(19)
(11)EP 3 354 865 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
18.03.2020 Bulletin 2020/12

(21)Application number: 18152057.8

(22)Date of filing:  17.01.2018
(51)International Patent Classification (IPC): 
F01D 25/10(2006.01)
F01K 23/10(2006.01)
F01K 17/02(2006.01)
F02C 6/06(2006.01)

(54)

STEAM TURBINE PREHEATING SYSTEM WITH A STEAM GENERATOR

DAMPFTURBINENVORWÄRMSYSTEM MIT EINEM DAMPFERZEUGER

SYSTÈME DE PRÉCHAUFFAGE DE TURBINE À VAPEUR AVEC UN GÉNÉRATEUR DE VAPEUR


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 31.01.2017 US 201715420776

(43)Date of publication of application:
01.08.2018 Bulletin 2018/31

(73)Proprietor: General Electric Company
Schenectady, NY 12345 (US)

(72)Inventors:
  • MATHAI, George Vargese
    Atlanta, GA 30339 (US)
  • KLOSINSKI, Joseph Philip
    Atlanta, GA 30339 (US)
  • EKANAYAKA, Sanji
    Atlanta, GA 30339 (US)
  • SCIPIO, Alston Ilford
    Atlanta, GA 30339 (US)
  • FISHER FISHER, William Theadore
    Atlanta, GA 30339 (US)

(74)Representative: BRP Renaud & Partner mbB Rechtsanwälte Patentanwälte Steuerberater 
Königstraße 28
70173 Stuttgart
70173 Stuttgart (DE)


(56)References cited: : 
EP-A2- 0 605 156
US-A1- 2016 123 190
JP-A- S5 993 907
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    TECHNICAL FIELD



    [0001] The present application and the resultant patent relate generally to turbomachinery and more particularly relate to a power generation system with a steam turbine having a preheating system for using hot combustion gas extractions from a gas turbine to create a flow of steam in a steam generator to warm the steam turbine during start-up.

    BACKGROUND OF THE INVENTION



    [0002] A power generation plant such as a combined cycle power generation system, as exemplary described in US 2016/0123190A1 generally includes a gas turbine engine, a heat recovery steam generator, and a steam turbine. The gas turbine engine may be coupled with a generator to produce electricity or to drive other types of loads. The hot combustion gases from the gas turbine engine may be introduced into the heat recovery steam generator to generate a flow of steam. The flow of steam in turn may drive the steam turbine. The steam turbine also may be coupled to a generator to produce additional electricity. A co-generation power generation system and the like may operate in a similar manner to produce both electricity and heat. By way of example, US 2016/0123190A1 describes a cogeneration system comprising a gas turbine ad a steam generator operatively connected downstream of the gas turbine and receiving exhaust gas from the turbine stages to create steam. Similarly, JP S59 93907 A discloses a gas turbine configured to generate steam for driving a steam turbine using exhaust gas from said gas turbine.

    [0003] Minimizing start-up times may improve the availability of the combined cycle power plant and may reduce overall maintenance costs and start-up emissions. Steam turbine start-up, however, may be slow relative to gas turbine start-up. The start-up time of the steam turbine may be limited by thermal stresses caused by temperature gradients between, for example, the rotor core and the blades. As the rotor temperature is increased, higher inlet steam temperatures may be allowed. Gas turbine output, however, may not be allowed to increase until the steam turbine and the internal rotor are heated to a sufficient temperature. Running the gas turbine at such a low output may reduce the overall power generation, may waste fuel, and may cause higher concentrations of emissions.

    SUMMARY OF THE INVENTION



    [0004] The present application and the resultant patent thus provide a power generation system according to claim 1. The power generation system includes a gas turbine engine, a steam turbine, and a steam turbine preheating system. The steam turbine preheating system includes a steam generator that creates a flow of steam to preheat the steam turbine from an extraction of the gas turbine engine.

    [0005] The extraction extends from the turbine casing to the steam generator and the extraction comprises an extraction of hot combustion gases.

    [0006] The steam turbine comprises a steam turbine shell and the flow of steam extends from the steam generator to the steam turbine shell.

    [0007] The present application and the resultant patent further provide a method of preheating a steam turbine in a power generation system according to claim 11. The method includes the steps of extracting hot combustion gases from a gas turbine to a steam generator, flowing feedwater to the steam generator, exchanging heat between the hot combustion gases and the flow of feedwater to create a flow of steam in the steam generator, and flowing the steam to the steam turbine to warm a shell of the steam turbine.

    [0008] These and other features and improvements of the present application and the resultant patent will become apparent to one of ordinary skill in the art upon review of the following detailed description when taken in conjunction with the several drawings and the appended claims.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0009] 

    Fig. 1 is a schematic diagram of a combined cycle power generation system with a steam turbine preheating system as may be described herein.

    Fig. 2 is a schematic diagram of an alternative embodiment of a combined cycle power generation system with a steam turbine preheating system as may be described herein.

    Fig. 3 is a schematic diagram of an alternative embodiment of a combined cycle power generation system with a steam turbine preheating system as may be described herein.

    Fig. 4 a schematic diagram of an alternative embodiment of a combined cycle power generation system with a steam turbine preheating system as may be described herein.

    Fig. 5 is a schematic diagram of an alternative embodiment of a combined cycle power generation system with a steam turbine preheating system as may be described herein.

    Fig. 6 is a schematic diagram of an alternative embodiment of a combined cycle power generation system with a steam turbine preheating system as may be described herein.


    DETAILED DESCRIPTION



    [0010] Referring now to the drawings, in which like numerals refer to like elements throughout the several views, Fig. 1 shows a schematic diagram of a combined cycle power generation system 100 as may be described herein. The combined cycle power generation system 100 may include a gas turbine engine 110. The gas turbine engine 110 may include a compressor 120. The compressor 120 compresses an incoming flow of air 130. The compressor 120 delivers the compressed flow of air 130 to a combustor 140. The combustor 140 mixes the compressed flow of air 130 with a pressurized flow of fuel 150 and ignites the mixture to create a flow of hot combustion gases 160. Although only a single combustor 140 is shown, the gas turbine engine 110 may include any number of combustors 140 positioned in a circumferential array or otherwise. The flow of combustion gases 160 is in turn delivered to a turbine 170. The flow of combustion gases 160 drives the turbine 170 so as to produce mechanical work. The mechanical work produced in the turbine 170 drives the compressor 120 via a shaft 180 and an external load such as an electrical generator and the like.

    [0011] The gas turbine engine 110 may use natural gas, various types of syngas, liquid fuels, and/or other types of fuels and blends thereof. The gas turbine engine 110 may be any one of a number of different gas turbine engines offered by General Electric Company of Schenectady, New York, including, but not limited to, a 7 or a 9 series heavy duty gas turbine engine and the like. The gas turbine engines 110 may have many different configurations and may have other types of components. Other types of gas turbine engines also may be used herein. Multiple gas turbine engines, other types of turbines, and other types of power generation equipment also may be used herein together.

    [0012] The combined cycle power generation system 100 may include a heat recovery steam generator 190. The heat recovery steam generator 190 may recover heat from the hot combustion gases 160 exiting the gas turbine engine 110 so as to create a flow of steam 200. The heat recovery steam generator 190 may be of conventional design and may include one or more pressure sections such as a high pressure section, an intermediate pressure section, and a low pressure section. Each pressure section may include any combination of evaporators, superheaters, economizers, and the like. Other components and other configurations may be used herein.

    [0013] The combined cycle power generation system 100 also may include a steam turbine 210. The steam turbine 210 may be of conventional design and may include one or more pressure sections such as a high pressure section, an intermediate pressure section, and a low pressure section. The flows of steam 200 from the heat recovery generator 190 may be expanded in the steam turbine 210 so as to drive an additional load such as an electrical generator and the like. The steam turbine 210 may include a condenser 220 for the recovery of the spent fluid flow therein. Other components and other configurations may be used herein.

    [0014] The combined cycle power generation system 100 also may include a steam turbine preheating system 230. The steam turbine preheating system 230 may include one or more extractions 240 of the hot combustion gases 160 from a casing 250 of the turbine 170 or elsewhere. The casing 250 may be modified to include flanges at various stages to allow for the extractions 240. The extractions 240 may be in communication with a steam generator 260. The steam generator 260 may be of conventional design. Specifically, the steam generator 260 may be a heat exchanger that exchanges heat between the hot combustion gases 160 from the turbine 170 and a flow of feedwater 270 from any source so as to create a flow of steam 280. The flow of steam 280 may be sent to a shell 290 of the steam turbine 210 so as to preheat the steam turbine 210 before and/or during start-up. The steam/condensate exiting the steam turbine shell 290 may pass into the condenser 220 or otherwise. The extracted combustion gases 160 passing through the steam turbine 210 may flow either upstream of the heat recovery steam generator 190 so as to exchange heat therein or downstream of the heat recovery steam generator 190 towards the main stack or otherwise. Other components and other configurations may be used herein.

    [0015] Overall control of the steam turbine preheating system 230 may be governed via a controller 300. The controller 300 may be any type of programmable logic device. The controller 300 may be local or remote. The controller 300 may receive data from a number of sensors in communication with the steam turbine preheating system 230. These sensors may include a flow rate sensor 310, one or more temperature sensors 320, a pressure sensor 330, and the like. Other types of sensors may be used herein. Based upon the data from the sensors and the overall steam turbine controls 340, the controller 300 may open and close the steam turbine preheating system 230 via an inlet valve 350 and one or more outlet valves. In this embodiment, a first outlet valve 360 and a second outlet valve 370 are shown. Other types of flow control devices and the like also may be used herein. Other components and other configurations may be used herein.

    [0016] In use, the controller 300 may receive information on overall operational parameters of the steam turbine 210 via the steam turbine controls 340 including, for example, the temperature of the rotor and/or the blades. In order to preheat the steam turbine 210, the controller 300 may open the inlet valve 350 of the steam turbine preheating system 230 so as to allow the extraction 240 of the hot combustion gases 160 from the turbine casing 250 to flow to the steam generator 260. The hot combustion gases 160 exchange heat with the flow of feedwater 270 in the steam generator 260 so as to create the flow of steam 280. The flow of steam 280 thus may be used to warm the steam turbine shell 290.

    [0017] The controller 300 may monitor the flow rate and the temperature of the extraction 240 upstream of the steam generator 290 via the flow rate sensor 310 and one of the temperature sensors 320. The controller 300 also may monitor the temperature and pressure of the steam 280 downstream of the steam generator 260 via one of the temperature sensors 320 and the pressure sensor 330. Once the steam turbine 210 reaches a predetermined temperature, the controller 300 may turn off the steam turbine preheating system 230 by closing the inlet valve 350 or otherwise. Closing the inlet valve 350 directs all of the combustion gases 160 towards the turbine 170 and the heat recovery steam generator 190. Other components and other configurations may be used herein.

    [0018] Fig. 2 shows a further embodiment of the steam turbine preheating system 230 as may be described herein. In this example, the steam turbine preheating system 230 may include an attemperation system 380 positioned downstream of the steam generator 260. The attemperation system 380 may include a spray system 390 in communication with either a water injection 400 or a steam injection 410 via a spray system valve 420. The spray system 390 may be an in-line mixer, a spray chamber, or any type of conventional device for tempering a fluid flow. Specifically, the spray system 390 may use either the water injection 400 or the steam injection 410 for temperature control of the flow of steam 280 exiting the steam generator 260. The controller 300 may operate the attemperation system 380 via the spray system valve 420 based upon the temperature of the flow of steam 280 as determined by one of the temperature sensors 320 or otherwise. Other components and other configurations may be used herein.

    [0019] Fig. 3 shows a further embodiment of the steam turbine preheating system 230 as may be described herein. In this example, an ejector 430 may be positioned on the extraction 240 from the casing 250 of the turbine 170. The ejector 430 may be in communication with a source of ambient air 440 or filtered air 450 via an ejector valve 460. The ejector 430 pulls in the ambient air or the filtered air so as to increase the mass flow rate of the flow of hot combustion gases 160 flowing through the steam generator 260. The ejector 430 may be of conventional design. Specifically, the ejector 430 may be a mechanical device with no moving parts. The ejector 430 mixes two fluid streams based on a momentum transfer. The flow of ambient air or filtered air to the ejector 430 may be controlled by an ejector valve 460. The flow rate may be monitored by the controller 300 via the flow rate sensor 310 or otherwise. Other components and other configurations may be used herein.

    [0020] Fig. 4 shows a further embodiment of the steam turbine preheating system 230 as may be described herein. In this example, the ejector 430 may use a compressor air extraction 470 instead of the ambient air 440 or the filtered air 450 described above. The compressor air extraction 470 may be delivered to the ejector 430 so as to increase the mass flow rate to the steam generator 260. The flow rate may be monitored by the controller 300 via the flow rate sensor 310 or otherwise. Other components and other configurations may be used herein.

    [0021] Fig. 5 shows a further embodiment of the steam turbine preheating system 230 as may be described herein. In this example, the steam turbine preheating system 230 may use a cascading ejector system 480. The cascading system ejector system 480 may use a first ejector 490. The first ejector 490 may pull in either the ambient air 440 or the filtered air 450 and the compressor air extraction 470 to create a first mixed flow. This first mixed flow then may be sent to a second ejector 500. The second ejector 500 may be in communication with the extraction 240 from the casing 250 of the turbine 170. The resultant flow then may be forwarded to the steam generator 260 to increase the mass flow rate therethrough. The flow rate may be monitored by the controller 300 via the flow rate sensor 310 or otherwise. Other components and other configurations may be used herein.

    [0022] Fig. 6 shows a further embodiment of the steam turbine preheating system 230 as may be described herein. In this embodiment, the ejector 430 may be in communication with a further combustion gas extraction 510 from downstream of the turbine 170 or otherwise. Specifically, a downstream exhaust duct 520 may direct the further combustion gas extraction 510 to the ejector 430 via an exhaust valve 530. The extractions 240, 510 may be mixed in the ejector 430 so as to increase the mass flow rate therethrough. The flow rate may be monitored by the controller 300 via the flow rate sensor 310 or otherwise. Other components and other configurations also may be used herein.

    [0023] The embodiments of the steam turbine preheating system 230 thus may use the extractions 240 of the hot combustion gases 160 from the casing 250 of the turbine 170 so as to create a flow of steam 280 in the steam generator 260. The flow of steam 280 may be used in turn to preheat the steam turbine 210. Preheating the steam turbine 210 during start-up should reduce the overall start-up time of the plant as a whole. Specifically, the plant may not have to wait for traditional steam conditions to be met before introducing steam to the steam turbine to begin the warming process. Reducing start-up time generally lowers emissions and improves fuel consumption. Moreover, improved-start up times also provides operational flexibility, increased performance, and increased competitiveness.

    [0024] It should be apparent that the foregoing relates only to certain embodiments of the present application and the resultant patent. Numerous changes and modifications may be made herein by one of skill in the art without departing from the scope of the invention as defined by the following claims.


    Claims

    1. A power generation system (100), comprising:

    a gas turbine engine (110) comprising a turbine casing (250);

    a steam turbine (210);

    a steam turbine preheating system (230) comprising a steam generator (260) that creates a flow of steam (280) to preheat the steam turbine (210) from an extraction of the gas turbine engine (110); characterized in that

    the extraction (240, 510) extends from the turbine casing (250) to the steam generator (260) and the extraction (240, 510) comprises an extraction of hot combustion gases (160);

    the steam turbine (210) comprises a steam turbine shell (290) and wherein the flow of steam (280) extends from the steam generator (260) to the steam turbine shell (290).


     
    2. The power generation system (100) of claim 1, wherein the steam generator (260) comprises a source of feedwater (270) in communication therewith.
     
    3. The power generation system (100) of any preceding claim, further comprising a controller (300) in communication with a plurality of sensors (310, 320, 330).
     
    4. The power generation system (100) of any preceding claim, further comprising a heat recovery steam generator (190).
     
    5. The power generation system (100) of claim 4, wherein the heat recovery steam generator (190) is configured to recover heat from hot combustion gases (160) exiting the gas turbine engine (110) to create a flow of steam (200).
     
    6. The power generation system (100) of claim 4, wherein a flow of steam (200) from the heat recovery steam generator (190) is expanded in the steam turbine (210).
     
    7. The power generation system (100) of any preceding claim, wherein the steam turbine preheating system (230) comprises an attemperation system (380) and wherein the attemperation system (380) comprises a spray system (390) for at least one of a water injection (400) and a steam injection (410).
     
    8. The power generation system (100) of any preceding claim, wherein the steam turbine preheating system (230) comprises an ejector (430) in communication with the steam generator (260) and wherein the ejector (430) is in communication with at least one of an ambient air flow (440), a filtered air flow (450), and a compressor air extraction (470).
     
    9. The power generation system (100) of any preceding claim, wherein the steam turbine preheating system (230) comprises a cascading ejector system (480) in communication with the steam generator (260) and wherein the cascading ejector system (480) comprises a first ejector (490) in communication with a compressor (120, 470) of the gas turbine engine (110) and a second ejector (500) in communication with a turbine (170) of the gas turbine engine (110).
     
    10. The power generation system (100) of any preceding claim, wherein the steam turbine preheating system (230) comprises a further extraction from downstream (510) of the gas turbine engine (110) to the steam generator (260).
     
    11. A method of preheating a steam turbine (210) in a power generation system (100), comprising:

    extracting hot combustion gases (160) from a gas turbine (110) to a steam generator (260);

    flowing feedwater (270) to the steam generator (260);

    exchanging heat between the hot combustion gases (160) and the flow of feedwater (270) to create a flow of steam (280) in the steam generator (260); characterized by

    flowing the steam to the steam turbine (210) to warm a shell of the steam turbine (210).


     
    12. The method of claim 11, wherein the hot combustion gases (160) from the gas turbine (110) are extracted from a turbine casing.
     
    13. The method of claim 11 or 12, further comprising recovering heat from hot combustion gases (160) exiting the gas turbine engine (110) in a heat recovery steam generator (190) to create a flow of steam (200).
     
    14. The method of claim 11, 12 or 13, further comprising expanding the flow of steam (200) from the heat recovery steam generator (200) in the steam turbine (210).
     


    Ansprüche

    1. Stromerzeugungssystem (100), umfassend:

    ein Gasturbinentriebwerk (110) mit einem Turbinengehäuse (250);

    eine Dampfturbine (210);

    ein Dampfturbinenvorwärmsystem (230) mit einem Dampferzeuger (260), der einen Dampfstrom (280) erzeugt, um die Dampfturbine (210) aus einer Extraktion der Gasturbine (110) vorzuwärmen; dadurch gekennzeichnet, dass

    die Extraktion (240, 510) sich vom Turbinengehäuse (250) zu dem Dampferzeuger (260) erstreckt und die Extraktion (240, 510) eine Extraktion heißer Verbrennungsgase (160) umfasst;

    die Dampfturbine (210) eine Dampfturbinenhülle (290) umfasst, wobei sich der Dampfstrom (280) vom Dampfgenerator (260) zur Dampfturbinenhülle (290) erstreckt.


     
    2. Stromerzeugungssystem (100) nach Anspruch 1, wobei der Dampferzeuger (260) eine Quelle für Speisewasser (270) in Verbindung damit umfasst.
     
    3. Stromerzeugungssystem (100) nach einem der vorstehenden Ansprüche, ferner umfassend eine Steuereinrichtung (300) in Kommunikation mit einer Vielzahl von Sensoren (310, 320, 330).
     
    4. Stromerzeugungssystem (100) nach einem der vorstehenden Ansprüche, ferner umfassend einen Wärmerückgewinnungsdampferzeuger (190).
     
    5. Stromerzeugungssystem (100) nach Anspruch 1, wobei der Wärmerückgewinnungsdampferzeuger (190) dazu ausgestaltet ist, Wärme aus heißen Verbrennungsgasen (160) rückzugewinnen, die aus dem Gasturbinentriebwerk (110) austreten, um einen Dampfstrom (200) zu erzeugen.
     
    6. Stromerzeugungssystem (100) nach Anspruch 4, wobei ein Dampfstrom (200) aus dem Wärmerückgewinnungsdampferzeuger (190) in der Dampfturbine (210) expandiert.
     
    7. Stromerzeugungssystem (100) nach einem der vorstehenden Ansprüche, wobei das Dampfturbinenvorwärmsystem (230) ein Temperiersystem (380) umfasst und wobei das Temperiersystem (380) ein Sprühsystem (390) für mindestens eine Wassereinspritzung (400) und/oder eine Dampfeinspritzung (410) umfasst.
     
    8. Stromerzeugungssystem (100) nach einem der vorstehenden Ansprüche, wobei das Dampfturbinenvorwärmsystem (230) einen Ejektor (430) in Verbindung mit dem Dampferzeuger (260) umfasst und wobei der Ejektor (430) in Verbindung mit mindestens einem Umgebungsluftstrom (440), einem gefilterten Luftstrom (450) und/oder einer Kompressorluftextraktion (470) steht.
     
    9. Stromerzeugungssystem (100) nach einem der vorstehenden Ansprüche, wobei das Dampfturbinenvorwärmsystem (230) eine Kaskadierungsejektorsystem (480) in Verbindung mit dem Dampferzeuger (260) umfasst und wobei das Kaskadierungsejektorsystem (480) einen ersten Ejektor (490) in Verbindung mit einem Kompressor (120, 470) des Gasturbinentriebwerks (110) und einen zweiten Ejektor (500) in Verbindung mit einer Turbine (170) des Gasturbinentriebwerks (110) umfasst.
     
    10. Stromerzeugungssystem (100) nach einem der vorstehenden Ansprüche, wobei das Dampfturbinenvorwärmsystem (230) ferner eine Extraktion von stromabwärts (510) des Gasturbinentriebwerks (110) zu dem Dampferzeuger (260) umfasst.
     
    11. Verfahren zu dem Vorwärmen einer Dampfturbine (210) in einem Stromerzeugungssystem (100), umfassend:

    Extrahieren von heißen Verbrennungsgasen (160) aus einer Gasturbine (110) zu einem Dampferzeuger (260);

    Strömenlassen von Speisewasser (270) zu dem Dampferzeuger (260);

    Austauschen von Wärme zwischen den heißen Verbrennungsgasen (160) und dem Speisewasserstrom (270), um einen Dampfstrom (280) in dem Dampfgenerator (260) zu erzeugen; gekennzeichnet durch

    Strömenlassen des Dampfes zur Dampfturbine (210), um eine Hülle der Dampfturbine (210) zu erwärmen.


     
    12. Verfahren nach Anspruch 11, wobei die heißen Verbrennungsgase (160) aus der Gasturbine (110) aus einem Turbinengehäuse extrahiert werden.
     
    13. Verfahren nach Anspruch 11 oder 12, ferner umfassend Rückgewinnen von Wärme aus heißen Verbrennungsgasen (160), die aus dem Gasturbinentriebwerk (110) austreten, in einem Wärmerückgewinnungsdampferzeuger (190), um einen Dampfstrom (200) zu erzeugen.
     
    14. Verfahren nach Anspruch 11, 12 oder 13, ferner umfassend Expandieren des Dampfstroms (200) aus dem Wärmerückgewinnungsdampferzeuger (200) in der Dampfturbine (210).
     


    Revendications

    1. Système de génération d'énergie (100) comprenant :

    un moteur de turbine à gaz (110) comprenant un carter de turbine (250) ;

    une turbine à vapeur (210) ;

    un système de préchauffage de turbine à vapeur (230) comprenant un générateur de vapeur (260) qui crée un écoulement de vapeur (280) pour préchauffer la turbine à vapeur (210) à partir d'une extraction du moteur de turbine à gaz (110) ; caractérisé en ce que

    l'extraction (240, 510) s'étend depuis le carter de turbine (250) jusqu'au générateur de vapeur (260) et l'extraction (240, 510) comprend une extraction de gaz de combustion chauds (160) ;

    la turbine à vapeur (210) comprend une coque de turbine à vapeur (290) et dans lequel l'écoulement de vapeur (280) s'étend du générateur de vapeur (260) à la coque de turbine à vapeur (290).


     
    2. Système de génération d'énergie (100) selon la revendication 1, dans lequel le générateur de vapeur (260) comprend une source d'eau d'alimentation (270) en communication avec celui-ci.
     
    3. Système de génération d'énergie (100) selon une quelconque revendication précédente, comprenant en outre un contrôleur (300) en communication avec une pluralité de capteurs (310, 320, 330).
     
    4. Système de génération d'énergie (100) selon une quelconque revendication précédente, comprenant en outre un générateur de vapeur à récupération de chaleur (190).
     
    5. Système de génération d'énergie (100) selon la revendication 4, dans lequel le générateur de vapeur à récupération de chaleur (190) est configuré pour récupérer de la chaleur des gaz de combustion chauds (160) sortant du moteur de turbine à gaz (110) pour créer un écoulement de vapeur (200).
     
    6. Système de génération d'énergie (100) selon la revendication 4, dans lequel un écoulement de vapeur (200) provenant du générateur de vapeur à récupération de chaleur (190) est détendu dans la turbine à vapeur (210).
     
    7. Système de génération d'énergie (100) selon une quelconque revendication précédente, dans lequel le système de préchauffage de turbine à vapeur (230) comprend un système de régulation de température (380) et dans lequel le système de régulation de température (380) comprend un système de pulvérisation (390) pour au moins l'une d'une injection d'eau (400) et d'une injection de vapeur (410).
     
    8. Système de génération d'énergie (100) selon une quelconque revendication précédente, dans lequel le système de préchauffage de turbine à vapeur (230) comprend un éjecteur (430) en communication avec le générateur de vapeur (260) et dans lequel l'éjecteur (430) est en communication avec au moins l'un d'un flux d'air ambiant (440), d'un flux d'air filtré (450) et d'une extraction d'air de compresseur (470).
     
    9. Système de génération d'énergie (100) selon une quelconque revendication précédente, dans lequel le système de préchauffage de turbine à vapeur (230) comprend un système d'éjecteurs en cascade (480) en communication avec le générateur de vapeur (260) et dans lequel le système d'éjecteurs en cascade (480) comprend un premier éjecteur (490) en communication avec un compresseur (120, 470) du moteur de turbine à gaz (110) et un deuxième éjecteur (500) en communication avec une turbine (170) du moteur de turbine à gaz (110).
     
    10. Système de génération d'énergie (100) selon une quelconque revendication précédente, dans lequel le système de préchauffage de turbine à vapeur (230) comprend une extraction supplémentaire de l'aval (510) du moteur de turbine à gaz (110) au générateur de vapeur (260).
     
    11. Procédé de préchauffage d'une turbine à vapeur (210) dans un système de génération d'énergie (100), comprenant :

    l'extraction des gaz de combustion chauds (160) d'une turbine à gaz (110) vers un générateur de vapeur (260) ;

    l'écoulement d'eau d'alimentation (270) vers le générateur de vapeur (260) ;

    l'échange de chaleur entre les gaz de combustion chauds (160) et l'écoulement d'eau d'alimentation (270) pour créer un écoulement de vapeur (280) dans le générateur de vapeur (260) ; caractérisé par

    l'écoulement de la vapeur vers la turbine à vapeur (210) pour réchauffer une coque de la turbine à vapeur (210).


     
    12. Procédé selon la revendication 11, dans lequel les gaz de combustion chauds (160) provenant de la turbine à gaz (110) sont extraits d'un carter de turbine.
     
    13. Procédé selon la revendication 11 ou 12, comprenant en outre la récupération de chaleur des gaz de combustion chauds (160) sortant du moteur de turbine à gaz (110) dans un générateur de vapeur à récupération de chaleur (190) pour créer un écoulement de vapeur (200).
     
    14. Procédé selon la revendication 11, 12 ou 13, comprenant en outre la détente de l'écoulement de vapeur (200) du générateur de vapeur à récupération de chaleur (200) dans la turbine à vapeur (210).
     




    Drawing























    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description