(19)
(11)EP 3 357 754 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
18.11.2020 Bulletin 2020/47

(21)Application number: 16851169.9

(22)Date of filing:  14.09.2016
(51)Int. Cl.: 
B60Q 1/50  (2006.01)
B60Q 1/00  (2006.01)
G08G 1/16  (2006.01)
(86)International application number:
PCT/JP2016/077117
(87)International publication number:
WO 2017/056995 (06.04.2017 Gazette  2017/14)

(54)

VEHICLE STATE DISPLAY SYSTEM

SYSTEM ZUR ANZEIGE DES FAHRZEUGZUSTANDES

SYSTÈME D'AFFICHAGE D'ÉTAT DE VÉHICULE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 30.09.2015 US 201514871372
30.09.2015 US 201514871294
30.09.2015 US 201514871335

(43)Date of publication of application:
08.08.2018 Bulletin 2018/32

(73)Proprietor: Nissan Motor Co., Ltd.
Yokohama-shi, Kanagawa 221-0023 (JP)

(72)Inventors:
  • WILLIAMS, Blair
    Farmington Hills, Michigan 48831 (US)
  • CEFKIN, Melissa
    Farmington Hills, Michigan 48831 (US)

(74)Representative: Grünecker Patent- und Rechtsanwälte PartG mbB 
Leopoldstraße 4
80802 München
80802 München (DE)


(56)References cited: : 
JP-A- 2005 047 494
JP-A- 2015 074 301
US-A1- 2014 214 260
US-B1- 8 914 652
JP-A- 2008 114 639
JP-A- 2015 074 301
US-A1- 2015 258 928
US-B1- 8 954 252
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description


    [0001] The present invention generally relates to a vehicle state indication system. More specifically, the present invention relates to a vehicle state indication system that indicates the state or intent of a vehicle to an external observer, such a pedestrian or remote vehicle.

    [0002] Conventional vehicle state indication systems include indication systems that attempt to advise external observers of the intent of the driver of a vehicle. For example, many vehicles include brake lights to indicate the braking status of a vehicle and turn signal indicators to indicate the intent of the vehicle to turn a specific direction.

    [0003] Additional systems can include a system that rearwardly indicates the vehicle intent to remote vehicles positioned rearward of the vehicle. For example, these conventional systems may indicate via text that the vehicle is in a stopped state or in a slow forward state.

    [0004] Other conventional systems can include an external light indicating the direction that pedestrians are detected by a perception system. The lights move around the vehicle as the pedestrians move. Interior lighting indicates where pedestrians are detected, for passengers inside the vehicle. Messages on outside of the car tell pedestrians to "please walk" or "stop".

    [0005] US 2015/258928 A1 relates to a rotatable light source within a bumper of a vehicle, wherein the light source is rotated to face a detected person in the surroundings of the vehicle.

    [0006] US 8 954 252 B1 relates to a system aboard a self-driving vehicle for notifying a pedestrian of the intention of the vehicle by means of electronic lights or signs on the vehicle.

    [0007] US 2014/214260 A1 relates to a device for indicating the movement of an autonomous vehicle during parking to a pedestrian by means of light strips on the sides of the vehicle.

    [0008] JP 2015 074301 A relates to a lighting device aboard a vehicle, which illuminates the sides of the vehicle in a case where the vehicle is taking a turn and an object is detected next to the vehicle.

    [0009] It has been discovered that in order to increase transparency and predictability around vehicles, in particular, autonomous vehicles, an improved vehicle state indication system is needed. This system should externally communicate the state of the vehicle to all possible interacting agents. Moreover, this system should encourage flexibility in interactions, based on inputs from the vehicle perception or sensor system, vehicle interaction history and vehicle to vehicle communication systems.

    [0010] The invention is defined by the independent claim. The dependent claims describe advantageous embodiments.

    [0011] According to the present invention, it is able to increase transparency and predictability around vehicles.

    [Brief Description of Drawings]



    [0012] 

    FIG. 1 is a schematic view of a vehicle with a vehicle state indication system according to one embodiment of the present invention.

    Fig. 2 is a schematic view of the vehicle state indication system shown in Fig. 1.

    FIG. 3 is a front perspective view of an external display and light indicator for the vehicle state indication system shown in Fig. 1.

    FIG. 4 is a front perspective view of an external display and light indicator for the vehicle state indication system shown in Fig. 3 indicating the direction of a pedestrian and a yielding status of the vehicle.

    FIG. 5 is a front perspective view of an external display and light indicator for the vehicle state indication system shown in Fig. 3 indicating the direction of a pedestrian and a stopping status of the vehicle.

    FIG. 6 is a front perspective view of an external display and light indicator for the vehicle state indication system shown in Fig. 3 indicating the direction of a pedestrian and a waiting status of the vehicle.

    FIG. 7 is a front perspective view of an external display and light indicator for the vehicle state indication system shown in Fig. 3 indicating the direction of a multiple pedestrians and a waiting status of the vehicle.

    FIG. 8 is a front perspective view of an external display and light indicator for the vehicle state indication system shown in Fig. 3 indicating the direction of a group of pedestrians and a waiting status of the vehicle.

    FIG. 9A is a first flow chart illustrating the process of indicating the vehicle state of the vehicle state indication system.

    FIG. 9B is a second flow chart illustrating the process of indicating the vehicle state of the vehicle state indication system.

    FIG. 10 is a schematic plan view of a vehicle equipped with the vehicle state indication system according to one embodiment approaching an intersection.

    FIG. 11 is a schematic plan view of a vehicle equipped with the vehicle state indication system according to one embodiment approaching an intersection and sensing a pedestrian waiting at a crosswalk.

    FIG. 12 is a schematic plan view of a vehicle equipped with the vehicle state indication system according to one embodiment approaching an intersection and slowing down and yielding to the pedestrian waiting at a crosswalk.

    FIG. 13 is a schematic plan view of a vehicle equipped with the vehicle state indication system according to one embodiment approaching an intersection and stopping to allow the pedestrian waiting at a crosswalk to cross.

    FIG. 14 is a schematic plan view of a vehicle equipped with the vehicle state indication system according to one embodiment stopped at an intersection and waiting for the pedestrian to cross.

    Fig. 15 is a schematic plan view of a vehicle equipped with the vehicle state indication system according to one embodiment stopped at an intersection and waiting for the pedestrian to complete crossing.

    Fig. 16 is a schematic plan view of a vehicle equipped with the vehicle state indication system according to one embodiment stopped at an intersection and sensing that the pedestrian has completed crossing.

    Fig. 17 is a schematic plan view of a vehicle equipped with the vehicle state indication system according to one embodiment stopped at an intersection and sensing that the pedestrian has completed crossing and indicating that the vehicle will advance soon.

    Fig. 18 is a schematic plan view of a vehicle equipped with the vehicle state indication system according to one embodiment advancing through the intersection.


    [Mode(s) for Carrying out the Invention]



    [0013] Selected embodiments will now be explained with reference to the drawings. It will be apparent to those skilled in the art from this disclosure that the following descriptions of the embodiments are provided for illustration only and not for the purpose of limiting the invention as defined by the appended claims.

    [0014] Referring initially to Fig. 1, a vehicle 10 equipped with a vehicle state indication system 12 in accordance with a first embodiment is illustrated. The vehicle 10 is preferably an autonomous vehicle, but can be any suitable vehicle. The vehicle state indication system 12 has a plurality of modes (or on modes) that indicate the state of the vehicle to external objects P (such as pedestrians and remote vehicles).

    [0015] As shown in Figs. 1 and 2 the vehicle state indication system 12 includes a controller 14, a sound generator 16, a display system 18, a detection system 20 and a light indication system (or light indicator) 22. Additionally, the vehicle state indication system 12 is in communication with a vehicle location determination system 24.

    [0016] The controller 14 preferably includes a microcomputer with a control program that controls the vehicle state indication system 12 as discussed below. The controller 14 can also include other conventional components such as an input interface circuit, an output interface circuit, and storage devices, such as a ROM (Read Only Memory) device and a RAM (Random Access Memory) device. The microcomputer of the controller 14 is programmed to control one or more of the sound generator 16, the display system 18, the detection system 20 and the light indication system 22, and to make determinations or decisions, as discussed herein. The memory circuit stores processing results and control programs, such as ones for the sound generator 16, the display system 18, the detection system 20 and the light indication system 22 that are run by the processor circuit. The controller 14 is operatively coupled to the sound generator 16, the display system 18, the detection system 20 and the light indication system 22 in a conventional manner, as well as other electrical systems in the vehicle, such as the turn signals, windshield wipers, lights, any system or device necessary or desired for vehicle operation (autonomous or otherwise) and any other suitable systems. Such a connection enables the controller 14 to monitor and control any of these systems as desired. The internal RAM of the controller 14 stores statuses of operational flags and various control data. The internal ROM of the controller 14 stores the information for various operations. The controller 14 is capable of selectively controlling any of the components of the vehicle state indication system 12 in accordance with the control program. It will be apparent to those skilled in the art from this disclosure that the precise structure and algorithms for the controller 14 can be any combination of hardware and software that will carry out the functions of the present invention.

    [0017]  According to the invention, the vehicle state indication system 12 includes detection system 20. Preferably, the detection system includes a plurality of vehicle sensors 26, 28, 30, and 32 that are configured to detect a remote object in proximity to the vehicle. For example, as illustrated in Fig. 1, the remote vehicle sensors 26, 28, 30, and 32 are preferably mounted externally on the front quarter panels 34a and 34b and rear quarter panels 36a and 36b of the vehicle 10. However, the sensors 26, 28, 30, and 32 may be mounted on any suitable external portion of the vehicle 10, including the front and rear bumpers, the external mirrors or any combination of suitable areas. The sensors 26, 28, 30, and 32 transmit data to the positioning system 24, which is then capable of using the sensor data to calculate the position of the vehicle 10.

    [0018] The vehicle sensors 26, 28, 30, and 32 can be any type of sensors desirable. For example, the front sensors can include a long-range radar device for object detection in front of the host vehicle. The front sensor may be configured to detect objects at a predetermined distance (e.g., distances up to 200 m), and thus may have a narrow field of view angle (e.g., around 15°). Due to the narrow field of view angle, the long range radar may not detect all objects in the front of the host vehicle. Thus, if desired, the front corner sensors can include short-range radar devices to assist in monitoring the region in front of the host vehicle. The rear sensors may include short-range radar devices to assist in monitoring oncoming traffic beside and behind the host vehicle. Placement of the aforementioned sensors permits monitoring of traffic flow including remote vehicles and other objects around the host vehicle, and the position of the vehicle 10 with respect to maintaining lane position or lane departure. However, the sensors 26, 28, 30, and 32 can be disposed in any position of the vehicle 10 and may include any type and/or combination of sensors to enable detection of remote objects. In addition, the sensors may be cameras, radar sensors, photo sensors or any combination thereof. Although Fig. 1 illustrates four sensors, 26, 28, 30, and 32 there can be as few or as many sensors as is desirable or suitable.

    [0019] Although sensors 26, 28, 30, and 32 preferably are electronic detection devices that transmit electromagnetic waves (e.g., radar), these sensors can be any suitable sensors that, for example, take computer-processed images with a digital camera and analyze the images or emit lasers, as is known in the art. The sensors may be capable of detecting at least the speed, direction, yaw, acceleration and distance of the vehicle 10 relative to a remote object. Further, the sensors 26, 28, 30, and 32 may include object-locating sensing devices including range sensors, such as FM-CW (Frequency Modulated Continuous Wave) radars, pulse and FSK (Frequency Shift Keying) radars, sonar and Lidar (Light Detection and Ranging) devices, and ultrasonic devices which rely upon effects such as Doppler-effect measurements to locate forward objects. Object-locating devices may include charged-coupled devices (CCD) or complementary metal oxide semi-conductor (CMOS) video image sensors, and other known camera/video image processors which utilize digital photographic methods to "view" forward objects including one or more remote vehicles. The sensors are in communication with the controller 14 through position system 24, and are capable of transmitting information to the controller 14.

    [0020] As illustrated in Figs. 1-8, the vehicle state indication system 12 includes a light indication system 22. The light indication system 22 can include a lighting device 38 at least on the front 42 of the vehicle 10 and a light band 40 extending around the vehicle 10. Such a positioning of the lighting device 38 enables the vehicle 10 to clearly indicate intent to external objects P in front of the vehicle 10 (e.g., pedestrians or remote vehicles that the vehicle 10 is approaching). However, it is noted that the lighting device 38 can be disposed at any area of the vehicle 10 as desired or suitable.

    [0021] The lighting device 38 is capable of emitting a plurality of colors in a plurality of positions. That is, the lighting device 38 can display a plurality of modes that indicate the state of the vehicle 10. For example, in one mode the light indication system 22 can display a red light indicating that the vehicle 10 is in an advancing state, and thus crossing in front of the vehicle 10 is not advised. In another mode, the light indication system 22 can display a yellow light, indicating that the vehicle 10 is in a transitioning state (i.e., a more passive state relative to the advancing state). Such an indication may occur as the vehicle 10 is slowing or yielding to pedestrians or other vehicles. The light indication system 22 can display a green light indicating that the vehicle 10 is in a stopping state, and thus crossing in front of the vehicle 10 is encouraged. In one embodiment, the light indication system 22 is capable of displaying five separate and distinct colors, each color representing a separate mode of the vehicle 10. That is, in addition to the three colors discussed above (red, yellow and green), the light indication system 22 can also display green-yellow to indicating a partially passive or yielding state and orange to indicate a more aggressive state than yellow but not as aggressive as red. Moreover, the light colors can be a continuous spectrum that changes dynamically between states. On the other hand, the light indication system 22 may simply be capable of displaying various colors to indicate the state of the vehicle 10. The colors discussed herein are merely used as an example, and the colors indicating the state of the vehicle can be any suitable or desired color. That is, in the above example, green indicates a waiting state, thus indicating that crossing in front of the vehicle 10 is encouraged. However, green may indicate an advancing state, and thus it is not advised to cross.

    [0022] Thus, the light indication system 22 has a plurality of modes (or on modes) that indicate the state of the vehicle 10 to external objects P (such as pedestrians and remote vehicles). The plurality of modes are modes in which the light indication system 22 is "on", i.e., the lighting device is lit or the display is displaying text. Each of the plurality of modes can be different from each other mode.

    [0023] As shown in Figs. 4-8, the light band 40 can have portions 40a, 40b and 40c thereof light up. Thus, when an external object P, such as a pedestrian or remote vehicle, is sensed or detected by the detection system 20, the light band 40 indicates the direction of the external object P. The light band 40 is generally connected to the sides 38a and 38b of the lighting device 38 at the front of the vehicle 10 and extends around (i.e., surrounds) or substantially around the vehicle 10.

    [0024] Thus, as shown in Figs. 4-6, when an external object P is detected, the light band 40 indicates a portion (e.g., portion 40a) of the light band 40 in a direction of or adjacent to the external object P. Additionally, as shown in Figs. 7 and 8, when multiple (or a plurality of) external objects are detected each object can be individually indicated (portions 40a and 40b) or when a large group is grouped together adjacent the vehicle 10, the light band 40 can indicate a large portion 40c in the direction of the group.

    [0025] Furthermore, the light band 40 can indicate the state of the vehicle 10 using different modes. Thus, in one embodiment, similarly, to the lighting device 38, the light band 40 can display a plurality of modes that indicate the state of the vehicle 10. For example, in one mode the light band 40 can display a red light indicating that the vehicle 10 is in an advancing state, and thus crossing in front of the vehicle 10 is not advised. In another mode, the light band 40 can display a yellow light, indicating that the vehicle 10 is in a transitioning state (i.e., a more passive state relative to the advancing state). Such an indication may occur as the vehicle 10 is slowing or yielding to pedestrians or other vehicles. The light band 40 can display a green light indicating that the vehicle 10 is in a stopping state, and thus crossing in front of the vehicle 10 is encouraged. In one embodiment, the light band 40 is capable of displaying five separate and distinct colors, each color representing a separate mode of the vehicle 10. That is, in addition to the three colors discussed above (red, yellow and green), the light band 40 can also display green-yellow to indicating a partially passive or yielding state and orange to indicate a more aggressive state that yellow but not as aggressive as red. Moreover, the light colors can be a continuous spectrum that changes dynamically between states. The colors discussed herein are merely used as an example, and the colors indicating the state of the vehicle can be any suitable or desired color. That is, in the above example, green indicates a waiting state, thus indicating that crossing in front of the vehicle 10 is encouraged. However, green may indicate an advancing state, and thus it is not advised to cross.

    [0026] The indication of the vehicle state is not limited to colors. That is, the indication of the present state of the vehicle 10 can be displayed in any suitable manner, including but not limited to a single color spectrum, a meter system, a brightness indicator, a numerical indicator, sound or in any other manner.

    [0027] In one embodiment, the driver or user of the vehicle 10 can modify the interaction state bias. That is, the driver or the user of the vehicle 10 can adjust a setting in the vehicle 10 that would make the vehicle 10 yield priority more often or assume priority more often, as desirable. For example, the driver or user of the vehicle 10 can set the vehicle state indication system 12 to a passive bias, which can be correlated with leisurely driving and friendly behavior, i.e., the vehicle 10 will stop more and accelerate/brake slowly and smoothly. On the other hand, the driver or user of the vehicle 10 can set the vehicle state indication system 12 to an aggressive bias, which can be correlated with hurried driving and independent behavior, i.e., the vehicle 10 will get from A to B more quickly and accelerate/brake more intensely. Such settings may be a continuous spectrum between a passive bias and an aggressive bias, or have a plurality of settings, including but not limited to a passive bias and an aggressive bias.

    [0028] Additionally, the vehicle state indication system 12 includes a display 18. The display 18 is preferably a text display that is disposed on the vehicle 10 (e.g., the dashboard 44) so as to be capable of selectively externally indicating a first state of the vehicle 10 and a second state of the vehicle 10 in a forward direction of the vehicle 10. Thus, in one embodiment, similarly, to the lighting device 38, the display 18 can display, in text, a plurality of modes that indicate the state of the vehicle 10. For example, in one mode, as shown in Fig. 3, the display 18 can display "ADVANCING" indicating that the vehicle 10 is in an advancing state, and thus crossing in front of the vehicle 10 is not advised. In another mode, as shown in Fig. 4, the display 18 can display "YIELDING", indicating that the vehicle 10 is in a transitioning state (i.e., a more passive state relative to the advancing state). Such an indication may occur as the vehicle 10 is slowing or yielding to pedestrians or other vehicles. As shown in Fig. 5, the display 18 can display "STOPPING", indicating that the vehicle 10 is in a stopping state, and thus crossing in front of the vehicle 10 is encouraged. As shown in Figs. 6-8, the display 18 can display "WAITING", indicating that the vehicle 10 is in a waiting state, and thus crossing in front of the vehicle 10 is encouraged.

    [0029] As shown in Figs. 1 and 2, the vehicle state indication system 12 preferably includes a sound generator 16 (such as a speaker or a plurality of speakers). The sound generator 16 can be in any suitable position within the vehicle 10 or may be externally mounted on the vehicle. For example, the sound generator 16 can be mounted to the interior doors or walls of vehicle 10 or mounted on the dashboard 44 or instrument panel, and is configured such that it will activate sound upon receiving a signal from the controller 14. The sound generator 16 may emanate sound from speakers used for other applications (e.g., the radio) or from a dedicated speaker. The sound generator 16 may work with the light indication system 22 and display 18 to provide information regarding the vehicle status to the vehicle 10 occupants and an external object P. That is, a sound generator 16 can provide a sound indicating the vehicle 10 is waiting for the external object P to cross in front of the vehicle 10, or that the vehicle 10 is preparing to advance or is advancing. The sound generator 16 is configured to generate a first sound when the light indicator 22 indicates the first on mode, and is configured to generate a second sound different from the first sound when the light indicator 22 indicates the second on mode.

    [0030] In another embodiment, the sound generator 16 can provide courteous feedback to the external object P to indicate that the vehicle 10 is aware of the external object crossing in front of the vehicle 10.

    [0031] Moreover, as illustrated in Figs. 1 and 2, the vehicle 10 includes a vehicle location determination system 24, such as a GPS, that is in communication with the vehicle state indication system 12. In one embodiment the vehicle 10 receives a GPS satellite signal. As is understood, the GPS processes the GPS satellite signal to determine positional information (such as location, speed, acceleration, yaw, and direction, just to name a few) of the vehicle 10. As noted herein, the positioning system is in communication with the controller 14, and is capable of transmitting such positional information regarding the vehicle 10 to the controller 14.

    [0032] The vehicle location determination system 24 also can include a storage device that stores map data. Thus, in determining the position of the vehicle 10 using any of the herein described methods, devices or systems, the positioning of the vehicle 10 may be compared to the known data stored in the storage device. Thus, in one embodiment, the location determination system can determine when the vehicle is in proximity to a cross walk CW, a stop sign SS, an intersection I or any other area in which a remote vehicle or pedestrian (i.e., external object P) may cross near or in front or the vehicle 10. For example, the location determination system can determine when the vehicle is in proximity to a pedestrian that is crossing a street at an area other than a cross walk (i.e., jay-walking) and the vehicle state indication system 12 can communicate as described above. Also, the location determination system can identify signaling devices and structures other than stop signs such as stop lights (e.g., scenarios involving legally turning right on a red light), and the vehicle state indication system 12 can communicate intent accordingly. A remote vehicle can be any type of vehicle on the road, including but not limited to automobiles, trucks, bicycles, and any other vehicles.

    [0033] Figs. 9A and 9B illustrate the procedure in which the vehicle state indication system 12 determines the state of the vehicle 10 and the manner of communication to an external object P, such as a pedestrian or remote vehicle. First in step S1, the vehicle is in an advancing state. Thus, the lighting device 38 displays a red light and the display 18 displays the text "ADVANCING". The detection system then detects an external object P (e.g., a pedestrian or remote vehicle) in step S2. The vehicle location determination system 24 determines in step S3 whether the vehicle is approaching a crosswalk CW, stop sign SS or other area that would require yielding to the external object P. If none of these conditions exist, the vehicle state indication system 12 maintains all indications that the vehicle 10 is in an advancing state.

    [0034] When the vehicle state indication system 12 determines that the vehicle 10 is approaching a crosswalk CW or stop sign SS, for example, the controller 14 determines that yielding is necessary. Thus, in step S4, the controller 14 causes the vehicle 10 to reduce speed, indicate via the lighting device 38 and display 18 that the vehicle 10 is in a yielding state. Moreover, the light band 40 indicates the direction of the sensed external object P. As the vehicle 10 continues to yield, the vehicle 10 further reduces speed to zero, and indicates that the vehicle 10 is in a stopping state in step S5 via the lighting device 38 and display 18 and indicates the direction of the external object P via the light band 40. Thus, the vehicle state indication system 12 through the light indication system 22 is configured to transition the lighting device 38 from one mode to another mode, while the detection system 20 detects the external moving object P.

    [0035] In step S6, the vehicle 10 is stopped and indicates that the vehicle 10 is in a waiting state via the light indication system 22 and display 18 and indicates the direction of the external object P. In step S7, the controller 14 determines whether the external object P has advanced though the intersection I or crosswalk CW. If the external object P has not advanced though the intersection I or crosswalk CW, the controller 14 determines if the vehicle 10 has waited a predetermined amount of time for the external object P to cross in S8. If the vehicle 10 has not waited a predetermined amount of time, the vehicle 10 maintains the waiting step described in S6. However, if the vehicle 10 has waited a predetermined amount of time, or if the external object P has advanced though the intersection I or crosswalk CW, the lighting device 38 and display 18 indicate that the vehicle 10 is advancing soon in step S9. In step S10, the vehicle 10 then begins advancing and indicates the advancing state via the lighting device 38 and the display 18.

    [0036] Turning to Figs. 10-17, a vehicle 10 equipped with the vehicle state indication system 12 is shown. First, in Fig. 10, the vehicle 10 is shown approaching an intersection I that includes a stop sign SS and a crosswalk for pedestrians. As the vehicle 10 approaches the intersection I, the vehicle 10 indicates that it is in the advancing state. In Fig. 11, the detection system 20 detects the pedestrian (i.e., the external object P) waiting at the crosswalk CW. Additionally, the vehicle 10 can determine that a stop sign SS is present via the detection system 20 and/or the vehicle location determination system 24. The vehicle state indication system 12 then in Fig. 12, indicates the location of the pedestrian (i.e., the external object P) relative to the vehicle 10 via the light band 40 and that the vehicle 10 is entering a yielding state via the light indication system 22 and the display 18.

    [0037] As shown in Fig. 13, as the vehicle 10 approaches the crosswalk CW the vehicle 10 comes to a stop and indicates that the vehicle 10 is in a stopping state via the light indication system 22 and the display 18. As shown in Fig. 14, the vehicle 10 comes to a complete stop and indicates that the vehicle 10 is in a waiting state via the light indication system 22 and the display 18. As shown in Fig. 15, the detection system 20 monitors the pedestrian (i.e., the external object P) as the pedestrian crosses the street S in front of the vehicle 10. In Fig. 16, the pedestrian (i.e., the external object P) has completed the crossing, the light band 40 indicates the direction of the pedestrian, and in Fig. 17, the vehicle state indication system 12 indicates the vehicle 10 is advancing soon via the light indication system 22 and the display 18.

    [0038] In Fig. 18, the vehicle state indication system 12 indicates the vehicle 10 is advancing through the intersection I. In one embodiment, if the pedestrian (i.e., the external object P) fails to cross the intersection I via the crosswalk CW or in any other manner, the detection system 20 can detect the continuous position of the pedestrian (i.e., the external object P). The controller 14 can infer from the lack of movement from the pedestrian (i.e., the external object P) that the pedestrian does not intend to cross. In such a situation, the controller 14 can then change the state of the vehicle to the advancing soon state described above (Fig. 17) and advance the vehicle 10 as described in conjunction with Fig. 18. In other words, the light indication system 22 is configured to transition from one mode (i.e., the waiting mode) to another mode (i.e., advancing or advancing soon mode) after a predetermined amount of time. Thus, the vehicle state indication system 12, using the detection system 20, is configured to determine the moving state of the external object P, and the controller 14 is programmed to determine whether the vehicle 10 intends to enter the first state or the second state, based on the moving state of the external moving object P. Moreover, the detection system 20 can be capable of detecting hand signals or other indicators from the external object P. That is, the detection system 20 is configured to detect a gesture from the pedestrian, and the controller 14 is programmed to cause an external response in response to the gesture detected by the detection system 20. For example, the external object P may, in the case of a pedestrian, wave the vehicle 10 forward to indicate that the pedestrian intends to wait for the vehicle 10 to pass through the intersection. In the case of a remote vehicle, the vehicle may flash its lights or make another motion to indicate that the remote vehicle intends to wait for the vehicle 10 to pass through the intersection. The controller 14 can infer from the indication from the external object P that it is permissible to proceed. In such a situation, the controller 14 can then change the state of the vehicle 10 to the advancing soon state described above (Fig. 17) and advance the vehicle 10 as described in conjunction with Fig. 18.

    [0039] Further, the external object P may indicate appreciation to the vehicle 10 for waiting. In such a situation, the detection system 20 can detect the external object P indication, and the vehicle state indication system 12 may display an appreciation text via the display 18 or make an appreciation sound through the sound generator 16.

    [0040] The vehicle 10 can also indicate displeasure with the external object P. For example, in a situation in which the external object P abruptly changes direction or actions, such that the external object P interrupts a perceived travel opportunity or travel direction of the vehicle 10, the vehicle state indication system 12 may indicate displeasure using a text via the display 18, the light indication system 22, or make a displeasing sound (e.g., horn or screeching tires) through the sound generator 16.

    [0041] The vehicle state indication system 12 described herein increases transparency and predictability around vehicles, in particular, autonomous vehicles. Moreover, this system externally communicates the state of the vehicle 10 to all possible interacting agents. Further, this system encourages flexibility in interactions, based on inputs from the vehicle perception or detection system, vehicle interaction history and vehicle to vehicle communication systems. The controller 14 may be programmed to transition from the first on mode to the second on mode based on a predetermined event, and the controller 14 is capable of being manually set so as to change the predetermined event.

    [0042] The vehicle location detection system is a conventional component that is well known in the art. Since vehicle location detection systems are well known in the art, these structures will not be discussed or illustrated in detail herein. Rather, it will be apparent to those skilled in the art from this disclosure that the components can be any type of structure and/or programming that can be used to carry out the present invention.

    GENERAL INTERPRETATION OF TERMS



    [0043] In understanding the scope of the present invention, the term "comprising" and its derivatives, as used herein, are intended to be open ended terms that specify the presence of the stated features, elements, components, groups, integers, and/or steps, but do not exclude the presence of other unstated features, elements, components, groups, integers and/or steps. The foregoing also applies to words having similar meanings such as the terms, "including", "having" and their derivatives. Also, the terms "part," "section," "portion," or "element" when used in the singular can have the dual meaning of a single part or a plurality of parts. Also, as used herein to describe the above embodiments, the following directional terms "forward", "rearward", and "above", as well as any other similar directional terms refer to those directions of a vehicle equipped with the vehicle state indication system. Accordingly, these terms, as utilized to describe the present invention should be interpreted relative to a vehicle equipped with the vehicle state indication system.

    [0044] The term "detect" as used herein to describe an operation or function carried out by a component, a section, a device or the like includes a component, a section, a device or the like that does not require physical detection, but rather includes determining, measuring, modeling, predicting or computing or the like to carry out the operation or function.

    [0045] The term "configured" as used herein to describe a component, section or part of a device includes hardware and/or software that is constructed and/or programmed to carry out the desired function.

    [0046] The terms of degree such as "substantially", as used herein mean a reasonable amount of deviation of the modified term such that the end result is not significantly changed.

    [0047] While only selected embodiments have been chosen to illustrate the present invention, it will be apparent to those skilled in the art from this disclosure that various changes and modifications can be made herein without departing from the scope of the invention as defined in the appended claims. For example, the size, shape, location or orientation of the various components can be changed as needed and/or desired. Components that are shown directly connected or contacting each other can have intermediate structures disposed between them. The functions of one element can be performed by two, and vice versa. The structures and functions of one embodiment can be adopted in another embodiment.

    [Description of Reference Numerals]



    [0048] 
    10
    Vehicle
    12
    Vehicle state indication system
    14
    Controller
    16
    Sound generator
    18
    Display system
    20
    Detection system
    22
    Light indication system
    24
    Vehicle location determination system



    Claims

    1. A vehicle, comprising:

    a vehicle state indication system (12) that indicates a state of the vehicle, including

    a detection system (20) configured to sense an external moving object;

    a light indicator (22), wherein the light indicator (22) comprises a light band (40) that indicates externally a direction of the external object when the external object is sensed by the detection system (20),

    characterized in that
    the light band (40) extends continuously running around left, front and right sides of the vehicle.


     
    2. The vehicle according to claim 1, the light indicator (22) including a first on mode and second on mode, and being disposed on the vehicle so as to be capable of selectively externally indicating a first state of the vehicle and a second state of the vehicle in a direction of the external moving object detected.
     
    3. The vehicle according to claim 2, wherein the vehicle state indication system (12) further comprises a text display (18) disposed on the vehicle so as to be capable of selectively externally indicating the first state of the vehicle and the second state of the vehicle in a forward direction of the vehicle.
     
    4. The vehicle according to claim 3, wherein the vehicle state indication system (12) further comprises a controller (14) in communication with the detection system (20), the controller (14) being programmed to determine whether the vehicle intends to enter the first state or the second state, and to activate the first on mode while the vehicle intends to enter the first state and the second on mode while vehicle intends to enter the second state.
     
    5. The vehicle according to claim 3 or 4, wherein the text display (18) is disposed on a dashboard of the vehicle.
     
    6. The vehicle according to any one of claims 3 to 5, wherein the first state of the vehicle is a stopped state, and the second state of the vehicle is an advancing state.
     
    7. The vehicle according to any one of claims 3 to 6, wherein the vehicle state indication system (12) is in communication with a vehicle location determination system (24), and when the vehicle location determination system (24) determines that the vehicle is in proximity to a stop sign, the text display (18) is configured to indicate the vehicle intends to enter a stopping state.
     
    8. The vehicle according to any one of claims 3 to 7, wherein the vehicle state indication system (12) is in communication with a vehicle location determination system (24), and when the vehicle location determination system (24) determines that the vehicle is in proximity to a crosswalk, and the detection system (20) determines a pedestrian is adjacent the crosswalk, the text display (18) is configured to the vehicle intends to enter a stopping state.
     
    9. The vehicle according to any one of claims 3 to 8, wherein the text display (18) is configured to transition from the second state to the first state, while the detection system (20) detects the external moving object.
     
    10. The vehicle according to any one of claims 3 to 9, wherein
    the external moving object is one of a plurality of external moving objects and the detection system (20) is configured to simultaneously detect the plurality of external moving objects, and
    the light indicator (22) is configured to indicate the first state of the vehicle and the second state of the vehicle in the direction of the plurality of external moving objects detected.
     
    11. The vehicle according to any one of claims 3 to 10, wherein the first on mode indicates the vehicle intends to remain in a stopped state, and the second on mode indicates that the vehicle intends to move in the forward direction.
     
    12. The vehicle according to any one of claims 3 to 11, wherein the first on mode is a first color and the second on mode is a second color, the first color being different from the second color.
     
    13. The vehicle according to any one of claims 3 to 12, wherein the vehicle state indication system (12) further comprises a sound generator (16) configured to generate a first sound when the light indicator (22) indicates the first on mode and a second sound when the light indicator (22) indicates the second on mode.
     
    14. The vehicle according to any one of claims 3 to 13, wherein the controller (14) is programmed to transition from the first on mode to the second on mode based on a predetermined event, and the controller (14) is capable of being manually set so as to change the predetermined event.
     


    Ansprüche

    1. Fahrzeug, umfassend:

    ein Fahrzeugzustands-Anzeigesystem (12), das einen Zustand des Fahrzeugs anzeigt, und das enthält

    ein Erkennungssystem (20), das eingerichtet ist, ein externes sich bewegendes Objekt zu erfassen;

    eine Lichtanzeige (22), wobei die Lichtanzeige (22) ein Lichtband (40) umfasst, das extern eine Richtung des externen Objekts anzeigt, wenn das externe Objekt von dem Erkennungssystem (20) erfasst wird,

    dadurch gekennzeichnet, dass
    das Lichtband (40) sich kontinuierlich umlaufend um linke, vordere und rechte Seiten des Fahrzeugs erstreckt.


     
    2. Fahrzeug nach Anspruch 1, wobei die Lichtanzeige (22) einen ersten An-Modus und einen zweiten An-Modus enthält und so auf dem Fahrzeug angeordnet ist, dass es fähig ist, selektiv extern einen ersten Zustand des Fahrzeugs und einen zweiten Zustand des Fahrzeugs in eine Richtung des erkannten externen sich bewegenden Objekts anzuzeigen.
     
    3. Fahrzeug nach Anspruch 2, wobei das Fahrzeugzustands-Anzeigesystem (12) ferner ein Textdisplay (18) umfasst, die so auf dem Fahrzeug angeordnet ist, dass es fähig ist, selektiv extern den ersten Zustand des Fahrzeugs und den zweiten Zustand des Fahrzeugs in eine Vorwärtsrichtung des Fahrzeugs anzuzeigen.
     
    4. Fahrzeug nach Anspruch 3, wobei das Fahrzeugzustands-Anzeigesystem (12) ferner eine Steuerung (14) umfasst, die in Kommunikation mit dem Erkennungssystem (20) steht, wobei die Steuerung (14) programmiert ist, zu bestimmen, ob das Fahrzeug beabsichtigt, den ersten Zustand oder den zweiten Zustand einzunehmen, und den ersten An-Modus während das Fahrzeug beabsichtigt, den ersten Zustand einzunehmen, und den zweiten An-Modus, während das Fahrzeug beabsichtigt, den zweiten Zustand einzunehmen, zu aktivieren.
     
    5. Fahrzeug nach Anspruch 3 oder 4, wobei das Textdisplay (18) auf einem Armaturenbrett des Fahrzeugs angeordnet ist.
     
    6. Fahrzeug nach einem der Ansprüche 3 bis 5, wobei der erste Zustand des Fahrzeugs ein angehaltener Zustand ist und der zweite Zustand des Fahrzeugs ein vorrückender Zustand ist.
     
    7. Fahrzeug nach einem der Ansprüche 3 bis 6, wobei das Fahrzeugzustands-Anzeigesystem (12) sich in Kommunikation mit einem Fahrzeugpositions-Bestimmungssystem (24) befindet, und wenn das Fahrzeugpositions-Bestimmungssystem (24) bestimmt, dass das Fahrzeug sich in der Nähe eines Stoppzeichens befindet, das Textdisplay (18) eingerichtet ist, anzuzeigen, dass das Fahrzeug beabsichtigt, einen angehaltenen Zustand einzunehmen.
     
    8. Fahrzeug nach einem der Ansprüche 3 bis 7, wobei das Fahrzeugzustands-Anzeigesystem (12) sich in Kommunikation mit einem Fahrzeugpositions-Bestimmungssystem (24) befindet, und wenn das Fahrzeugpositions-Bestimmungssystem (24) bestimmt, dass sich das Fahrzeug in der Nähe eines Fußgängerüberwegs befindet, und das Erkennungssystem (20) bestimmt, dass ein Fußgänger sich neben dem Fußgängerüberweg befindet, das Textdisplay (18) eingerichtet ist, dass das Fahrzeug beabsichtigt, einen angehaltenen Zustand einzunehmen.
     
    9. Fahrzeug nach einem der Ansprüche 3 bis 8, wobei das Textdisplay (18) eingerichtet ist, von dem zweiten Zustand in den ersten Zustand überzugehen, während das Erkennungssystem (20) das externe sich bewegende Objekt erkennt.
     
    10. Fahrzeug nach einem der Ansprüche 3 bis 9, wobei
    das externe sich bewegende Objekt eines ist aus einer Mehrzahl externer sich bewegender Objekte, und das Erkennungssystem (20) eingerichtet ist, gleichzeitig die Mehrzahl externer sich bewegender Objekte zu erkennen, und
    die Lichtanzeige (22) eingerichtet ist, den ersten Zustand des Fahrzeugs und den zweiten Zustand des Fahrzeugs in die Richtung der erkannten Mehrzahl externer sich bewegender Objekte anzuzeigen.
     
    11. Fahrzeug nach einem der Ansprüche 3 bis 10, wobei der erste An-Modus anzeigt, dass das Fahrzeug beabsichtigt, in einem angehaltenen Zustand zu bleiben, und der zweite An-Modus anzeigt, dass das Fahrzeug beabsichtigt, sich in die Vorwärtsrichtung zu bewegen.
     
    12. Fahrzeug nach einem der Ansprüche 3 bis 11, wobei der erste An-Modus eine erste Farbe ist und der zweite An-Modus eine zweite Farbe ist, wobei die erste Farbe sich von der zweiten Farbe unterscheidet.
     
    13. Fahrzeug nach einem der Ansprüche 3 bis 12, wobei das Fahrzeugzustands-Anzeigesystem (12) ferner einen Tonerzeuger (16) umfasst, der eingerichtet ist, einen ersten Ton, wenn die Lichtanzeige (22) den ersten An-Modus anzeigt, und einen zweiten Ton, wenn die Lichtanzeige (22) den zweiten An-Modus anzeigt, zu erzeugen.
     
    14. Fahrzeug nach einem der Ansprüche 2 bis 13, wobei die Steuerung (14) programmiert ist, von dem ersten An-Zustand in den zweiten An-Zustand überzugehen, auf Grundlage eines vorbestimmten Ereignisses, und die Steuerung (14) fähig ist, manuell eingestellt zu werden, so dass das vorbestimmte Ereignis geändert wird.
     


    Revendications

    1. Véhicule, comprenant:

    un système d'affichage d'état de véhicule (12) qui indique l'état du véhicule, y compris

    un système de détection (20) configuré pour détecter un objet externe en mouvement ;

    un indicateur lumineux (22), dans lequel l'indicateur lumineux (22) comprend une bande lumineuse (40) qui indique extérieurement une direction de l'objet extérieur lorsque l'objet extérieur est détecté par le système de détection (20),

    caractérisé en ce que
    la bande lumineuse (40) s'étend en continu sur les côtés gauche, avant et droit du véhicule.


     
    2. Véhicule selon la revendication 1, l'indicateur lumineux (22) comprenant un premier état d'allumage et un second état d'allumage, et étant disposé sur le véhicule de manière à pouvoir indiquer sélectivement de l'extérieur un premier état du véhicule et un second état du véhicule dans une direction de l'objet mobile extérieur détecté.
     
    3. Véhicule selon la revendication 2, dans lequel le système d'affichage d'état de véhicule (12) comprend en outre un affichage de texte (18) disposé sur le véhicule de manière à pouvoir indiquer de manière sélective et externe le premier état du véhicule et le second état du véhicule dans une direction avant du véhicule.
     
    4. Véhicule selon la revendication 3, dans lequel le système d'affichage d'état de véhicule (12) comprend en outre un dispositif de commande (14) en communication avec le système de détection (20), le dispositif de commande (14) étant programmé pour déterminer si le véhicule a l'intention d'entrer dans le premier état ou dans le second état, et pour activer le premier état de marche alors que le véhicule veut passer dans le premier état et le second en état marche alors que le véhicule veut passer dans le second état.
     
    5. Véhicule selon les revendications 3 ou 4, dans lequel l'affichage de texte (18) est disposé sur un tableau de bord du véhicule.
     
    6. Véhicule selon l'une des revendications 3 à 5, dans lequel le premier état du véhicule est un état arrêté, et le second état du véhicule est un état en marche.
     
    7. Véhicule selon l'une des revendications 3 à 6, dans lequel le système d'affichage d'état de véhicule (12) est en communication avec un système de détermination de la position du véhicule (24), et lorsque le système de détermination de la position du véhicule (24) détermine que le véhicule est à proximité d'un panneau d'arrêt, l'affichage de texte (18) est configuré pour indiquer que le véhicule a l'intention d'entrer dans un état d'arrêt.
     
    8. Véhicule selon l'une quelconque des revendications 3 à 7, dans lequel le système d'affichage d'état de véhicule (12) est en communication avec un système de détermination de l'emplacement du véhicule (24), et lorsque le système de détermination de l'emplacement du véhicule (24) détermine que le véhicule est à proximité d'un passage pour piétons, et que le système de détection (20) détermine qu'un piéton est adjacent au passage pour piétons, l'affichage de texte (18) est configuré pour que le véhicule ait l'intention d'entrer dans un état d'arrêt.
     
    9. Véhicule selon l'une des revendications 3 à 8, dans lequel l'affichage de texte (18) est configuré pour passer du second au premier état, tandis que le système de détection (20) détecte l'objet mobile externe.
     
    10. Véhicule selon l'un des revendications 3 à 9, dans lequel
    l'objet mobile externe fait partie d'une pluralité d'objets mobiles externes et le système de détection (20) est configuré pour détecter simultanément la pluralité d'objets mobiles externes, et
    le témoin lumineux (22) est configuré pour indiquer le premier état du véhicule et le second état du véhicule dans la direction de la pluralité d'objets mobiles externes détectés.
     
    11. Véhicule selon l'une des revendications 3 à 10, dans lequel le premier état de marche indique que le véhicule a l'intention de rester à l'arrêt, et le second état de marche indique que le véhicule a l'intention de se déplacer vers l'avant.
     
    12. Véhicule selon l'une des revendications 3 à 11, dans lequel le premier état de mise en marche est une première couleur et le second état de mise en marche est une seconde couleur, la première couleur étant différente de la seconde.
     
    13. Véhicule selon l'une quelconque des revendications 3 à 12, dans lequel le système d'affichage d'état de véhicule (12) comprend en outre un générateur de son (16) configuré pour générer un premier son lorsque le témoin lumineux (22) indique le premier état de marche et un second son lorsque le témoin lumineux (22) indique le second état de marche.
     
    14. Véhicule selon l'une quelconque des revendications 3 à 13, dans lequel le dispositif de commande (14) est programmé pour passer du premier état de marche au second état de marche sur la base d'un événement prédéterminé, et le dispositif de commande (14) peut être réglé manuellement de manière à changer l'événement prédéterminé.
     




    Drawing




































    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description