beam to determine the received beam with the highest priority currently, so as to select a more reasonable received beam for information transmission.

    [0067] Referring to Fig. 5-1, the above step 122 may include the following steps.

    [0068] In step 122-1, if the network connection state information indicates that network access fails, a second beam with a signal intensity second only to the first beam is determined as a received beam with a highest priority according to the intensity ordered list.

    [0069] If the beam identification of the first beam is f2, then the second beam having a signal intensity next to the first beam and having an identification of f1 is determined as a received beam with a highest priority, according to the above Table 2.

    [0070] Correspondingly, referring to Fig. 5-2, the above step 122 may include the following steps.

    [0071] In step 122-2, if the data transmission state information indicates that a current data transmission state is lower than a preset threshold value, priorities of the received beams are re-determined according to the intensity ordered list.

    [0072] For example, when the user equipment detects that the number of times of consecutive PDU CRCs exceeds a preset threshold value when the data is transmitted through the first beam; or, when the user equipment detects that the number of times of transmitting the NACK within a preset time period exceeds a preset threshold value, it may be determined that the current data transmission state is poor and the priority of the first beam needs to be re-determined.

    [0073] In step 122-2, the re-determining the priorities of the received beams according to the intensity ordered list includes at least two the following implementation manners.

    [0074] In the first manner, if the signal intensity of the first beam is still the largest, the user equipment may determine a second beam with a signal intensity second only to the first beam as the received beam with a currently highest priority according to the intensity ordered list. This manner is similar to the step 122-1 described above, which will not be repeated herein.

    [0075] In the second manner, Fig. 6 is referred to. Fig. 6 is a flow chart of another method for determining a communication beam according to an exemplary aspect. The re-determining the priorities of the received beams according to the intensity ordered list in step 122-2 may include the following steps.

    [0076] In step 122-21, a set of beams to be selected sent by a transmitting terminal of the first beam is received.

    [0077] The above-described set of beams to be selected includes a part or all of the communication beam identifications detected by the transmitting terminal of the first beam. The communication beam represented by the communication beam identification described above may be a beam whose channel is unobstructed currently.

    [0078] Although the data transmission state through the first beam currently is poor, the user equipment may still receive data sent by the transmitting terminal of the first beam, such as the base station A, via the downlink data transmission link of the first beam.

    [0079] In the embodiments of the present disclosure, the transmitting terminal of the first beam may actively transmit the set of beams to be selected to the user equipment when monitoring that the data transmission state for the user equipment is poor.

    [0080] In particular, the transmitting terminal of the first beam may monitor the data transmission situation of each user equipment in the data transmission link. For example, the transmitting terminal of the first beam may determine the data transmission state according to the transmission situation of the Protocol Data Unit PDU for the user equipment, or the situation of the received NACK information.

    [0081] It is assumed that the 5G base station A weighs the above data transmission state through the number of times of occurring PDU CRC errors during the data transmission. When the number of times of occurring consecutive CRC errors of the above PDU, such as the downlink sub-frame, exceeds a preset number of times, beam identifications of a group of beams are acquired according to a preset network layout protocol, and a set of beams to be selected is formed and transmitted to the user equipment through the first beam for the user equipment to select available beams therefrom.

    [0082] In another aspect of the present disclosure, the transmitting terminal of the first beam may also send a set of beams to be selected to the user equipment in response to a request from the user equipment.

    [0083] For example, when detecting that the number of times of occurring the PDU CRC errors in the uplink data transmission link carried by the first beam exceeds the preset threshold value, the user equipment may send a beam replacing request to the transmitting terminal, such as the base station A, of the first beam. After receiving the above-mentioned beam replacing request sent by the user equipment, the base station A may acquire and transmit the set of beams to be selected according to the above method.

    [0084] In step 122-22, the intensity ordered list is matched according to the set of beams to be selected, to obtain a matching result.

    [0085] It is assumed that the set of beams to be selected M acquired by the user equipment from the transmitting terminal of the first beam is represented as {f3, f4, f5}.

    [0086] The above-mentioned intensity ordered list is shown as Table 2. Then, Table 2 is matched according to the set M, and the outputted matching result is f3.

    [0087] It is to be noted that in another embodiment of the present disclosure, the above matching result may also include 0 or at least two beam identifications.

    [0088] In step 122-23, a received beam with a currently highest priority is determined based on the matching result.

    [0089] In one aspect, if only one beam identification, such as f3, is included in the above matching result, the received beam represented by the beam identification f3 is determined as the beam with the highest priority currently.

    [0090] In another aspect, if the above matching result includes at least two beam identifications, including, for example, f1 and f3, according to the intensity ordered list as shown in Table 2, since the signal intensity of the received beam f1 is greater than that of the received beam f3, the received beam represented by f1 is determined as the beam with the highest priority currently.

    [0091] In addition, in another aspect of the present disclosure, when the user equipment detects a failure of the network connection or a poor data transmission state under the first beam, the step 122 may further include the following step.

    [0092] If the first beam is the received beam with a currently strongest signal, it is rejected to determine the first beam as the received beam with the highest priority within a preset time range.

    [0093] In an aspect, the above preset time range may be a preset time period determined empirically, or a time range determined based on a data link load condition of the first beam. In this way, it is avoided that the user equipment selects the first beam as the target beam to access the network when the data transmission link of the first beam is congested, and on the basis of considering the signal intensities of the accessed beams, it also ensures that the user equipment effectively bypasses the communication beam whose corresponding channel is congested, thereby enhancing the user experience of the user equipment.

    [0094] In step 123, a received beam with a highest priority is selected as the target beam.

    [0095] In step 13, information is transmitted by using the target beam.

    [0096] It can be seen that in the present disclosure, when the user equipment may simultaneously receive a plurality of communication beams, in one case, the user equipment may select the first beam with the strongest signal as the target beam for accessing the network according to the signal intensity information of each detected received beam, to ensure a reliable connection.

    [0097] In another case, if the user equipment selects the first beam with the strongest signal but fails to access the network, or if the data transmission state is poor although the network is successfully accessed, the most reasonable communication beam may be reselected for the user equipment according to the current state information in combination with the intensity ordered list, to ensure the user equipment smoothly accessing the network and reliability of the data transmission, thereby enhancing the user experience of the user equipment.

    [0098] Correspondingly, the present disclosure also provides a method for determining a communication beam, applied in a beam transmitting terminal. In the 5G network, a transmitting terminal, such as the 5G base station gNB, of the beam is provided with a large-scale antenna array. By adjusting the above-mentioned large-scale antenna array, the high-frequency electromagnetic waves may be propagated in a specific direction. That is, a communication beam is formed through the beamforming technique, to achieve directional sending and receiving of the information.

    [0099] Fig. 7 shows a method for determining a communication beam according to an exemplary aspect. Referring to Fig. 7, the method may include the following steps.

    [0100] In step 21, a network connection request sent from user equipment through a first beam is received, to determine a current load of the first beam.

    [0101] Corresponding to the step 121-1 in above Fig. 5-1, after selecting the first beam, the user equipment may send a network connection request to a transmitting terminal, such as a 5G base station A, of the first beam through the first beam, so as to request to establish a communication connection with a 5G base station A through the first beam.

    [0102] Upon reception of the above network connection request, the 5G base station A detects a current load condition of the first beam to determine whether the current load of the first beam exceeds a preset threshold value. If the current load of the first beam exceeds the preset threshold value, step 22 is performed; otherwise, step 23 is performed.

    [0103] In step 22, if the current load of the first beam exceeds the preset threshold value, the network connection request is rejected.

    [0104] As shown in Fig. 1-2, when the user equipment sends a network connection request through the first beam, it is possible that a plurality of user equipment have accessed within the current coverage area of the first beam, causing overload of the first beam. If another more equipment accesses, the information transmission rate will be affected. Therefore, in this case, the 5G base station A may reject the above network connection request.

    [0105] In step 23, if the current load of the first beam does not exceed the preset threshold value, a communication connection is established between the transmitting terminal and the user equipment through the first beam.

    [0106] On the contrary, when the 5G base station A determines that the channel of the first beam has an excellent transmission performance currently and no congestion occurs, the above network connection request may be accepted.

    [0107] Fig. 8 shows another method for determining a communication beam according to an exemplary aspect. Referring to Fig. 8, when the user equipment accesses the transmitting terminal through a first beam, the method may further include the following steps.

    [0108] In step 24, when a data transmission state of the user terminal through a data transmission link of the first beam is lower than a preset threshold value, a load condition of each beam is detected.

    [0109] Corresponding to one case of the above-described step 121-2, after the user equipment accesses the network through the first beam, the transmitting terminal, such as the 5G base station A, of the first beam may monitor a data transmission state for the user equipment. The data transmission state may include a data transmission state of an uplink data transmission link and that of a downlink data transmission link. In the embodiments of the present disclosure, the uplink data transmission link refers to a data transmission link through which data is transmitted from the user equipment to the transmitting terminal, such as the 5G base station, of the communication beam; while the downlink data transmission link refers to a data transmission link through which data is transmitted from the transmitting terminal, such as the 5G base station, of the communication beam to the user equipment.

    [0110] As described above, in the pects of the present disclosure, the transmitting terminal of the first beam may determine the data transmission state of the first beam for the user equipment according to the condition of occurring PDU CRC error or the condition of receiving NACK information.

    [0111] When the above data transmission state is lower than the preset threshold value, the detectable load condition of each communication beam may be acquired according to a preset network layout protocol.

    [0112] In step 25, a set of beams to be selected consisting of a group of beam identifications of available beams is acquired according to the load condition of each beam.

    [0113] The transmitting terminal of the first beam may determine which beams are excellent in data transmission performance currently, i.e., being available beams, according to the load condition of each communication beam, and then generate a set of beams to be selected, such as the above set M according to the beam identifications of the communication beams with superior data transmission performance.

    [0114] In step 26, the set of beams to be selected is sent to the user equipment, such that the user equipment reselects a target beam according to the set of beams to be selected.

    [0115] After the set of beams to be selected M is determined, the transmitting terminal, such as the 5G base station A, of the first beam sends the set of beams to be selected M to the user equipment through the first beam, for the user equipment to select the target beam therefrom.

    [0116] With respect to each of the foregoing method aspects, for the sake of simplicity, it is described as a series of action combinations, but those skilled in the art will recognize that the present disclosure is not limited by the sequence of actions described, since according to the present disclosure, some steps may be performed in other orders or may be performed simultaneously.

    [0117] It can be seen that through the method for determining the communication beam provided by the present disclosure, congestion of a certain communication beam may be effectively avoided, thus improving the transmission performance of the communication beam. In addition, when a communication beam currently accessed by one user equipment is congested, it is also possible to acquire the beam identifications of other communication beams with excellent performance and inform them to the user equipment, such that the user equipment may reselect the communication beam targetedly, to ensure the data sending and receiving performance of the user equipment and enhance the user experience.

    [0118] Corresponding to the above aspect of an application function implementing method, the present disclosure also provides aspects of an application function implementing apparatus and a corresponding terminal.

    [0119] Fig. 9 is a block diagram of an apparatus for determining a communication beam according to an exemplary aspect, which may be provided in user equipment. With reference to Fig. 9, the apparatus may include: a beam information acquiring module 31, a beam selecting module 32 and an information transmitting module 33.

    [0120] The beam information acquiring module 31 is configured to, when at least two received beams are detected, acquire beam information of the received beams.

    [0121] In the aspects of the present disclosure, the beam information acquiring module 31 may acquire the beam information of the received beams under at least one of following triggering conditions:

    when the user equipment is ready to access a network;

    when the user equipment is in an idle state;

    when the user equipment receives beam scheduling information sent by a transmitting terminal of a first beam in case of accessing a network through the first beam; and

    when a signal intensity of a first beam is lower than a preset intensity threshold value, or when a signal descending rate of the first beam is higher than a preset rate threshold value, in case of the user equipment accessing a network through the first beam.



    [0122] The beam selecting module 32 is configured to select a target beam according to the beam information of the received beams.

    [0123] The information transmitting module 33 is configured to transmit information by using the target beam.

    [0124] Fig. 10 is a block diagram of another apparatus for determining a communication beam according to an exemplary aspect. Referring to Fig. 10, on the basis of the apparatus aspect as shown in Fig. 9, the beam information acquiring module 31 may include: a detecting sub-module 311 and an ordering sub-module 312.

    [0125] The detecting sub-module 311 is configured to acquire a signal intensity and a beam identification of each of the received beams.

    [0126] The ordering sub-module 312 is configured to arrange the signal intensities of the received beams in a preset order, to obtain an intensity ordered list.

    [0127] Fig. 11 is a block diagram of another apparatus for determining a communication beam according to an exemplary aspect. Referring to Fig. 11, on the basis of the apparatus embodiment as shown in Fig. 9, the beam selecting module 32 may include a first selecting sub-module 321.

    [0128] The first selecting sub-module 321 is configured to select a received beam with a largest signal intensity as the target beam according to the intensity ordered list.

    [0129] Fig. 12 is a block diagram of another apparatus for determining a communication beam according to an exemplary aspect. Referring to Fig. 12, on the basis of the apparatus embodiment as shown in Fig. 9, the beam selecting module 32 may include: a state information determining sub-module 322, a priority determining sub-module 323 and a second selecting sub-module 324.

    [0130] The state information determining sub-module 322 is configured to determine current state information of the user equipment.

    [0131] The priority determining sub-module 323 is configured to determine priorities of the received beams according to the current state information of the user equipment and the intensity ordered list.

    [0132] The second selecting sub-module 324 is configured to select a received beam with a highest priority as the target beam.

    [0133] Fig. 13 is a block diagram of another apparatus for determining a communication beam according to an exemplary aspect. Referring to is referred to, on the basis of the apparatus embodiment as shown in Fig. 12, the state information determining sub-module 322 may include a connecting state determining unit 322-1.

    [0134] The connecting state determining unit 322-1 is configured to, when the user equipment selects a first beam with a currently strongest signal according to the intensity ordered list to connect a network, determine network connection state information of the user equipment.

    [0135] The priority determining sub-module 323 may include a first determining unit 323-1.

    [0136] The first determining unit 323-1 is configured to, when the network connection state information indicates that network access fails, determine a second beam with a signal intensity second only to the first beam as a received beam with a highest priority according to the intensity ordered list.

    [0137] Fig. 14 is a block diagram of another apparatus for determining a communication beam according to an exemplary aspect. Referring to Fig. 14, on the basis of the apparatus aspect as shown in Fig. 12, the state information determining sub-module 322 may include a transmission state determining unit 322-2.

    [0138] The transmission state determining unit 322-2 is configured to, when the user equipment transmits data through a first beam, determine data transmission state information of the user equipment.

    [0139] The priority determining sub-module 323 may include a second determining unit 323-2.

    [0140] The second determining unit 323-2 is configured to, when the data transmission state information indicates that a current data transmission state is lower than a preset threshold value, re-determine the priorities of the received beams according to the intensity ordered list.

    [0141] Fig. 15 is a block diagram of another apparatus for determining a communication beam according to an exemplary aspect. Referring to Fig. 15, on the basis of the apparatus aspect as shown in Fig. 14, the second determining unit 323-2 may include a first determining sub-unit 323-21.

    [0142] The first determining sub-unit 323-21 is configured to determine a second beam with a signal intensity second only to the first beam as a received beam with a currently highest priority according to the intensity ordered list.

    [0143] Fig. 16 is a block diagram of another apparatus for determining a communication beam according to an exemplary aspect. Referring to Fig. 16, on the basis of the apparatus aspect as shown in Fig. 14, the second determining unit 323-2 may include: a receiving sub-unit 323-22, a matching sub-unit 323-23 and a second determining sub-unit 323-24.

    [0144] The receiving sub-unit 323-22 is configured to receive a set of beams to be selected sent by a transmitting terminal of the first beam.

    [0145] The matching sub-unit 323-23 is configured to match the intensity ordered list according to the set of beams to be selected, to obtain a matching result.

    [0146] The second determining sub-unit 323-24 is configured to determine a received beam with a currently highest priority based on the matching result.

    [0147] Fig. 17 is a block diagram of another apparatus for determining a communication beam according to an exemplary aspect. Referring to Fig. 17, on the basis of the apparatus aspects as shown in Fig. 13 and Fig. 14, the priority determining sub-module 323 may further include a third determining unit 323-3.

    [0148] The third determining unit 323-3 is configured to, when the first beam is still the received beam with the currently strongest signal, reject to determine the first beam as the received beam with the highest priority within a preset time range.

    [0149] Correspondingly, Fig. 18 is referred to. Fig. 18 is a block diagram of an apparatus for determining a communication beam according to an exemplary aspect, provided in a beam transmitting terminal. The apparatus may include: a first load detecting module 41, a first network connection response module 42 and a second network connection response module 43.

    [0150] The first load detecting module 41 is configured to receive a network connection request sent from user equipment through a first beam, to determine a current load of the first beam.

    [0151] The first network connection response module 42 is configured to, if the current load of the first beam exceeds a preset threshold value, reject the network connection request.

    [0152] The second network connection response module 43 is configured to, if the current load of the first beam does not exceed the preset threshold value, establish a communication connection between the transmitting terminal and the user equipment through the first beam.

    [0153] Fig. 19 is a block diagram of an apparatus for determining a communication beam according to an exemplary aspect. Referring to Fig. 19, on the basis of the apparatus embodiment as shown in Fig. 18, the above apparatus may further include: a second load detecting module 44, a beam-to-be-selected information determining module 45, and a beam-to-be-selected information sending module 46.

    [0154] The second load detecting module 44 is configured to, when a data transmission state of a user terminal through a data transmission link of the first beam is lower than a preset threshold value, detect a load condition of each beam.

    [0155] The information determining module 45 of beams to be selected is configured to, acquire a set of beams to be selected consisting of a group of beam identifications of available beams according to the load condition of each beam.

    [0156] The information sending module 46 of beams to be selected is configured to send the set of beams to be selected to the user equipment, such that the user equipment reselects the target beam according to the set of beams to be selected.

    [0157] For the aspects regarding apparatuses, since they basically correspond to the aspects regarding methods, they may be referred to the description of the method aspects regarding methods. The aspects regarding apparatuses described above are merely illustrative. The units described as separate components may be or may not be physically separate, and the components illustrated as units may be or may not be physical units, and may be at the same location, or may be distributed to multiple units over the network. A part of or the whole of the modules can be selected to achieve the objective of the technical scheme of the present disclosure as desired. One skilled in the art may understand and practice the aspects without paying any creative labor.

    [0158] Correspondingly, in one aspect, the aspect of the present disclosure provides an apparatus for determining a communication beam, including: a processor; and a memory for storing instructions executable by the processor,
    wherein the processor is configured to perform:

    when at least two received beams are detected, acquiring beam information of the received beams;

    selecting a target beam according to the beam information of the received beams; and

    transmitting information by using the target beam.



    [0159] In another aspect, the embodiment of the present disclosure provides an apparatus for determining a communication beam, including: a processor; and
    a memory for storing instructions executable by the processor,
    wherein the processor is configured to perform:

    receiving a network connection request sent from user equipment through a first beam, to determine a current load of the first beam;

    when the current load of the first beam exceeds a preset threshold value, rejecting the network connection request; and

    when the current load of the first beam does not exceed the preset threshold value, establishing a communication connection between the transmitting terminal and the user equipment through the first beam.



    [0160] Fig. 20 is a structural schematic diagram of an apparatus 2000 for determining a communication beam according to an exemplary aspect. For example, the apparatus 2000 may be user equipment, specifically a mobile phone, a computer, a digital broadcast terminal, a messaging device, a gaming console, a tablet, a medical device, exercise equipment, a personal digital assistant, a wearable device such as a smart watch, smart glasses, a smart bracelet, smart running shoes and the like.

    [0161] Referring to Fig. 20, the apparatus 2000 may include one or more of the following components: a processing component 2002, a memory 2004, a power component 2006, a multimedia component 2008, an audio component 2010, an input/output (I/O) interface 2012, a sensor component 2014, and a communication component 2016.

    [0162] The processing component 2002 typically controls overall operations of the apparatus 2000, such as the operations associated with display, telephone calls, data communications, camera operations, and recording operations. The processing component 2002 may include one or more processors 2020 to execute instructions to perform all or part of the steps in the above described methods. Moreover, the processing component 2002 may include one or more modules which facilitate the interaction between the processing component 2002 and other components. For instance, the processing component 2002 may include a multimedia module to facilitate the interaction between the multimedia component 2008 and the processing component 2002.

    [0163] The memory 2004 is configured to store various types of data to support the operation of the apparatus 2000. Examples of such data include instructions for any applications or methods operated on the apparatus 2000, contact data, phonebook data, messages, pictures, video, etc. The memory 2004 may be implemented using any type of volatile or non-volatile memory devices, or a combination thereof, such as a static random access memory (SRAM), an electrically erasable programmable read-only memory (EEPROM), an erasable programmable read-only memory (EPROM), a programmable read-only memory (PROM), a read-only memory (ROM), a magnetic memory, a flash memory, a magnetic or optical disk.

    [0164] The power component 2006 provides power to various components of the apparatus 2000. The power component 2006 may include a power management system, one or more power sources, and any other components associated with the generation, management, and distribution of power in the apparatus 2000.

    [0165] The multimedia component 2008 includes a screen providing an output interface between the apparatus 2000 and the user. In some embodiments, the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes the touch panel, the screen may be implemented as a touch screen to receive input signals from the user. The touch panel includes one or more touch sensors to sense touches, swipes, and gestures on the touch panel. The touch sensors may not only sense a boundary of a touch or swipe action, but also sense a period of time and a pressure associated with the touch or swipe action. In some aspects, the multimedia component 2008 includes a front camera and/or a rear camera. The front camera and the rear camera may receive an external multimedia datum while the apparatus 2000 is in an operation mode, such as a photographing mode or a video mode. Each of the front camera and the rear camera may be a fixed optical lens system or have focus and optical zoom capability.

    [0166] The audio component 2010 is configured to output and/or input audio signals. For example, the audio component 2010 includes a microphone ("MIC") configured to receive an external audio signal when the apparatus 2000 is in an operation mode, such as a call mode, a recording mode, and a voice recognition mode. The received audio signal may be further stored in the memory 2004 or transmitted via the communication component 2016. In some aspects, the audio component 2010 further includes a speaker to output audio signals.

    [0167] The I/O interface 2012 provides an interface between the processing component 2002 and peripheral interface modules, such as a keyboard, a click wheel, keys, and the like. The keys may include, but are not limited to, a home key, a volume key, a starting key, and a locking key.

    [0168] The sensor component 2014 includes one or more sensors to provide status assessments of various aspects of the apparatus 2000. For instance, the sensor component 2014 may detect an open/closed status of the apparatus 2000, relative positioning of components, e.g., the display and the keypad, of the apparatus 2000, a change in position of the apparatus 2000 or a component of the apparatus 2000, a presence or absence of user contact with the apparatus 2000, an orientation or an acceleration/deceleration of the apparatus 2000, and a change in temperature of the apparatus 2000. The sensor component 2014 may include a proximity sensor configured to detect the presence of nearby objects without any physical contact. The sensor component 2014 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications. In some embodiments, the sensor component 2014 may also include an accelerometer sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.

    [0169] The communication component 2016 is configured to facilitate communication, wired or wirelessly, between the apparatus 2000 and other devices. The apparatus 2000 may access a wireless network based on a communication standard, such as WiFi, 2G, or 3G, or a combination thereof. In one exemplary embodiment, the communication component 2016 receives a broadcast signal or broadcast associated information from an external broadcast management system via a broadcast channel. In one exemplary embodiment, the communication component 2016 further includes a near field communication (NFC) module to facilitate short-range communications. For example, the NFC module may be implemented based on a radio frequency identification (RFID) technology, an infrared data association (IrDA) technology, an ultra-wideband (UWB) technology, a Bluetooth (BT) technology, and other technologies.

    [0170] In exemplary aspects, the apparatus 2000 may be implemented with one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable gate arrays (FPGAs), controllers, micro-controllers, microprocessors, or other electronic components, for performing the above described methods.

    [0171] In exemplary aspects, there is also provided a non-transitory computer-readable storage medium including instructions, such as included in the memory 2004, executable by the processor 2020 in the apparatus 2000, for performing the above-described methods. For example, the non-transitory computer-readable storage medium may be a ROM, a RAM, a CD-ROM, a magnetic tape, a floppy disc, an optical data storage device, and the like.

    [0172] In the aspect, when instructions in the memory 2004 are executed by the processing component 2002, the apparatus 2000 is enabled to perform the method for determining a communication beam including:

    when at least two received beams are detected, acquiring beam information of the received beams;

    selecting a target beam according to the beam information of the received beams; and

    transmitting information by using the target beam.



    [0173] Fig. 21 is a structural schematic diagram of an apparatus 2100 for determining a communication beam according to an exemplary aspect. As shown in Fig. 21, the apparatus 2100 may be provided as a base station. Referring to Fig. 21, the apparatus 2100 includes a processing component 2122, a wireless transmitting/receiving component 2124, an antenna component 2126, and a signal processing section specific to a wireless interface. The processing component 2122 may further include one or more processors.

    [0174] One processor among the processing component 2122 may be configured to perform:

    receiving a network connection request sent from user equipment through a first beam, to determine a current load of the first beam;

    if the current load of the first beam exceeds a preset threshold value, rejecting the network connection request; and

    if the current load of the first beam does not exceed the preset threshold value, establishing a communication connection between the transmitting terminal and the user equipment through the first beam.




    Claims

    1. A method for determining a communication beam, executed by user equipment, the method comprising:

    when at least two received beams are detected, acquiring (11) beam information of the received beams, wherein the beam information at least includes a beam identification and a signal intensity of the beam;

    selecting (12) a target beam according to the beam information of the received beams; and

    transmitting (13) information by using the target beam,

    wherein the beam information of the received beams is acquired (11) under at least one of following triggering conditions:

    when the user equipment is ready to access a network;

    when the user equipment is in an idle state;

    when the user equipment receives beam scheduling information sent by a transmitting terminal of a first beam in case of accessing a network through the first beam; and

    when a signal intensity of a first beam is lower than a preset intensity threshold value, or when a signal intensity descending rate of a first beam is higher than a preset rate threshold value, in case of the user equipment accessing a network through the first beam,

    wherein the acquiring (11) the beam information of the received beams comprises:

    acquiring (111) a signal intensity and a beam identification of each of the received beams, wherein the beam identification of the received beam is determined based on a frequency or a wavelength of the beam; and

    arranging (112) the signal intensities of the received beams in a preset order, to obtain an intensity ordered list wherein the selecting (12) the target beam according to the beam information of the received beams comprises:

    determining (121) current state information of the user equipment, wherein the current state information of the user equipment includes network connection state information or data transmission state information, wherein the network connection state information indicates network connection success or network connection failure and wherein the data transmission state

    information indicates a communication quality of the data transmission by the user equipment through the selected beam;

    determining (122) priorities of the received beams according to the current state information of the user equipment and the intensity ordered list; and

    selecting (123) a received beam with a highest priority as the target beam.


     
    2. The method according to claim 1, wherein the determining (121) the current state information of the user equipment comprises:

    when the user equipment selects a first beam with a currently strongest signal according to the intensity ordered list to connect to a network, determining (121-1) network connection state information of the user equipment, and

    the determining (122) the priorities of the received beams according to the current state information of the user equipment and the intensity ordered list comprises:
    when the network connection state information indicates that network access fails, determining (122-1) a second beam with a signal intensity second only to the first beam as the received beam with the highest priority according to the intensity ordered list.


     
    3. The method according to claim 1, wherein the determining (121) the current state information of the user equipment comprises:

    when the user equipment transmits data through a first beam, determining (121-2) data transmission state information of the user equipment, and

    the determining (122) the priorities of the received beams according to the current state information of the user equipment and the intensity ordered list comprises:
    when the data transmission state information indicates that a current data transmission state is lower than a preset threshold value, re-determining (122-2) the priorities of the received beams according to the intensity ordered list.


     
    4. The method according to claim 3, wherein the re-determining (122-2) the priorities of the received beams according to the intensity ordered list comprises:
    determining (122-1) a second beam with a signal intensity second only to the first beam as the received beam with the currently highest priority according to the intensity ordered list.
     
    5. The method according to claim 3, wherein the re-determining (122-2) the priorities of the received beams according to the intensity ordered list comprises:

    receiving (122-21) a set of beams to be selected sent by a transmitting terminal of the first beam in response to a request from the user equipment through the first beam for the user equipment to select available beams therefrom, wherein the set of beams to be selected includes a part or all of the communication beam identifications detected by the transmitting terminal of the first beam;

    matching (122-22) the intensity ordered list according to the set of beams to be selected, to obtain a matching result by taking the intersection of the intensity ordered list and the set of beams to be selected; and

    determining (122-23) a received beam with a currently highest priority based on the matching result.


     
    6. The method according to claim 2, wherein the determining (122) the priorities of the received beams further comprises:
    when the first beam is a received beam with a currently strongest signal when the network connection state information indicates that network access fails, rejecting to determine the first beam as the received beam with the highest priority within a preset time range.
     
    7. The method according to claim 3, wherein the determining (122) the priorities of the received beams further comprises:
    when the first beam is a received beam with a currently strongest signal, when the data transmission state information indicates that a current data transmission state is lower than a preset threshold value, rejecting to determine the first beam as the received beam with the highest priority within a preset time range.
     
    8. An apparatus for determining a communication beam, the apparatus being a user equipment, the apparatus comprising:

    a beam information acquiring module (31) configured to, when at least two received beams are detected, acquire beam information of the received beams, wherein the beam information at least includes a beam identification and a signal intensity of the beam;

    a beam selecting module (32) configured to select a target beam according to the beam information of the received beams; and

    an information transmitting module (33) configured to transmit information by using the target beam,

    wherein the beam information acquiring module (31) is configured to acquire the beam information of the received beams under at least one of following triggering conditions:

    if the user equipment is ready to access a network;

    if the user equipment is in an idle state;

    if the user equipment is receiving beam scheduling information sent by a transmitting terminal of a first beam in case of accessing a network through the first beam; and

    when a signal intensity of a first beam is lower than a preset intensity threshold value, or when a signal intensity descending rate of the first beam is higher than a preset rate threshold value, in case of the user equipment accessing a network through the first beam,

    wherein the beam information acquiring module (31) comprises:

    a detecting sub-module (311) configured to acquire a signal intensity and a beam identification of each of the received beams, wherein the beam identification of the received beam is determined based on a frequency or a wavelength of the beam; and

    an ordering sub-module (312) configured to arrange the signal intensities of the received beams in a preset order, to obtain an intensity ordered list

    wherein the beam selecting module (32) comprises:

    a state information determining sub-module (322) configured to determine current state information of the user equipment, wherein the current state information of the user equipment includes network connection state information or data transmission state information, wherein the network connection state information indicates network connection success or network connection failure and wherein the data transmission state information indicates a communication quality of the data transmission by the user equipment through the selected beam;

    a priority determining sub-module (323) configured to determine priorities of the received beams according to the current state information of the user equipment and the intensity ordered list; and

    a second selecting sub-module (324) configured to select a received beam with a highest priority as the target beam.


     
    9. The apparatus according to claim 8, wherein the state information determining sub-module (322) comprises:

    a connecting state determining unit (322-1) configured to, if the user equipment is selecting a first beam with a currently strongest signal according to the intensity ordered list to connect a network, determine network connection state information of the user equipment, and

    the priority determining sub-module (323) comprises:
    a first determining unit (323-1) configured to, when the network connection state information indicates that network access fails, determine a second beam with a signal intensity second only to the first beam as a receiving beam with a highest priority according to the intensity ordered list.


     
    10. The apparatus according to claim 8, wherein the state information determining sub-module (322) comprises:

    a transmission state determining unit (322-2) configured to, when the user equipment transmits data through a first beam, determine data transmission state information of the user equipment, and

    the priority determining sub-module (323) comprises:
    a second determining unit (323-2) configured to, when the data transmission state information indicates that a current data transmission state is lower than a preset threshold value, re-determine priorities of the received beams according to the intensity ordered list.


     
    11. The apparatus according to claim 10, wherein the second determining unit (323-2) comprises:
    a first determining sub-unit (323-21) configured to determine a second beam with a signal intensity second only to the first beam as a receiving beam with a currently highest priority according to the intensity ordered list.
     
    12. The apparatus according to claim 10, wherein the second determining unit (323-2) comprises:

    a receiving sub-unit (323-22) configured to receive a set of beams to be selected sent by a transmitting terminal of the first beam in response to a request from the user equipment through the first beam for the user equipment to select available beams therefrom, wherein the set of beams to be selected includes a part or all of the communication beam identifications detected by the transmitting terminal of the first beam;

    a matching sub-unit (323-23) configured to match the intensity ordered list according to the set of beams to be selected, to obtain a matching result by taking the intersection of the intensity ordered list and the set of beams to be selected; and

    a second determining sub-unit (323-24) configured to determine a received beam with a currently highest priority based on the matching result.


     
    13. The apparatus according to claim 8, wherein the priority determining sub-module (323) further comprises:
    a third determining unit (323-3) configured to, when the first beam is when the network connection state information indicates that network access fails a received beam with a currently strongest signal, reject to determine the first beam as the received beam with the highest priority within a preset time range.
     
    14. An apparatus according to claim 9, wherein the priority determining sub-module (323) further is configured to, when the first beam is a received beam with a currently strongest signal, when the data transmission state information indicates that a current data transmission state is lower than a preset threshold value, reject to determine the first beam as the received beam with the highest priority within a preset time range.
     


    Ansprüche

    1. Verfahren zum Bestimmen eines Kommunikationsstrahls, das von einem Benutzergeräten durchgeführt wird, wobei das Verfahren die folgenden Schritte aufweist:

    wenn mindestens zwei empfangene Strahlen detektiert werden, Erfassen (11) von Strahleninformationen der empfangenen Strahlen, wobei die Strahleninformationen mindestens eine Strahlenidentifizierung und eine Signalintensität des Strahls aufweisen;

    Auswählen (12) eines Zielstrahls gemäß den Strahleninformationen der empfangenen Strahlen; und

    Übertragen (13) von Informationen unter Verwendung des Zielstrahls,

    wobei die Strahleninformationen der empfangenen Strahlen unter mindestens einer der folgenden Auslösebedingungen erfasst werden (11):

    wenn das Benutzergerät zum Zugriff auf ein Netzwerk bereit ist;

    wenn das Benutzergerät sich im Ruhezustand befindet;

    wenn die Benutzergerät Strahlenplanungsinformationen empfängt, die von einem Sendeterminal eines ersten Strahls gesendet werden, wenn über den ersten Strahl auf ein Netzwerk zugegriffen wird; und

    wenn eine Signalintensität eines ersten Strahls niedriger als ein voreingestellter Intensitätsschwellenwert ist, oder wenn eine Signalabfallrate eines ersten Strahls höher als ein voreingestellter Ratenschwellenwert ist, wenn das Benutzergerät über den ersten Strahl auf ein Netzwerk zugreift,
    wobei das Erfassen (11) der Strahleninformationen der empfangenen Strahlen aufweist:

    Erfassen (111) einer Signalintensität und einer Strahlenidentifikation jedes der empfangenen Strahlen, wobei die Strahlenidentifikation des empfangenen Strahls anhand einer Frequenz oder einer Wellenlänge des Strahls bestimmt wird; und

    Anordnen (112) einer Signalintensität der empfangenen Strahlen in einer voreingestellten Reihenfolge, um eine nach der Intensität geordnete Liste zu erhalten, wobei das Auswählen (12) des Zielstrahls entsprechend den Strahleninformationen der empfangenen Strahlen aufweist:

    Bestimmen (121) von aktuellen Zustandsinformationen des Benutzergeräts, wobei die aktuellen Zustandsinformationen des Benutzergeräts Netzwerkverbindungszustandsinformationen oder Datenübertragungszustandsinformationen aufweisen, wobei die Netzwerkverbindungszustandsinformationen eine erfolgreiche Netzwerkverbindung oder eine fehlgeschlagene Netzwerkverbindung angeben, und wobei die Datenübertragungszustandsinformationen eine Kommunikationsqualität der Datenübertragung durch das Benutzergerät über den ausgewählten Strahl angeben;

    Bestimmen (122) von Prioritäten der empfangenen Strahlen entsprechend den aktuellen Zustandsinformationen des Benutzergeräts und der nach der Intensität geordneten Liste; und

    Auswählen (123) eines empfangenen Strahls mit einer höchsten Priorität als den Zielstrahl.


     
    2. Verfahren nach Anspruch 1, bei welchem das Bestimmen (121) der aktuellen Zustandsinformationen des Benutzergeräts aufweist:

    Bestimmen (121-1) von Netzwerkverbindungszustandsinformationen des Benutzergeräts, wenn das Benutzergerät einen ersten Strahl mit einem aktuell stärksten Signal gemäß der nach der Intensität geordneten Liste auswählt, um eine Verbindung zu einem Netzwerk herzustellen, und

    wobei das Bestimmen (122) der Prioritäten der empfangenen Strahlen gemäß den aktuellen Zustandsinformationen des Benutzergeräts und der nach der Intensität geordneten Liste aufweist:
    wenn die Netzwerkverbindungszustandsinformationen anzeigen, dass der Netzwerkzugriff fehlschlägt, Bestimmen (122-1) eines zweiten Strahls mit einer Signalintensität, die nur dem ersten Strahl nachsteht, als den empfangenen Strahl mit der höchsten Priorität gemäß der nach der Intensität geordneten Liste.


     
    3. Verfahren nach Anspruch 1, bei welchem das Bestimmen (121) der aktuellen Zustandsinformationen des Benutzergeräts aufweist:

    wenn das Benutzergerät Daten durch einen ersten Strahl überträgt, Bestimmen (121-2) der Datenübertragungszustandsinformationen des Benutzergeräts, und

    wobei das Bestimmen (122) der Prioritäten der empfangenen Strahlen gemäß den aktuellen Zustandsinformationen des Benutzergeräts und der nach der Intensität geordneten Liste aufweist:
    wenn die Datenübertragungszustandsinformationen anzeigen, dass ein aktueller Datenübertragungszustand geringer als ein voreingestellter Schwellenwert ist, die Prioritäten der empfangenen Strahlen gemäß der nach der Intensität geordneten Liste erneut bestimmt (122-2) werden.


     
    4. Verfahren nach Anspruch 3, bei welchem das erneute Bestimmen (122-2) der Prioritäten der empfangenen Strahlen gemäß der nach der Intensität geordneten Liste aufweist:
    Bestimmen (122-1) eines zweiten Strahls mit einer Signalintensität, die nur dem ersten Strahl nachsteht, als den empfangenen Strahl mit der aktuell höchsten Priorität gemäß der nach der Intensität geordneten Liste.
     
    5. Verfahren nach Anspruch 3, wobei das erneute Bestimmen (122-2) der Prioritäten der empfangenen Strahlen gemäß der nach der Intensität geordneten Liste aufweist:

    Empfangen (122-21) einer Gruppe von auswählbaren Strahlen, die von einem Sendeterminal des ersten Strahls in Reaktion auf eine Anfrage des Benutzergeräts durch den ersten Strahl gesendet werden, so dass das Benutzergerät verfügbare Strahlen aus diesen auswählen kann, wobei die Gruppe von auswählbaren Strahlen einen Teil oder sämtliche Kommunikationsstrahlidentifikationen aufweist, welche durch das Sendeterminal des ersten Strahls detektiert wurden;

    Abgleichen (122-22) der nach der Intensität geordneten Liste entsprechend der Gruppe von auswählbaren Strahlen, um durch Bilden der Schnittmenge zwischen der nach der Intensität geordneten Liste und der Gruppe der auswählbaren Strahlen ein Übereinstimmungsergebnis zu erhalten; und

    Bestimmen (122-23) eines empfangenen Strahls mit einer aktuell höchsten Priorität basierend auf dem Übereinstimmungsergebnis.


     
    6. Verfahren nach Anspruch 2, bei welchem das Bestimmen (122) der Prioritäten der empfangenen Strahlen ferner aufweist:
    wenn der erste Strahl ein empfangener Strahl mit dem aktuell stärksten Signal ist, wenn die Netzwerkverbindungszustandsinformationen angeben, dass der Netzwerkzugriff fehlschlägt, Verweigern, innerhalb eines voreingestellten Zeitraums, des Bestimmens des ersten Strahls als den empfangenen Strahl mit der höchsten Priorität.
     
    7. Verfahren nach Anspruch 3, bei welchem das Bestimmen (122) der Prioritäten der empfangenen Strahlen ferner aufweist:
    wenn der erste Strahl ein empfangener Strahl mit dem aktuell stärksten Signal ist, wenn die Datenübertragungszustandsinformationen angeben, dass ein aktueller Datenübertragungszustand geringer als ein voreingestellter Schwellenwert ist, Verweigern, innerhalb eines voreingestellten Zeitraums, des Bestimmens des ersten Strahls als den empfangenen Strahl mit der höchsten Priorität.
     
    8. Vorrichtung zum Bestimmen eines Kommunikationsstrahls, wobei die Vorrichtung ein Benutzergerät, wobei die Vorrichtung aufweist:

    ein Strahleninformationserfassungsmodul (31), das dazu ausgebildet ist, wenn mindestens zwei empfangene Strahlen detektiert werden, Strahleninformationen der empfangenen Strahlen zu erfassen, wobei die Strahleninformationen mindestens eine Strahlidentifikation und eine Signalintensität des Strahls aufweisen;

    ein Strahlauswahlmodul (32), das dazu ausgebildet ist, einen Zielstrahl gemäß den Strahleninformationen der empfangenen Strahlen auszuwählen; und

    ein Informationsübertragungsmodul (33), das dazu ausgebildet ist, Informationen unter Verwendung des Zielstrahls zu übertragen,

    wobei das Strahleninformationserfassungsmodul (31) dazu ausgebildet ist, die Strahleninformationen der empfangenen Strahlen unter mindestens einer der folgenden Auslösebedingungen zu erfassen:

    wenn das Benutzergerät für einen Netzwerkzugriff bereit ist;

    wenn das Benutzergerät sich in einem Ruhezustand befindet;

    wenn das Benutzergerät Strahlplanungsinformationen empfängt, die von einem Sendeterminal eines ersten Strahls gesendet werden, wenn ein Netzwerkzugriff über den ersten Strahl erfolgt; und

    wenn eine Signalintensität eines ersten Strahls geringer als ein voreingestellter Intensitätsschwellenwert ist, oder wenn eine Signalabfallrate des ersten Strahls höher als ein voreingestellter Ratenschwellenwert ist, wenn das Benutzergerät über den ersten Strahl auf ein Netzwerk zugreift,

    wobei das Strahleninformationserfassungsmodul (31) aufweist:

    ein Erfassungs-Submodul (311), das dazu ausgebildet ist, eine Signalintensität und eine Strahlidentifikation jedes der empfangenen Strahlen zu erfassen, wobei die Strahlidentifikation des empfangenen Strahls basierend auf einer Frequenz oder einer Wellenlänge des Strahls bestimmt wird; und

    ein Ordnungs-Submodul (312), das dazu ausgebildet ist, die Signalintensitäten der empfangenen Strahlen in einer voreingestellten Reihenfolge anzuordnen, um eine nach der Intensität geordnete Liste zu erhalten;

    wobei das Strahlauswahlmodul (32) aufweist:

    ein Zustandsinformationsbestimmungs-Submodul (322), das dazu ausgebildet ist, aktuelle Zustandsinformationen des Benutzergeräts zu bestimmen, wobei die aktuellen Zustandsinformationen des Benutzergeräts Netzwerkverbindungszustandsinformationen oder Datenübertragungszustandsinformationen aufweisen, wobei die Netzwerkverbindungszustandsinformationen eine erfolgreiche Netzwerkverbindung oder eine fehlgeschlagene Netzwerkverbindung angeben, und wobei die Datenübertragungszustandsinformationen eine Kommunikationsqualität der Datenübertragung durch das Benutzergerät über den ausgewählten Strahl angeben;

    ein Prioritätsbestimmungs-Submodul (323), das dazu ausgebildet ist, Prioritäten der empfangenen Strahlen gemäß den aktuellen Zustandsinformationen des Benutzergeräts und der nach den Intensitäten geordneten Liste zu bestimmen; und

    ein zweites Auswahl-Submodul (324), das dazu ausgebildet ist, einen empfangenen Strahl mit einer höchsten Priorität als den Zielstrahl auszuwählen.


     
    9. Vorrichtung nach Anspruch 8, bei welcher das Zustandsinformationsbestimmungs-Submodul (322) aufweist:

    eine Verbindungszustandsbestimmungseinheit (322-1), die dazu ausgebildet ist, wenn das Benutzergerät einen ersten Strahl mit einem aktuell stärksten Signal gemäß der nach der Intensität geordneten Liste für das Verbinden eines Netzwerksauswählt, die Netzwerkverbindungsstatusinformationen des Benutzergeräts zu bestimmen, und

    wobei das Prioritätsbestimmungs-Submodul (323) aufweist:
    eine erste Bestimmungseinheit (323-1), die dazu ausgebildet ist, wenn die Netzwerkverbindungsstatusinformationen anzeigen, dass der Zugriff fehlschlägt, einen zweiten Strahl mit einer Signalintensität, die nur dem ersten Strahl nachsteht, als Empfangsstrahl mit der höchsten Priorität gemäß der nach der Intensität geordneten Liste zu bestimmen.


     
    10. Vorrichtung nach Anspruch 8, bei welcher das Zustandsinformationsbestimmungs-Submodul (322) aufweist:

    eine Übertragungszustandsbestimmungseinheit (322-2), die dazu ausgebildet ist, wenn das Benutzergerät Daten über einen ersten Strahl überträgt, Datenübertragungszustandsinformationen des Benutzergeräts zu bestimmen, und

    wobei das Prioritätsbestimmungs-Submodul (323) aufweist:
    eine zweite Bestimmungseinheit (323-2), die dazu ausgebildet ist, wenn die Datenübertragungsstatusinformationen anzeigen, dass ein aktueller Datenübertragungszustand geringer als ein voreingestellter Schwellenwert ist, die Prioritäten der empfangenen Strahlen gemäß der nach der Intensität geordneten Liste neu zu bestimmen.


     
    11. Vorrichtung nach Anspruch 10, bei welcher die zweite Bestimmungseinheit (323-2) aufweist:
    eine erste Bestimmungsuntereinheit (323-21), die dazu ausgebildet ist, einen zweiten Strahl mit einer Signalintensität, die nur dem ersten Strahl nachsteht, als Empfangsstrahl mit einer aktuell höchsten Priorität gemäß der nach der Intensität geordneten Liste zu bestimmen.
     
    12. Vorrichtung nach Anspruch 10, bei welcher die zweite Bestimmungseinheit (323-2) aufweist:

    eine Empfangsuntereinheit (323-22), die dazu ausgebildet ist, eine Gruppe auswählbarer Strahlen zu empfangen, die von einem Sendeterminal des ersten Strahls in Reaktion auf eine Anfrage des Benutzergeräts durch den ersten Strahl gesendet werden, so dass das Benutzergerät verfügbare Strahlen aus diesen auswählen kann, wobei die Gruppe von auswählbaren Strahlen einen Teil oder sämtliche Kommunikationsstrahlidentifikationen aufweist, welche durch das Sendeterminal des ersten Strahls detektiert wurden;

    eine Abgleichsuntereinheit (323-23), die dazu ausgebildet ist, die nach der Intensität geordnete Liste entsprechend der Gruppe von auswählbaren Strahlen abzugleichen, um durch Bilden der Schnittmenge zwischen der nach der Intensität geordneten Liste und der Gruppe der auswählbaren Strahlen ein Übereinstimmungsergebnis zu erhalten; und

    eine zweite Bestimmungsuntereinheit (323-24), die dazu ausgebildet ist, einen empfangenen Strahl mit einer aktuell höchsten Priorität basierend auf dem Übereinstimmungsergebnis zu bestimmen.


     
    13. Vorrichtung nach Anspruch 8, bei welcher das Prioritätsbestimmungs-Submodul (323) ferner aufweist:
    eine dritte Bestimmungseinheit (323-3), die dazu ausgebildet ist, wenn der erste Strahl ein empfangener Strahl mit dem aktuell stärksten Signal ist, wenn die Netzwerkverbindungszustandsinformationen angeben, dass der Netzwerkzugriff fehlschlägt, das Bestimmen des ersten Strahls als den empfangenen Strahl mit der höchsten Priorität innerhalb eines voreingestellten Zeitraums zu verweigern.
     
    14. Vorrichtung nach Anspruch 9, bei welcher das Prioritätsbestimmungs-Submodul (323) ferner aufweist:
    wenn der erste Strahl ein empfangener Strahl mit dem aktuell stärksten Signal ist, wenn die Datenübertragungszustandsinformationen angeben, dass ein aktueller Datenübertragungszustand geringer als ein voreingestellter Schwellenwert ist, Verweigern, innerhalb eines voreingestellten Zeitraums, des Bestimmens des ersten Strahls als den empfangenen Strahl mit der höchsten Priorität.
     


    Revendications

    1. Procédé permettant de déterminer un faisceau de communication, exécuté par un équipement d'utilisateur, le procédé comprenant le fait de:

    lorsqu'au moins deux faisceaux reçus sont détectés, acquérir (11) les informations des faisceaux reçus, où les informations de faisceau comportent au moins une identification de faisceau et une intensité de signal du faisceau;

    sélectionner (12) un faisceau cible selon les informations des faisceaux reçus; et

    transmettre (13) les informations à l'aide du faisceau cible,

    dans lequel les informations des faisceaux reçus sont acquises (11) à condition que soit remplie au moins l'une des conditions de déclenchement suivantes:

    lorsque l'équipement d'utilisateur est prêt à accéder à un réseau;

    lorsque l'équipement d'utilisateur est à l'état de repos;

    lorsque l'équipement d'utilisateur reçoit des informations de programmation de faisceau envoyées par un terminal émetteur d'un premier faisceau en cas d'accès à un réseau par le premier faisceau; et

    lorsqu'une intensité de signal d'un premier faisceau est inférieure à une valeur de seuil d'intensité préétablie, ou lorsqu'un taux décroissant d'intensité de signal d'un premier faisceau est supérieur à une valeur de seuil de taux préétablie, au cas où l'équipement d'utilisateur accède à un réseau par le premier faisceau,

    dans lequel l'acquisition (11) des informations des faisceaux reçus comprend le fait de:

    acquérir (111) une intensité de signal et une identification de faisceau de chacun des faisceaux reçus, où l'identification de faisceau du faisceau reçu est déterminée sur base d'une fréquence ou d'une longueur d'onde du faisceau; et

    disposer (112) les intensités de signal des faisceaux reçus dans un ordre préétabli, pour obtenir une liste ordonnée par intensité, où la sélection (12) du faisceau cible selon les informations des faisceaux reçus comprend le fait de:

    déterminer (121) les informations sur l'état actuel de l'équipement d'utilisateur, où les informations sur l'état actuel de l'équipement d'utilisateur comportent les informations sur l'état de connexion au réseau ou les informations sur l'état de transmission de données, où les informations sur l'état de connexion au réseau indiquent le succès de la connexion au réseau ou l'échec de la connexion au réseau et où les informations d'état de transmission de données indiquent une qualité de communication de la transmission de données par l'équipement d'utilisateur par le faisceau sélectionné;

    déterminer (122) les priorités des faisceaux reçus selon les informations sur l'état actuel de l'équipement d'utilisateur et la liste ordonnée par intensité; et

    sélectionner (123) un faisceau reçu à priorité la plus haute comme faisceau cible.


     
    2. Procédé selon la revendication 1, dans lequel la détermination (121) des informations sur l'état actuel de l'équipement d'utilisateur comprend le fait de:

    lorsque l'équipement d'utilisateur sélectionne un premier faisceau avec un signal actuellement le plus intense selon la liste ordonnée par intensité pour se connecter à un réseau, déterminer (121-1) les informations sur l'état de connexion au réseau de l'équipement d'utilisateur, et

    la détermination (122) des priorités des faisceaux reçus selon les informations sur l'état actuel de l'équipement d'utilisateur et la liste ordonnée par intensité comprend le fait de:
    lorsque les informations sur l'état de connexion au réseau indiquent que l'accès au réseau échoue, déterminer (122-1) un deuxième faisceau avec une intensité de signal suivant immédiatement le premier faisceau comme faisceau reçu à la priorité la plus haute selon la liste ordonnée par intensité.


     
    3. Procédé selon la revendication 1, dans lequel la détermination (121) des informations sur l'état actuel de l'équipement d'utilisateur comprend le fait de:

    lorsque l'équipement d'utilisateur transmet des données par un premier faisceau, déterminer (121-2) les informations sur l'état de transmission de données de l'équipement d'utilisateur, et

    la détermination (122) des priorités des faisceaux reçus selon les informations sur l'état actuel de l'équipement d'utilisateur et la liste ordonnée par intensité comprend le fait de:
    lorsque les informations sur l'état de transmission de données indiquent qu'un état de transmission de données actuel est inférieur à une valeur de seuil préétablie, déterminer à nouveau (122-2) les priorités des faisceaux reçus selon la liste ordonnée par intensité.


     
    4. Procédé selon la revendication 3, dans lequel la nouvelle détermination (122-2) des priorités des faisceaux reçus selon la liste ordonnée par intensité comprend le fait de:
    déterminer (122-1) un deuxième faisceau avec une intensité de signal suivant immédiatement le premier faisceau comme faisceau reçu à la priorité actuellement la plus haute selon la liste ordonnée par intensité.
     
    5. Procédé selon la revendication 3, dans lequel la nouvelle détermination (122-2) des priorités des faisceaux reçus selon la liste ordonnée par intensité comprend le fait de:

    recevoir (122-21) un ensemble de faisceaux à sélectionner envoyé par un terminal émetteur du premier faisceau en réponse à une demande de l'équipement d'utilisateur par le premier faisceau pour que l'équipement d'utilisateur sélectionne les faisceaux disponibles de ce dernier, où l'ensemble de faisceaux à sélectionner comporte une partie ou la totalité des identifications de faisceau de communication détectées par le terminal émetteur du premier faisceau;

    faire correspondre (122-22) la liste ordonnée par intensité selon l'ensemble de faisceaux à sélectionner, pour obtenir un résultat de correspondance en prenant l'intersection de la liste ordonnée par intensité et de l'ensemble de faisceaux à sélectionner; et

    déterminer (122-23) un faisceau reçu à une priorité actuellement la plus haute sur base du résultat de correspondance.


     
    6. Procédé selon la revendication 2, dans lequel la détermination (122) des priorités des faisceaux reçus comprend par ailleurs le fait de:
    lorsque le premier faisceau est un faisceau reçu avec un signal actuellement le plus intense lorsque les informations sur l'état de connexion au réseau indiquent que l'accès au réseau échoue, rejeter de déterminer le premier faisceau comme faisceau reçu à la priorité la plus haute dans un laps de temps préétablie.
     
    7. Procédé selon la revendication 3, dans lequel la détermination (122) des priorités des faisceaux reçus comprend par ailleurs le fait de:
    lorsque le premier faisceau est un faisceau reçu avec un signal actuellement le plus intense, lorsque les informations sur l'état de transmission de données indiquent qu'un état de transmission de données actuel est inférieur à une valeur de seuil préétablie, rejeter de déterminer le premier faisceau comme faisceau reçu à la priorité la plus haute dans un laps de temps préétablie.
     
    8. Appareil pour déterminer un faisceau de communication, l'appareil étant un équipement d'utilisateur, l'appareil comprenant:

    un module d'acquisition d'informations de faisceau (31) configuré pour acquérir, lorsqu'au moins deux faisceaux reçus sont détectés, les informations des faisceaux reçus, où les informations de faisceau comportent au moins une identification de faisceau et une intensité de signal du faisceau;

    un module de sélection de faisceau (32) configuré pour sélectionner un faisceau cible selon les informations des faisceaux reçus; et

    un module de transmission d'informations (33) configuré pour transmettre les informations à l'aide du faisceau cible,

    dans lequel le module d'acquisition d'informations de faisceau (31) est configuré pour acquérir les informations des faisceaux reçus à condition que soit remplie au moins l'une des conditions de déclenchement suivantes:

    si l'équipement d'utilisateur est prêt à accéder à un réseau;

    si l'équipement d'utilisateur est à l'état de repos;

    si l'équipement d'utilisateur reçoit des informations de programmation de faisceau envoyées par un terminal émetteur d'un premier faisceau en cas d'accès à un réseau par le premier faisceau; et

    lorsqu'une intensité de signal d'un premier faisceau est inférieure à une valeur de seuil d'intensité préétablie, ou lorsqu'un taux décroissant d'intensité de signal du premier faisceau est supérieur à une valeur de seuil de taux préétablie, au cas où l'équipement d'utilisateur accède à un réseau par le premier faisceau,

    dans lequel le module d'acquisition d'informations de faisceau (31) comprend:

    un sous-module de détection (311) configuré pour acquérir une intensité de signal et une identification de faisceau de chacun des faisceaux reçus, où l'identification du faisceau reçu est déterminée sur base d'une fréquence ou d'une longueur d'onde du faisceau; et

    un sous-module de classement par ordre (312) configuré pour disposer les intensités de signal des faisceaux reçus dans un ordre préétabli, pour obtenir une liste ordonnée par intensité,

    dans lequel le module de sélection de faisceau (32) comprend:

    un sous-module de détermination d'informations d'état (322) configuré pour déterminer les informations sur l'état actuel de l'équipement d'utilisateur, où les informations sur l'état actuel de l'équipement d'utilisateur comportent les informations sur l'état de connexion au réseau ou les informations sur l'état de transmission de données, où les informations sur l'état de connexion au réseau indiquent le succès de la connexion au réseau ou l'échec de la connexion au réseau et où les informations sur l'état de transmission de données indiquent une qualité de communication de la transmission de données par l'équipement d'utilisateur par le faisceau sélectionné;

    un sous-module de détermination de priorité (323) configuré pour déterminer les priorités des faisceaux reçus selon les informations d'état actuel de l'équipement d'utilisateur et la liste ordonnée par intensité; et

    un deuxième sous-module de sélection (324) configuré pour sélectionner un faisceau reçu à la priorité la plus haute comme faisceau cible.


     
    9. Appareil selon la revendication 8, dans lequel le sous-module de détermination d'informations d'état (322) comprend:

    une unité de détermination de l'état de connexion (322-1) configurée pour déterminer, si l'équipement d'utilisateur sélectionne un premier faisceau avec un signal actuellement le plus intense selon la liste ordonnée par intensité pour se connecter à un réseau, les informations sur l'état de connexion au réseau de l'équipement d'utilisateur, et

    le sous-module de détermination de priorité (323) comprend:
    une première unité de détermination (323-1) configurée pour déterminer, lorsque les informations sur l'état de connexion au réseau indiquent que l'accès au réseau échoue, un deuxième faisceau avec une intensité de signal suivant immédiatement le premier faisceau comme faisceau de réception à priorité la plus haute selon la liste ordonnée par intensité.


     
    10. Appareil selon la revendication 8, dans lequel le sous-module de détermination d'informations d'état (322) comprend:

    une unité de détermination d'état de transmission (322-2) configurée pour déterminer, lorsque l'équipement d'utilisateur transmet des données par un premier faisceau, les informations sur l'état de transmission de données de l'équipement d'utilisateur, et

    le sous-module de détermination de priorité (323) comprend:
    une deuxième unité de détermination (323-2) configurée pour déterminer à nouveau, lorsque les informations sur l'état de transmission de données indiquent qu'un état de transmission de données actuel est inférieur à une valeur de seuil préétablie, les priorités des faisceaux reçus selon la liste ordonnée par intensité.


     
    11. Appareil selon la revendication 10, dans lequel la deuxième unité de détermination (323-2) comprend:
    une première sous-unité de détermination (323-21) configurée pour déterminer un deuxième faisceau avec une intensité de signal suivant immédiatement le premier faisceau comme faisceau de réception à priorité actuellement la plus haute selon la liste ordonnée par intensité.
     
    12. Appareil selon la revendication 10, dans lequel la deuxième unité de détermination (323-2) comprend:

    une sous-unité de réception (323-22) configurée pour recevoir un ensemble de faisceaux à sélectionner envoyé par un terminal émetteur du premier faisceau en réponse à une demande de l'équipement d'utilisateur par le premier faisceau pour que l'équipement d'utilisateur sélectionne les faisceaux disponibles de ce dernier, où l'ensemble de faisceaux à sélectionner comporte une partie ou la totalité des identifications de faisceaux de communication détectées par le terminal émetteur du premier faisceau;

    une sous-unité de mise en correspondance (323-23) configurée pour faire correspondre la liste ordonnée par intensité selon l'ensemble de faisceaux à sélectionner, pour obtenir un résultat de correspondance en prenant l'intersection de la liste ordonnée par intensité et de l'ensemble de faisceaux à sélectionner; et

    une deuxième sous-unité de détermination (323-24) configurée pour déterminer un faisceau reçu à priorité actuellement la plus haute sur base du résultat de correspondance.


     
    13. Appareil selon la revendication 8, dans lequel le sous-module de détermination de priorité (323) comprend par ailleurs:
    une troisième unité de détermination (323-3) configurée pour rejeter, lorsque le premier faisceau est, lorsque les informations sur l'état de connexion au réseau indiquent que l'accès au réseau échoue, un faisceau reçu avec un signal actuellement le plus intense, de déterminer le premier faisceau comme faisceau reçu à la priorité la plus haute dans un laps de temps préétabli.
     
    14. Appareil selon la revendication 9, dans lequel le sous-module de détermination de priorité (323) comprend par ailleurs le fait de:
    lorsque le premier faisceau est un faisceau reçu avec un signal actuellement le plus intense, lorsque les informations sur l'état de transmission de données indiquent qu'un état de transmission de données actuel est inférieur à une valeur de seuil préétablie, rejeter de déterminer le premier faisceau comme faisceau reçu à la priorité la plus haute dans un laps de temps préétablie.
     




    Drawing



































    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description