(19)
(11)EP 3 353 298 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
13.09.2023 Bulletin 2023/37

(21)Application number: 16849508.3

(22)Date of filing:  21.09.2016
(51)International Patent Classification (IPC): 
C12N 15/113(2010.01)
C12N 15/63(2006.01)
C12N 15/90(2006.01)
C12N 15/10(2006.01)
C12N 9/22(2006.01)
(52)Cooperative Patent Classification (CPC):
C12N 15/113; C12N 15/907; C12N 2310/323; C12N 2320/34; C12N 2310/20; A61P 15/00; A61P 17/00; A61P 19/00; A61P 21/00; A61P 25/00; A61P 25/16; A61P 27/02; A61P 35/00; A61P 3/06; A61P 43/00; A61P 7/00; A61P 9/00
(86)International application number:
PCT/US2016/052889
(87)International publication number:
WO 2017/053431 (30.03.2017 Gazette  2017/13)

(54)

ALLELE SELECTIVE GENE EDITING AND USES THEREOF

ALLELSELEKTIVE GENEDITIERUNG UND VERWENDUNGEN DAVON

ÉDITION DE GÈNES ALLÈLE SÉLECTIVE ET UTILISATIONS ASSOCIÉES


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 21.09.2015 US 201562221407 P
02.05.2016 US 201662330827 P

(43)Date of publication of application:
01.08.2018 Bulletin 2018/31

(73)Proprietor: Arcturus Therapeutics, Inc.
San Diego, CA 92121 (US)

(72)Inventors:
  • CHIVUKULA, Padmanabh
    San Diego, California 92121 (US)
  • WILKIE-GRANTHAM, Rachel
    San Diego, California 92121 (US)
  • TACHIKAWA, Kiyoshi
    San Diego, California 92121 (US)

(74)Representative: J A Kemp LLP 
80 Turnmill Street
London EC1M 5QU
London EC1M 5QU (GB)


(56)References cited: : 
WO-A1-2014/204724
WO-A2-2014/018423
WO-A2-2015/048577
US-A1- 2015 232 851
WO-A1-2014/204728
WO-A2-2014/186585
WO-A2-2015/089419
  
  • EZIO FOK ET AL: "Multiplexed CRISPR/Cas9 genome editing increases the efficacy of homologous-dependent repair of donor sequences in mammalian cells", SOUTH AFRICAN JOURNAL OF SCIENCE, vol. 111, no. 7/8, 27 July 2015 (2015-07-27), pages 1-7, XP055533577, ISSN: 0038-2353, DOI: 10.17159/sajs.2015/20150002
  • GERALD SCHWANK ET AL: "Functional Repair of CFTR by CRISPR/Cas9 in Intestinal Stem Cell Organoids of Cystic Fibrosis Patients", CELL STEM CELL, vol. 13, no. 6, 5 December 2013 (2013-12-05), pages 653-658, XP055102691, ISSN: 1934-5909, DOI: 10.1016/j.stem.2013.11.002
  • AYAL HENDEL ET AL: "Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells", NATURE BIOTECHNOLOGY, vol. 33, no. 9, 29 June 2015 (2015-06-29), pages 985-989, XP055548372, New York ISSN: 1087-0156, DOI: 10.1038/nbt.3290
  • ANNA PASTERNAK ET AL: "Unlocked nucleic acid - an RNA modification with broad potential", ORGANIC & BIOMOLECULAR CHEMISTRY, vol. 9, no. 10, 23 March 2011 (2011-03-23) , pages 3591-3597, XP055577166, ISSN: 1477-0520, DOI: 10.1039/c0ob01085e
  
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description

TECHNICAL FIELD OF THE INVENTION



[0001] This invention relates to the fields of biopharmaceuticals and therapeutics for editing genes, and regulating gene expression. More particularly, this invention relates to methods and compositions for editing or altering a polynucleotide, including genomic polynucleotides, and ultimately, for in vivo gene editing, and modulating, disrupting, activating or repressing gene expression.

BACKGROUND OF THE INVENTION



[0002] Gene editing that is specific for a predetermined site can be done with the target-guided nuclease Cas9 and polynucleotide repair methods. Using the target-guided Cas9 endonuclease, both strands of a double stranded DNA can be cut near a target site to create a double-strand break.

[0003] The target specificity of Cas9 is determined by a guide molecule, which complexes Cas9 to the polynucleotide target. Polynucleotide target sequences, typically 17-20 bases in length, must be flanked by a 3' protospacer-adjacent motif (PAM). The structure of PAM is determined by the species of bacteria from which the Cas9 was derived. Fortuitously, suitable target sequences containing a PAM can be found in most genes of interest in most species. In one variation, the guide molecule can be made as a single RNA strand that has a sequence complementary to the target, which is attached to a bacterially-derived crispr-tracr RNA sequence that complexes Cas9.

[0004] In some modalities, after forming a double-strand break in dsDNA at a specific site, the break can be repaired to achieve editing of the DNA. A double-strand break can be repaired by non-homologous end joining (NHEJ) to generate random insertions and deletions. A double-strand break can also be repaired by homology-directed repair (HDR) using an exogenous DNA template to generate controlled insertions, deletions, and substitutions.

[0005] A major drawback of gene editing with Cas9 is that the guide molecule may have limited effectiveness for a target polynucleotide. The specificity and activity of a guide molecule can be unpredictable. Guide molecules for Cas9 editing can vary widely in effectiveness, and some guides that otherwise follow the structural scheme can be ineffective.

[0006] A further drawback of gene editing with Cas9 is that the guide molecule may lack selectivity for a target allele. Variations in the genome can contribute to disease conditions. Some alleles related to disease phenotypes have been identified in medical genetics. The inability to target particular alleles is a significant drawback of current methods for of gene editing.

[0007] Other drawbacks of gene editing with CRISPR-Cas systems include the occurrence of offtarget mutations.

[0008] What is needed are stable and effective guide molecules for gene editing, as well as compositions and methods for use in treating disease.

[0009] There is an urgent need for new molecules for guiding gene editing with Cas9, and for allele selectivity and reduced off target activity.

[0010] WO2015/048577 relates to CRISPR-related methods and components for editing of, or delivery of a payload to a target nucleic acid sequence.

BRIEF SUMMARY



[0011] This invention provides a guide compound targeted to a genomic DNA, comprising a target guide chain of 14-24 contiguous monomers attached to a CRISPR RNA (crRNA), wherein the guide compound directs allele-selective CRISPR gene editing of the genomic DNA, wherein the monomers comprise UNA monomers and nucleic acid monomers, wherein each UNA monomer independently has a structure of

where R1 and R2 are each independently H or a phosphodiester linkage, Base is a nucleobase, and R3 is -OR4, -SR4, -NR42, -NH(C=O)R4, morpholino, morpholin-l-yl, piperazin-l-yl, or 4-alkanoyl-piperazin-l-yl, where each R4 is independently selected from H, alkyl, a cholesterol, a lipid molecule, a polyamine, an amino acid, and a polypeptide, and wherein the guide compound comprises a sequence of bases targeted to direct CRISPR gene editing of the genomic DNA. The guide molecules can be highly effective for CRISPR gene editing. The compositions of this invention can be used for gene editing in vivo, ex vivo, and in vitro.

[0012] This invention further contemplates in vitro methods for gene editing with a Cas enzyme guided by novel allele-selective guide molecules. In some embodiments, guide molecules of this invention can used to perform gene editing with CRISPR-Cas systems with reduced occurrence of offtarget mutations.

[0013] Guide molecules of this invention can provide efficient gene editing using Cas9. The Guide molecules of this invention can be active for gene editing to select between allelic variations based on one or more nucleotide polymorphisms. Further advantages of guide molecules of this disclosure include reduced off-target effects.

[0014] In some embodiments, the guide molecules of this invention can exhibit an extraordinary and surprising level of allele selectivity for targeting genomic DNA and generating double strand breaks through CRISPR/Cas gene editing. In certain embodiments, guide molecules of this invention can provide reduced off-target activity and greater efficiency of gene editing.

[0015] The compounds of the invention can also be used in methods for gene editing with Cas guided by guide molecules, along with gene repair by any mechanism, including NHEJ and HDR repair mechanisms.

[0016] The guide molecules of this invention can advantageously increase the efficiency of gene engineering directed by Cas.

[0017] In some embodiments, the guide molecules of this invention can advantageously increase the efficiency of gene engineering directed by Cas9 and provide a high frequency of targeted mutagenesis via NHEJ.

[0018] In further embodiments, the guide molecules of this invention can advantageously increase the efficiency of gene engineering directed by Cas9 and provide exact DNA integration using HDR for any genomic target.

[0019] In some aspects, the guide molecules of this invention can enhance Cas9 binding and DNA cleavage in vivo.

[0020] This invention further provides novel molecules to be used as therapeutic agents for various diseases and conditions. The molecules of this invention can be used as active pharmaceutical ingredients in compositions for use in ameliorating, preventing or treating various diseases and conditions.

[0021] In some aspects, this invention provides guide molecules having structures that may include various combinations of linker groups, chain-forming monomers, non-natural nucleotides, modified nucleotides, or chemically-modified nucleotides, as well as certain natural nucleotides. These guide molecules can exhibit allele selectivity for targeting genomic DNA. This disclosure provides guide molecules that can used to perform CRISPR-Cas gene editing with reduced off-target mutations.

[0022] Embodiments of this invention are set out in the attached claim set and include the following:
The guide compound above, wherein the sequence of bases of the target guide chain has up to three mismatches from the genomic DNA.

[0023] The guide compound above, wherein the guide compound contains one to five UNA monomers.

[0024] The guide compound above, wherein the nucleic acid monomers are selected from natural nucleotides, non-natural nucleotides, modified nucleotides, chemically-modified nucleotides, and combinations thereof.

[0025] The guide compound above, wherein one or more of the nucleic acid monomers is a 2'-O-methyl ribonucleotide, a 2'-O-methyl purine nucleotide, a 2'-deoxy-2'-fluoro ribonucleotide, a 2'-deoxy-2'-fluoro pyrimidine nucleotide, a 2'-deoxy ribonucleotide, a 2'-deoxy purine nucleotide, a universal base nucleotide, a 5-C-methyl-nucleotide, an inverted deoxyabasic monomer residue, a 3'-end stabilized nucleotide, a 3'-glyceryl nucleotide, a 3'-inverted abasic nucleotide, a 3'-inverted thymidine, a locked nucleic acid nucleotide (LNA), a 2'-O,4'-C-methylene-(D-ribofuranosyl) nucleotide, a 2'-methoxyethoxy (MOE) nucleotide, a 2'-methyl-thio-ethyl, 2'-deoxy-2'-fluoro nucleotide, a 2'-O-methyl nucleotide, a 2',4'-Constrained 2'-O-Methoxyethyl (cMOE), a 2'-O-Ethyl (cEt), a 2'-amino nucleotide, a 2'-O-amino nucleotide, a 2'-C-allyl nucleotides, a 2'-O-allyl nucleotide, a N6-methyladenosine nucleotide, a nucleotide with modified base 5-(3-amino)propyluridine, a nucleotide with modified base 5-(2-mercapto)ethyluridine, a nucleotide with modified base 5-bromouridine, a nucleotide with modified base 8-bromoguanosine, a nucleotide with modified base 7-deazaadenosine, a 2'-O-aminopropyl substituted nucleotide, or a nucleotide with a 2'-OH group replaced with a 2'-R, a 2'-OR, a 2'-halogen, a 2'-SR, or a 2'-amino, where R can be H, alkyl, alkenyl, or alkynyl.

[0026] The guide compound above, wherein one or more of the last three monomers at each end of the guide compound is connected by a phosphorothioate, a chiral phosphorothioate, or a phosphorodithioate linkage.

[0027] The guide compound above, wherein the guide compound directs double strand breaks in a gene selected from TTR, BIRCS, CDK16, STAT3, CFTR, F9, KRAS, and CAR.

[0028] The guide compound above, wherein the genomic DNA contains a target disease-related single nucleotide polymorphism.

[0029] The guide compound above, wherein the guide compound directs double strand breaks in a disease-related allele.

[0030] The guide compound above, wherein the guide compound directs double strand breaks in a disease-related allele selected from V30M TTR, G284R ColA1, L132P Keratin12, R135T Keratin12, G85R SOD1, G272V Tau, P301L Tau, V337M Tau, R406W Tau, Q39STOP beta-Globin, T8993G/C mtDNA, G719S EGFR, and G12C Kras.

[0031] The guide compound above, comprising 30-300 contiguous monomers.

[0032] The guide compound above, wherein the CRISPR gene editing uses Cas9.

[0033] The guide compound above, wherein the guide compound directs gene editing with reduced off target activity.

[0034] The guide compound above, wherein the guide compound directs more double strand breaks in a disease-related allele than in the same allele as a wild type.

[0035] A guide compound above annealed with a tracrRNA.

[0036] The guide compound above, wherein the tracrRNA is derived from S. pneumonia, S. pyogenes, N. menigiditis, or S. thermophiles.

[0037] A guide compound above annealed with a tracrRNA and complexed with a CRISPR-associated gene editing protein.

[0038] The guide compound above, wherein the CRISPR-associated gene editing protein is Cas9.

[0039] A guide compound targeted to a genomic DNA, wherein the guide compound is a chain of monomers and directs CRISPR gene editing of the genomic DNA, the guide compound comprising a target guide chain, a CRISPR crRNA, and a CRISPR tracrRNA as a single strand, wherein the target guide chain is 14-24 contiguous monomers in length, wherein the monomers comprise UNA monomers and nucleic acid monomers, and wherein the guide compound comprises a sequence of bases targeted to direct CRISPR gene editing of the genomic DNA.

[0040] The guide compound above, wherein the guide compound directs gene editing in a CRISPR/Cas9 complex.

[0041] A pharmaceutical composition comprising one or more guide compounds above and a pharmaceutically acceptable carrier. The pharmaceutically acceptable carrier may comprise a viral vector or a non-viral vector. The pharmaceutically acceptable carrier may comprise liposomes.

[0042] Embodiments of this invention include in vitro methods for editing a genomic DNA in a cell, wherein the cell comprises an inducible or constitutive CRISPR gene editing enzyme, the method comprising contacting the cell with a composition above.

[0043] The method above, wherein the editing is disrupting the DNA or repressing transcription of the DNA. The method above, wherein the editing is achieved with reduced off target activity. The method above, wherein the CRISPR gene editing enzyme is co-transfected with a composition above.

[0044] The guide compound above can be for use in a method for editing a genomic DNA in a subject in vivo, wherein the subject comprises an inducible or constitutive CRISPR gene editing enzyme, the method comprising administering to the subject a composition above. The editing can be disrupting the DNA or repressing transcription of the DNA. The editing can be achieved with reduced off target activity. The CRISPR gene editing enzyme may be co-transfected with a composition above.

[0045] This invention further contemplates a composition as described above for use in a method of preventing, treating or ameliorating a disease associated with a target genomic DNA in a subject in need, wherein the subject comprises an inducible or constitutive CRISPR gene editing enzyme, the method comprising administering to the subject a composition above.

BRIEF DESCRIPTION OF THE DRAWINGS



[0046] 

FIG. 1: FIG. 1 illustrates a CRISPR-Cas gene editing complex with a "single guide" structure.

FIG. 2: FIG. 2 illustrates a CRISPR-Cas gene editing complex.

FIG. 3: Allele selective gene editing of a transthyretin (TTR) genomic site with a U-Guide molecule for CRISPR/Cas9. FIG. 3 shows that U-Guide molecules UNA1 and UNA2 directed the cleavage of a 357-bp genomic TTR DNA at a predetermined position shown by the appearance of 275-bp and 82-bp products. As shown in FIG. 3, the U-Guide molecules of this invention exhibited surprisingly high allele selective gene editing of human V30M TTR over wild type TTR. This indicates the capability for reduced off target activity. Further, under the same conditions a CRISPR/Cas9 cr/tracr comparative guide (gRNA) having the same nucleobase sequence and structure as the U-Guide molecule, but lacking a UNA monomer, exhibited some selectivity for human V30M TTR over wild type TTR.

FIG. 4: FIG. 4 shows that the U-Guide molecules UNA1 and UNA2 of this invention provided selective editing of V30M TTR over wild type TTR in a CRISPR/Cas9 system. The U-Guide molecules UNA1 and UNA2 produced high levels of double strand breaks in V30M TTR (patterned bar), but surprisingly few double strand breaks in wild type TTR (black bar). Thus, the U-Guide molecules UNA1 and UNA2 of this invention were extraordinarily active for allele selective gene editing of human TTR. This indicates the capability for reduced off target activity. The Neg control contained no CRISPR/tracr guide.

FIG. 5: The U-Guide molecules of this invention can be used for allele selective gene editing of human TTR. The surprising level of allele selectivity for gene editing of human TTR is shown in FIG. 5. The U-Guide molecules UNA1 and UNA2 provided high selectivity ratios of 8.7 and 9.5, respectively. This indicates the capability for reduced off target activity. Further, under the same conditions, a CRISPR/Cas9 cr/tracr guide (gRNA) having the same nucleobase sequence and structure as the U-Guide molecules, but lacking any UNA monomer, exhibited selectivity ratio of 1.4. Thus, the U-Guide molecules UNA1 and UNA2 were extraordinarily active for gene editing human TTR with allele selectivity of V30M TTR over wild type TTR.

FIG. 6: Fig. 6 shows the indel spectrum for a comparative gRNA guide (non-UNA guide structure) for assessment of genome editing of V30M TTR by sequence trace decomposition (TIDE).

FIG. 7: Fig. 7 shows the indel spectrum for UNA-guide (UNA1) for assessment of genome editing of V30M TTR by sequence trace decomposition (TIDE).

FIG. 8: Fig. 8 shows the indel spectrum for a comparative gRNA guide (non-UNA guide structure) for assessment of genome editing of Wild Type TTR by sequence trace decomposition (TIDE).

FIG. 9: Fig. 9 shows the indel spectrum for UNA-guide (UNA1) for assessment of genome editing of Wild Type TTR by sequence trace decomposition (TIDE).

FIG. 10: Allele selective gene editing of a transthyretin (TTR) genomic site with a U-Guide molecule for CRISPR/Cas9. FIG. 10 shows that a U-Guide molecule UNA3 directed the cleavage of a 357-bp genomic TTR DNA at a predetermined position shown by the appearance of 271-bp and 86-bp products. As shown in FIG. 10, the U-Guide molecule of this invention exhibited allele selective gene editing of human V30M TTR over wild type TTR. This indicates the capability for reduced off target activity. Further, under the same conditions a CRISPR/Cas9 guide (gRNA) having the same nucleobase sequence and structure as the U-Guide molecule, but lacking any UNA monomer, exhibited some selectivity.

FIG. 11: FIG. 11 shows that a U-Guide molecule UNA3 of this invention provided selective editing of V30M TTR over wild type TTR in a CRISPR/Cas9 system. The U-Guide molecule UNA3 produced high levels of double strand breaks in V30M TTR (patterned bar), but surprisingly few double strand breaks in wild type TTR (black bar). Thus, the U-Guide molecule UNA3 of this invention was extraordinarily active for allele selective gene editing of human TTR. This indicates the capability for reduced off target activity. The Neg control contained no CRISPR/tracr guide.

FIG. 12: The U-Guide molecules of this invention can be used for allele selective gene editing of human TTR. The surprising level of allele selectivity for gene editing of human TTR is shown in FIG. 12. The U-Guide molecule UNA3 provided high a selectivity ratio of 4.7. This indicates the capability for reduced off target activity. Further, under the same conditions, a CRISPR/Cas9 guide (gRNA) having the same nucleobase sequence and structure as the U-Guide molecule, but lacking any UNA monomer, exhibited a selectivity ratio of 1.3. Thus, the U-Guide molecule UNA3 was extraordinarily active for gene editing human TTR with allele selectivity of V30M TTR over wild type TTR.

FIG. 13: Fig. 13 shows a schematic representation of the structure of a chimeric antigen receptor (CAR). ScFv is a single chain fragment variable. VH is a heavy-chain variable region. VL is a light-chain variable region. TM is a transmembrane domain. SD is a signaling domain.

FIG. 14: Fig. 14 shows a schematic of a method for introducing a CAR gene into a constitutive CD2 gene of a T cell, in which the CAR is downstream from the CD2. A double strand break is made with a U-Guide molecule of this invention. The gene inserted by homologous recombination can be comprised of a section of CD2, along with P2A and the CAR section. P2A peptide is a self-cleaving peptide that can be used to generate the two separate gene products CD2 protein and CAR protein. The CAR protein receptor can carry the specificity of a mAb against cancer cells of a subject in an adoptive immunotherapy strategy to kill the subject's cancer cells.

FIG. 15: Fig. 15 shows a schematic of a method for introducing a CAR gene into a constitutive CD2 gene of a T cell, in which the CAR is upstream from the CD2.


DETAILED DESCRIPTION



[0047] This invention provides a range of novel agents and compositions to be used for gene editing and therapeutic applications. Molecules of this invention can be used as guide components for compositions taking advantage of CRISPR gene editing modalities. The molecules and compositions of this invention can be for use in ameliorating, preventing or treating various diseases associated with genes and their functionalities.

[0048] Guide molecules of this invention can provide efficient gene editing using Cas9, and other gene editing enzymes.

[0049] The Guide molecules of this invention can be active for gene editing human genes. A Guide molecule can be attached to, or annealed with a tracrRNA to provide a Guide/tracr molecule for CRISPR/ Cas gene editing.

[0050] The Guide/tracr molecules of this invention can be delivered and transfected into cells in vitro, in vivo, or ex vivo for editing a genomic DNA.

[0051] The Guide molecules of this invention can be surprisingly active for gene editing human genes with allele selective results.

[0052] In some embodiments, the Guide molecules of this invention exhibit an extraordinary and surprising level of allele selectivity for gene editing and generating double strand breaks in genomic DNA. This indicates the capability for advantageously reduced off target activity.

[0053] In some aspects, the ability to create double strand breaks in genomic DNA includes the ability to alter, modulate, or reduce the expression of the DNA in a cell.

[0054] A cell may be a eukaryotic cell, a mammalian cell, or a human cell.

[0055] The Guide molecules of this invention can be used for allele selective gene editing of human genomic DNA. This disclosure provides guide molecules that can used to perform CRISPR-Cas gene editing with reduced off-target mutations.

[0056] In certain embodiments, the Guide molecules of this invention can be used for allele selective gene editing of a human variant allele over a corresponding wild type allele with reduced off target effect.

[0057] In certain embodiments, the Guide molecules of this invention can be used for allele selective gene editing of a human gene variant allele over a corresponding wild type allele, with a selectivity of at least 30% as measured by editing efficiency.

[0058] In certain embodiments, the Guide molecules of this invention can be used for allele selective gene editing of a human gene variant allele over a corresponding wild type allele, with a selectivity of at least 40% as measured by editing efficiency.

[0059] In certain embodiments, the Guide molecules of this invention can be used for allele selective gene editing of a human gene variant allele over a corresponding wild type allele, with a selectivity ratio of at least 2 as measured by editing efficiency.

[0060] In certain embodiments, the Guide molecules of this invention can be used for allele selective gene editing of a human gene variant allele over a corresponding wild type allele, with a selectivity ratio of at least 3 as measured by editing efficiency.

[0061] In certain embodiments, the Guide molecules of this invention can be used for allele selective gene editing of a human gene variant allele over a corresponding wild type allele, with a selectivity ratio of at least 5 as measured by editing efficiency.

[0062] In certain embodiments, the Guide molecules of this invention can be used for allele selective gene editing of a human gene variant allele over a corresponding wild type allele, with a selectivity ratio of at least 8 as measured by editing efficiency.

[0063] By comparison, under the same conditions, a CRISPR/Cas9 guide having a selectivity ratio of 1 indicates lack of selectivity.

[0064] In certain embodiments, the Guide molecules of this invention can be used for allele selective gene editing of a human gene variant allele over a corresponding wild type allele, with essentially no off target activity toward the wild type allele.

[0065] In certain embodiments, the Guide molecules of this invention can be used for allele selective gene editing of a human gene variant allele over a corresponding wild type allele, with less than 1% off target activity toward the wild type allele.

[0066] In certain embodiments, the Guide molecules of this invention can be used for allele selective gene editing of a human gene variant allele over a corresponding wild type allele, with less than 3% off target activity toward the wild type allele.

[0067] The properties of the guide compounds of this invention arise according to their molecular structure, and the structure of the molecule in its entirety, as a whole, can provide significant benefits based on those properties. Embodiments of this invention can provide guide molecules having one or more properties that advantageously provide enhanced effectiveness in gene editing with Cas9, as well as compositions or formulations for therapeutic agents for various diseases and conditions, which can provide clinical agents.

[0068] A wide range of novel guide molecules are provided herein, each of which can incorporate specialized linker groups. The linker groups can be attached in a chain in the guide molecule. Each linker group can also be attached to a nucleobase.

[0069] In some aspects, a linker group can be a monomer. Monomers can be attached to form a chain molecule. In a chain molecule of this invention, a linker group monomer can be attached at any point in the chain.

[0070] In certain aspects, linker group monomers can be attached in a chain molecule of this invention so that the linker group monomers reside near the ends of the chain. The ends of the chain molecule can be formed by linker group monomers.

[0071] As used herein, a chain molecule can also be referred to as an oligomer.

[0072] In further aspects, the linker groups of a chain molecule can each be attached to a nucleobase. The presence of nucleobases in the chain molecule can provide a sequence of nucleobases.

[0073] In certain embodiments, this invention provides oligomer guide molecules having chain structures that incorporate novel combinations of the linker group monomers, along with certain natural nucleotides, or non-natural nucleotides, or modified nucleotides, or chemically-modified nucleotides.

[0074] The oligomer guide molecules of this invention can display a sequence of nucleobases that is targeted to at least a portion of a gene. In some embodiments, an oligomer can be targeted to at least a portion of a gene that is conserved, or highly conserved, among a number of variants.

[0075] In some aspects, this invention provides active oligomer guide molecules that correspond to, or are complementary to at least a fragment of a nucleic acid molecule, and that provide editing of at least such a fragment present in a cell.

[0076] In some embodiments, the cell can be a eukaryotic cell, a mammalian cell, or a human cell.

[0077] This invention provides structures, methods and compositions for oligomeric guide agents that incorporate the linker group monomers. The oligomeric guide molecules of this invention can be used as active agents in formulations for gene editing therapeutics.

[0078] This invention provides a range of guide molecules that are useful for providing therapeutic effects because of their activity in editing a gene. The guide molecules of this invention are structured to provide gene editing activity in vitro, ex vivo, and in vivo.

[0079] The guide molecules of this invention can be used in any CRISPR/Cas system.

[0080] In certain embodiments, an active guide molecule can be structured as an oligomer composed of monomers. The oligomeric structures of this invention may contain one or more linker group monomers, along with certain nucleotides.

[0081] In some aspects, this invention provides a CRISPR/Cas system having a Cas9 protein and one or more guide molecules that target a gene in a eukaryotic cell.

[0082] A guide molecule of this invention may have a guide sequence fused to a crispr-tracr sequence.

[0083] In further aspects, the CRISPR/Cas system may be used to cleave one or both strands of the DNA of the gene target.

[0084] The CRISPR gene editing enzyme, for example Cas9 protein, can be derived from S. pneumonia, S. pyogenes (for example, UniProtKB accession number Q99ZW2; CAS9 _STRP1), N. menigiditis, and S. thermophilus, among other species.

[0085] The CRISPR gene editing enzyme may be derived from a genus including Corynebacter, Sutterella, Legionella, Treponemna, Filifactor, Eubacterium, Streptococcus, Lactobacillus, Mycoplasma, Bacteroides, Flaviivola, Flavobacterium, Sphaerochaeta, Azospirillumn, Gluconacetobacter, Neisseria, Roseburia, Parvibaculum, Staphylococcus, Nitratifractor, Mycoplasma, and Campylobacter.

[0086] Embodiments of this invention can include methods for altering, modulating or reducing expression of a gene product. In some embodiments, a eukaryotic cell may contain and be expressing a DNA molecule having a target sequence, where the DNA encodes the gene product. The cell can be transfected with an engineered, non-naturally occurring CRISPR-associated (Cas) system, including an inducible or constitutive guide molecule of this invention that hybridizes with the target sequence. The CRISPR-associated (Cas) system may further include an inducible or constitutive Type-II Cas9 protein. The CRISPR-associated (Cas) system may further include one or more nuclear localization signals. The guide molecule can locate the target sequence and direct the Cas protein to cleave the DNA, and expression of a gene product can be altered. The Cas protein and the guide molecule do not naturally occur together.

[0087] Vectors for providing expression of one or more sequences in mammalian cells are known in the art.

[0088] Some examples of a Cas protein include Cas1, Cas2, Cas3, Cas4, Cas5, Cas6, Cas7, Cas8, and Cas9.

[0089] A CRISPR-associated gene editing protein can include a Cas protein.

[0090] A CRISPR gene editing system can include polynucleotides, transcripts and moieties involved in the expression of, or directing the activity of genes encoding a CRISPR-associated (Cas) protein, a tracrRNA, and a guide chain. A CRISPR system can be derived from a particular organism having an endogenous CRISPR system, such as Streptococcus pyogenes. A CRISPR gene editing system can promote the formation of a CRISPR complex at the site of a target DNA sequence.

[0091] A Cas9 protein can be modified or mutated, or can be a homolog or ortholog for improved expression in a eukaryotic cell. A Cas9 protein can be human codon optimized. In some embodiments, paired guide molecules can be used to target different strands of a dsDNA with paired Cas9 nickases. Cleavage of both DNA strands by a pair of Cas9 nickases can be used to create a site-specific double strand break, which may decrease off-target effects without loss of efficiency of editing.

[0092] A guide molecule of this invention contains a guide chain, which can also be referred to as a target guide chain. The guide chain can be composed of a chain of monomers, and each of the monomers can have an attached nucleobase. The guide chain can have a base sequence, which has sufficient complementarity with a target polynucleotide sequence to hybridize with the target sequence. The guide chain can direct sequence-specific binding of a CRISPR complex to the target sequence.

[0093] A guide molecule of this invention may contain a guide chain having a base sequence with sufficient complementarity to a target polynucleotide sequence to hybridize with the target sequence. The guide molecule may further contain a CRISPR portion or crRNA attached to the guide chain, where the crRNA can bind to a tracrRNA and direct sequence-specific binding of a CRISPR complex to the target sequence. Thus, the guide molecule can be a guide chain attached to a crRNA to form the guide molecule.

[0094] In some embodiments, this invention includes "single guide" embodiments in which a guide chain having sufficient complementarity with a target polynucleotide sequence to hybridize with the target sequence is attached to a crRNA sequence, which is further attached to a tracrRNA sequence, to form a "single guide molecule," where the single guide molecule can direct sequence-specific binding of a CRISPR complex to the target sequence. An example of a "single guide" embodiment is shown in Fig. 1.

[0095] A guide molecule of this invention, a crRNA, a guide chain, or a tracrRNA may contain one or more non-natural nucleotides, or modified nucleotides, or chemically-modified nucleotides.

[0096] In some embodiments, a guide molecule can be from 20 to 120 bases in length, or more. In certain embodiments, a guide molecule can be from 20 to 60 bases in length, or 20 to 50 bases, or 30 to 50 bases, or 39 to 46 bases.

[0097] In certain embodiments, a polynucleotide target sequence can be 5-100 bases in length, or 5-50 bases, or 5-30 bases, or 5-25 bases, or 5-24 bases, or 5-23 bases, or 5-22 bases, or 5-21 bases, or 5-20 bases, or 5-19 bases, or 5-18 bases.

[0098] In certain embodiments, a polynucleotide target sequence can be or 18-30 bases in length, or 18-24 bases, or 18-22 bases.

[0099] In additional embodiments, a polynucleotide target sequence can be 16 bases in length, or 17 bases, or 18 bases, or 19 bases, or 20 bases, or 21 bases, or 22 bases, or 23 bases, or 24 bases, or 25 bases, or 26 bases, or 27 bases, or 28 bases, or 29 bases, or 30 bases, or 31 bases, or 32 bases, or 33 bases, or 34 bases, or 35 bases.

[0100] In additional embodiments, a single guide molecule can be from 40 to 200 bases in length, or more.

[0101] The property of a guide sequence to direct sequence-specific binding of a CRISPR complex to a target sequence may be determined by any assay known in the art.

[0102] This invention further contemplates methods for delivering one or more vectors, or one or more transcripts thereof to a cell, as well as cells and organisms produced.

[0103] In some embodiments, the components of a CRISPR/Cas complex, including a guide molecule, can be delivered to a cell, in vitro, ex vivo, or in vivo. Viral and non-viral transfer methods as are known in the art can be used to introduce nucleic acids in mammalian cells. Nucleic acids can be delivered with a pharmaceutically acceptable vehicle, or for example, encapsulated in a liposome.

[0104] The target sequence can be any polynucleotide sequence, endogenous or exogenous to the eukaryotic cell. The target polynucleotide can be a coding or noncoding sequence. The target sequence can be associated with a PAM sequence, as are known in the art.

[0105] The target sequence can be any disease-associated polynucleotide or gene, as have been established in the art.

[0106] This invention further contemplates methods and compositions for repairing breaks in a polynucleotide or gene.

[0107] In some embodiments, a break in a polynucleotide or gene can be repaired by non-homologous end joining (NHEJ) to generate random insertions and deletions. The method may result in one or more changes in the structure of a protein expressed from a repaired target gene.

[0108] In further embodiments, a break in a polynucleotide or gene can be repaired by homology-directed repair (HDR) using an exogenous polynucleotide template to generate controlled insertions, deletions, and substitutions. The method may result in one or more changes in the structure of a protein expressed from a repaired target gene.

[0109] The repair of a break in a polynucleotide or gene can be done with a sense or antisense, single stranded oligonucleotide as a repair template, as is known in the art.

Allele selective embodiments and reduced off target



[0110] This invention further contemplates Guide molecules that are allele selective for gene editing and generating double strand breaks in genomic DNA.

[0111] In some aspects, the Guide molecules of this invention can be used for gene editing with reduced off target activity.

[0112] In further aspects, the Guide molecules of this invention can be used for gene editing of a human gene variant allele over a corresponding wild type allele, with essentially no off target activity toward the wild type allele.

[0113] In certain embodiments, the Guide molecules of this invention can be used for allele selective gene editing of a human gene variant allele over a corresponding wild type allele, with less than 1% off target activity toward the wild type allele.

[0114] In certain embodiments, the Guide molecules of this invention can be used for allele selective gene editing of a human gene variant allele over a corresponding wild type allele, with less than 3% off target activity toward the wild type allele.

[0115] An allele selective guide molecule of this invention contains a guide chain. The guide chain can be composed of a chain of monomers, and each of the monomers can have an attached nucleobase. The guide chain can have a base sequence, which has sufficient complementarity with a target polynucleotide sequence to hybridize with the target sequence. The guide chain can direct sequence-specific binding of a CRISPR complex to the target sequence.

[0116] A guide molecule of this invention having reduced off target effects may contain a guide chain. The guide chain can be composed of a chain of monomers, and each of the monomers can have an attached nucleobase. The guide chain can have a base sequence, which has sufficient complementarity with a target polynucleotide sequence to hybridize with the target sequence. The guide chain can direct sequence-specific binding of a CRISPR complex to the target sequence.

[0117] An allele selective guide molecule of this invention may contain a guide chain having a base sequence with sufficient complementarity to a target polynucleotide sequence to hybridize with the target sequence. The guide molecule may further contain a CRISPR portion or crRNA attached to the guide chain, where the crRNA can bind to a tracrRNA and direct sequence-specific binding of a CRISPR complex to the target sequence. Thus, the guide molecule can be a guide chain attached to a crRNA to form the guide molecule.

[0118] A guide molecule of this invention exhibiting reduced off target effects may contain a guide chain having a base sequence with sufficient complementarity to a target polynucleotide sequence to hybridize with the target sequence. The guide molecule may further contain a CRISPR portion or crRNA attached to the guide chain, where the crRNA can bind to a tracrRNA and direct sequence-specific binding of a CRISPR complex to the target sequence. Thus, the guide molecule can be a guide chain attached to a crRNA to form the guide molecule.

[0119] In some embodiments, this invention includes allele selective "single guide" embodiments in which a guide chain having sufficient complementarity with a target polynucleotide sequence to hybridize with the target sequence is attached to a crRNA sequence, which is further attached to a tracrRNA sequence, to form a "single guide molecule," where the single guide molecule can direct sequence-specific binding of a CRISPR complex to the target sequence.

[0120] Examples of target polynucleotide sequences for guide molecules of this invention are shown in Table 1. The target polynucleotide sequences in Table 1 reflect single nucleotide polymorphisms in certain human genes, which are disease-related.
Table 1: Guide target sequences for single nucleotide polymorphisms in human genes
SEQ ID NO.GeneMutationStran d20-mer target (5'-3')PAMCas9
607 ColA1 G284R (+) aagggagaagccagagatcc NGG S. pyr
608   G284R (+) gccagagatcctggaagacc NGG S. pyr
609   G284R (+) ccagagatcctggaagaccc NGG S. pyr
610   G284R (+) cagagatcctggaagacccg NGG S. pyr
611   G284R (-) ctggcttctcccttctctcc NGG S. pyr
612 Keratin 12 L132P (+) aaactatgcaaaatcctaat NNNNG ATT N. menigiditis
613   R135T (+) tgatacattagcttcctacc NGG S. pyr
614 SOD1 G85R (+) gcgcaatgtgactgctgacaaaga (24-mer) NGG S. pyr
615 Tau G272V (+) gcaccagccgggagtcggga NGG or NGGNG S. thermophilus
616   G272V (+) tgaagcaccagccgggagtc NGG S. pyr
617   G272V (+) ctgaagcaccagccgggagt NGG S. pyr
618   G272V (-) cgactcccggctggtgcttc NGG S. pyr
619   G272V (-) gcaccttcccgactcccggc NGG or NGGNG S. pyr or S. thermophilus
620   G272V (-) atctgcaccttcccgactcc NGG S. pyr
621   P301L (+) gataatatcaaacacgtcct NGG or NGGNG S. pyr or S. thermophilus
622   P301L (+) aatatcaaacacgtcctggg NGG S. pyr
623   V337M (-) acttccatctggccacctcc NGG S. pyr
624   V337M (-) tctcagattttacttccatc NGG S. pyr
625   V337M (-) catctggccacctcctggtttatg (24-mer) NNGRR (R = A/G) SaCas
626   R406W (-) gagacattgctgagatgcca NGG or NGGNG S. pyr or S. thermophilus
627 beta-Globin Q39STO P (+) tggtctacccttggacctag NGG S. pyr
628   Q39STO P (+) tcagaggttctttgagtcctt NGG S. pyr
629   Q39STO P (+) cccttggacctagaggttct NNGRR SaCas
630   Q39STO P (-) tcaaagaacctcttggtcca NGG S. pyr
631   Q39STO P (-) caaagaacctcttggtccaa NGG S. pyr
632   Q39STO P (-) ctcaaagaacctcttggtcc NNGRR SaCas
633 mtDNA T8993G /C (+) agcggttaggcgtacggcc(c/g) NGG S. pyr
634   T8993G /C (+) aggcgtacggcc(c/g)gggctat NGG S. pyr
635   T8993G /C (+) cgtacggcc(c/g)gggctattgg NNGRR SaCas
636   T8993G /C (+) cggcc(c/g)gggctattggttga NNGRR SaCas
637 EGFR G719S (+) aagatcaaagtgctgagctc NGG or NGGNG S. pyr or S. thermophilus
638   G719S (+) gtgctgagctccggtgcgtt NGG S. pyr
639   G719S (+) gagctccggtgcgttcggca NGG or NGGNG S. pyr or S. thermophilus
640   G719S (-) agctcagcactttgatcttt NNGRR SaCas
641 Kras G12C   cttgtggtagttggagcttg NGG  


[0121] In Table 1, the position of the single nucleotide allelic mutation is underlined.
Table 2: Accession numbers for gene targets
DiseaseGeneNCBI Acc #Mutation
Ullrich Congenital Muscular Dystrophy (UCMD) COL6A1 NM_001848.2 G284R (GGA to AGA)
Meesmann epithelial corneal dystrophy (MECD) KRT12 NM_000223.3 L132P (CTT to CCT) and/or R135T (AGA to ACA)
Amyotrophic lateral sclerosis (ALS) SOD1 NM_000454.4 G85R (GGC to CGC)
Frontotemporal dementia with parkinsonism linked to chromosom 17 (FTDP-17) Tau NM_001123066. 3 G272V (GGC to GTC), P301L (CCG to CTG), V337M (GTG to ATG), and/or R406W (CGG to TGG)
b-Thalassaemia HBB NM_000518.4 Q39STOP (CAGto TAG)
Neurogenic weakness, ataxia and retinitis pigmentosa (NARP) MT-ATP6 NC_012920.1 T8993G/C
Gefitinib-resistant cancer EGFR NM_005228.3 G719S


[0122] This invention contemplates Guide molecules that are allele selective for gene editing and generating double strand breaks in disease-related single nucleotide polymorphisms in human genes.

[0123] This invention further contemplates Guide molecules for gene editing and generating double strand breaks in disease-related single nucleotide polymorphisms in human genes with reduced off target activity.

[0124] An allele selective guide molecule of this invention contains a guide chain. The guide chain can be composed of a chain of monomers, and each of the monomers can have an attached nucleobase. The guide chain can have a base sequence, which has sufficient complementarity with a target polynucleotide sequence containing a single nucleotide polymorphism to hybridize with the target sequence. The guide chain can direct sequence-specific binding of a CRISPR complex to the target sequence.

[0125] An allele selective guide molecule of this invention may contain a guide chain having a base sequence with sufficient complementarity to a target polynucleotide sequence containing a single nucleotide polymorphism to hybridize with the target sequence. The guide molecule may further contain a CRISPR portion or crRNA attached to the guide chain, where the crRNA can bind to a tracrRNA and direct sequence-specific binding of a CRISPR complex to the target sequence. Thus, the guide molecule can be a guide chain attached to a crRNA to form the guide molecule.

[0126] In some embodiments, this invention includes allele selective "single guide" embodiments in which a guide chain having sufficient complementarity with a target polynucleotide containing a single nucleotide polymorphism sequence to hybridize with the target sequence is attached to a crRNA sequence, which is further attached to a tracrRNA sequence, to form a "single guide molecule," where the single guide molecule can direct sequence-specific binding of a CRISPR complex to the target sequence.

TTR embodiments



[0127] Amyloidosis related to transthyretin (ATTR) involves the depositing of amyloid fibril proteins in various organs and tissues, including the peripheral, autonomic, and central nervous systems. Transthyretin (TTR) is a secreted thyroid hormone-binding protein that binds and transports retinol binding protein, and serum thyroxine in plasma and cerebrospinal fluid.

[0128] The pathology of ATTR may include many TTR mutations. Symptoms of ATTR often include neuropathy and/or cardiomyopathy. Peripheral neuropathy can begin in the lower extremities, with sensory and motor neuropathy, and can progress to the upper extremities. Autonomic neuropathy can be manifest by gastrointestinal symptoms and orthostatic hypotension.

[0129] Patients with TTR gene Val-30-Met, the most common mutation, have normal echocardiograms. However, they may have conduction system irregularities and need a pacemaker. The ATTR V30M variant can cause lower extremity weakness, pain, and impaired sensation, as well as autonomic dysfunction. Vitreous and opaque amyloid deposits can be characteristic of ATTR.

[0130] The U-Guide molecules of this invention can be active for gene editing human TTR. A U-Guide molecule can be attached to, or annealed with a tracrRNA to provide a U-Guide/tracr molecule for CRISPR/ Cas9 gene editing.

[0131] The U-Guide/tracr molecules of this invention can be delivered and transfected into cells in vitro, in vivo, or ex vivo for editing a genomic DNA.

[0132] The U-Guide molecules of this invention can be surprisingly active for gene editing human TTR with allele selective results.

[0133] In some embodiments, a U-Guide molecule of this invention can be active for gene editing human TTR with reduced off target activity.

[0134] In some embodiments, the U-Guide molecules of this invention exhibit an extraordinary and surprising level of allele selectivity for generating double strand breaks in V30M TTR over wild type TTR.

[0135] The U-Guide molecules of this invention can be used for allele selective gene editing of human TTR.

[0136] In further embodiments, the U-Guide molecules of this invention can be used for allele selective gene editing of human V30M TTR over wild type TTR with a selectivity ratio of at least 3.

[0137] In further embodiments, the U-Guide molecules of this invention can be used for allele selective gene editing of human V30M TTR over wild type TTR with a selectivity ratio of at least 5.

[0138] In additional embodiments, the U-Guide molecules of this invention can be used for allele selective gene editing of human V30M TTR over wild type TTR with a selectivity ratio of at least 8.

[0139] By direct comparison, under the same conditions, a CRISPR/Cas9 guide having the same nucleobase sequence and structure as the U-Guide molecule, but lacking any UNA monomer, may have a selectivity ratio of about 1, or less than 2.

[0140] In further aspects, the U-Guide molecules of this invention can be used for gene editing of human V30M TTR over wild type TTR, with essentially no off target activity toward the wild type allele.

[0141] In certain embodiments, the U-Guide molecules of this invention can be used for gene editing of human V30M TTR over wild type TTR, with less than 1% off target activity toward the wild type allele.

[0142] In certain embodiments, the U-Guide molecules of this invention can be used for gene editing of human V30M TTR over wild type TTR, with less than 3% off target activity toward the wild type allele.

U-guide molecules



[0143] This invention further provides U-guide molecules that can be highly effective for gene editing with Cas9. The compositions and methods of this invention can be used for gene editing with Cas9 in vivo, ex vivo, and in vitro.

[0144] This invention contemplates in vitro methods for gene editing with Cas9 guided by novel U-guide molecules.

[0145] U-Guide molecules of this invention can provide efficient gene editing using Cas9.

[0146] The U-Guide molecules of this invention can be active for gene editing a TTR gene. The U-Guide molecules of this invention can be surprisingly active for gene editing human TTR with allele selective results, and can exhibit reduced off target effects.

[0147] In some embodiments, the U-Guide molecules of this invention exhibit an extraordinary and surprising level of allele selectivity for generating double strand breaks in V30M TTR over wild type TTR, indicating reduced off target effects.

[0148] This invention further contemplates methods for gene editing with Cas9 guided by novel U-guide molecules, along with gene repair by NHEJ and HDR repair mechanisms.

[0149] The U-guide molecules of this invention can advantageously increase the efficiency of gene engineering directed by Cas9.

[0150] In some embodiments, the U-guide molecules of this invention can advantageously increase the efficiency of gene engineering directed by Cas9 and provide a high frequency of targeted mutagenesis via NHEJ.

[0151] In further embodiments, the U-guide molecules of this invention can advantageously increase the efficiency of gene engineering directed by Cas9 and provide exact DNA integration using HDR for any genomic target.

[0152] In some aspects, the U-guide molecules of this invention can enhance Cas9 binding and DNA cleavage in vivo.

[0153] This invention provides novel molecules to be used as therapeutic agents for various diseases and conditions. The molecules of this invention can be used as active pharmaceutical ingredients in compositions for use in ameliorating, preventing or treating various diseases and conditions.

[0154] In some embodiments, molecules of this invention can be for use in ameliorating and/or treating amyloidosis and related amyloid-related diseases, or Alzheimer's Disease.

[0155] Embodiments of this invention can provide guide molecules that advantageously provide effective gene editing with Cas9, as well as compositions or formulations for therapeutic agents, which can provide clinical agents.

[0156] The properties of the guide molecules of this invention arise according to their structure, and the molecular structure in its entirety, as a whole, can provide significant benefits and properties.

[0157] In some embodiments, a wide range of novel U-guide molecules are provided, which can incorporate one or more linker groups. The linker groups can be attached in a chain in the guide molecule. Each linker group can also be attached to a nucleobase.

[0158] In some aspects, a linker group can be a monomer. Monomers can be attached to form a chain molecule. In a chain molecule of this invention, a linker group monomer can be attached at any point in the chain.

[0159] In certain aspects, linker group monomers can be attached in a chain molecule of this invention so that the linker group monomers reside near the ends of the chain. The ends of the chain molecule can be formed by linker group monomers.

[0160] In further aspects, the linker groups of a chain molecule can each be attached to a nucleobase. The presence of nucleobases in the chain molecule can provide a sequence of nucleobases.

[0161] In certain embodiments, this invention provides oligomer molecules having chain structures that incorporate novel combinations of the linker group monomers, along with certain natural nucleotides, or non-natural nucleotides, or modified nucleotides, or chemically-modified nucleotides.

[0162] The oligomer molecules of this invention can display a sequence of nucleobases that is targeted to at least a portion of a polynucleotide or genome.

[0163] This invention provides structures, methods and compositions for oligomeric agents that incorporate the linker group monomers. The oligomeric molecules of this invention can be used as active agents in formulations for gene editing therapeutics.

Modalities of action



[0164] Embodiments of this invention can provide an active guide molecule, which can be used for altering or editing a gene in a cell, thereby modulating gene functionality, gene expression or gene expression products.

[0165] This invention can provide robust and efficient methods for gene editing with a wide range of therapeutic applications.

[0166] In general, the CRISPR/Cas system can utilize a guide molecule to recognize a specific DNA target. The Cas enzyme may be recruited to a specific DNA target by the action of the guide molecule. The CRISPR/Cas system can be used for efficient and effective gene editing using guide molecules of this invention.

[0167] In some aspects, this invention provides in vitro methods for altering or modulating expression of one or more gene products.

[0168] Methods of this invention may utilize a vector for introducing into a eukaryotic cell the components of the Type II CRISPR/Cas9 Guided-Endonuclease gene editing system. The vector can have a regulatory sequence operably linked to a guide molecule that can hybridize with a target sequence in a gene, and an additional regulatory sequence operably linked to a Type II Cas9 endonuclease. The guide molecule can recruit the Cas9 protein to cleave the gene target. In certain embodiments, the vector can include a nuclear localization signal.

[0169] Some information concerning vectors is given in, for example, David V. Goeddel (Editor), Methods in Enzymology, Volume 185: Gene Expression Technology, Academic Press, 1990.

[0170] In some embodiments, a guide molecule may have a guide sequence attached to a crispr-tracr sequence. The guide sequence can be targeted to hybridize a gene target, and the crispr-tracr sequence can bind to Cas9.

[0171] Without wishing to be bound by any particular theory, a Type II prokaryotic CRISPR and CRISPR-associated protein (Cas) system can be used for gene editing. In the prokaryote, the system operates as an immune defense system. The CRISPR gene can consist of certain repeat sequences separated by spacer sequences that belong to targeted foreign genes. A primary transcript from CRISPR can be processed into CRISPR RNAs (crRNAs). The crRNA can consist of a conserved repeat sequence, and a variable spacer sequence or guide that is complementary to the target gene sequence. Trans activating crisper RNA (tracrRNA) can be a short RNA sequence that is complementary to the CRISPR repeat and serves to process crRNA. The complex formed by crRNA, tracrRNA and Cas9 binds to a target sequence by base pairing and causes sequence-specific, double strand DNA cleavage.

[0172] In further embodiments, a guide molecule of this invention can encompass structures that incorporate sequences related to crRNA and tracrRNA.

[0173] A CRISPR/Cas complex may include a guide sequence hybridized to a target sequence and complexed with a Cas protein. The CRISPR/Cas complex can provide cleavage of one or both strands of the target sequence, or within a few base pairs of the target sequence, or near the target sequence.

[0174] The components of the CRISPR/Cas complex including the Cas protein, the guide sequence, and the tracr sequence may each be operably linked to separate regulatory sequences on separate vectors.

[0175] The components of the CRISPR/Cas complex may be expressed from the same or different regulatory sequences, and may be combined in a single vector.

[0176] A vector may be used to provide one or more guide sequences.

[0177] As used herein, the term "Cas" refers to any Cas protein known in the art that is operable for gene editing using a guide molecule.

[0178] In some embodiments, one or more guide sequences can be used simultaneously for gene editing.

[0179] In some embodiments, this invention provides methods and compositions for knocking out genes, for amplifying genes, for repairing mutations associated with genomic instability, and for correcting known defects in a genome.

[0180] In some embodiments, the expression of one or more gene products of the target gene can be decreased.

[0181] In certain embodiments, the expression of one or more gene products of the target gene can be increased.

[0182] In some modalities, a CRISPR/Cas system can utilize a guide molecule of this invention for CRISPR genomic interference.

[0183] In certain aspects, a CRISPR/Cas system can utilize a guide molecule of this invention to repress gene expression. A catalytically inactive Cas9 can be used to suppress gene expression by interfering with transcription of the gene. A guide molecule of this invention can target the inactive Cas9 to a genomic sequence, acting as a repressor. The guide molecule may be co-expressed.

[0184] In certain embodiments, attachment of an effector domain having regulatory function to an inactive Cas9 can provide stable and efficient transcriptional repression. Attachment of a transcriptional repressor domain or regulatory domain having regulatory function to an inactive Cas9 can suppress expression of a targeted endogenous gene.

[0185] In some embodiments, a guide molecule of this invention can be relatively short, up to 14 or 16 nt in length, to allow an active Cas9 to bind specific target sequences without cleaving the DNA, therefore acting as a repressor.

[0186] In further aspects, a CRISPR/Cas system can utilize a guide molecule of this invention to activate gene expression. A transcriptional activator can be attached to an inactive Cas9. The transcriptional activator can increase gene expression, while the inactive Cas9 is targeted with a guide molecule of this invention.

UNA monomers



[0187] As used herein unlocked nucleomonomers (UNA monomers), are small organic molecules based on a propane-1,2,3-tri-yl-trisoxy structure as shown below:

where R1 and R2 are each independently H or a phosphodiester linkages, Base is be a nucleobase, and R3 is a functional group described below.

[0188] In another view, the UNA monomer main atoms can be drawn in IUPAC notation as follows:

where the direction of progress of the oligomer chain is from the 1-end to the 3-end of the propane residue.

[0189] Examples of a nucleobase include uracil, thymine, cytosine, 5-methylcytosine, adenine, guanine, inosine, and natural and non-natural nucleobase analogues.

[0190] In general, because the UNA monomers are not nucleotides, they can exhibit at least four forms in an oligomer. First, a UNA monomer can be an internal monomer in an oligomer, where the UNA monomer is flanked by other monomers on both sides. In this form, the UNA monomer can participate in base pairing when the oligomer is a duplex, for example, and there are other monomers with nucleobases in the duplex.

[0191] Examples of UNA monomer as internal monomers flanked at both the propane-1-yl position and the propane-3-yl position, where R3 is -OH, are shown below.





[0192] Second, a UNA monomer can be a monomer in an overhang of an oligomer duplex, where the UNA monomer is flanked by other monomers on both sides. In this form, the UNA monomer does not participate in base pairing. Because the UNA monomers are flexible organic structures, unlike nucleotides, the overhang containing a UNA monomer will be a flexible terminator for the oligomer.

[0193] A UNA monomer can be a terminal monomer in an overhang of an oligomer, where the UNA monomer is attached to only one monomer at either the propane-1-yl position or the propane-3-yl position. In this form, the UNA monomer does not participate in base pairing. Because the UNA monomers are flexible organic structures, unlike nucleotides, the overhang containing a UNA monomer can be a flexible terminator for the oligomer.

[0194] Examples of a UNA monomer as a terminal monomer attached at the propane-3-yl position are shown below.





[0195] Because a UNA monomer can be a flexible molecule, a UNA monomer as a terminal monomer can assume widely differing conformations. An example of an energy minimized UNA monomer conformation as a terminal monomer attached at the propane-3-yl position is shown below.

Thus, UNA oligomers having a terminal UNA monomer are significantly different in structure from conventional nucleic acid agents. In contrast, the conformability of a terminal UNA monomer can provide UNA oligomers with different properties.

[0196] Among other things, the structure of the UNA monomer allows it to be attached to naturally-occurring nucleotides. A UNA oligomer can be a chain composed of UNA monomers, as well as various nucleotides that may be based on naturally-occurring nucleosides.

[0197] The functional group R3 of a UNA monomer as used herein is -OR4,-SR4, -NR42, -NH(C=O)R4, morpholino, morpholin-1-yl, piperazin-1-yl, or 4-alkanoyl-piperazin-1-yl, where R4 is the same or different for each occurrence, and is selected from H, alkyl, a cholesterol, a lipid molecule, a polyamine, an amino acid, or a polypeptide.

[0198] The UNA monomers are organic molecules. UNA monomers are not nucleic acid monomers or nucleotides, nor are they naturally-occurring nucleosides or modified naturally-occurring nucleosides.

[0199] A UNA oligomer of this invention is a synthetic chain molecule. A UNA oligomer of this invention is not a nucleic acid, nor an oligonucleotide.

[0200] In some embodiments, as shown above, a UNA monomer can be UNA-A (designated Ã), UNA-U (designated Ù), UNA-C (designated Č), and UNA-G (designated Ǧ).

[0201] Designations that may be used herein include mA, mG, mC, and mU, which refer to the 2'-O-Methyl modified ribonucleotides.

[0202] Designations that may be used herein include lower case c and u, which refer to the 2'-O-methyl modified ribonucleotides.

[0203] Designations that may be used herein include dT, which refers to a 2'-deoxy T nucleotide.

Additional monomers for guide compounds



[0204] As used herein, in the context of oligomer sequences, the symbol X represents a UNA monomer.

[0205] As used herein, in the context of oligomer sequences, the symbol N represents any natural nucleotide monomer, or a modified nucleotide monomer.

[0206] As used herein, in the context of oligomer sequences, the symbol Q represents a non-natural, modified, or chemically-modified nucleotide monomer.

[0207] When a Q monomer appears in one strand of a duplex, and is unpaired with the other strand, the monomer can have any base attached. When a Q monomer appears in one strand of a duplex, and is paired with a monomer in the other strand, the Q monomer can have any base attached that would be complementary to the monomer in the corresponding paired position in the other strand.

[0208] Examples of nucleic acid monomers include non-natural, modified, and chemically-modified nucleotides, including any such nucleotides known in the art.

[0209] Examples of non-natural, modified, and chemically-modified nucleotide monomers include any such nucleotides known in the art, for example, 2'-O-methyl ribonucleotides, 2'-O-methyl purine nucleotides, 2'-deoxy-2'-fluoro ribonucleotides, 2'-deoxy-2'-fluoro pyrimidine nucleotides, 2'-deoxy ribonucleotides, 2'-deoxy purine nucleotides, universal base nucleotides, 5-C-methyl-nucleotides, and inverted deoxyabasic monomer residues.

[0210] Examples of non-natural, modified, and chemically-modified nucleotide monomers include 3'-end stabilized nucleotides, 3'-glyceryl nucleotides, 3'-inverted abasic nucleotides, and 3'-inverted thymidine.

[0211] Examples of non-natural, modified, and chemically-modified nucleotide monomers include locked nucleic acid nucleotides (LNA), 2'-O,4'-C-methylene-(D-ribofuranosyl) nucleotides, 2'-methoxyethoxy (MOE) nucleotides, 2'-methyl-thio-ethyl, 2'-deoxy-2'-fluoro nucleotides, and 2'-O-methyl nucleotides.

[0212] Examples of non-natural, modified, and chemically-modified nucleotide monomers include 2',4'-Constrained 2'-O-Methoxyethyl (cMOE) and 2'-O-Ethyl (cEt) Modified DNAs.

[0213] Examples of non-natural, modified, and chemically-modified nucleotide monomers include 2'-amino nucleotides, 2'-O-amino nucleotides, 2'-C-allyl nucleotides, and 2'-O-allyl nucleotides.

[0214] Examples of non-natural, modified, and chemically-modified nucleotide monomers include N6-methyladenosine nucleotides.

[0215] Examples of non-natural, modified, and chemically-modified nucleotide monomers include nucleotide monomers with modified bases 5-(3-amino)propyluridine, 5-(2-mercapto)ethyluridine, 5-bromouridine; 8-bromoguanosine, or 7-deazaadenosine.

[0216] Examples of non-natural, modified, and chemically-modified nucleotide monomers include 2'-O-aminopropyl substituted nucleotides.

[0217] Examples of non-natural, modified, and chemically-modified nucleotide monomers include replacing the 2'-OH group of a nucleotide with a 2'-R, a 2'-OR, a 2'-halogen, a 2'-SR, or a 2'-amino, where R can be H, alkyl, alkenyl, or alkynyl.

[0218] A guide molecule of this invention, a crRNA, a guide chain, or a tracrRNA may contain any one or more of the non-natural nucleotides, modified nucleotides, or chemically-modified nucleotides shown above.

[0219] In some aspects, a guide compound of this invention can be described by a sequence of attached bases, and being substituted or modified forms thereof. As used herein, substituted or modified forms include differently substituted UNA monomers, as well as differently substituted or modified nucleic acid monomers, as are further described herein.

[0220] Some examples of modified nucleotides are given in Saenger, Principles of Nucleic Acid Structure, Springer-Verlag, 1984.

U-Guide compounds composed of UNA monomers



[0221] Aspects of this invention can provide structures and compositions for U-Guide molecules for gene editing that are UNA-monomer containing oligomeric compounds.

[0222] The oligomeric U-Guide agents may incorporate one or more UNA monomers. Oligomeric molecules of this invention can be used as active agents in formulations for gene editing therapeutics.

[0223] In some embodiments, this invention provides oligomeric U-Guide compounds having a structure that incorporates novel combinations of UNA monomers with certain natural nucleotides, non-natural nucleotides, modified nucleotides, or chemically-modified nucleotides.

[0224] In further aspects, the oligomeric U-Guide compounds of this invention can be pharmacologically active molecules. A U-Guide of this invention can be used as an active pharmaceutical ingredient for gene editing.

[0225] A U-Guide molecule of this invention can have the structure of Formula I

wherein L1 is a linkage, n is from 39 to 46, and for each occurrence L2 is a UNA linker group having the formula -C1-C2-C3-, where R is attached to C2 and has the formula -OCH(CH2R3)R5, where R3 is -OR4, -SR4, -NR42, -NH(C=O)R4, morpholino, morpholin-1-yl, piperazin-1-yl, or 4-alkanoyl-piperazin-1-yl, where R4 is the same or different for each occurrence and is H, alkyl, a cholesterol, a lipid molecule, a polyamine, an amino acid, or a polypeptide, and where R5 is a nucleobase, or L2(R) is a sugar such as a ribose and R is a nucleobase, or L2 is a modified sugar such as a modified ribose and R is a nucleobase. In certain embodiments, alkyl is methyl, ethyl, propyl or isopropyl. In certain embodiments, a nucleobase can be a modified nucleobase. L1 can be a phosphodiester linkage. In further embodiments, -OCH(CH2R3)R5 may be -SCH(CH2R3)R5, -CH2CH(CH2R3)R5, or -(SO2)CH(CH2R3)R5.

[0226] A U-Guide molecule of this invention can have a guide sequence that is complementary to a target sequence of a genome, where up to three mismatches can occur.

[0227] The target of a U-Guide molecule can be a target nucleic acid. In some embodiments, the target can be any genomic DNA of a subject. A U-Guide molecule can be active for gene editing with a CRISPR/Cas9 system.

[0228] In some aspects, a U-Guide molecule of this invention can have any number of phosphorothioate intermonomer linkages in any position in any strand.

[0229] In some embodiments, any one or more of the intermonomer linkages of a U-Guide molecule can be a phosphodiester, a phosphorothioate including dithioates, a chiral phosphorothioate, and other chemically modified forms.

[0230] For example, the symbol "N" can represent any nucleotide that is complementary to the monomer in the target.

[0231] The symbol "X" in a strand or oligomer represents a UNA monomer. When a UNA monomer appears in a strand of a U-Guide molecule, and is paired with a target, the UNA monomer can have any base attached that would be complementary to the monomer in the target strand.

[0232] When a U-Guide molecule terminates in a UNA monomer, the terminal position has a 1-end, or the terminal position has a 3-end, according to the positional numbering shown above. For example, the U-Guide molecule
SEQ ID NO:1 1-ŨĜCACGGCCACAUUGAUGGCGUUUUAGAGCUAUGCUGUCCŨŨ-3 has a UNA-U monomer 1-end on the left, and a UNA-U monomer 3-end on the right.

[0233] In some embodiments, a U-Guide molecule of this invention can have one or more UNA monomers at the 1-end of the strand, and one or more UNA monomers at the 3-end of the strand.

[0234] In certain embodiments, a U-Guide molecule of this invention may have a length of 39-46 monomers.

[0235] A U-Guide molecule of this invention for editing a gene can have a strand being 39-46 monomers in length, where the monomers can be UNA monomers and nucleic acid monomers.

[0236] A U-Guide molecule can be targeted to a target gene, and can exhibit reduced off-target effects as compared to conventional guide RNAs for CRISP/Cas9 gene editing.

[0237] Off target sites, based on sequence homology to the target, can be determined by constructing an episomally replicated reporter plasmid with either the target or off-target sequence. The reporter can be co-transfected with the U-Guide molecules into mammalian cells. The plasmids can be isolated to perform a T7 endonuclease I assay. Alternatively, sequencing of off-target can be done with PCR using a primer set flanking the potential off-target site.

[0238] A U-Guide molecule can be targeted to a target gene, and can exhibit increased efficiency of gene editing as compared to conventional guide RNAs for CRISP/Cas9 gene editing.

[0239] With a U-Guide molecule of this invention, the average rate of mutation of a genomic target can be at least 10%, or at least 15%, or at least 20%, or at least 25%, or at least 30%, or at least 40%, or at least 50%, or at least 60%, or at least 70%, or at least 80%, or at least 90%.

[0240] A U-Guide molecule of this disclosure may comprise naturally-occurring nucleic acid nucleotides, and modifications thereof that are compatible with gene editing activity.

[0241] As used herein, the term strand refers to a single, contiguous chain of monomers, the chain having any number of internal monomers and two end monomers, where each end monomer is attached to one internal monomer on one side, and is not attached to a monomer on the other side, so that it ends the chain.

[0242] The monomers of a U-Guide molecule may be attached via phosphodiester linkages, phosphorothioate linkages, gapped linkages, and other variations.

[0243] In some embodiments, a U-Guide molecule can include mismatches in complementarity between the guide sequence and the target sequence. In further embodiments, a U-Guide molecule may have 1, or 2, or 3 mismatches to the target.

[0244] The target of a U-Guide molecule can be a target nucleic acid of a target gene.

[0245] In certain embodiments, a U-Guide molecule can be a single strand that folds upon itself and hybridizes to itself to form a double stranded region having a connecting loop at one end.

[0246] In some embodiments, an U-Guide molecule of this invention may have a strand being 39-46 monomers in length, where any monomer that is not a UNA monomer can be a Q monomer.

[0247] In some embodiments, an U-Guide molecule of this invention may have a strand being 39-46 monomers in length, where any monomer that is not a UNA monomer can be a Q monomer, and where the number of Q monomers is less than twenty.

[0248] In some embodiments, an U-Guide molecule of this invention may have a strand being 39-46 monomers in length, where any monomer that is not a UNA monomer can be a Q monomer, and where the number of Q monomers is less than twelve.

[0249] In some embodiments, an U-Guide molecule of this invention may have a strand being 39-46 monomers in length, where any monomer that is not a UNA monomer can be a Q monomer, and where the number of Q monomers is less than ten.

[0250] In some embodiments, an U-Guide molecule of this invention may have a strand being 39-46 monomers in length, where any monomer that is not a UNA monomer can be a 2'-O-Methyl modified ribonucleotide.

Gene Editing



[0251] In some embodiments, the guide molecules of this invention can be used to edit any target portion of a TTR gene, when the target is flanked by a 3' protospacer-adjacent motif (PAM).

[0252] Examples of genes and/or polynucleotides that can be edited with the guide molecules of this invention include TTR, which may be related to amyloid neuropathy and amyloidosis.

[0253] In certain embodiments, the guide compounds of the invention are for use in methods for preventing, treating or ameliorating transthyretin-related hereditary amyloidosis.

Pharmaceutical compositions



[0254] In some aspects, this invention provides pharmaceutical compositions containing an oligomeric compound and a pharmaceutically acceptable carrier.

[0255] A pharmaceutical composition can be capable of local or systemic administration. In some aspects, a pharmaceutical composition can be capable of any modality of administration. In certain aspects, the administration can be intravenous, subcutaneous, pulmonary, intramuscular, intraperitoneal, dermal, oral, or nasal administration.

[0256] Embodiments of this invention include pharmaceutical compositions containing an oligomeric compound in a lipid formulation.

[0257] In some embodiments, a pharmaceutical composition may comprise one or more lipids selected from cationic lipids, anionic lipids, sterols, pegylated lipids, and any combination of the foregoing.

[0258] In certain embodiments, a pharmaceutical composition can be substantially free of liposomes.

[0259] In further embodiments, a pharmaceutical composition can include liposomes or nanoparticles.

[0260] Some examples of lipids and lipid compositions for delivery of an active molecule of this invention are given in WO/2015/074085.

[0261] In additional embodiments, a pharmaceutical composition can contain an oligomeric compound within a viral or bacterial vector.

[0262] A pharmaceutical composition of this disclosure may include carriers, diluents or excipients as are known in the art. Examples of pharmaceutical compositions are described, for example, in Remington's Pharmaceutical Sciences, Mack Publishing Co. (A.R. Gennaro ed. 1985).

[0263] Examples of excipients for a pharmaceutical composition include antioxidants, suspending agents, dispersing agents, preservatives, buffering agents, tonicity agents, and surfactants.

[0264] An effective dose of an agent or pharmaceutical formulation of this invention can be an amount that is sufficient to cause gene editing in vivo.

[0265] An effective dose of an agent or pharmaceutical formulation of this invention can be an amount that is sufficient to cause an average rate of mutation of a genomic target in vivo of at least 10%, or at least 15%, or at least 20%, or at least 25%, or at least 30%, or at least 40%, or at least 50%, or at least 60%, or at least 70%, or at least 80%, or at least 90%.

[0266] A therapeutically effective dose can be an amount of an agent or formulation that is sufficient to cause a therapeutic effect. A therapeutically effective dose can be administered in one or more separate administrations, and by different routes.

[0267] A therapeutically effective dose, upon administration, can result in serum levels of an active agent of 1-1000 pg/ml, or 1-1000 ng/ml, or 1-1000 µg/ml, or more.

[0268] A therapeutically effective dose of an active agent in vivo can be a dose of 0.001-0.01 mg/kg body weight, or 0.01-0.1 mg/kg, or 0.1-1 mg/kg, or 1-10 mg/kg, or 10-100 mg/kg.

[0269] A therapeutically effective dose of an active agent in vivo can be a dose of 0.001 mg/kg body weight, or 0.01 mg/kg, or 0.1 mg/kg, or 1 mg/kg, or 2 mg/kg, or 3 mg/kg, or 4 mg/kg, or 5 mg/kg, or more.

Autosomal Dominant Diseases



[0270] Examples of diseases and/or conditions for which the guide molecules of this invention can be utilized include those in Table 3.
Table 3: Autosomal Dominant Diseases
Autosomal Dominant DiseaseAge / NotesRelated gene
Acropectoral syndrome    
Acute intermittent porphyria Adulthood. Attacks are treated with either glucose loading or hemin. These are specific treatments that lower the production of heme pathway intermediates by the liver. HMBS gene
Adermatoglyphia    
Albright's hereditary osteodystrophy    
Arakawa's syndrome II    
Aromatase excess syndrome ∼8-18 years old Mutations in aromatase gene
Autosomal dominant cerebellar ataxia    
Axenfeld syndrome    
Bethlem myopathy    
Birt-Hogg-Dubé syndrome Liver complications, progressive liver dysfunction, portal hypertension with varices, hypersplenism, and rarely overt liver failure with cirrhosis. Liver cancer. Unknown, random
Boomerang dysplasia    
Branchio-oto-renal syndrome    
Buschke-Ollendorff syndrome    
Camurati-Engelmann disease Appears in childhood and is considered to be inherited. The disease is slowly progressive Mutations in the TGFB1 gene
Central core disease Reye's syndrome occurs almost exclusively in children. Acute liver failure/coma, death. Unknown, possible damage to cellular mitochondria
Collagen disease    
Collagenopathy, types II and XI    
Congenital distal spinal muscular atrophy    
Congenital stromal corneal dystrophy    
Costello syndrome    
Currarino syndrome Birth to 64 years old Mutation in the HLXB9 homeobox gene
Darier's disease    
De Vivo disease    
Dentatonzbral-pallidoluysian atrophy    
Dermatopathia pigmentosa reticularis    
DiGeorge syndrome    
Dysfibrinogenemia Adulthood (20's) Mutation controlling production of liver fibrinogen
Familial atrial fibrillation    
Familial hypercholesterolemia Inherited condition that causes high levels of LDL cholesterol, beginning at birth, and heart attacks at an early age. Mutations in APOB, LDLR, LDLRAP1, and PCSK9
Familial male-limited precocious puberty    
Feingold syndrome    
Felty's syndrome 50's, 60's Unknown
Flynn-Aird syndrome    
Gardner's syndrome Birth to age 5 Mutations in the APC gene
Gillespie syndrome    
Gray platelet syndrome    
Greig cephalopolysyndactyly syndrome    
Hajdu-Cheney syndrome    
Hawkinsinuria    
Hay-Wells syndrome    
Hereditary elliptocytosis    
Hereditary hemorrhagic telangiectasia Age-dependent, adolescence or later. Arteriovenous malformation (AVM) is one of the signs/symptoms, predominantly the lungs (50%), liver (30-70%), brain (10%). Mutations in ACVRL1 gene
Hereditary mucoepithelial dysplasia    
Hereditary spherocytosis Acute cases can threaten to cause hypoxia through anemia and acute kernicterus through hyperbilinzbinemia, particularly in newborns. Mutations in the ANK1 gene. (also, SPTB, SPTA, SLC4A1, EPB42)
Holt-Oram syndrome    
Hypertrophic cardiomyopathy    
Hypoalphalipoproteinemia    
Jackson-Weiss syndrome    
Keratolytic winter erythema    
Kniest dysplasia    
Kostmann syndrome    
Langer-Giedion syndrome    
Larsen syndrome    
Liddle's syndrome    
Marfan syndrome    
Marshall syndrome    
Medullary cystic kidney disease    
Metachondromatosis    
Miller-Dicker syndrome    
MOMO syndrome    
Monilethrix    
Multiple endocrine neoplasia    
Multiple endocrine neoplasia type 1    
Multiple endocrine neoplasia type 2    
Multiple endocrine neoplasia type 2b    
Myelokathexis    
Myotonic dystrophy    
Naegeli-Franceschetti-Jadassohn syndrome    
Nail-patella syndrome    
Noonan syndrome    
Oculopharyngeal muscular dystrophy    
Pachyonychia congenita    
Pallister-Hall syndrome    
PAPA syndrome    
Papillorenal syndrome    
Parastremmatic dwarfism    
Pelger-Huet anomaly    
Peutz-Jeghers syndrome The average age of first diagnosis is 23, but the lesions can be identified at birth by an astute pediatrician Mutations in the STK11 gene
Piebaldism    
Platyspondylic lethal skeletal dysplasia, Torrance type    
Popliteal pterygium syndrome    
Porphyria cutanea tarda Late adulthood between the ages of 30 to 40 years. Inherited mutations in the UROD (20%).
RASopathy    
Reis-Bucklers corneal dystrophy    
Romano-Ward syndrome    
Rosselli-Gulienetti syndrome    
Roussy-Lévy syndrome    
Rubinstein-Taybi syndrome    
Saethre-Chotzen syndrome    
Schmitt Gillenwater Kelly syndrome    
Short QT syndrome    
Singleton Merten syndrome    
Spinal muscular atrophy with lower extremity predominance    
Spinocerebellar ataxia    
Spinocerebellar ataxia type-6    
Spondyloepimetaphyseal dysplasia, Strudwick type    
Spondyloepiphyseal dysplasia congenita    
Spondyloperipheral dysplasia    
Stickler syndrome    
Tietz syndrome    
Timothy syndrome    
Treacher Collins syndrome    
Tuberous sclerosis Liver hamartomas. Essentially liver hamartoma embryonic dysplasia and tumor characteristics, from the surgical point of view will continue to hepatic disease classified as benign. Tuberous Sclerosis, mutation of TSC1 or TSC2
Upington disease    
Variegate porphyria Liver imaging beginning at age 50 years in those who have experienced persistent elevations in porphobilinogen or porphyrins may detect early hepatocellular carcinoma. Mutations in the PPOX gene
Vitelliform macular dystrophy    
Von Hippel-Lindau disease    
Von Willebrand disease Age 5-14 years, age 1-4 years and age 15-29 years. Age 75+ years and age < 1 years rare. Mutations in the VWF gene
Wallis-Zieff-Goldblatt syndrome    
WHIM syndrome    
White sponge nevus    
Worth syndrome    
Zaspopathy    
Timmermann-Laband syndrome    
Zori-Stalker-Williams syndrome    

Protocol for assessment of mTTR gene editing by T7 assay



[0271] Hepa 1-6 cells expressing WT mouse TTR were transfected by LIPOFECTAMINE MESSENGERMAX reagent with Cas9 mRNA 4 hours prior to transfection with the UNA-Guide or comparative guide, each of which was a pre-annealed crRNA:tracrRNA unit targeting exon 2 of mTTR. 48 h following transfection, genomic DNA was isolated and a 459 bp fragment of mTTR was amplified using primers

SEQ ID NO:2
5 ' CTGGTGC AC AGC AGTGC ATCT3 '
and

SEQ ID NO:3
5'CCTCTCTCTGAGCCCTCTAGCTGGTA3'.



[0272] The PCR product was then heated at 98°C for 5 minutes, and then slowly allowed to cool to room temperature for heteroduplex formation. The T7 endonuclease assay was then performed to assess gene editing. Image J analysis software was used to determine the percentage of Indels generated using the formula % Indel = 100 x (1-(1-Cleaved DNA fragment Area/Total Area)1/2).

ELISA assessment of secreted mTTR protein knockdown by CRISPR/Cas9 gene editing



[0273] Hepa 1-6 cells expressing WT mouse TTR were transfected by LIPOFECTAMINE MESSENGERMAX reagent with Cas9 mRNA 4 hours prior to transfection with the UNA-Guide or comparative guide, each of which was a pre-annealed crRNA:tracrRNA targeting exon 2 of mTTR. 48 h following transfection, the supernatant was collected and an enzyme-linked immunosorbent assay (ELISA) (mouse prealbumin ELISA kit, Genway) performed to quantify the amount of secreted mouse TTR protein.

In vivo assessment of gene editing by T7 assay



[0274] Cas9 mRNA and the UNA-Guide or comparative guide, each of which was a pre-annealed crRNA:tracrRNA targeting exon 2 of mTTR, were encapsulated by lipid nanoparticles separately and then mixed together for single administration by tail vein injection at 10 mg/kg total RNA. Six days post-dosing, the female 6-8 week old Balb/c mice were sacrificed and the genomic DNA was isolated and a 459 bp fragment of mTTR amplified using primers

SEQ ID NO:4
5 ' CTGGTGC AC AGC AGTGC ATCT3 '
and

SEQ ID NO:5
5' CCTCTCTCTGAGCCCTCTAGCTGGTA3' .



[0275] The PCR product was then heated at 98°C for 5 minutes and then slowly allowed to cool to room temperature for heteroduplex formation. The T7 endonuclease assay was then performed to assess gene editing. Image J analysis software was used to determine the percentage of Indels generated using the formula % Indel = 100 x (1-(1-Cleaved DNA fragment Area/Total Area)1/2).

In vivo ELISA assessment of secreted mTTR protein knockdown by CRISPR/Cas9 gene editing



[0276] Cas9 mRNA and the UNA-Guide or comparative guide, each of which was a pre-annealed crRNA:tracrRNA targeting exon 2 of mTTR, were encapsulated by lipid nanoparticles separately and then mixed together for single administration by tail vien injection at 10 mg/kg total RNA. 2, 4 and 6 days post-dosing, serum was collected from the female 6-8 week old Balb/c mice and the amount of secreted mouse TTR protein determined by an enzyme-linked immunosorbent assay (ELISA) (mouse prealbumin ELISA kit, Genway).

CRISPR/Cas9 gene editing targeting mouse TTR



[0277] A 20-mer guide sequence for V30M mTTR is shown in Table 4.
Table 4: 20-mer guide sequence for V30M mTTR
SEQ ID NO.SEQUENCE
6 3'-GGA-CGACATCTGCACCGACATTT-5' (V30M mTTR GENE)


[0278] The underlined CAT in Table 4 shows the V30M mutation.

[0279] A U-Guide molecule was synthesized, wherein the molecule contained the 20-mer guide sequence for V30M and a CRISPR sequence of S. pyogenes.

[0280] Examples of a 20-mer target length U-Guide molecule for the V30M region of mTTR are shown in Table 5. The molecules in Table 5 contain the target U-Guide attached to a crRNA, as shown in Fig. 2.
Table 5: 20-mer target length U-Guide molecules for editing the V30M region of mTTR
SEQ ID NO.U-GUIDE STRUCTURE (1 or 5' to 3')
7 Ũ*mU*mU*ACAGCCACGUCUACAGCGUUUUAGAGCUAU*mG*mC*mU
8 mU*Ũ*mU*ACAGCCACGUCUACAGCGUUUUAGAGCUAU*mG*mC*mU
9 mU*mU*Ũ*ACAGCCACGUCUACAGCGUUUUAGAGCUAU*mG*mC*mU
10 mU*mU*mU*ACAGCCACGUCUACAGCGUUUUAGAGCUAU*mG*mC*Ũ


[0281] In Table 5, N (= A, U, C, G) designates an RNA monomer, mN designates a 2'-O-methyl-RNA monomer, * designates a 3'-phosphorothioate linkage, and Ã, Ũ, Č, Ĝ designate UNA monomers.

EXAMPLES



[0282] Example 1: Allele Selective Editing of a TTR genomic site with a U-Guide molecule for CRISPR/Cas9.

[0283] For this experiment, a 357-bp PCR product was generated from human TTR genomic DNA, accession number NC_000018.10, using the primers:

SEQ ID NO. 11
Forward (intron 1): 5'-tgtcttctctacacccagggcac-3'

SEQ ID NO. 12
Reverse (exon 2): 5'-gcaaaccacagctagaggagagga-3'.



[0284] Guide sequences of 20-mer length were identified that targeted regions 269-288 and 269-286, respectively, of the human TTR coding region.

[0285] A 20-mer guide sequence for V30M hTTR is shown in Table 6.
Table 6: 20-mer guide sequence for V30M hTTR
SEQ ID NO.SEQUENCE
13 3'-CGGUAGUUACACCGGUACGU-5' (TARGET GUIDE)
14 5'-CCT-GCCATCAATGTGGCCATGCA-3' (V30M TTR GENE)
15 3'-GGA-CGGTAGTTACACCGGTACGT-5' (V30M TTR GENE)


[0286] In Table 6, the underlined positions show the V30M mutation. In Table 6, SEQ ID NO: 13 can also be written in the 5' to 3' direction, and appears in the U-Guide molecules of Table 7 written in the 5' to 3' direction.

[0287] A U-Guide molecule was synthesized, wherein the molecule contained the 20-mer guide sequence for V30M and a CRISPR sequence of S. pyogenes.

[0288] Examples of 20-mer target length U-Guide molecules for the V30M region of hTTR are shown in Table 7. The molecules in Table 7 contain the target U-Guide attached to a crRNA, as shown in Fig. 2.
Table 7: 20-mer target length U-Guide molecules for editing the V30M region of hTTR
SEQ ID NO.U-GUIDE STRUCTURE (1 or 5' to 3')
16 ŨGCAUGGCCACAUUGAUGGCGUUUUAGAGCUAUGCU
17 UǦCAUGGCCACAUUGAUGGCGUUUUAGAGCUAUGCU
18 UGČAUGGCCACAUUGAUGGCGUUUUAGAGCUAUGCU
19 UGCÃUGGCCACAUUGAUGGCGUUUUAGAGCUAUGCU
20 UGCAUGGCCACAUUGAUGGCGUUUUAGAGCUAUGCŨ
21 UGCAUGGCCACAUUGAUGGCGUUUUAGAGCUAUGČU
22 UGCAUGGCCACAUUGAUGGCGUUUUAGAGCUAUĜCU
23 UGCAUGGCCACAUUGAUGGCGUUUUAGAGCUAŨGCU
24 ŨmGmCAUGGCCACAUUGAUGGCGUUUUAGAGCUAUmGmCmU
25 mUĜmCAUGGCCACAUUGAUGGCGUUUUAGAGCUAUmGmCmU
26 mUmGČAUGGCCACAUUGAUGGCGUUUUAGAGCUAUmGmCmU
27 mUmGmCÃUGGCCACAUUGAUGGCGUUUUAGAGCUAUmGmCmU
28 mUmGmCAUGGCCACAUUGAUGGCGUUUUAGAGCUAUmGmCŨ
29 mUmGmCAUGGCCACAUUGAUGGCGUUUUAGAGCUAUmGČmU
30 mUmGmCAUGGCCACAUUGAUGGCGUUUUAGAGCUAUĜmCmU
31 mUmGmCAUGGCCACAUUGAUGGCGUUUUAGAGCUAŨmGmCmU
32 Ũ*mG*mC*AUGGCCACAUUGAUGGCGUUUUAGAGCUAU*mG*mC*mU
33 mU*Ĝ*mC*AUGGCCACAUUGAUGGCGUUUUAGAGCUAU*mG*mC*mU
34 mU*mG*Č*AUGGCCACAUUGAUGGCGUUUUAGAGCUAU*mG*mC*mU
35 mU*mG*mC*ÃUGGCCACAUUGAUGGCGUUUUAGAGCUAU*mG*mC*mU
36 mU*mG*mC*AUGGCCACAUUGAUGGCGUUUUAGAGCUAU*mG*mC*Ũ
37 mU*mG*mC*AUGGCCACAUUGAUGGCGUUUUAGAGCUAU*mG*Č*mU
38 mU*mG*mC*AUGGCCACAUUGAUGGCGUUUUAGAGCUAU*Ĝ*mC*mU
39 mU*mG*mC*AUGGCCACAUUGAUGGCGUUUUAGAGCUAŨ*mG*mC*mU


[0289] In Table 7, N (= A, U, C, G) designates an RNA monomer, mN designates a 2'-O-methyl-RNA monomer, * designates a 3'-phosphorothioate linkage, and Ã, Ũ, Č, Ĝ designate UNA monomers.

[0290] A U-Guide molecule in Table 7 was active for gene editing human TTR. An assay for gene editing human TTR was performed with the 357 bp PCR product. In this assay, the U-Guide molecule is pre-annealed with a tracrRNA to provide the U-Guide/tracr for CRISPR/ Cas9 gene editing.

[0291] In the assay, 293 cells expressing V30M human TTR and 293 cells expressing WT human TTR were each transfected using LIPOFECTAMINE MESSENGER MAX reagent with Cas9 mRNA 4 hours prior to transfection with the U-Guide/tracr. 48 h following transfection, genomic DNA was isolated, and the T7 endonuclease assay performed.

[0292] FIG. 3 shows that using U-Guide molecules UNA1 (SEQ ID NO:32) and UNA2 (SEQ ID NO:35), double strand breaks were made in the 357 bp PCR product to give 275 bp and 82 bp cleavage products.

[0293] The U-Guide molecule SEQ ID NO:32 was surprisingly active for gene editing human TTR with allele selective results. The U-Guide molecule SEQ ID NO:32 showed an extraordinary level of allele selectivity for generating double strand breaks in V30M TTR over wild type TTR.

[0294] As shown in FIG. 4, the U-Guide molecule SEQ ID NO:32 provided 26% editing of V30M TTR, but only about 3% editing of wild type TTR, where the editing represents the degree of double strand breaks. Thus, the U-Guide molecule SEQ ID NO:32 was surprisingly and extraordinarily active for gene editing human TTR with allele selective results. This example indicates the capability for reduced off target activity.

[0295] The U-Guide molecule SEQ ID NO:35 was surprisingly active for gene editing human TTR with allele selective results. The U-Guide molecule SEQ ID NO:35 showed an extraordinary level of allele selectivity for generating double strand breaks in V30M TTR over wild type TTR.

[0296] As shown in FIG. 4, the U-Guide molecule SEQ ID NO:35 provided 19% editing of V30M TTR, but only about 2% editing of wild type TTR, where the editing represents the degree of double strand breaks. Thus, the U-Guide molecule SEQ ID NO:35 was surprisingly and extraordinarily active for gene editing human TTR with allele selective results. This example indicates the capability for reduced off target activity.

[0297] These results show that the U-Guide molecules of this invention can be used for allele selective gene editing of human TTR. The surprising level of allele selectivity for gene editing of human TTR is shown in FIG. 5. The U-Guide molecule SEQ ID NO:32 provided a high selectivity ratio of 8.7. Further, the U-Guide molecule SEQ ID NO:35 provided a high selectivity ratio of 9.5.

[0298] Further, under the same conditions, a CRISPR/Cas9 guide having the same nucleobase sequence and structure as the U-Guide molecule SEQ ID NOs:32 and 35, but lacking any UNA monomer, had a selectivity ratio of 1.43.

[0299] Assessment of genome editing by sequence trace decomposition was also performed. 293 cells expressing either V30M or WT human TTR were transfected by LIPOFECTAMINE MESSENGERMAX reagent with Cas9 mRNA 4 hours prior to transfection with the comparative guide or UNA-Guide (UNA1), each of which were pre-annealed with tracrRNA, and targeting the V30M mutation of hTTR. 48 h following transfection, genomic DNA was isolated and a 1048 bp fragment of hTTR was amplified. The PCR product was purified and then sanger sequenced.

[0300] The sequencing data files were imported into TIDE (Tracking of Indels by Decomposition) (See, e.g., Brinkman, 2014, Nucl. Acids Res., Vol. 42, No. 22, pp. 1-8) and aligned to the control sequence to determine the relative abundance of aberrant nucleotides following the expected break site to generate the spectrum of insertions and deletions (indels) and their frequencies.

[0301] Fig. 6 shows the indel spectrum for a comparative gRNA guide (non-UNA guide structure) for assessment of genome editing of V30M TTR by sequence trace decomposition (TIDE). The total efficiency was 38.5%.

[0302] Fig. 7 shows the indel spectrum for UNA-guide (UNA1) for assessment of genome editing of V30M TTR by sequence trace decomposition (TIDE). The total efficiency was 33.4%.

[0303] Fig. 8 shows the indel spectrum for a comparative gRNA guide (non-UNA guide structure) for assessment of genome editing of Wild Type TTR by sequence trace decomposition (TIDE). The total efficiency was 26.6%. Thus, the selectivity of the comparative gRNA guide was 38.5/26.6 = 1.4 for V30M TTR over Wild Type TTR.

[0304] Fig. 9 shows the indel spectrum for UNA-guide (UNA1) for assessment of genome editing of Wild Type TTR by sequence trace decomposition (TIDE). The total efficiency was 2.1%. Thus, the selectivity of the UNA-guide (UNA1) was 33.4/2.1 = 15.9 for V30M TTR over Wild Type TTR.

[0305] These results show that the U-Guide molecules of this invention can be used for allele selective gene editing of human TTR. The U-Guide molecules of this invention exhibited a surprisingly high level of allele selectivity for gene editing of human TTR.

[0306] Example 2. Allele Selective Editing of a TTR genomic site with a U-Guide molecule for CRISPR/Cas9.

[0307] A 20-mer guide sequence for V30M hTTR is shown in Table 8.
Table 8: 20-mer guide sequence for V30M hTTR
SEQ ID NO.SEQUENCE
40 3'-AGUUACACCGGUACGUACAC-5' (TARGET GUIDE)
41 5'-CCA-TCAATGTGGCCATGCATGTG-3' (V30M TTR GENE)
42 3'-GGT-AGTTACACCGGTACGTACAC-5' (V30M TTR GENE)


[0308] In Table 8, SEQ ID NO:40 can also be written in the 5' to 3' direction, and appears in the U-Guide molecules of Table 9 written in the 5' to 3' direction.

[0309] As used herein, the term "1 or 5' to 3'" refers to U-Guides having either a UNA monomer on the leftmost end (1 to 3', for example SEQ ID NO:43) or a nucleotide on the leftmost end (5' to 3', for example SEQ ID NO:44).

[0310] A U-Guide molecule was synthesized, wherein the molecule contained the 20-mer guide sequence for V30M and a CRISPR sequence of S. pyogenes.

[0311] Examples of 20-mer target length U-Guide molecules for the V30M region of hTTR are shown in Table 9.
Table 9: 20-mer target length U-Guide molecules for editing the V30M region of hTTR
SEQ ID NO.U-GUIDE STRUCTURE (1 or 5' to 3')
43 ČACAUGCAUGGCCACAUUGAGUUUUAGAGCUAUGCU
44 CÃCAUGCAUGGCCACAUUGAGUUUUAGAGCUAUGCU
45 CAČAUGCAUGGCCACAUUGAGUUUUAGAGCUAUGCU
46 CACÃUGCAUGGCCACAUUGAGUUUUAGAGCUAUGCU
47 CACAUGCAUGGCCACAUUGAGUUUUAGAGCUAUGCŨ
48 CACAUGCAUGGCCACAUUGAGUUUUAGAGCUAUGČU
49 CACAUGCAUGGCCACAUUGAGUUUUAGAGCUAUĜCU
50 CACAUGCAUGGCCACAUUGAGUUUUAGAGCUAŨGCU
51 ČmAmCAUGCAUGGCCACAUUGAGUUUUAGAGCUAUmGmCmU
52 mCÃmCAUGCAUGGCCACAUUGAGUUUUAGAGCUAUmGmCmU
53 mCmAČAUGCAUGGCCACAUUGAGUUUUAGAGCUAUmGmCmU
54 mCmAmCÃUGCAUGGCCACAUUGAGUUUUAGAGCUAUmGmCmU
55 mCmAmCAUGCAUGGCCACAUUGAGUUUUAGAGCUAUmGmCŨ
56 mCmAmCAUGCAUGGCCACAUUGAGUUUUAGAGCUAUmGČmU
57 mCmAmCAUGCAUGGCCACAUUGAGUUUUAGAGCUAUĜmCmU
58 mCmAmCAUGCAUGGCCACAUUGAGUUUUAGAGCUAŨmGmCmU
59 Č*mA*mC*AUGCAUGGCCACAUUGAGUUUUAGAGCUAU*mG*mC*mU
60 mC*Ã*mC*AUGCAUGGCCACAUUGAGUUUUAGAGCUAU*mG*mC*mU
61 mC*mA*Č*AUGCAUGGCCACAUUGAGUUUUAGAGCUAU*mG*mC*mU
62 mC*mA*mC*ÃUGCAUGGCCACAUUGAGUUUUAGAGCUAU*mG*mC*mU
63 mC*mA*mC*AUGCAUGGCCACAUUGAGUUUUAGAGCUAU*mG*mC*Ũ
64 mC*mA*mC*AUGCAUGGCCACAUUGAGUUUUAGAGCUAU*mG*Č*mU
65 mC*mA*mC*AUGCAUGGCCACAUUGAGUUUUAGAGCUAU*Ĝ*mC*mU
66 mC*mA*mC*AUGCAUGGCCACAUUGAGUUUUAGAGCUAŨ*mG*mC*mU


[0312] In Table 9, N (= A, U, C, G) designates an RNA monomer, mN designates a 2'-O-methyl-RNA monomer, * designates a 3'-phosphorothioate linkage, and Ã, Ũ, Č, Ĝ designate UNA monomers.

[0313] A U-Guide molecule in Table 9 was active for gene editing human TTR. An assay for gene editing human TTR was performed with the 357 bp PCR product. In this assay, the U-Guide molecule is pre-annealed with a tracrRNA to provide a the U-Guide/tracr for CRISPR/ Cas9 gene editing.

[0314] In the assay, 293 cells expressing V30M human TTR and 293 cells expressing WT human TTR were each transfected using LIPOFECTAMINE MESSENGER MAX reagent with Cas9 mRNA 4 hours prior to transfection with the U-Guide/tracr. 48 h following transfection, genomic DNA was isolated, and the T7 endonuclease assay performed.

[0315] FIG. 10 shows that using U-Guide molecule UNA3 (SEQ ID NO:61), a double strand break was made in the 357 bp PCR product to give 271 bp and 86 bp cleavage products.

[0316] The U-Guide molecule SEQ ID NO:61 was surprisingly active for gene editing human TTR with allele selective results. The U-Guide molecule SEQ ID NO:61 showed an extraordinary level of allele selectivity for generating double strand breaks in V30M TTR over wild type TTR.

[0317] As shown in FIG. 11, the U-Guide molecule SEQ ID NO:61 provided 14% editing of V30M TTR, but only about 3% editing of wild type TTR, where the editing represents the degree of double strand breaks. Thus, the U-Guide molecule SEQ ID NO:62 was surprisingly and extraordinarily active for gene editing human TTR with allele selective results. This example indicates the capability for reduced off target activity.

[0318] These results show that the U-Guide molecules of this invention can be used for allele selective gene editing of human TTR. The surprising level of allele selectivity for gene editing of human TTR is shown in FIG. 12. The U-Guide molecule SEQ ID NO:61 provided a high selectivity ratio of 4.7.

[0319] Thus, the U-Guide molecule SEQ ID NO:62 was extraordinarily active for gene editing human TTR with allele selectivity of V30M TTR over wild type TTR. This example indicates the capability for reduced off target activity.

[0320] Example 3: Editing a BIRC5 genomic site with a U-Guide molecule for CRISPR/Cas9.

[0321] Survivin (baculoviral inhibitor of apoptosis repeat-containing 5, human BIRC5, NG_029069.1) can be expressed in tumor cells, especially in breast and lung cancer, and is generally not present in normal cells. Survivin may be an oncogene, and its overexpression in cancer cells may lead to resistance to apoptosis, and increased survival.

[0322] Guide sequences of 20-mer length were identified that targeted certain regions of human BIRC5. The EntreZ Gene ID for these sequences is 332.

[0323] 20-mer guide sequences for BIRC5 are shown in Table 10.
Table 10: 20-mer guide sequences for BIRC5
SEQ ID NO.TARGET SEQUENCE 5' --> 3'
67 GAUGCGGUGGUCCUUGAGAA
68 CAAGAACUGGCCCUUCUUGG
69 GCAGGCGCAGCCCUCCAAGA
70 UUCUGCUUCAAGGAGCUGGA
71 CCAGUUUCAAAAAUUCACCA
72 CAAUAAGAAGAAAGAAUUUG


[0324] A U-Guide molecule is synthesized, wherein the molecule contains the 20-mer target sequence and a CRISPR sequence of S. pyogenes.

[0325] Examples of 20-mer target length U-Guide molecules for BIRC5 are shown in Table 11.
Table 11: 20-mer target length U-Guide molecules for editing BIRC5
SEQ ID NO.U-GUIDE STRUCTURE (1 or 5' to 3')
73 GAUGCGGUGGUCCUUGAGAAGUUUUAGAGCUAUGCUGUCCUU
74 ŨGAUGCGGUGGUCCUUGAGAAGUUUUAGAGCUAUGCUGUCCUŨ
75 ŨĜAUGCGGUGGUCCUUGAGAAGUUUUAGAGCUAUGCUGUCCŨŨ
76 Ũ*ĜAUGCGGUGGUCCUUGAGAAGUUUUAGAGCUAUGCUGUCCŨ*Ũ
77 mUŨUGAUGCGGUGGUCCUUGAGAAGUUUUAGAGCUAUGCUGUCCUUŨmU
78 mU*ŨUGAUGCGGUGGUCCUUGAGAAGUUUUAGAGCUAUGCUGUCCUUŨ*mU
79 mU*Ũ*UGAUGCGGUGGUCCUUGAGAAGUUUUAGAGCUAUGCUGUCCUU*Ũ*mU
80 mU*Ũ*U*GAUGCGGUGGUCCUUGAGAAGUUUUAGAGCUAUGCUGUCCU*U*Ũ*mU
81 mU*ŨŨGAUGCGGUGGUCCUUGAGAAGUUUUAGAGCUAUGCUGUCCUŨŨ*mU
82 mU*Ũ*ŨGAUGCGGUGGUCCUUGAGAAGUUUUAGAGCUAUGCUGUCCUŨ*Ũ*mU
83 mU*Ũ*Ũ*GAUGCGGUGGUCCUUGAGAAGUUUUAGAGCUAUGCUGUCCU*Ũ*Ũ*mU
84 CAAGAACUGGCCCUUCUUGGGUUUUAGAGCUAUGCUGUCCUU
85 ŨCAAGAACUGGCCCUUCUUGGGUUUUAGAGCUAUGCUGUCCUŨ
86 ŨĈAAGAACUGGCCCUUCUUGGGUUUUAGAGCUAUGCUGUCCŨŨ
87 Ũ*ĈAAGAACUGGCCCUUCUUGGGUUUUAGAGCUAUGCUGUCCŨ*Ũ
88 mUŨCAAGAACUGGCCCUUCUUGGGUUUUAGAGCUAUGCUGUCCUUŨmU
89 mU*ŨCAAGAACUGGCCCUUCUUGGGUUUUAGAGCUAUGCUGUCCUUŨ*mU
90 mU*Ũ*CAAGAACUGGCCCUUCUUGGGUUUUAGAGCUAUGCUGUCCUU*Ũ*mU
91 mU*Ũ*U*CAAGAACUGGCCCUUCUUGGGUUUUAGAGCUAUGCUGUCCU*U*Ũ*mU
92 mU*ŨŨCAAGAACUGGCCCUUCUUGGGUUUUAGAGCUAUGCUGUCCUŨŨ*mU
93 mU*Ũ*ŨCAAGAACUGGCCCUUCUUGGGUUUUAGAGCUAUGCUGUCCUŨ*Ũ*mU
94 mU*Ũ*Ũ*CAAGAACUGGCCCUUCUUGGGUUUUAGAGCUAUGCUGUCCU*Ũ*Ũ*mU
95 GCAGGCGCAGCCCUCCAAGAGUUUUAGAGCUAUGCUGUCCUU
96 ŨGCAGGCGCAGCCCUCCAAGAGUUUUAGAGCUAUGCUGUCCUŨ
97 ŨĜCAGGCGCAGCCCUCCAAGAGUUUUAGAGCUAUGCUGUCCŨŨ
98 Ũ*ĜCAGGCGCAGCCCUCCAAGAGUUUUAGAGCUAUGCUGUCCŨ*Ũ
99 mUŨGCAGGCGCAGCCCUCCAAGAGUUUUAGAGCUAUGCUGUCCUUŨmU
100 mU*ŨGCAGGCGCAGCCCUCCAAGAGUUUUAGAGCUAUGCUGUCCUUŨ*mU
101 mU*Ũ*GCAGGCGCAGCCCUCCAAGAGUUUUAGAGCUAUGCUGUCCUU*Ũ*mU
102 mU*Ũ*U*GCAGGCGCAGCCCUCCAAGAGUUUUAGAGCUAUGCUGUCCU*U*Ũ*mU
103 mU*ŨŨGCAGGCGCAGCCCUCCAAGAGUUUUAGAGCUAUGCUGUCCUŨŨ*mU
104 mU*Ũ*ŨGCAGGCGCAGCCCUCCAAGAGUUUUAGAGCUAUGCUGUCCUŨ*Ũ*mU
105 mU*Ũ*Ũ*GCAGGCGCAGCCCUCCAAGAGUUUUAGAGCUAUGCUGUCCU*Ũ*Ũ*mU
106 UUCUGCUUCAAGGAGCUGGAGUUUUAGAGCUAUGCUGUCCUU
107 ŨUUCUGCUUCAAGGAGCUGGAGUUUUAGAGCUAUGCUGUCCUŨ
108 ŨŨUCUGCUUCAAGGAGCUGGAGUUUUAGAGCUAUGCUGUCCŨŨ
109 Ũ*ŨUCUGCUUCAAGGAGCUGGAGUUUUAGAGCUAUGCUGUCCŨ*Ũ
110 mUŨUUCUGCUUCAAGGAGCUGGAGUUUUAGAGCUAUGCUGUCCUUŨmU
111 mU*ŨUUCUGCUUCAAGGAGCUGGAGUUUUAGAGCUAUGCUGUCCUUŨ*mU
112 mU*Ũ*UUCUGCUUCAAGGAGCUGGAGUUUUAGAGCUAUGCUGUCCUU*Ũ*mU
113 mU*Ũ*U*UUCUGCUUCAAGGAGCUGGAGUUUUAGAGCUAUGCUGUCCU*U*Ũ*mU
114 mU*ŨŨUUCUGCUUCAAGGAGCUGGAGUUUUAGAGCUAUGCUGUCCUŨŨ*mU
115 mU*Ũ*ŨUUCUGCUUCAAGGAGCUGGAGUUUUAGAGCUAUGCUGUCCUŨ*Ũ*mU
116 mU*Ũ*Ũ*UUCUGCUUCAAGGAGCUGGAGUUUUAGAGCUAUGCUGUCCU*Ũ*Ũ*mU
117 CCAGUUUCAAAAAUUCACCAGUUUUAGAGCUAUGCUGUCCUU
118 ŨCCAGUUUCAAAAAUUCACCAGUUUUAGAGCUAUGCUGUCCUŨ
119 ŨĈCAGUUUCAAAAAUUCACCAGUUUUAGAGCUAUGCUGUCCŨŨ
120 Ũ*ĈCAGUUUCAAAAAUUCACCAGUUUUAGAGCUAUGCUGUCCŨ*Ũ
121 mUŨCCAGUUUCAAAAAUUCACCAGUUUUAGAGCUAUGCUGUCCUUŨmU
122 mU*ŨCCAGUUUCAAAAAUUCACCAGUUUUAGAGCUAUGCUGUCCUUŨ*mU
123 mU*Ũ*CCAGUUUCAAAAAUUCACCAGUUUUAGAGCUAUGCUGUCCUU*Ũ*mU
124 mU*Ũ*U*CCAGUUUCAAAAAUUCACCAGUUUUAGAGCUAUGCUGUCCU*U*Ũ*mU
125 mU*ŨŨCCAGUUUCAAAAAUUCACCAGUUUUAGAGCUAUGCUGUCCUŨŨ*mU
126 mU*Ũ*ŨCCAGUUUCAAAAAUUCACCAGUUUUAGAGCUAUGCUGUCCUŨ*Ũ*mU
127 mU*Ũ*Ũ*CCAGUUUCAAAAAUUCACCAGUUUUAGAGCUAUGCUGUCCU*Ũ*Ũ*mU
128 CAAUAAGAAGAAAGAAUUUGGUUUUAGAGCUAUGCUGUCCUU
129 ŨCAAUAAGAAGAAAGAAUUUGGUUUUAGAGCUAUGCUGUCCUŨ
130 ŨĈAAUAAGAAGAAAGAAUUUGGUUUUAGAGCUAUGCUGUCCŨŨ
131 Ũ*ĈAAUAAGAAGAAAGAAUUUGGUUUUAGAGCUAUGCUGUCCŨ*Ũ
132 mUŨCAAUAAGAAGAAAGAAUUUGGUUUUAGAGCUAUGCUGUCCUUŨmU
133 mU*ŨCAAUAAGAAGAAAGAAUUUGGUUUUAGAGCUAUGCUGUCCUUŨ*mU
134 mU*Ũ*CAAUAAGAAGAAAGAAUUUGGUUUUAGAGCUAUGCUGUCCUU*Ũ*mU
135 mU*Ũ*U*CAAUAAGAAGAAAGAAUUUGGUUUUAGAGCUAUGCUGUCCU*U*Ũ*mU
136 mU*ŨŨCAAUAAGAAGAAAGAAUUUGGUUUUAGAGCUAUGCUGUCCUŨŨ*mU
137 mU*Ũ*ŨCAAUAAGAAGAAAGAAUUUGGUUUUAGAGCUAUGCUGUCCUŨ*Ũ*mU
138 mU*Ũ*Ũ*CAAUAAGAAGAAAGAAUUUGGUUUUAGAGCUAUGCUGUCCU*Ũ*Ũ*mU


[0326] In Table 11, N designates an RNA monomer, mN designates a 2'-O-methyl-RNA monomer, * designates a 3'-phosphorothioate linkage, Ũ designates a UNA-U monomer, and Ĝ designates a UNA-G monomer.

[0327] Example 4: Editing a CDK16 genomic site with a U-Guide molecule for CRISPR/Cas9.

[0328] The protein encoded by CDK16 belongs to the cdc2/cdkx subfamily of the ser/thr family of protein kinases (human CDK16, NG_012517.1). CDK16 may be associated with in signal transduction cascades in terminally differentiated cells, in exocytosis, and in transport of secretory cargo from the endoplasmic reticulum. Defects and copy-number variants of CDK16 have been associated with various diseases, including intellectual disability and related disorders.

[0329] Guide sequences of 20-mer length were identified that targeted certain regions of human CDK16. The EntreZ Gene ID for these sequences is 5127.

[0330] 20-mer guide sequences for CDK16 are shown in Table 12.
Table 12: 20-mer guide sequences for CDK16
SEQ ID NO.TARGET SEQUENCE 5' --> 3'
139 CGUGCAGAACGAAGUUCCCC
140 UGGAGACUGCACCUCAUCCG
141 UGAUCUCCUUGAGUGCCACA
142 UGAUGUUCCCACAGUCAUCC
143 AGUAGUCCGUGGACCCAAGC
144 CUACCCCAAGUACCGAGCCG


[0331] A U-Guide molecule is synthesized, wherein the molecule contains the 20-mer target sequence and a CRISPR sequence of S. pyogenes.

[0332] Examples of 20-mer target length U-Guide molecules for CDK16 are shown in Table 13.
Table 13: 20-mer target length U-Guide molecules for editing CDK16
SEQ ID NO.U-GUIDE STRUCTURE (1 or 5' to 3')
145 CGUGCAGAACGAAGUUCCCCGUUUUAGAGCUAUGCUGUCCUU
146 ŨCGUGCAGAACGAAGUUCCCCGUUUUAGAGCUAUGCUGUCCUŨ
147 ŨĈGUGCAGAACGAAGUUCCCCGUUUUAGAGCUAUGCUGUCCŨŨ
148 Ũ*ĈGUGCAGAACGAAGUUCCCCGUUUUAGAGCUAUGCUGUCCŨ*Ũ
149 mUŨCGUGCAGAACGAAGUUCCCCGUUUUAGAGCUAUGCUGUCCUUŨmU
150 mU*ŨCGUGCAGAACGAAGUUCCCCGUUUUAGAGCUAUGCUGUCCUUŨ*mU
151 mU*Ũ*CGUGCAGAACGAAGUUCCCCGUUUUAGAGCUAUGCUGUCCUU*Ũ*mU
152 mU*Ũ*U*CGUGCAGAACGAAGUUCCCCGUUUUAGAGCUAUGCUGUCCU*U*Ũ*mU
153 mU*ŨŨCGUGCAGAACGAAGUUCCCCGUUUUAGAGCUAUGCUGUCCUŨŨ*mU
154 mU*Ũ*ŨCGUGCAGAACGAAGUUCCCCGUUUUAGAGCUAUGCUGUCCUŨ*Ũ*mU
155 mU*Ũ*Ũ*CGUGCAGAACGAAGUUCCCCGUUUUAGAGCUAUGCUGUCCU*Ũ*Ũ*mU
156 UGGAGACUGCACCUCAUCCGGUUUUAGAGCUAUGCUGUCCUU
157 ŨUGGAGACUGCACCUCAUCCGGUUUUAGAGCUAUGCUGUCCUŨ
158 ŨŨGGAGACUGCACCUCAUCCGGUUUUAGAGCUAUGCUGUCCŨŨ
159 Ũ*ŨGGAGACUGCACCUCAUCCGGUUUUAGAGCUAUGCUGUCCŨ*Ũ
160 mUŨUGGAGACUGCACCUCAUCCGGUUUUAGAGCUAUGCUGUCCUUŨmU
161 mU*ŨUGGAGACUGCACCUCAUCCGGUUUUAGAGCUAUGCUGUCCUUŨ*mU
162 mU*Ũ*UGGAGACUGCACCUCAUCCGGUUUUAGAGCUAUGCUGUCCUU*Ũ*mU
163 mU*Ũ*U*UGGAGACUGCACCUCAUCCGGUUUUAGAGCUAUGCUGUCCU*U*Ũ*mU
164 mU*ŨŨUGGAGACUGCACCUCAUCCGGUUUUAGAGCUAUGCUGUCCUŨŨ*mU
165 mU*Ũ*ŨUGGAGACUGCACCUCAUCCGGUUUUAGAGCUAUGCUGUCCUŨ*Ũ*mU
166 mU*Ũ*Ũ*UGGAGACUGCACCUCAUCCGGUUUUAGAGCUAUGCUGUCCU*Ũ*Ũ*mU
167 UGAUCUCCUUGAGUGCCACAGUUUUAGAGCUAUGCUGUCCUU
168 ŨUGAUCUCCUUGAGUGCCACAGUUUUAGAGCUAUGCUGUCCUŨ
169 ŨŨGAUCUCCUUGAGUGCCACAGUUUUAGAGCUAUGCUGUCCŨŨ
170 Ũ*ŨGAUCUCCUUGAGUGCCACAGUUUUAGAGCUAUGCUGUCCŨ*Ũ
171 mUŨUGAUCUCCUUGAGUGCCACAGUUUUAGAGCUAUGCUGUCCUUŨmU
172 mU*ŨUGAUCUCCUUGAGUGCCACAGUUUUAGAGCUAUGCUGUCCUUŨ*mU
173 mU*Ũ*UGAUCUCCUUGAGUGCCACAGUUUUAGAGCUAUGCUGUCCUU*Ũ*mU
174 mU*Ũ*U*UGAUCUCCUUGAGUGCCACAGUUUUAGAGCUAUGCUGUCCU*U*Ũ*mU
175 mU*ŨŨUGAUCUCCUUGAGUGCCACAGUUUUAGAGCUAUGCUGUCCUŨŨ*mU
176 mU*Ũ*ŨUGAUCUCCUUGAGUGCCACAGUUUUAGAGCUAUGCUGUCCUŨ*Ũ*mU
177 mU*Ũ*Ũ*UGAUCUCCUUGAGUGCCACAGUUUUAGAGCUAUGCUGUCCU*Ũ*Ũ*mU
178 UGAUGUUCCCACAGUCAUCCGUUUUAGAGCUAUGCUGUCCUU
179 ŨUGAUGUUCCCACAGUCAUCCGUUUUAGAGCUAUGCUGUCCUŨ
180 ŨŨGAUGUUCCCACAGUCAUCCGUUUUAGAGCUAUGCUGUCCŨŨ
181 Ũ*ŨGAUGUUCCCACAGUCAUCCGUUUUAGAGCUAUGCUGUCCŨ*Ũ
182 mUŨUGAUGUUCCCACAGUCAUCCGUUUUAGAGCUAUGCUGUCCUUŨmU
183 mU*ŨUGAUGUUCCCACAGUCAUCCGUUUUAGAGCUAUGCUGUCCUUŨ*mU
184 mU*Ũ*UGAUGUUCCCACAGUCAUCCGUUUUAGAGCUAUGCUGUCCUU*Ũ*mU
185 mU*Ũ*U*UGAUGUUCCCACAGUCAUCCGUUUUAGAGCUAUGCUGUCCU*U*Ũ*mU
186 mU*ŨŨUGAUGUUCCCACAGUCAUCCGUUUUAGAGCUAUGCUGUCCUŨŨ*mU
187 mU*Ũ*ŨUGAUGUUCCCACAGUCAUCCGUUUUAGAGCUAUGCUGUCCUŨ*Ũ*mU
188 mU*Ũ*Ũ*UGAUGUUCCCACAGUCAUCCGUUUUAGAGCUAUGCUGUCCU*Ũ*Ũ*mU
189 AGUAGUCCGUGGACCCAAGCGUUUUAGAGCUAUGCUGUCCUU
190 ŨAGUAGUCCGUGGACCCAAGCGUUUUAGAGCUAUGCUGUCCUŨ
191 ŨAGUAGUCCGUGGACCCAAGCGUUUUAGAGCUAUGCUGUCCŨŨ
192 Ũ*ÃGUAGUCCGUGGACCCAAGCGUUUUAGAGCUAUGCUGUCCŨ*Ũ
193 mUŨAGUAGUCCGUGGACCCAAGCGUUUUAGAGCUAUGCUGUCCUUŨmU
194 mU*ŨAGUAGUCCGUGGACCCAAGCGUUUUAGAGCUAUGCUGUCCUUŨ*mU
195 mU*Ũ*AGUAGUCCGUGGACCCAAGCGUUUUAGAGCUAUGCUGUCCUU*Ũ*mU
196 mU*Ũ*U*AGUAGUCCGUGGACCCAAGCGUUUUAGAGCUAUGCUGUCCU*U*Ũ*mU
197 mU*ŨŨAGUAGUCCGUGGACCCAAGCGUUUUAGAGCUAUGCUGUCCUŨŨ*mU
198 mU*Ũ*ŨAGUAGUCCGUGGACCCAAGCGUUUUAGAGCUAUGCUGUCCUŨ*Ũ*mU
199 mU*Ũ*Ũ*AGUAGUCCGUGGACCCAAGCGUUUUAGAGCUAUGCUGUCCU*Ũ*Ũ*mU
200 CUACCCCAAGUACCGAGCCGGUUUUAGAGCUAUGCUGUCCUU
201 ŨCUACCCCAAGUACCGAGCCGGUUUUAGAGCUAUGCUGUCCUŨ
202 ŨĈUACCCCAAGUACCGAGCCGGUUUUAGAGCUAUGCUGUCCŨŨ
203 Ũ*CUACCCCAAGUACCGAGCCGGUUUUAGAGCUAUGCUGUCCŨ*Ũ
204 mUŨCUACCCCAAGUACCGAGCCGGUUUUAGAGCUAUGCUGUCCUUŨmU
205 mU*ŨCUACCCCAAGUACCGAGCCGGUUUUAGAGCUAUGCUGUCCUUŨ*mU
206 mU*Ũ*CUACCCCAAGUACCGAGCCGGUUUUAGAGCUAUGCUGUCCUU*Ũ*mU
207 mU*Ũ*U*CUACCCCAAGUACCGAGCCGGUUUUAGAGCUAUGCUGUCCU*U*Ũ*mU
208 mU*ŨŨCUACCCCAAGUACCGAGCCGGUUUUAGAGCUAUGCUGUCCUŨŨ*mU
209 mU*Ũ*ŨCUACCCCAAGUACCGAGCCGGUUUUAGAGCUAUGCUGUCCUŨ*Ũ*mU
210 mU*Ũ*Ũ*CUACCCCAAGUACCGAGCCGGUUUUAGAGCUAUGCUGUCCU*Ũ*Ũ*mU


[0333] In Table 13, N designates an RNA monomer, mN designates a 2'-O-methyl-RNA monomer, * designates a 3'-phosphorothioate linkage, Ũ designates a UNA-U monomer, and Ĝ designates a UNA-G monomer.

[0334] Example 5: Editing a STATS genomic site with a U-Guide molecule for CRISPR/Cas9.

[0335] Signal transducer and activator of transcription 3 (STATS) is a transcriptional mediator for many cytokines (human STAT3, NG_007370.1). STAT3 belongs to the family of STAT proteins, which are activated in response to extracellular signaling proteins including the interleukin (IL)-6 family (e.g., IL-5, IL-6, IL-11), among others. STAT3 may be associated in various autoimmune disorders, such as inflammatory bowel disease (IBD), as well as liver disease, gliosis and reactive astrocytes, and other diseases and conditions.

[0336] Guide sequences of 20-mer length were identified that targeted certain regions of human STATS. The EntreZ Gene ID for these sequences is 6774.

[0337] 20-mer guide sequences for STAT3 are shown in Table 14.
Table 14: 20-mer guide sequences for STATS
SEQ ID NO.TARGET SEQUENCE 5' --> 3'
211 AGAGCUGAUGGAGCUGCUCC
212 ACUGCUGGUCAAUCUCUCCC
213 CUCUCUUCCGGACAUCCUGA
214 GAGACCGAGGUGUAUCACCA
215 AACCUGGGAUCAAGUGGCCG
216 GAAGGUGCUGAACCCUCAGC


[0338] A U-Guide molecule is synthesized, wherein the molecule contains the 20-mer target sequence and a CRISPR sequence of S. pyogenes.

[0339] Examples of 20-mer target length U-Guide molecules for STAT3 are shown in Table 15.
Table 15: 20-mer target length U-Guide molecules for editing STATS
SEQ ID NO.U-GUIDE STRUCTURE (1 or 5' to 3')
217 AGAGCUGAUGGAGCUGCUCCGUUUUAGAGCUAUGCUGUCCUU
218 ŨAGAGCUGAUGGAGCUGCUCCGUUUUAGAGCUAUGCUGUCCUŨ
219 ŨÃGAGCUGAUGGAGCUGCUCCGUUUUAGAGCUAUGCUGUCCŨŨ
220 Ũ*ÃGAGCUGAUGGAGCUGCUCCGUUUUAGAGCUAUGCUGUCCŨ*Ũ
221 mUŨAGAGCUGAUGGAGCUGCUCCGUUUUAGAGCUAUGCUGUCCUUŨmU
222 mU*ŨAGAGCUGAUGGAGCUGCUCCGUUUUAGAGCUAUGCUGUCCUUŨ*mU
223 mU*Ũ*AGAGCUGAUGGAGCUGCUCCGUUUUAGAGCUAUGCUGUCCUU*Ũ*mU
224 mU*Ũ*U*AGAGCUGAUGGAGCUGCUCCGUUUUAGAGCUAUGCUGUCCU*U*Ũ*mU
225 mU*ŨŨAGAGCUGAUGGAGCUGCUCCGUUUUAGAGCUAUGCUGUCCUŨŨ*mU
226 mU*Ũ*ŨAGAGCUGAUGGAGCUGCUCCGUUUUAGAGCUAUGCUGUCCUŨ*Ũ*mU
227 mU*Ũ*Ũ*AGAGCUGAUGGAGCUGCUCCGUUUUAGAGCUAUGCUGUCCU*Ũ*Ũ*mU
228 ACUGCUGGUCAAUCUCUCCCGUUUUAGAGCUAUGCUGUCCUU
229 ŨACUGCUGGUCAAUCUCUCCCGUUUUAGAGCUAUGCUGUCCUŨ
230 ŨÃCUGCUGGUCAAUCUCUCCCGUUUUAGAGCUAUGCUGUCCŨŨ
231 Ũ*ÃCUGCUGGUCAAUCUCUCCCGUUUUAGAGCUAUGCUGUCCŨ*Ũ
232 mUŨACUGCUGGUCAAUCUCUCCCGUUUUAGAGCUAUGCUGUCCUUŨmU
233 mU*ŨACUGCUGGUCAAUCUCUCCCGUUUUAGAGCUAUGCUGUCCUUŨ*mU
234 mU*Ũ*ACUGCUGGUCAAUCUCUCCCGUUUUAGAGCUAUGCUGUCCUU*Ũ*mU
235 mU*Ũ*U*ACUGCUGGUCAAUCUCUCCCGUUUUAGAGCUAUGCUGUCCU*U*Ũ*mU
236 mU*ŨŨACUGCUGGUCAAUCUCUCCCGUUUUAGAGCUAUGCUGUCCUŨŨ*mU
237 mU*Ũ*ŨACUGCUGGUCAAUCUCUCCCGUUUUAGAGCUAUGCUGUCCUŨ*Ũ*mU
238 mU*Ũ*Ũ*ACUGCUGGUCAAUCUCUCCCGUUUUAGAGCUAUGCUGUCCU*Ũ*Ũ*mU
239 CUCUCUUCCGGACAUCCUGAGUUUUAGAGCUAUGCUGUCCUU
240 ŨCUCUCUUCCGGACAUCCUGAGUUUUAGAGCUAUGCUGUCCUŨ
241 ŨĈUCUCUUCCGGACAUCCUGAGUUUUAGAGCUAUGCUGUCCŨŨ
242 Ũ*ĈUCUCUUCCGGACAUCCUGAGUUUUAGAGCUAUGCUGUCCŨ*Ũ
243 mUŨCUCUCUUCCGGACAUCCUGAGUUUUAGAGCUAUGCUGUCCUUŨmU
244 mU*ŨCUCUCUUCCGGACAUCCUGAGUUUUAGAGCUAUGCUGUCCUUŨ*mU
245 mU*Ũ*CUCUCUUCCGGACAUCCUGAGUUUUAGAGCUAUGCUGUCCUU*Ũ*mU
246 mU*Ũ*U*CUCUCUUCCGGACAUCCUGAGUUUUAGAGCUAUGCUGUCCU*U*Ũ*mU
247 mU*ŨŨCUCUCUUCCGGACAUCCUGAGUUUUAGAGCUAUGCUGUCCUŨŨ*mU
248 mU*Ũ*ŨCUCUCUUCCGGACAUCCUGAGUUUUAGAGCUAUGCUGUCCUŨ*Ũ*mU
249 mU*Ũ*Ũ*CUCUCUUCCGGACAUCCUGAGUUUUAGAGCUAUGCUGUCCU*Ũ*Ũ*mU
250 GAGACCGAGGUGUAUCACCAGUUUUAGAGCUAUGCUGUCCUU
251 ŨGAGACCGAGGUGUAUCACCAGUUUUAGAGCUAUGCUGUCCUŨ
252 ŨĜAGACCGAGGUGUAUCACCAGUUUUAGAGCUAUGCUGUCCŨŨ
253 Ũ*GAGACCGAGGUGUAUCACCAGUUUUAGAGCUAUGCUGUCCŨ*Ũ
254 mUŨGAGACCGAGGUGUAUCACCAGUUUUAGAGCUAUGCUGUCCUUŨmU
255 mU*ŨGAGACCGAGGUGUAUCACCAGUUUUAGAGCUAUGCUGUCCUUŨ*mU
256 mU*Ũ*UGAGACCGAGGUGUAUCACCAGUUUUAGAGCUAUGCUGUCCUU*Ũ*mU
257 mU*Ũ*U*GAGACCGAGGUGUAUCACCAGUUUUAGAGCUAUGCUGUCCU*U*Ũ*mU
258 mU*ŨŨGAGACCGAGGUGUAUCACCAGUUUUAGAGCUAUGCUGUCCUŨŨ*mU
259 mU*Ũ*ŨGAGACCGAGGUGUAUCACCAGUUUUAGAGCUAUGCUGUCCUŨ*Ũ*mU
260 mU*Ũ*Ũ*GAGACCGAGGUGUAUCACCAGUUUUAGAGCUAUGCUGUCCU*Ũ*Ũ*mU
261 AACCUGGGAUCAAGUGGCCGGUUUUAGAGCUAUGCUGUCCUU
262 ŨAACCUGGGAUCAAGUGGCCGGUUUUAGAGCUAUGCUGUCCUŨ
263 ŨÃACCUGGGAUCAAGUGGCCGGUUUUAGAGCUAUGCUGUCCŨŨ
264 Ũ*ÃACCUGGGAUCAAGUGGCCGGUUUUAGAGCUAUGCUGUCCŨ*Ũ
265 mUŨAACCUGGGAUCAAGUGGCCGGUUUUAGAGCUAUGCUGUCCUUŨmU
266 mU*ŨAACCUGGGAUCAAGUGGCCGGUUUUAGAGCUAUGCUGUCCUUŨ*mU
267 mU*Ũ*AACCUGGGAUCAAGUGGCCGGUUUUAGAGCUAUGCUGUCCUU*Ũ*mU
268 mU*Ũ*U*AACCUGGGAUCAAGUGGCCGGUUUUAGAGCUAUGCUGUCCU*U*Ũ*mU
269 mU*ŨŨAACCUGGGAUCAAGUGGCCGGUUUUAGAGCUAUGCUGUCCUŨŨ*mU
270 mU*Ũ*ŨAACCUGGGAUCAAGUGGCCGGUUUUAGAGCUAUGCUGUCCUŨ*Ũ*mU
271 mU*Ũ*Ũ*AACCUGGGAUCAAGUGGCCGGUUUUAGAGCUAUGCUGUCCU*Ũ*Ũ*mU
272 GAAGGUGCUGAACCCUCAGCGUUUUAGAGCUAUGCUGUCCUU
273 ŨGAAGGUGCUGAACCCUCAGCAGUUUUAGAGCUAUGCUGUCCUŨ
274 ŨĜAAGGUGCUGAACCCUCAGCGUUUUAGAGCUAUGCUGUCCŨŨ
275 Ũ*ĜAAGGUGCUGAACCCUCAGCGUUUUAGAGCUAUGCUGUCCŨ*Ũ
276 mUŨGAAGGUGCUGAACCCUCAGCGUUUUAGAGCUAUGCUGUCCUUŨmU
277 mU*ŨGAAGGUGCUGAACCCUCAGCGUUUUAGAGCUAUGCUGUCCUUŨ*mU
278 mU*Ũ*UGAAGGUGCUGAACCCUCAGCGUUUUAGAGCUAUGCUGUCCUU*Ũ*mU
279 mU*Ũ*U*GAAGGUGCUGAACCCUCAGCGUUUUAGAGCUAUGCUGUCCU*U*Ũ*mU
280 mU*ŨŨGAAGGUGCUGAACCCUCAGCGUUUUAGAGCUAUGCUGUCCUŨŨ*mU
281 mU*Ũ*ŨGAAGGUGCUGAACCCUCAGCGUUUUAGAGCUAUGCUGUCCUŨ*Ũ*mU
282 mU*Ũ*Ũ*GAAGGUGCUGAACCCUCAGCGUUUUAGAGCUAUGCUGUCCU*Ũ*Ũ*mU


[0340] In Table 15, N designates an RNA monomer, mN designates a 2'-O-methyl-RNA monomer, * designates a 3'-phosphorothioate linkage, Ũ designates a UNA-U monomer, and Ĝ designates a UNA-G monomer.

[0341] Example 6: Editing a CFTR genomic site with a U-Guide molecule for CRISPR/Cas9.

[0342] Cystic fibrosis (CF) is a genetic disorder that substantially affects the respiratory system, causing abnormally thick mucus linings in the lungs. The disease can lead to fatal lung infections, and may also result in various obstructions of the pancreas, hindering digestion. Symptoms of CF include persistent coughing, wheezing or shortness of breath, and an excessive appetite but poor weight gain. Deterioration is inevitable, leading to debility and eventually death. In the United States, the incidence of CF is reported to be 1 in every 3500 births.

[0343] An individual who has the disease inherits a defective cystic fibrosis CFTR gene from each parent. The defective CFTR gene produces the defective protein cystic fibrosis transmembrane conductance regulator, which does not properly regulate the movement of salt and water in and out of cells. The result is thick, sticky mucus in the respiratory, digestive and reproductive systems, as well as increased salt in sweat. There are more than one thousand possible mutations of the CFTR gene.

[0344] Guide sequences of 20-mer length were identified that targeted certain regions of human CFTR (human CFTR, NG_016465.4). The EntreZ Gene ID for these sequences is 1080.

[0345] 20-mer guide sequences for CFTR are shown in Table 16.
Table 16: 20-mer guide sequences for CFTR
SEQ ID NO.TARGET SEQUENCE 5' --> 3'
283 GGUAUAUGUCUGACAAUUCC
284 ACUCCCAGAUUAGCCCCAUG
285 AAGGACAGCCUUCUCUCUAA
286 UGCUGAUCACGCUGAUGCG
287 CUAUUCCCUUUGUCUUGAAG
288 UUCAUUGACAUGCCAACAGA


[0346] A U-Guide molecule is synthesized, wherein the molecule contains the 20-mer target sequence and a CRISPR sequence of S. pyogenes.

[0347] Examples of 20-mer target length U-Guide molecules for CFTR are shown in Table 17.
Table 17: 20-mer target length U-Guide molecules for editing CFTR
SEQ ID NO.U-GUIDE STRUCTURE (1 or 5' to 3')
289 GGUAUAUGUCUGACAAUUCCGUUUUAGAGCUAUGCUGUCCUU
290 ŨGGUAUAUGUCUGACAAUUCCGUUUUAGAGCUAUGCUGUCCUŨ
291 ŨĜGUAUAUGUCUGACAAUUCCGUUUUAGAGCUAUGCUGUCCŨŨ
292 Ũ*ĜGUAUAUGUCUGACAAUUCCGUUUUAGAGCUAUGCUGUCCŨ*Ũ
293 mUŨGGUAUAUGUCUGACAAUUCCGUUUUAGAGCUAUGCUGUCCUUŨmU
294 mU*ŨGGUAUAUGUCUGACAAUUCCGUUUUAGAGCUAUGCUGUCCUUŨ*mU
295 mU*Ũ*GGUAUAUGUCUGACAAUUCCGUUUUAGAGCUAUGCUGUCCUU*Ũ*mU
296 mU*Ũ*U*GGUAUAUGUCUGACAAUUCCGUUUUAGAGCUAUGCUGUCCU*U*Ũ*mU
297 mU*ŨŨGGUAUAUGUCUGACAAUUCCGUUUUAGAGCUAUGCUGUCCUŨŨ*mU
298 mU*Ũ*ŨGGUAUAUGUCUGACAAUUCCGUUUUAGAGCUAUGCUGUCCUŨ*Ũ*mU
299 mU*Ũ*Ũ*GGUAUAUGUCUGACAAUUCCGUUUUAGAGCUAUGCUGUCCU*Ũ*Ũ*mU
300 ACUCCCAGAUUAGCCCCAUGGUUUUAGAGCUAUGCUGUCCUU
301 ŨACUCCCAGAUUAGCCCCAUGGUUUUAGAGCUAUGCUGUCCUŨ
302 ŨÃCUCCCAGAUUAGCCCCAUGGUUUUAGAGCUAUGCUGUCCŨŨ
303 Ũ*ÃCUCCCAGAUUAGCCCCAUGGUUUUAGAGCUAUGCUGUCCŨ*Ũ
304 mUŨACUCCCAGAUUAGCCCCAUGGUUUUAGAGCUAUGCUGUCCUUŨmU
305 mU*ŨACUCCCAGAUUAGCCCCAUGGUUUUAGAGCUAUGCUGUCCUUŨ*mU
306 mU*Ũ*ACUCCCAGAUUAGCCCCAUGGUUUUAGAGCUAUGCUGUCCUU*Ũ*mU
307 mU*Ũ*U*ACUCCCAGAUUAGCCCCAUGGUUUUAGAGCUAUGCUGUCCU*U*Ũ*mU
308 mU*ŨŨACUCCCAGAUUAGCCCCAUGGUUUUAGAGCUAUGCUGUCCUŨŨ*mU
309 mU*Ũ*ŨACUCCCAGAUUAGCCCCAUGGUUUUAGAGCUAUGCUGUCCUŨ*Ũ*mU
310 mU*Ũ*Ũ*ACUCCCAGAUUAGCCCCAUGGUUUUAGAGCUAUGCUGUCCU*Ũ*Ũ*mU
311 AAGGACAGCCUUCUCUCUAAGUUUUAGAGCUAUGCUGUCCUU
312 ŨAAGGACAGCCUUCUCUCUAAGUUUUAGAGCUAUGCUGUCCUŨ
313 ŨÃAGGACAGCCUUCUCUCUAAGUUUUAGAGCUAUGCUGUCCŨŨ
314 Ũ*AAGGACAGCCUUCUCUCUAAGUUUUAGAGCUAUGCUGUCCŨ*Ũ
315 mUŨAAGGACAGCCUUCUCUCUAAGUUUUAGAGCUAUGCUGUCCUUŨmU
316 mU*ŨAAGGACAGCCUUCUCUCUAAGUUUUAGAGCUAUGCUGUCCUUŨ*mU
317 mU*Ũ*AAGGACAGCCUUCUCUCUAAGUUUUAGAGCUAUGCUGUCCUU*Ũ*mU
318 mU*Ũ*U*AAGGACAGCCUUCUCUCUAAGUUUUAGAGCUAUGCUGUCCU*U*Ũ*mU
319 mU*ŨŨAAGGACAGCCUUCUCUCUAAGUUUUAGAGCUAUGCUGUCCUŨŨ*mU
320 mU*Ũ*ŨAAGGACAGCCUUCUCUCUAAGUUUUAGAGCUAUGCUGUCCUŨ*Ũ*mU
321 mU*Ũ*Ũ*AAGGACAGCCUUCUCUCUAAGUUUUAGAGCUAUGCUGUCCU*Ũ*Ũ*mU
322 UGCUGAUCACGCUGAUGCGGUUUUAGAGCUAUGCUGUCCUU
323 ŨUGCUGAUCACGCUGAUGCGGUUUUAGAGCUAUGCUGUCCUŨ
324 ŨŨGCUGAUCACGCUGAUGCGGUUUUAGAGCUAUGCUGUCCŨŨ
325 Ũ*ŨGCUGAUCACGCUGAUGCGGUUUUAGAGCUAUGCUGUCCŨ*Ũ
326 mUŨUGCUGAUCACGCUGAUGCGGUUUUAGAGCUAUGCUGUCCUUŨmU
327 mU*ŨUGCUGAUCACGCUGAUGCGGUUUUAGAGCUAUGCUGUCCUUŨ*mU
328 mU*Ũ*UGCUGAUCACGCUGAUGCGGUUUUAGAGCUAUGCUGUCCUU*Ũ*mU
329 mU*Ũ*U*UGCUGAUCACGCUGAUGCGGUUUUAGAGCUAUGCUGUCCU*U*Ũ*mU
330 mU*ŨŨUGCUGAUCACGCUGAUGCGGUUUUAGAGCUAUGCUGUCCUŨŨ*mU
331 mU*Ũ*ŨUGCUGAUCACGCUGAUGCGGUUUUAGAGCUAUGCUGUCCUŨ*Ũ*mU
332 mU*Ũ*Ũ*UGCUGAUCACGCUGAUGCGGUUUUAGAGCUAUGCUGUCCU*Ũ*Ũ*mU
333 CUAUUCCCUUUGUCUUGAAGGUUUUAGAGCUAUGCUGUCCUU
334 ŨCUAUUCCCUUUGUCUUGAAGGUUUUAGAGCUAUGCUGUCCUŨ
335 UAUUCCCUUUGUCUUGAAGGUUUUAGAGCUAUGCUGUCCŨŨ
336 Ũ*ĈUAUUCCCUUUGUCUUGAAGGUUUUAGAGCUAUGCUGUCCŨ*Ũ
337 mUŨCUAUUCCCUUUGUCUUGAAGGUUUUAGAGCUAUGCUGUCCUUŨmU
338 mU*ŨCUAUUCCCUUUGUCUUGAAGGUUUUAGAGCUAUGCUGUCCUUŨ*mU
339 mU*Ũ*CUAUUCCCUUUGUCUUGAAGGUUUUAGAGCUAUGCUGUCCUU*Ũ*mU
340 mU*Ũ*U*CUAUUCCCUUUGUCUUGAAGGUUUUAGAGCUAUGCUGUCCU*U*Ũ*mU
341 mU*ŨŨCUAUUCCCUUUGUCUUGAAGGUUUUAGAGCUAUGCUGUCCUŨŨ*mU
342 mU*Ũ*ŨCUAUUCCCUUUGUCUUGAAGGUUUUAGAGCUAUGCUGUCCUŨ*Ũ*mU
343 mU*Ũ*Ũ*CUAUUCCCUUUGUCUUGAAGGUUUUAGAGCUAUGCUGUCCU*Ũ*Ũ*mU
344 UUCAUUGACAUGCCAACAGAGUUUUAGAGCUAUGCUGUCCUU
345 ŨUUCAUUGACAUGCCAACAGAGUUUUAGAGCUAUGCUGUCCUŨ
346 ŨŨUCAUUGACAUGCCAACAGAGUUUUAGAGCUAUGCUGUCCŨŨ
347 Ũ*ŨUCAUUGACAUGCCAACAGAGUUUUAGAGCUAUGCUGUCCŨ*Ũ
348 mUŨUUCAUUGACAUGCCAACAGAGUUUUAGAGCUAUGCUGUCCUUŨmU
349 mU*ŨUUCAUUGACAUGCCAACAGAGUUUUAGAGCUAUGCUGUCCUUŨ*mU
350 mU*Ũ*UUCAUUGACAUGCCAACAGAGUUUUAGAGCUAUGCUGUCCUU*Ũ*mU
351 mU*Ũ*U*UUCAUUGACAUGCCAACAGAGUUUUAGAGCUAUGCUGUCCU*U*Ũ*mU
352 mU*ŨŨUUCAUUGACAUGCCAACAGAGUUUUAGAGCUAUGCUGUCCUŨŨ*mU
353 mU*Ũ*ŨUUCAUUGACAUGCCAACAGAGUUUUAGAGCUAUGCUGUCCUŨ*Ũ*mU
354 mU*Ũ*Ũ*UUCAUUGACAUGCCAACAGAGUUUUAGAGCUAUGCUGUCCU*Ũ*Ũ*mU


[0348] In Table 17, N designates an RNA monomer, mN designates a 2'-O-methyl-RNA monomer, * designates a 3'-phosphorothioate linkage, Ũ designates a UNA-U monomer, and Ĝ designates a UNA-G monomer.

[0349] Example 7: Editing a Factor IX (F9) genomic site with a U-Guide molecule for CRISPR/Cas9.

[0350] Deficiency of Factor IX causes Hemophilia B. There are more than 100 known mutations of Factor IX.

[0351] Guide sequences of 20-mer length were identified that targeted certain regions of human F9 (human F9, NG_007994.1). The EntreZ Gene ID for these sequences is 2158.

[0352] 20-mer guide sequences for F9 are shown in Table 18.
Table 18: 20-mer guide sequences for F9
SEQ ID NO.TARGET SEQUENCE 5' --> 3'
355 CUAAAAGGCAGAUGGUGAUG
356 CUUCCAUACAUUCUCUCUCA
357 AAAGGGACACCAACAUUCAU
358 AAGUCGAUAUCCCUCAGUAC
359 GGUGGAGAAGAUGCCAAACC
360 UUCUGUGCUGGCUUCCAUGA


[0353] A U-Guide molecule is synthesized, wherein the molecule contains the 20-mer target sequence and a CRISPR sequence of S. pyogenes.

[0354] Examples of 20-mer target length U-Guide molecules for F9 are shown in Table 19.
Table 19: 20-mer target length U-Guide molecules for editing F9
SEQ ID NO.U-GUIDE STRUCTURE (1 or 5' to 3')
361 CUAAAAGGCAGAUGGUGAUGGUUUUAGAGCUAUGCUGUCCUU
362 ŨCUAAAAGGCAGAUGGUGAUGGUUUUAGAGCUAUGCUGUCCUŨ
363 ŨĈUAAAAGGCAGAUGGUGAUGGUUUUAGAGCUAUGCUGUCCŨŨ
364 Ũ*ĈUAAAAGGCAGAUGGUGAUGGUUUUAGAGCUAUGCUGUCCŨ*Ũ
365 mUŨCUAAAAGGCAGAUGGUGAUGGUUUUAGAGCUAUGCUGUCCUUŨmU
366 mU*ŨCUAAAAGGCAGAUGGUGAUGGUUUUAGAGCUAUGCUGUCCUUŨ*mU
367 mU*Ũ*CUAAAAGGCAGAUGGUGAUGGUUUUAGAGCUAUGCUGUCCUU*Ũ*mU
368 mU*Ũ*U*CUAAAAGGCAGAUGGUGAUGGUUUUAGAGCUAUGCUGUCCU*U*Ũ*mU
369 mU*ŨŨCUAAAAGGCAGAUGGUGAUGGUUUUAGAGCUAUGCUGUCCUŨŨ*mU
370 mU*Ũ*ŨCUAAAAGGCAGAUGGUGAUGGUUUUAGAGCUAUGCUGUCCUŨ*Ũ*mU
371 mU*Ũ*Ũ*CUAAAAGGCAGAUGGUGAUGGUUUUAGAGCUAUGCUGUCCU*Ũ*Ũ*mU
372 CUUCCAUACAUUCUCUCUCAGUUUUAGAGCUAUGCUGUCCUU
373 ŨCUUCCAUACAUUCUCUCUCAGUUUUAGAGCUAUGCUGUCCUŨ
374 ŨĈUUCCAUACAUUCUCUCUCAGUUUUAGAGCUAUGCUGUCCŨŨ
375 Ũ*ĈUUCCAUACAUUCUCUCUCAGUUUUAGAGCUAUGCUGUCCŨ*Ũ
376 mUŨCUUCCAUACAUUCUCUCUCAGUUUUAGAGCUAUGCUGUCCUUŨmU
377 mU*ŨCUUCCAUACAUUCUCUCUCAGUUUUAGAGCUAUGCUGUCCUUŨ*mU
378 mU*Ũ*CUUCCAUACAUUCUCUCUCAGUUUUAGAGCUAUGCUGUCCUU*Ũ*mU
379 mU*Ũ*U*CUUCCAUACAUUCUCUCUCAGUUUUAGAGCUAUGCUGUCCU*U*Ũ*mU
380 mU*ŨŨCUUCCAUACAUUCUCUCUCAGUUUUAGAGCUAUGCUGUCCUŨŨ*mU
381 mU*Ũ*ŨCUUCCAUACAUUCUCUCUCAGUUUUAGAGCUAUGCUGUCCUŨ*Ũ*mU
382 mU*Ũ*Ũ*CUUCCAUACAUUCUCUCUCAGUUUUAGAGCUAUGCUGUCCU*Ũ*Ũ*mU
383 AAAGGGACACCAACAUUCAUGUUUUAGAGCUAUGCUGUCCUU
384 ŨAAAGGGACACCAACAUUCAUGUUUUAGAGCUAUGCUGUCCUŨ
385 ŨÃAAGGGACACCAACAUUCAUGUUUUAGAGCUAUGCUGUCCŨŨ
386 Ũ*ÃAAGGGACACCAACAUUCAUGUUUUAGAGCUAUGCUGUCCŨ*Ũ
387 mUŨAAAGGGACACCAACAUUCAUGUUUUAGAGCUAUGCUGUCCUUŨmU
388 mU*ŨAAAGGGACACCAACAUUCAUGUUUUAGAGCUAUGCUGUCCUUŨ*mU
389 mU*Ũ*AAAGGGACACCAACAUUCAUGUUUUAGAGCUAUGCUGUCCUU*Ũ*mU
390 mU*Ũ*U*AAAGGGACACCAACAUUCAUGUUUUAGAGCUAUGCUGUCCU*U*Ũ*mU
391 mU*ŨŨAAAGGGACACCAACAUUCAUGUUUUAGAGCUAUGCUGUCCUŨŨ*mU
392 mU*Ũ*ŨAAAGGGACACCAACAUUCAUGUUUUAGAGCUAUGCUGUCCUŨ*Ũ*mU
393 mU*Ũ*Ũ*AAAGGGACACCAACAUUCAUGUUUUAGAGCUAUGCUGUCCU*Ũ*Ũ*mU
394 AAGUCGAUAUCCCUCAGUACGUUUUAGAGCUAUGCUGUCCUU
395 ŨAAGUCGAUAUCCCUCAGUACGUUUUAGAGCUAUGCUGUCCUŨ
396 ŨÃAGUCGAUAUCCCUCAGUACGUUUUAGAGCUAUGCUGUCCŨŨ
397 Ũ*ÃAGUCGAUAUCCCUCAGUACGUUUUAGAGCUAUGCUGUCCŨ*Ũ
398 mUŨAAGUCGAUAUCCCUCAGUACGUUUUAGAGCUAUGCUGUCCUUŨmU
399 mU*ŨAAGUCGAUAUCCCUCAGUACGUUUUAGAGCUAUGCUGUCCUUŨ*mU
400 mU*Ũ*AAGUCGAUAUCCCUCAGUACGUUUUAGAGCUAUGCUGUCCUU*Ũ*mU
401 mU*Ũ*U*AAGUCGAUAUCCCUCAGUACGUUUUAGAGCUAUGCUGUCCU*U*Ũ*mU
402 mU*ŨŨAAGUCGAUAUCCCUCAGUACGUUUUAGAGCUAUGCUGUCCUŨŨ*mU
403 mU*Ũ*ŨAAGUCGAUAUCCCUCAGUACGUUUUAGAGCUAUGCUGUCCUŨ*Ũ*mU
404 mU*Ũ*Ũ*AAGUCGAUAUCCCUCAGUACGUUUUAGAGCUAUGCUGUCCU*Ũ*Ũ*mU
405 GGUGGAGAAGAUGCCAAACCGUUUUAGAGCUAUGCUGUCCUU
406 ŨGGUGGAGAAGAUGCCAAACCGUUUUAGAGCUAUGCUGUCCUŨ
407 ŨĜGUGGAGAAGAUGCCAAACCGUUUUAGAGCUAUGCUGUCCŨŨ
408 Ũ*ĜGUGGAGAAGAUGCCAAACCGUUUUAGAGCUAUGCUGUCCŨ*Ũ
409 mUŨGGUGGAGAAGAUGCCAAACCGUUUUAGAGCUAUGCUGUCCUUŨmU
410 mU*ŨGGUGGAGAAGAUGCCAAACCGUUUUAGAGCUAUGCUGUCCUUŨ*mU
411 mU*Ũ*GGUGGAGAAGAUGCCAAACCGUUUUAGAGCUAUGCUGUCCUU*Ũ*mU
412 mU*Ũ*U*GGUGGAGAAGAUGCCAAACCGUUUUAGAGCUAUGCUGUCCU*U*Ũ*mU
413 mU*ŨŨGGUGGAGAAGAUGCCAAACCGUUUUAGAGCUAUGCUGUCCUŨŨ*mU
414 mU*Ũ*ŨGGUGGAGAAGAUGCCAAACCGUUUUAGAGCUAUGCUGUCCUŨ*Ũ*mU
415 mU*Ũ*Ũ*GGUGGAGAAGAUGCCAAACCGUUUUAGAGCUAUGCUGUCCU*Ũ*Ũ*mU
416 UUCUGUGCUGGCUUCCAUGAGUUUUAGAGCUAUGCUGUCCUU
417 ŨUUCUGUGCUGGCUUCCAUGAGUUUUAGAGCUAUGCUGUCCUŨ
418 ŨŨUCUGUGCUGGCUUCCAUGAGUUUUAGAGCUAUGCUGUCCŨŨ
419 Ũ*ŨUCUGUGCUGGCUUCCAUGAGUUUUAGAGCUAUGCUGUCCŨ*Ũ
420 mUŨUUCUGUGCUGGCUUCCAUGAGUUUUAGAGCUAUGCUGUCCUUŨmU
421 mU*ŨUUCUGUGCUGGCUUCCAUGAGUUUUAGAGCUAUGCUGUCCUUŨ*mU
422 mU*Ũ*UUCUGUGCUGGCUUCCAUGAGUUUUAGAGCUAUGCUGUCCUU*Ũ*mU
423 mU*Ũ*U*UUCUGUGCUGGCUUCCAUGAGUUUUAGAGCUAUGCUGUCCU*U*Ũ*mU
424 mU*ŨŨUUCUGUGCUGGCUUCCAUGAGUUUUAGAGCUAUGCUGUCCUŨŨ*mU
425 mU*Ũ*ŨUUCUGUGCUGGCUUCCAUGAGUUUUAGAGCUAUGCUGUCCUŨ*Ũ*mU
426 mU*Ũ*Ũ*UUCUGUGCUGGCUUCCAUGAGUUUUAGAGCUAUGCUGUCCU*Ũ*Ũ*mU


[0355] In Table 19, N designates an RNA monomer, mN designates a 2'-O-methyl-RNA monomer, * designates a 3'-phosphorothioate linkage, Ũ designates a UNA-U monomer, and Ĝ designates a UNA-G monomer.

[0356] Example 8: Editing a KRAS genomic site with a U-Guide molecule for CRISPR/Cas9.

[0357] KRAS protein is essential in normal tissue signaling, and mutation of a KRAS gene is associated with many cancers.

[0358] Guide sequences of 20-mer length were identified that targeted certain regions of human KRAS (human KRAS, NG_007524.1). The EntreZ Gene ID for these sequences is 3845.

[0359] 20-mer guide sequences for KRAS are shown in Table 20.
Table 20: 20-mer guide sequences for KRAS
SEQ ID NO.TARGET SEQUENCE 5' --> 3'
427 CUGAAUUAGCUGUAUCGUCA
428 CAAUGAGGGACCAGUACAUG
429 AGAACAAAUUAAAAGAGUUA
430 AAUCACAUUUAUUUCCUACU
431 UUCUC GAACUAAUGUAUAGA
432 GAAUAUGAUCCAACAAUAGA


[0360] A U-Guide molecule is synthesized, wherein the molecule contains the 20-mer target sequence and a CRISPR sequence of S. pyogenes.

[0361] Examples of 20-mer target length U-Guide molecules for KRAS are shown in Table 21.
Table 21: 20-mer target length U-Guide molecules for editing KRAS
SEQ ID NO.U-GUIDE STRUCTURE (1 or 5' to 3')
433 CUGAAUUAGCUGUAUCGUCAGUUUUAGAGCUAUGCUGUCCUU
434 ŨCUGAAUUAGCUGUAUCGUCAGUUUUAGAGCUAUGCUGUCCUŨ
435 ŨĈUGAAUUAGCUGUAUCGUCAGUUUUAGAGCUAUGCUGUCCŨŨ
436 Ũ*ĈUGAAUUAGCUGUAUCGUCAGUUUUAGAGCUAUGCUGUCCŨ*Ũ
437 mUŨCUGAAUUAGCUGUAUCGUCAGUUUUAGAGCUAUGCUGUCCUUŨmU
438 mU*ŨCUGAAUUAGCUGUAUCGUCAGUUUUAGAGCUAUGCUGUCCUUŨ*mU
439 mU*Ũ*CUGAAUUAGCUGUAUCGUCAGUUUUAGAGCUAUGCUGUCCUU*Ũ*mU
440 mU*Ũ*U*CUGAAUUAGCUGUAUCGUCAGUUUUAGAGCUAUGCUGUCCU*U*Ũ*mU
441 mU*ŨŨCUGAAUUAGCUGUAUCGUCAGUUUUAGAGCUAUGCUGUCCUŨŨ*mU
442 mU*Ũ*ŨCUGAAUUAGCUGUAUCGUCAGUUUUAGAGCUAUGCUGUCCUŨ*Ũ*mU
443 mU*Ũ*Ũ*CUGAAUUAGCUGUAUCGUCAGUUUUAGAGCUAUGCUGUCCU*Ũ*Ũ*mU
444 CAAUGAGGGACCAGUACAUGGUUUUAGAGCUAUGCUGUCCUU
445 ŨCAAUGAGGGACCAGUACAUGGUUUUAGAGCUAUGCUGUCCUŨ
446 ŨĈAAUGAGGGACCAGUACAUGGUUUUAGAGCUAUGCUGUCCŨŨ
447 Ũ*ĈAAUGAGGGACCAGUACAUGGUUUUAGAGCUAUGCUGUCCŨ*Ũ
448 mUŨCAAUGAGGGACCAGUACAUGGUUUUAGAGCUAUGCUGUCCUUŨmU
449 mU*ŨCAAUGAGGGACCAGUACAUGGUUUUAGAGCUAUGCUGUCCUUŨ*mU
450 mU*Ũ*CAAUGAGGGACCAGUACAUGGUUUUAGAGCUAUGCUGUCCUU*Ũ*mU
451 mU*Ũ*U*CAAUGAGGGACCAGUACAUGGUUUUAGAGCUAUGCUGUCCU*U*Ũ*mU
452 mU*ŨŨCAAUGAGGGACCAGUACAUGGUUUUAGAGCUAUGCUGUCCUŨŨ*mU
453 mU*Ũ*ŨCAAUGAGGGACCAGUACAUGGUUUUAGAGCUAUGCUGUCCUŨ*Ũ*mU
454 mU*Ũ*Ũ*CAAUGAGGGACCAGUACAUGGUUUUAGAGCUAUGCUGUCCU*Ũ*Ũ*mU
455 AGAACAAAUUAAAAGAGUUAGUUUUAGAGCUAUGCUGUCCUU
456 ŨAGAACAAAUUAAAAGAGUUAGUUUUAGAGCUAUGCUGUCCUŨ
457 ŨÃGAACAAAUUAAAAGAGUUAGUUUUAGAGCUAUGCUGUCCŨŨ
458 Ũ*ÃGAACAAAUUAAAAGAGUUAGUUUUAGAGCUAUGCUGUCCŨ*Ũ
459 mUŨAGAACAAAUUAAAAGAGUUAGUUUUAGAGCUAUGCUGUCCUUŨmU
460 mU*ŨAGAACAAAUUAAAAGAGUUAGUUUUAGAGCUAUGCUGUCCUUŨ*mU
461 mU*Ũ*AGAACAAAUUAAAAGAGUUAGUUUUAGAGCUAUGCUGUCCUU*Ũ*mU
462 mU*Ũ*U*AGAACAAAUUAAAAGAGUUAGUUUUAGAGCUAUGCUGUCCU*U*Ũ*mU
463 mU*ŨŨAGAACAAAUUAAAAGAGUUAGUUUUAGAGCUAUGCUGUCCUŨŨ*mU
464 mU*Ũ*ŨAGAACAAAUUAAAAGAGUUAGUUUUAGAGCUAUGCUGUCCUŨ*Ũ*mU
465 mU*Ũ*Ũ*AGAACAAAUUAAAAGAGUUAGUUUUAGAGCUAUGCUGUCCU*Ũ*Ũ*mU
466 AAUCACAUUUAUUUCCUACUGUUUUAGAGCUAUGCUGUCCUU
467 ŨAAUCACAUUUAUUUCCUACUGUUUUAGAGCUAUGCUGUCCUŨ
468 ŨÃAUCACAUUUAUUUCCUACUGUUUUAGAGCUAUGCUGUCCŨŨ
469 Ũ*ÃAUCACAUUUAUUUCCUACUGUUUUAGAGCUAUGCUGUCCŨ*Ũ
470 mUŨAAUCACAUUUAUUUCCUACUGUUUUAGAGCUAUGCUGUCCUUŨmU
471 mU*ŨAAUCACAUUUAUUUCCUACUGUUUUAGAGCUAUGCUGUCCUUŨ*mU
472 mU*Ũ*AAUCACAUUUAUUUCCUACUGUUUUAGAGCUAUGCUGUCCUU*Ũ*mU
473 mU*Ũ*U*AAUCACAUUUAUUUCCUACUGUUUUAGAGCUAUGCUGUCCU*U*Ũ*mU
474 mU*ŨŨAAUCACAUUUAUUUCCUACUGUUUUAGAGCUAUGCUGUCCUŨŨ*mU
475 mU*Ũ*ŨAAUCACAUUUAUUUCCUACUGUUUUAGAGCUAUGCUGUCCUŨ*Ũ*mU
476 mU*Ũ*Ũ*AAUCACAUUUAUUUCCUACUGUUUUAGAGCUAUGCUGUCCU*Ũ*Ũ*mU
477 UUCUCGAACUAAUGUAUAGAGUUUUAGAGCUAUGCUGUCCUU
478 ŨUUCUCGAACUAAUGUAUAGAGUUUUAGAGCUAUGCUGUCCUŨ
479 ŨŨUCUCGAACUAAUGUAUAGAGUUUUAGAGCUAUGCUGUCCŨŨ
480 Ũ*ŨUCUCGAACUAAUGUAUAGAGUUUUAGAGCUAUGCUGUCCŨ*Ũ
481 mUŨUUCUCGAACUAAUGUAUAGAGUUUUAGAGCUAUGCUGUCCUUŨmU
482 mU*ŨUUCUCGAACUAAUGUAUAGAGUUUUAGAGCUAUGCUGUCCUUŨ*mU
483 mU*Ũ*UUCUCGAACUAAUGUAUAGAGUUUUAGAGCUAUGCUGUCCUU*Ũ*mU
484 mU*Ũ*U*UUCUCGAACUAAUGUAUAGAGUUUUAGAGCUAUGCUGUCCU*U*Ũ*mU
485 mU*ŨŨUUCUCGAACUAAUGUAUAGAGUUUUAGAGCUAUGCUGUCCUŨŨ*mU
486 mU*Ũ*ŨUUCUCGAACUAAUGUAUAGAGUUUUAGAGCUAUGCUGUCCUŨ*Ũ*mU
487 mU*Ũ*Ũ*UUCUCGAACUAAUGUAUAGAGUUUUAGAGCUAUGCUGUCCU*Ũ*Ũ*mU
488 GAAUAUGAUCCAACAAUAGAGUUUUAGAGCUAUGCUGUCCUU
489 ŨGAAUAUGAUCCAACAAUAGAGUUUUAGAGCUAUGCUGUCCUŨ
490 ŨĜAAUAUGAUCCAACAAUAGAGUUUUAGAGCUAUGCUGUCCŨŨ
491 Ũ*GAAUAUGAUCCAACAAUAGAGUUUUAGAGCUAUGCUGUCCŨ*Ũ
492 mUŨGAAUAUGAUCCAACAAUAGAGUUUUAGAGCUAUGCUGUCCUUŨmU
493 mU*ŨGAAUAUGAUCCAACAAUAGAGUUUUAGAGCUAUGCUGUCCUUŨ*mU
494 mU*Ũ*GAAUAUGAUCCAACAAUAGAGUUUUAGAGCUAUGCUGUCCUU*Ũ*mU
495 mU*Ũ*U*GAAUAUGAUCCAACAAUAGAGUUUUAGAGCUAUGCUGUCCU*U*Ũ*mU
496 mU*ŨŨGAAUAUGAUCCAACAAUAGAGUUUUAGAGCUAUGCUGUCCUŨŨ*mU
497 mU*Ũ*ŨGAAUAUGAUCCAACAAUAGAGUUUUAGAGCUAUGCUGUCCUŨ*Ũ*mU
498 mU*Ũ*Ũ*GAAUAUGAUCCAACAAUAGAGUUUUAGAGCUAUGCUGUCCU*Ũ*Ũ*mU


[0362] In Table 21, N designates an RNA monomer, mN designates a 2'-O-methyl-RNA monomer, * designates a 3'-phosphorothioate linkage, Ũ designates a UNA-U monomer, and Ĝ designates a UNA-G monomer.

[0363] Example 9: Editing a T cell genomic site with a U-Guide molecule for CRISPR/Cas9.

[0364] A schematic representation of the structure of a chimeric antigen receptor (CAR) is shown in Fig. 13. The CAR is an artificial T cell receptor that is inserted and expressed in the T cell. ScFv is a single chain fragment variable. VH is a heavy-chain variable region. VL is a light-chain variable region. TM is a transmembrane domain. SD is a signaling domain.

[0365] The CAR gene can be inserted into any constitutively expressed gene of a T cell.

[0366] For example, in one embodiment, the CAR gene can be inserted into a CD2 gene (cluster of differentiation 2). CD2 is a cell adhesion molecule found on the surface of T cells, which assists the T cells in adhering to antigen-presenting cells.

[0367] Fig. 14 shows a schematic of a method for introducing a CAR gene into a constitutive CD2 gene of a T cell, in which the CAR is downstream from the CD2. A double strand break is made with a U-Guide molecule of this invention. The gene inserted by homologous recombination can be comprised of a section of CD2, along with P2A and the CAR section. P2A peptide is a self-cleaving peptide that can be used to generate the two separate gene products CD2 protein and CAR protein. The CAR protein receptor can carry the specificity of a mAb against cancer cells of a subject in an adoptive immunotherapy strategy to kill the subject's cancer cells.

[0368] Fig. 15 shows a schematic of a method for introducing a CAR gene into a constitutive CD2 gene of a T cell, in which the CAR is upstream from the CD2.

[0369] Several 20-mer guide sequences for CD2 are shown in Table 22.
Table 22: 20-mer guide sequences for CD2
SEQ ID NO.SEQUENCE
499 GGGGUACCCCGUCGUCUUUU-5' (U-GUIDE)
500 5'-CCT-CCCCATGGGGCAGCAGAAAA-3' (CD2 GENE)
501 3'-GGA-GGGGTACCCCGTCGTCTTTT-5' (CD2 GENE)
502 AAGACGACCACUUGAACACA-5' (U-GUIDE)
503 5'-CCT-TTCTGCTGGTGAACTTGTGT-3' (CD2 GENE)
504 3'-GGA-AAGACGACCACTTGAACACA-5' (CD2 GENE)
505 GGGGTCTGGAGCTCAAGTCG-5' (U-GUIDE)
506 5'-CCT-CCCCAGACCTCGAGTTCAGC-3' (CD2 GENE)
507 3'-GGA-GGGGTCTGGAGCTCAAGTCG-5' (CD2 GENE)
508 GAUUAAUUUUUUCUAUCUUU-5' (U-GUIDE)
509 5'-CCT-CTAATTAAAAAAGATAGAAA-3' (CD2 GENE)
510 3'-GGA-GATTAATTTTTTCTATCTTT-5' (CD2 GENE)


[0370] Guide sequences of 20-mer length were identified that targeted certain regions of human CD2.

[0371] 20-mer guide sequences for CD2 are shown in Table 23.
Table 23: 20-mer guide sequences for CD2
SEQ ID NO.TARGET SEQUENCE 5' --> 3'
511 UUUUCUGCUGCCCCAUGGGG
512 ACACAAGUUCACCAGCAGAA
513 GCTGAACTCGAGGTCTGGGG
514 UUUCUAUCUUUUUUAAUUAG


[0372] A U-Guide molecule is synthesized, wherein the molecule contains the 20-mer target sequence and a CRISPR sequence of S. pyogenes.

[0373] Examples of 20-mer target length U-Guide molecules for CD2 are shown in Table 24.
Table 24: 20-mer target length U-Guide molecules for editing CD2
SEQ ID NO.U-GUIDE STRUCTURE (1 or 5' to 3')
515 UUUUCUGCUGCCCCAUGGGGGUUUUAGAGCUAUGCUGUCCUU
516 ŨUUUUCUGCUGCCCCAUGGGGGUUUUAGAGCUAUGCUGUCCUŨ
517 ŨŨUUUCUGCUGCCCCAUGGGGGUUUUAGAGCUAUGCUGUCCŨŨ
518 Ũ*ŨUUUCUGCUGCCCCAUGGGGGUUUUAGAGCUAUGCUGUCCŨ*Ũ
519 mUŨUUUUCUGCUGCCCCAUGGGGGUUUUAGAGCUAUGCUGUCCUUŨmU
520 mU*ŨUUUUCUGCUGCCCCAUGGGGGUUUUAGAGCUAUGCUGUCCUUŨ*mU
521 mU*Ũ*UUUUCUGCUGCCCCAUGGGGGUUUUAGAGCUAUGCUGUCCUU*Ũ*mU
522 mU*Ũ*U*UUUUCUGCUGCCCCAUGGGGGUUUUAGAGCUAUGCUGUCCU*U*Ũ*mU
523 mU*ŨŨUUUUCUGCUGCCCCAUGGGGGUUUUAGAGCUAUGCUGUCCUŨŨ*mU
524 mU*Ũ*ŨUUUUCUGCUGCCCCAUGGGGGUUUUAGAGCUAUGCUGUCCUŨ*Ũ*mU
525 mU*Ũ*Ũ*UUUUCUGCUGCCCCAUGGGGGUUUUAGAGCUAUGCUGUCCU*Ũ*Ũ*mU
526 ACACAAGUUCACCAGCAGAAGUUUUAGAGCUAUGCUGUCCUU
527 ŨACACAAGUUCACCAGCAGAAGUUUUAGAGCUAUGCUGUCCUŨ
528 CACAAGUUCACCAGCAGAAGUUUUAGAGCUAUGCUGUCCŨŨ
529 Ũ*ÃCACAAGUUCACCAGCAGAAGUUUUAGAGCUAUGCUGUCCŨ*Ũ
530 mUŨACACAAGUUCACCAGCAGAAGUUUUAGAGCUAUGCUGUCCUUŨmU
531 mU*ŨACACAAGUUCACCAGCAGAAGUUUUAGAGCUAUGCUGUCCUUŨ*mU
532 mU*Ũ*ACACAAGUUCACCAGCAGAAGUUUUAGAGCUAUGCUGUCCUU*Ũ*mU
533 mU*Ũ*U*ACACAAGUUCACCAGCAGAAGUUUUAGAGCUAUGCUGUCCU*U*Ũ*mU
534 mU*ŨŨACACAAGUUCACCAGCAGAAGUUUUAGAGCUAUGCUGUCCUŨŨ*mU
535 mU*Ũ*ŨACACAAGUUCACCAGCAGAAGUUUUAGAGCUAUGCUGUCCUŨ*Ũ*mU
536 mU*Ũ*Ũ*ACACAAGUUCACCAGCAGAAGUUUUAGAGCUAUGCUGUCCU*Ũ*Ũ*mU
537 GCTGAACTCGAGGTCTGGGGGUUUUAGAGCUAUGCUGUCCUU
538 ŨGCTGAACTCGAGGTCTGGGGGUUUUAGAGCUAUGCUGUCCUŨ
539 ŨĜCTGAACTCGAGGTCTGGGGGUUUUAGAGCUAUGCUGUCCŨŨ
540 Ũ*ĜCTGAACTCGAGGTCTGGGGGUUUUAGAGCUAUGCUGUCCŨ*Ũ
541 mUŨGCTGAACTCGAGGTCTGGGGGUUUUAGAGCUAUGCUGUCCUUŨmU
542 mU*ŨGCTGAACTCGAGGTCTGGGGGUUUUAGAGCUAUGCUGUCCUUŨ*mU
543 mU*Ũ*UGCTGAACTCGAGGTCTGGGGGUUUUAGAGCUAUGCUGUCCUU*Ũ*mU
544 mU*Ũ*U*GCTGAACTCGAGGTCTGGGGGUUUUAGAGCUAUGCUGUCCU*U*Ũ*mU
545 mU*ŨŨGCTGAACTCGAGGTCTGGGGGUUUUAGAGCUAUGCUGUCCUŨŨ*mU
546 mU*Ũ*ŨGCTGAACTCGAGGTCTGGGGGUUUUAGAGCUAUGCUGUCCUŨ*Ũ*mU
547 mU*Ũ*Ũ*GCTGAACTCGAGGTCTGGGGGUUUUAGAGCUAUGCUGUCCU*Ũ*Ũ*mU
548 UUUCUAUCUUUUUUAAUUAGGUUUUAGAGCUAUGCUGUCCUU
549 ŨUUUCUAUCUUUUUUAAUUAGGUUUUAGAGCUAUGCUGUCCUŨ
550 ŨŨUUCUAUCUUUUUUAAUUAGGUUUUAGAGCUAUGCUGUCCŨŨ
551 Ũ*ŨUUCUAUCUUUUUUAAUUAGGUUUUAGAGCUAUGCUGUCCŨ*Ũ
552 mUŨUUUCUAUCUUUUUUAAUUAGGUUUUAGAGCUAUGCUGUCCUUŨmU
553 mU*ŨUUUCUAUCUUUUUUAAUUAGGUUUUAGAGCUAUGCUGUCCUUŨ*mU
554 mU*Ũ*UUUCUAUCUUUUUUAAUUAGGUUUUAGAGCUAUGCUGUCCUU*Ũ*mU
555 mU*Ũ*U*UUUCUAUCUUUUUUAAUUAGGUUUUAGAGCUAUGCUGUCCU*U*Ũ*mU
556 mU*ŨŨUUUCUAUCUUUUUUAAUUAGGUUUUAGAGCUAUGCUGUCCUŨŨ*mU
557 mU*Ũ*ŨUUUCUAUCUUUUUUAAUUAGGUUUUAGAGCUAUGCUGUCCUŨ*Ũ*mU
558 mU*Ũ*Ũ*UUUCUAUCUUUUUUAAUUAGGUUUUAGAGCUAUGCUGUCCU*Ũ*Ũ*mU


[0374] In Table 24, N designates an RNA monomer, mN designates a 2'-O-methyl-RNA monomer, * designates a 3'-phosphorothioate linkage, Ũ designates a UNA-U monomer, and Ĝ designates a UNA-G monomer.

[0375] Example 10: Protocol for sequence trace decomposition (TIDE).

[0376] 293 cells expressing either V30M or WT human TTR were transfected by LIPOFECTAMINE MESSENGERMAX reagent with Cas9 mRNA 4 hours prior to transfection with the comparative guide or UNA-Guide (UNA1), each of which were pre-annealed with tracrRNA, and targeting the V30M mutation of hTTR. 48 h following transfection, genomic DNA was isolated and a 1048 bp fragment of hTTR was amplified using primers

SEQ ID NO:559 5'ACAACTGGTAAGAAGGAGTGAC3' and

SEQ ID NO:560 5' CCTTGGGTTTTGGGTGATCC3' .



[0377] The PCR product was purified and then sanger sequenced using either the

SEQ ID NO:561 5'TCGACACTTACGTTCCTGAT3' or

SEQ ID NO:562 5'CATACTTGACCTCTGCCTAC3' primers.



[0378] Example 11: Editing a TTR genomic site with a U-Guide molecule for CRISPR/Cas9.

[0379] Guide sequences of 20-mer length were identified that targeted certain regions of human TTR, accession number NC_000018.10.

[0380] 20-mer guide sequences for hTTR are shown in Table 25.
Table 25: 20-mer guide sequences for hTTR
SEQ ID NO.TARGET SEQUENCE 5' --> 3'
563 TAAGGTGGTGCCGACAGTAG-5' (GUIDE - V122I)
564 5' -CCT-ATTCCACCACGGCTGTCATC-3' (V122I TTR GENE)
565 3'-GGA-TAAGGTGGTGCCGACAGTAG-5' (V122I TTR GENE)
566 GTCAACACTCGGGTACGCCG-5' (GUIDE - L55P)
567 5'-CCT-CAGTTGTGAGCCCATGCGGC-3' (L55P TTR GENE)
568 3'-GGA-GTCAACACTCGGGTACGCCG-5' (L55P TTR GENE)
569 GTCTGTGTTTATGGTCAGGT-5' (GUIDE)
570 5'-CCT-CAGACACAAATACCAGTCCA-3' (SP TTR GENE)
571 3' -GGA-GTCTGTGTTTATGGTCAGGT-5' (SP TTR GENE)


[0381] A U-Guide molecule is synthesized, wherein the molecule contains the 20-mer target sequence and a CRISPR sequence of S. pyogenes.

[0382] Examples of 20-mer target length U-Guide molecules for V122I hTTR are shown in Table 26.
Table 26: 20-mer target length U-Guide molecules for editing the V1221 region of hTTR
SEQ ID NO.U-GUIDE STRUCTURE (1 or 5' to 3')
572 GATGACAGCCGUGGUGGAAUGUUUUAGAGCUAUGCUGUCCUU
573 ŨGAUGACAGCCGUGGUGGAAUGUUUUAGAGCUAUGCUGUCCUŨ
574 ŨĜAUGACAGCCGUGGUGGAAUGUUUUAGAGCUAUGCUGUCCŨŨ
575 Ũ*ĜAUGACAGCCGUGGUGGAAUGUUUUAGAGCUAUGCUGUCCŨ*Ũ
576 mUŨUGAUGACAGCCGUGGUGGAAUGUUUUAGAGCUAUGCUGUCCUUŨmU
577 mU*ŨUGAUGACAGCCGUGGUGGAAUGUUUUAGAGCUAUGCUGUCCUUŨ*mU
578 mU*Ũ*UGAUGACAGCCGUGGUGGAAUGUUUUAGAGCUAUGCUGUCCUU*Ũ*mU
579 mU*Ũ*U*GAUGACAGCCGUGGUGGAAUGUUUUAGAGCUAUGCUGUCCU*U*Ũ*mU
580 mU*ŨŨGGAUGACAGCCGUGGUGGAAUGUUUUAGAGCUAUGCUGUCCUŨŨ*mU
581 mU*Ũ*ŨGAUGACAGCCGUGGUGGAAUGUUUUAGAGCUAUGCUGUCCUŨ*Ũ*mU
582 mU*Ũ*Ũ*GAUGACAGCCGUGGUGGAAUGUUUUAGAGCUAUGCUGUCCU*Ũ*Ũ*mU


[0383] Examples of 20-mer target length U-Guide molecules for region L55P of hTTR are shown in Table 27.
Table 27: 20-mer target length U-Guide molecules for editing the L55P region of hTTR
SEQ ID NO.U-GUIDE STRUCTURE (1 or 5' to 3')
583 GCCGCAUGGGCUCACAACUGGUUUUAGAGCUAUGCUGUCCUU
584 ŨGCCGCAUGGGCUCACAACUGGUUUUAGAGCUAUGCUGUCCUŨ
585 ŨĜCCGCAUGGGCUCACAACUGGUUUUAGAGCUAUGCUGUCCŨŨ
586 Ũ*ĜCCGCAUGGGCUCACAACUGGUUUUAGAGCUAUGCUGUCCŨ*Ũ
587 mUŨUGCCGCAUGGGCUCACAACUGGUUUUAGAGCUAUGCUGUCCUUŨmU
588 mU*ŨUGCCGCAUGGGCUCACAACUGGUUUUAGAGCUAUGCUGUCCUUŨ*mU
589 mU*Ũ*UGCCGCAUGGGCUCACAACUGGUUUUAGAGCUAUGCUGUCCUU*Ũ*mU
590 mU*Ũ*U*GCCGCAUGGGCUCACAACUGGUUUUAGAGCUAUGCUGUCCU*U*Ũ*mU
591 mU*ŨŨGCCGCAUGGGCUCACAACUGGUUUUAGAGCUAUGCUGUCCUŨŨ*mU
592 mU*Ũ*ŨGCCGCAUGGGCUCACAACUGGUUUUAGAGCUAUGCUGUCCUŨ*Ũ*mU
593 mU*Ũ*Ũ*GCCGCAUGGGCUCACAACUGGUUUUAGAGCUAUGCUGUCCU*Ũ*Ũ*mU


[0384] Examples of 20-mer target length U-Guide molecules for region SP of hTTR are shown in Table 28.
Table 28: 20-mer target length U-Guide molecules for editing the SP region of hTTR
SEQ ID NO.U-GUIDE STRUCTURE (1 or 5' to 3')
594 UGGACUGGUAUUUGUGUCUGGUUUUAGAGCUAUGCUGUCCUU
595 ŨUGGACUGGUAUUUGUGUCUGGUUUUAGAGCUAUGCUGUCCUŨ
596 ŨŨGGACUGGUAUUUGUGUCUGGUUUUAGAGCUAUGCUGUCCŨŨ
597 Ũ*ŨGGACUGGUAUUUGUGUCUGGUUUUAGAGCUAUGCUGUCCŨ*Ũ
598 mUŨUUGGACUGGUAUUUGUGUCUGGUUUUAGAGCUAUGCUGUCCUUŨmU
599 mU*ŨUUGGACUGGUAUUUGUGUCUGGUUUUAGAGCUAUGCUGUCCUUŨ*mU
600 mU*Ũ*UUGGACUGGUAUUUGUGUCUGGUUUUAGAGCUAUGCUGUCCUU*Ũ*mU
601 mU*Ũ*U*UGGACUGGUAUUUGUGUCUGGUUUUAGAGCUAUGCUGUCCU*U*Ũ*mU
602 mU*ŨŨUGGACUGGUAUUUGUGUCUGGUUUUAGAGCUAUGCUGUCCUŨŨ*mU
603 mU*Ũ*ŨUGGACUGGUAUUUGUGUCUGGUUUUAGAGCUAUGCUGUCCUŨ*Ũ*mU
604 mU*Ũ*Ũ*UGGACUGGUAUUUGUGUCUGGUUUUAGAGCUAUGCUGUCCU*Ũ*Ũ*mU


[0385] Example 12: An example of a crRNA for a U-Guide molecule for CRISPR/Cas gene editing is
SEQ ID NO:605 5'-GUUUUAGAGCUAUGCU-3'.

[0386] Example 13: An example of a tracrRNA, as used above, for a U-Guide system for CRISPR/Cas gene editing is:



[0387] It is understood that this invention is not limited to the particular methodology, protocols, materials, and reagents described, as these may vary.

[0388] It must be noted that as used herein and in the appended claims, the singular forms "a", "an", and "the" include plural reference unless the context clearly dictates otherwise. As well, the terms "a" (or "an"), "one or more" and "at least one" can be used interchangeably herein. It is also to be noted that the terms "comprises," "comprising", "containing," "including", and "having" can be used interchangeably.

[0389] Without further elaboration, it is believed that one skilled in the art can, based on the above description, utilize the present invention to its fullest extent.


Claims

1. A guide compound targeted to a genomic DNA, comprising a target guide chain of 14-24 contiguous monomers attached to a CRISPR RNA (crRNA), wherein the guide compound directs allele-selective CRISPR gene editing of the genomic DNA, wherein the monomers comprise UNA monomers and nucleic acid monomers, wherein each UNA monomer independently has a structure of

where R1 and R2 are each independently H or a phosphodiester linkage, Base is a nucleobase, and R3 is -OR4, -SR4, -NR42, -NH(C=O)R4, morpholino, morpholin-l-yl, piperazin-l-yl, or 4-alkanoyl-piperazin-l-yl, where each R4 is independently selected from H, alkyl, a cholesterol, a lipid molecule, a polyamine, an amino acid, and a polypeptide, and wherein the guide compound comprises a sequence of bases targeted to direct CRISPR gene editing of the genomic DNA.
 
2. The guide compound of claim 1, wherein

(a) the guide compound directs double strand breaks in human gene TTR and the target guide chain comprises 16-20 contiguous monomers of 5'-UGCAUGGCCACAUUGAUGGC-3' (SEQ ID NO: 13), wherein the crRNA is attached at the 3' end of the target guide chain, and substituted or modified forms thereof, optionally wherein the guide compound comprises SEQ ID NO:32; or

(b) wherein the guide compound directs double strand breaks in human gene TTR and the target guide chain comprises 16-20 contiguous monomers of 5'-CACAUGCAUGGCCACAUUGA-3' (SEQ ID NO:40), wherein the crRNA is attached at the 3' end of the target guide chain, and substituted or modified forms thereof, optionally wherein the guide compound comprises SEQ ID NO:61.


 
3. The guide compound of claim 1, wherein the crRNA is 5'-GUUUUAGAGCUAUGCU-3' (SEQ ID NO:605), and substituted or modified forms thereof.
 
4. The guide compound of claim 1, wherein:

(a) the sequence of bases of the target guide chain has up to three mismatches from the genomic DNA, or

(b) the guide compound contains one to five UNA monomers, or

(c) the nucleic acid monomers are selected from natural nucleotides, non-natural nucleotides, modified nucleotides, chemically- modified nucleotides, and combinations thereof, or

(d) one or more of the nucleic acid monomers is a 2'-O-methyl ribonucleotide, a 2'-O-methyl purine nucleotide, a 2'-deoxy-2'-fluoro ribonucleotide, a 2'-deoxy-2'-fluoro pyrimidine nucleotide, a 2'-deoxy ribonucleotide, a 2'-deoxy purine nucleotide, a universal base nucleotide, a 5-C-methyl- nucleotide, an inverted deoxyabasic monomer residue, a 3'-end stabilized nucleotide, a 3'- glyceryl nucleotide, a 3'-inverted abasic nucleotide, a 3'-inverted thymidine, a locked nucleic acid nucleotide (LNA), a 2'-O,4'-C-methylene-(D-ribofuranosyl) nucleotide, a 2'- methoxyethoxy (MOE) nucleotide, a 2'-methyl-thio-ethyl, 2'-deoxy-2'-fluoro nucleotide, a 2'-O-methyl nucleotide, a 2',4'-Constrained 2'-O-Methoxyethyl (cMOE), a 2'-O-Ethyl (cEt), a 2'-amino nucleotide, a 2'-O-amino nucleotide, a 2'-C-allyl nucleotides, a 2'-O- allyl nucleotide, a N6-methyladenosine nucleotide, a nucleotide with modified base 5-(3-amino)propyluridine, a nucleotide with modified base 5-(2-mercapto)ethyluridine, a nucleotide with modified base 5-bromouridine, a nucleotide with modified base 8- bromoguanosine, a nucleotide with modified base 7-deazaadenosine, a 2'-O-aminopropyl substituted nucleotide, or a nucleotide with a 2'-OH group replaced with a 2'-R, a 2'-OR, a 2'-halogen, a 2'-SR, or a 2'-amino, where R can be H, alkyl, alkenyl, or alkynyl, or

(e) one or more of the last three monomers at each end of the guide compound is connected by a phosphorothioate, a chiral phosphorothioate, or a phosphorodithioate linkage.


 
5. The guide compound of claim 1, wherein:

(a) the guide compound directs double strand breaks in a gene selected from TTR, BIRC5, CDK16, STAT3, CFTR, F9, KRAS, and CAR; or

(b) the guide compound directs gene editing with reduced off target activity; or

(c) the guide compound directs more double strand breaks in a disease-related allele than in the same allele as a wild type; or

(d) the guide compound directs double strand breaks in a disease-related allele, preferably wherein the disease-related allele is selected from V30M TTR, G284R ColAl, L132P Keratin12, R135T Keratin12, G85R SOD1, G272V Tau, P301L Tau, V337M Tau, R406W Tau, Q39STOP beta-Globin, T8993G/C mtDNA, G719S EGFR, and G12C Kras.


 
6. The guide compound of claim 1, wherein the genomic DNA contains a target disease-related single nucleotide polymorphism.
 
7. The guide compound of claim 1, comprising 30-300 contiguous monomers.
 
8. The guide compound of claim 1, wherein the CRISPR gene editing uses Cas9.
 
9. A guide compound of any one of claims 1-8 annealed with a tracrRNA.
 
10. The guide compound of claim 9, wherein:

(a) the tracrRNA is derived from S. pneumonia, S. pyogenes, N. menigiditis, or S. thermophiles; or

(b) the tracrRNA is SEQ ID NO:606; or

(c) the guide compound is complexed with a CRISPR-associated gene editing protein, preferably wherein the CRISPR-associated gene editing protein is Cas9.


 
11. The guide compound of claim 1 targeted to a genomic DNA, wherein the guide compound is a chain of monomers and directs CRISPR gene editing of the genomic DNA, the guide compound comprising a target guide chain, a CRISPR crRNA, and a CRISPR tracrRNA as a single strand, wherein the target guide chain is 14-24 contiguous monomers in length, wherein the monomers comprise UNA monomers and nucleic acid monomers, and wherein the guide compound comprises a sequence of bases targeted to direct CRISPR gene editing of the genomic DNA, preferably wherein the guide compound directs gene editing in a CRISPR/Cas9 complex.
 
12. A pharmaceutical composition comprising one or more guide compounds of claim 9 and a pharmaceutically acceptable carrier, preferably wherein:

(a) the pharmaceutically acceptable carrier comprises a viral vector or a non-viral vector, or

(b) the pharmaceutically acceptable carrier comprises liposomes.


 
13. An in vitro method for editing a genomic DNA in a cell, wherein the cell comprises an inducible or constitutive CRISPR gene editing enzyme, the method comprising contacting the cell with a composition according to claim 12, preferably wherein:

(a) the editing is disrupting the DNA or repressing transcription of the DNA, or

(b) the editing is achieved with reduced off target activity, or

(c) the CRISPR gene editing enzyme is cotransfected with the composition.


 
14. A composition according to claim 12 for use in preventing, treating or ameliorating a disease associated with a target genomic DNA in a subject in need, wherein the subject comprises an inducible or constitutive CRISPR gene editing enzyme.
 


Ansprüche

1. Leitverbindung, die auf eine genomische DNA abzielt und eine Ziel-Leitkette aus 14 bis 24 zusammenhängenden Monomeren umfasst, die an eine CRISPR-RNA (crRNA) gebunden sind, wobei die Leitverbindung das allelselektive CRISPR-Gen-Editing der genomischen DNA steuert, wobei die Monomere UNA-Monomere und Nukleinsäure-Monomere umfassen, wobei jedes UNA-Monomer unabhängig voneinander eine Struktur von

aufweist, wobei R1 und R2 jeweils unabhängig voneinander eine Hora-Phosphodiester-Bindung sind, die Basis eine Nukleobase ist und R3 -OR4, -SR4, -NR42, - NH(C=O)R4, Morpholino, Morpholin-1-yl, Piperazin-1-yl oder 4-Alkanoyl-Piperazin-1-yl ist, wobei jedes R4 unabhängig voneinander aus H, Alkyl, einem Cholesterin, einem Lipidmolekül, einem Polyamin, einer Aminosäure und einem Polypeptid ausgewählt ist, und wobei die Leitverbindung eine Sequenz von Basen umfasst, die auf das direkte CRISPR-Gen-Editing der genomischen DNA abzielt.
 
2. Leitverbindung nach Anspruch 1, wobei

(a) die Leitverbindung Doppelstrangbrüche im menschlichen Gen TTR lenkt und die Ziel-Leitkette 16 bis 20 zusammenhängende Monomere von 5'UGCAUGGCCACACAUUGAUGGC-3' (SEQ ID NO: 13) umfasst, wobei die crRNA am 3'-Ende der Ziel-Leitkette und substituierten oder modifizierten Formen davon gebunden ist, optional wobei die Leitverbindung SEQ ID NO:32 umfasst; oder

(b) wobei die Leitverbindung Doppelstrangbrüche im menschlichen Gen TTR steuert und die Ziel-Leitkette 16 bis 20 zusammenhängende Monomere von 5' CACAUGCAUGGCCACAUUGA-3' (SEQ ID NO:40) umfasst, wobei die crRNA am 3'-Ende der Ziel-Leitkette und substituierten oder modifizierten Formen davon gebunden ist, optional wobei die Leitverbindung SEQ ID NO:61 umfasst.


 
3. Leitverbindung nach Anspruch 1, wobei die crRNA 5'-GUUUUAGAGCUAUGCU-3' (SEQ ID NO:605) und substituierte oder modifizierte Formen davon ist.
 
4. Leitverbindung nach Anspruch 1, wobei:

(a) die Basensequenz der Ziel-Leitkette bis zu drei Fehlpaarungen mit der genomischen DNA aufweist, oder

(b) die Leitverbindung ein bis fünf UNA-Monomere enthält, oder

(c) die Nukleinsäuremonomere aus natürlichen Nukleotiden, nicht natürlichen Nukleotiden, modifizierten Nukleotiden, chemisch modifizierten Nukleotiden und Kombinationen davon ausgewählt sind, oder

(d) eines oder mehrere der Nukleinsäuremonomere Folgendes sind: ein 2'-O-Methyl-Ribonukleotid, ein 2'-O-Methyl-Purin-Nukleotid, ein 2'-Desoxy-2'-fluor-Ribonukleotid, ein 2'-Desoxy-2'-fluor-Pyrimidin-Nukleotid, ein 2'-Desoxy-Ribonukleotid, ein 2'-Desoxy-Purin-Nukleotid, ein Nukleotid mit universeller Basis, ein 5-C-Methyl-Nukleotid, ein invertierter desoxyabasischer Monomer-Rest, ein 3'-endstabilisiertes Nukleotid, ein 3'-Glyceryl-Nukleotid, ein 3'-invertiertes abasisches Nukleotid, ein 3'-invertiertes Thymidin, ein verriegeltes Nukleinsäure- (Locked Nucleic Acid, LNA) Nukleotid, ein 2'-O,4'-C-Methylen-(D-Ribofuranosyl)-Nukleotid, ein 2'-Methoxyethoxy- (MOE) Nukleotid, ein 2'-Methyl-Thio-Ethyl, ein 2'-Desoxy-2'-Fluor-Nukleotid, ein 2'-O-Methyl-Nukleotid, ein 2',4'-eingeschränktes 2'-O-Methoxyethyl (cMOE), ein 2'-O-Ethyl (cEt), ein 2'-Aminonukleotid, ein 2'-O-Aminonukleotid, ein 2'-C-Allylnukleotid, ein 2'-O-Allylnukleotid, ein N6-Methyladenosin-Nukleotid, ein Nukleotid mit modifizierter Basis 5-(3-Amino)propyluridin, ein Nukleotid mit modifizierter Basis 5-(2- Mercapto)ethyluridin, ein Nukleotid mit modifizierter Basis 5-Bromuridin, ein Nukleotid mit modifizierter Basis 8-Bromoguanosin, ein Nukleotid mit modifizierter Basis 7-Deazaadenosin, ein 2'-O-Aminopropyl-substituiertes Nukleotid oder ein Nukleotid mit einer 2'-OH-Gruppe, die durch ein 2'-R, ein 2'-OR, ein 2'-Halogen, ein 2'-SR oder ein 2'-Amino ersetzt ist, wobei R H, Alkyl, Alkenyl oder Alkynyl sein kann, oder

(e) eines oder mehrere der letzten drei Monomere an jedem Ende der Leitverbindung durch eine Phosphorothioat-, eine chirale Phosphorothioat- oder eine Phosphorodithioat-Bindung verbunden sind.


 
5. Leitverbindung nach Anspruch 1, wobei:

(a) die Leitverbindung Doppelstrangbrüche in einem aus TTR, BIRC5, CDK16, STAT3, CFTR, F9, KRAS und CAR ausgewählten Gen steuert; oder

(b) die Leitverbindung Gen-Editing mit reduzierter Off-Target-Aktivität bewirkt; oder

(c) die Leitverbindung mehr Doppelstrangbrüche in einem krankheitsbezogenen Allel als im gleichen Allel des Wildtyps bewirkt; oder

(d) die Leitverbindung Doppelstrangbrüche in einem krankheitsbezogenen Allel bewirkt, wobei das krankheitsbezogene Allel vorzugsweise aus V30M TTR, G284R ColAl, L132P Keratin12, R135T Keratin12, G85R SOD1, G272V Tau, P301L Tau, V337M Tau, R406W Tau, Q39STOP beta-Globin, T8993G/C mtDNA, G719S EGFR und G12C Kras ausgewählt ist.


 
6. Leitverbindung nach Anspruch 1, wobei die genomische DNA einen mit der Zielkrankheit zusammenhängenden Einzelnukleotid-Polymorphismus enthält.
 
7. Leitverbindung nach Anspruch 1, die 30 bis 300 zusammenhängende Monomere umfasst.
 
8. Leitverbindung nach Anspruch 1, wobei das CRISPR-Gen-Editing Cas9 verwendet.
 
9. Leitverbindung nach einem der Ansprüche 1 bis 8, die mit einer tracrRNA verbunden ist.
 
10. Leitverbindung nach Anspruch 9, wobei:

(a) die tracrRNA von S. pneumonia, S. pyogenes, N. menigiditis oder S. thermophiles abgeleitet ist; oder

(b) die tracrRNA SEQ ID NO:606 ist; oder

(c) die Leitverbindung mit einem CRISPR-assoziierten Gen-Editing-Protein komplexiert ist, wobei das CRISPR-assoziierte Gen-Editing-Protein vorzugsweise Cas9 ist.


 
11. Leitverbindung nach Anspruch 1, die auf eine genomische DNA abzielt, wobei die Leitverbindung eine Kette von Monomeren ist und das CRISPR-Gen-Editing der genomischen DNA steuert, wobei die Leitverbindung Folgendes umfasst: eine Zielführungskette, eine CRISPR crRNA und eine CRISPR tracrRNA als Einzelstrang, wobei die Zielführungskette 14 bis 24 zusammenhängende Monomere lang ist, wobei die Monomere UNA-Monomere und Nukleinsäuremonomere umfassen, und wobei die Leitverbindung eine Sequenz von Basen umfasst, die darauf abzielt, das CRISPR-Gen-Editing der genomischen DNA zu steuern, vorzugsweise wobei die Leitverbindung das Gen-Editing in einem CRISPR/Cas9-Komplex steuert.
 
12. Pharmazeutische Zusammensetzung, die eine oder mehrere Leitverbindungen nach Anspruch 9 und einen pharmazeutisch annehmbaren Träger umfasst, wobei vorzugsweise:

(a) der pharmazeutisch annehmbare Träger einen viralen Vektor oder einen nicht viralen Vektor umfasst, oder

(b) der pharmazeutisch annehmbare Träger Liposomen umfasst.


 
13. In-vitro-Verfahren zum Editieren einer genomischen DNA in einer Zelle, wobei die Zelle ein induzierbares oder konstitutives CRISPR-Geneditierungsenzym umfasst, wobei das Verfahren das Inkontaktbringen der Zelle mit einer Zusammensetzung nach Anspruch 12 umfasst, wobei vorzugsweise:

(a) das Editing die DNA unterbricht oder die Transkription der DNA unterdrückt, oder

(b) das Editing mit reduzierter Off-Target-Aktivität erreicht wird, oder

(c) das CRISPR-Geneditierungsenzym mit der Zusammensetzung kotransfiziert ist.


 
14. Zusammensetzung nach Anspruch 12 zur Verwendung bei der Vorbeugung, Behandlung oder Verbesserung einer Krankheit, die einer genomischen Ziel-DNA zugeordnet ist, in einem bedürftigen Subjekt, wobei das Subjekt ein induzierbares oder konstitutives CRISPR-Gen-Editierungsenzym umfasst.
 


Revendications

1. Composé guide ciblé sur un ADN génomique, comprenant une chaîne guide cible de 14 à 24 monomères contigus attachée à un ARN CRISPR (ARNcr), dans lequel le composé guide dirige l'édition de gène CRISPR allèle sélective de l'ADN génomique, dans lequel les monomères comprennent des monomères UNA et des monomères d'acide nucléique, dans lequel chaque monomère UNA a indépendamment une structure de

où R1 et R2 sont chacun indépendamment H ou une liaison phosphodiester, Base est une nucléobase, et R3 est -OR4, -SR4, -NR42, -NH(C=O)R4, morpholino, morpholin-1-yle, pipérazin-1-yle, ou 4-alcanoyl-pipérazin-1-yle, où chaque R4 est indépendamment choisi parmi H, alkyle, un cholestérol, une molécule lipidique, une polyamine, un acide aminé, et un polypeptide, et dans lequel le composé guide comprend une séquence de bases ciblée pour diriger l'édition de gène CRISPR de l'ADN génomique.
 
2. Composé guide selon la revendication 1, dans lequel

(a) le composé guide dirige des cassures de double brin dans le gène TTR humain et la chaîne guide cible comprend 16 à 20 monomères contigus de 5'-UGCAUGGCCCACAUUGAUGGC-3' (SEQ ID N° : 13), dans lequel l'ARNcr est attaché à l'extrémité 3' de la chaîne guide cible, et de formes substituées ou modifiées de celle-ci, éventuellement dans lequel le composé guide comprend SEQ ID N° : 32 ; ou

(b) dans lequel le composé guide dirige des cassures de double brin dans le gène TTR humain et la chaîne guide cible comprend 16 à 20 monomères contigus de 5'-CACAUGCAUGGCCACAUUGA-3' (SEQ ID N° : 40), dans lequel l'ADNcr est attaché à l'extrémité 3' de la chaîne guide cible, et de formes substituées ou modifiées de celle-ci, éventuellement dans lequel le composé guide comprend SEQ ID N° : 61.


 
3. Composé guide selon la revendication 1, dans lequel l'ARNcr est 5'-GUUUUAGAGCUAUGCU-3' (SEQ ID N° : 605), et des formes substituées ou modifiées de celle-ci.
 
4. Composé guide selon la revendication 1, dans lequel :

(a) la séquence de bases de la chaîne guide cible a jusqu'à trois mésappariements par rapport à l'ADN génomique, ou

(b) le composé guide contient un à cinq monomères UNA, ou

(c) les monomères d'acide nucléique sont choisis parmi des nucléotides naturels, des nucléotides non naturels, des nucléotides modifiés, des nucléotides modifiés chimiquement, et des combinaisons de ceux-ci, ou

(d) un ou plusieurs des monomères d'acide nucléique sont un ribonucléotide 2'-O-méthyle, un nucléotide 2'-O-méthyle purine, un ribonucléotide 2'-désoxy-2'-fluoro, un nucléotide 2'-désoxy-2'-fluoro pyrimidine, un ribonucléotide 2'-désoxy, un nucléotide 2'-désoxy purine, un nucléotide de base universelle, un nucléotide 5-C-méthyle, un résidu de monomère désoxyabasique inversé, un nucléotide d'extrémité 3' stabilisé, un nucléotide 3'-glycéryle, un nucléotide abasique 3'-inversé, une thymidine 3'-inversée, un nucléotide d'acide nucléique verrouillé (ALN), un nucléotide 2'-O,4'-C-méthylène-(D-ribofuranosyle), un nucléotide 2'-méthoxyéthoxy (MOE), un nucléotide 2'-méthyl-thio-éthyl, 2'-désoxy-2'-fluoro, un nucléotide 2'-O-méthyle, un 2'-O-méthoxyéthyle 2',4'-contraint (cMOE), un 2'-O-éthyle (cET), un nucléotide 2'-amino, un nucléotide 2'-O-amino, un nucléotide 2'-C-allyle, un nucléotide 2'-O-allyle, un nucléotide N6-méthyladénosine, un nucléotide avec une base 5-(3-amino)propyluridine modifiée, un nucléotide avec une base 5-(2-mercapto)éthyluridine modifiée, un nucléotide avec une base 5-bromouridine modifiée, un nucléotide avec une base 8-bromoguanosine modifiée, un nucléotide avec une base 7-déazaadénosine modifiée, un nucléotide 2'-O-aminopropyle substitué, ou un nucléotide avec un groupe 2'-OH remplacé par un 2'-R, un 2'-OR, un 2'-halogène, un 2'-SR, ou un 2'-amino, où R peut être H, alkyle, alcényle, ou alcynyle, ou

(e) un ou plusieurs des trois derniers monomères à chaque extrémité du composé guide sont reliés par une liaison phosphorothioate, une liaison phosphorothioate chirale, ou une liaison phosphorodithioate.


 
5. Composé guide selon la revendication 1, dans lequel :

(a) le composé guide dirige des cassures de double brin dans un gène choisi parmi TTR, BIRC5, CDK16, STAT3, CFTR, F9, KRAS, et CAR ; ou

(b) le composé guide dirige l'édition de gène avec une activité hors cible réduite ; ou

(c) le composé guide dirige plus de cassures de double brin dans un allèle relatif à une maladie que dans le même allèle de type sauvage ; ou

(d) le composé guide dirige des cassures de double brin dans un allèle relatif à une maladie, de préférence dans lequel l'allèle relatif à une maladie est choisi parmi V30M TTR, G284R ColAl, L132P kératine12, R135T kératine12, G85R SOD1, G272V Tau, P301L Tau, V337M Tau, R406W Tau, Q39STOP bêta-globine, T8993G/C ADNmt, G719S EGFR, et G12C Kras.


 
6. Composé guide selon la revendication 1, dans lequel l'ADN génomique contient un polymorphisme d'un seul nucléotidique relatif à une maladie.
 
7. Composé guide selon la revendication 1, comprenant 30 à 300 monomères contigus.
 
8. Composé guide selon la revendication 1, dans lequel l'édition de gène CRISPR utilise Cas9.
 
9. Composé guide selon l'une quelconque des revendications 1 à 8 annelé avec un ARNtracr.
 
10. Composé guide selon la revendication 9, dans lequel :

(a) l'ARNtracr est dérivé de S. pneumonia, S. pyrogenes, N. menigiditis, ou S. thermophiles ; ou

(b) l'ARNtracr est SEQ ID N° : 606 ; ou

(c) le composé guide est complexé avec une protéine d'adition de gène associée à CRISPR, de préférence dans lequel la protéine d'édition de gène associée à CRISPR est Cas9.


 
11. Composé guide selon la revendication 1 ciblé sur un ADN génomique, dans lequel le composé guide est une chaîne de monomères et dirige l'édition de gène CRISPR de l'ADN génomique, le composé guide comprenant une chaîne guide cible, un ARNcr CRISPR, et un ARNtracr CRISPR en tant que simple brin, dans lequel la chaîne guide cible est d'une longueur de 14 à 24 monomères contigus, dans lequel les monomères comprennent des monomères UNA et des monomères d'acide nucléique, et dans lequel le composé guide comprend une séquence de bases ciblée pour diriger une édition de gène CRISPR de l'ADN génomique, de préférence dans lequel le composé guide dirige une édition de gène dans un complexe CRISPR/Cas9.
 
12. Composition pharmaceutique comprenant un ou plusieurs composés guides de la revendication 9 et un support pharmaceutiquement acceptable, de préférence dans laquelle :

(a) le support pharmaceutiquement acceptable comprend un vecteur viral ou un vecteur non viral, ou

(b) le support pharmaceutiquement acceptable comprend des liposomes.


 
13. Procédé in vitro pour l'édition d'un ADN génomique dans une cellule, dans lequel la cellule comprend une enzyme d'édition de gène CRISPR inductible ou constitutive, le procédé comprenant la mise en contact de la cellule avec une composition selon la revendication 12, de préférence dans lequel :

(a) l'édition consiste en une disruption de l'ADN ou une répression de transcription de l'ADN, ou

(b) l'édition est obtenue avec une activité hors cible réduite, ou

(c) l'enzyme d'édition de gène CRISPR est cotransfectée avec la composition.


 
14. Composition selon la revendication 12 pour une utilisation dans la prévention, le traitement ou l'amélioration d'une maladie associée à un ADN génomique cible chez un sujet qui en éprouve le besoin, dans lequel le sujet comprend une enzyme d'édition de gène CRISPR inductible ou constitutive.
 




Drawing


















































Cited references

REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description




Non-patent literature cited in the description