(19)
(11)EP 3 358 328 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
11.12.2019 Bulletin 2019/50

(21)Application number: 18151241.9

(22)Date of filing:  11.01.2018
(51)International Patent Classification (IPC): 
G01L 9/00(2006.01)
G01L 19/14(2006.01)
G01L 9/06(2006.01)

(54)

PRESSURE SENSOR HAVING SENSE ELEMENTS IN MULTIPLE WHEATSTONE BRIDGES WITH CHAINED OUTPUTS

DRUCKSENSOR MIT MEHREREN WHEATSTONE-BRÜCKEN SENSORELEMENTEN MIT HINTEREINANDER GESCHALTETEN AUSGÄNGEN

CAPTEUR DE PRESSION AVEC PLUSIEURS ÉLÉMENTS DE CAPTEURS DE WHEASTONE AVEC DES SORTIES À COMMUTATION ARRIÈRE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 06.02.2017 US 201715424994

(43)Date of publication of application:
08.08.2018 Bulletin 2018/32

(73)Proprietor: NXP USA, Inc.
Austin TX 78735 (US)

(72)Inventors:
  • HOLM, Paige M.
    5656 AG Eindhoven (NL)
  • SCHLARMANN, Mark Edward
    5656 AG Eindhoven (NL)

(74)Representative: Hardingham, Christopher Mark 
NXP Semiconductors Intellectual Property Group Abbey House 25 Clarendon Road
Redhill, Surrey RH1 1QZ
Redhill, Surrey RH1 1QZ (GB)


(56)References cited: : 
EP-A2- 0 436 920
JP-A- 2000 162 065
CN-A- 105 628 263
US-A1- 2017 102 275
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    TECHNICAL FIELD OF THE INVENTION



    [0001] The present invention relates generally to microelectromechanical systems (MEMS) pressure sensors. More specifically, the present invention relates to a MEMS pressure sensor having a multiple Wheatstone bridge configuration of sense elements in which the Wheatstone bridge outputs are directly chained for enhanced amplitude output.

    BACKGROUND OF THE INVENTION



    [0002] Conventional piezoresistive pressure sensors are formed by a Wheatstone bridge that includes four piezoresistors. These four piezoresistors are placed near the edge of a deformable membrane, i.e., a diaphragm, where the stress change is high under external pressure. Of the four piezoresistors, two are oriented to provide an increase in resistance when external pressure is applied to the diaphragm and two are oriented to provide a decrease in resistance under the same applied external pressure. Accordingly, the output of the Wheatstone bridge is a differential voltage that changes with external applied pressure.

    [0003] In general, there are two types of pressure sensor designs based on Wheatstone bridges. One type of design places all four piezoresistors of the Wheatstone bridge proximate one edge of the diaphragm. The other type of design places one piezoresistor of the Wheatstone bridge on each of the four edges of the diaphragm. In either configuration, an electronic circuit detects the resistance changes of the piezoresistive bridge and outputs an electrical signal representative of the external applied pressure.

    [0004] Increasing the sensitivity of a pressure sensor may provide improved resolution and therefore yield improved device performance. Device sensitivity may be increased by increasing the lateral dimensions of the diaphragm. That is, a bigger diaphragm can provide higher deflection under a given applied external pressure and generate more change in stress at the piezoresistor locations. More change in stress at the piezoresistor locations produces a larger electrical output, therefore increased sensitivity. However, a larger diaphragm has the disadvantages of more fragile die/wafer, larger die size/higher cost, and degraded linearity performances.

    [0005] For instance, US 2017 / 102 275 A1 relates to a signal processing circuit with a pressure-sensitive sensor array, which includes a pressure-sensitive sensor array with M rows and N columns, and an excitation source adapted for outputting positive and negative excitation voltages. The positive output terminals of the sensing units at a same row of the pressure-sensitive sensor array are connected with each other and act as an output of the row. The negative output terminals of the sensing units at a same column of the pressure-sensitive sensor array are connected with each other and act as an output of the column. Consequently, the whole pressure-sensitive sensor array has a positive excitation input end, a negative excitation input end, M row output signals and N column output signals.

    [0006] Further, EP 0 436 920 A2 relates to a pressure sensor with strain gauges such as thick-film resistance strain gauges arranged on a diaphragm. The strain gauges are connected to form a Wheatstone bridge, where branches of the bridge circuit have compensating resistors. The compensating resistors are arranged outside the active area of the diaphragm.

    [0007] The pressure sensor according to the present invention is defined in claim 1. Further advantages embodiments of the pressure sensor are defined in the dependent claims 2-11.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0008] The accompanying figures in which like reference numerals refer to identical or functionally similar elements throughout the separate views, the figures are not necessarily drawn to scale, and which together with the detailed description below are incorporated in and form part of the specification, serve to further illustrate various embodiments and to explain various principles and advantages all in accordance with the present invention.

    FIG. 1 shows a side view of a pressure sensor in a simplified form;

    FIG. 2 shows a top view of a pressure sensing element of the pressure sensor of FIG. 1 in accordance with an embodiment;

    FIG. 3 shows a circuit diagram corresponding to the pressure sensing element of FIG. 2;

    FIG. 4 shows a generalized circuit diagram demonstrating a chained arrangement of Wheatstone bridges of the multiple embodiments of the pressure sensor of FIG. 1;

    FIG. 5 shows a table associated with the circuit diagram of FIG. 4 demonstrating sensitivity enhancement of a pressure sensor having the chained arrangement of multiple Wheatstone bridges;

    FIG. 6 shows a top view of a pressure sensing element for a pressure sensor in accordance with another embodiment;

    FIG. 7 shows a circuit diagram corresponding to the multiple Wheatstone bridge configuration of the pressure sensing element of FIG. 6;

    FIG. 8 shows a top view of a pressure sensing element for a pressure sensor in accordance with another embodiment;

    FIG. 9 shows a circuit diagram corresponding to the multiple Wheatstone bridge configuration of the pressure sensing element of FIG. 8;

    FIG. 10 shows a top view of a pressure sensing element for a pressure sensor in accordance with another embodiment;

    FIG. 11 shows a circuit diagram corresponding to the multiple Wheatstone bridge configuration of the pressure sensing element of FIG. 10;

    FIG. 12 shows a top view of a pressure sensing element for a pressure sensor in accordance with another embodiment; and

    FIG. 13 shows a circuit diagram corresponding to the multiple Wheatstone bridge configuration of the pressure sensing element of FIG. 12.


    DETAILED DESCRIPTION



    [0009] In overview, the present disclosure concerns a pressure sensor with enhanced sensitivity. More particularly, the pressure sensor includes a multiple Wheatstone bridge configuration of piezoresistors that are located within differing high stress spots of a pressure sensor diaphragm. The Wheatstone bridges are driven with current sources to allow the bridge potentials to float. Further, the differential voltage outputs of the Wheatstone bridges are combined by directly chaining the outputs together to yield a single composite output having enhanced sensitivity and improved signal-to-noise ratio performance. As such, various inventive concepts and principles embodied in the pressure sensor may improve product quality while enabling cost savings.

    [0010] The instant disclosure is provided to further explain in an enabling fashion the best modes, at the time of the application, of making and using various embodiments in accordance with the present invention. The disclosure is further offered to enhance an understanding and appreciation for the inventive principles and advantages thereof, rather than to limit in any manner the invention. The invention is defined solely by the appended claims.

    [0011] It should be understood that the use of relational terms, if any, such as first and second, top and bottom, and the like are used solely to distinguish one from another entity or action without necessarily requiring or implying any actual such relationship or order between such entities or actions.

    [0012] Referring to FIG. 1, FIG. 1 shows a side view of a pressure sensor 20 in a simplified form. In general, pressure sensor 20 is formed as a single die 22 that includes a microelectromechanical systems (MEMS) pressure sensing portion 24 and an application specific integrated circuit (ASIC) portion 26 in electrical communication with pressure sensing portion 24. Die 22 may, in some configurations, be coupled to a common base 28. For simplicity of illustration pressure sensing portion 24 is delineated from ASIC portion 26 by a dashed line. However, those skilled in the art will recognize that pressure sensing portion 24 and ASIC portion 26 may be integrated in any suitable configuration. Alternatively, some embodiments may entail a pressure sensing element that is fabricated and packaged separately from the associated ASIC die.

    [0013] Pressure sensing portion 24 generally includes a substrate 30 having a cavity 32. A deformable membrane, referred to herein as a diaphragm 34, is suspended across cavity 32. In some embodiments, die 22 may be encapsulated in a molding compound 36. A port 38 may thus extend through molding compound 36 so as to expose diaphragm 34 of pressure sensing portion 24 to an external applied pressure, P, 40. Under external applied pressure 40, diaphragm 34 deforms. Die 22 thus detects the resistance changes of piezoresistors (discussed below) provided in diaphragm 34 and outputs an electrical signal representative of external applied pressure 40. Although an overmolded die configuration is shown, it should be understood that other configurations may entail a cavity package, a chip scale package, or any other suitable package.

    [0014] FIG. 2 shows a top view of a pressure sensing element 41 that may be incorporated in pressure sensor 20 in accordance with an embodiment. In particular, diaphragm 34 is shown with a plurality of sense elements, e.g., piezoresistors, provided therein. Diaphragm 34 has first, second, third, and fourth outer edges 42, 44, 46, and 48. In an example, first and third outer edges 42, 46 are disposed on opposing sides of a surface 50 of diaphragm 34. Similarly, second and fourth outer edges 44, 48 are disposed on opposing sides of surface 50 of diaphragm 34 and are interposed between first and third outer edges 42, 46. Thus, surface 50 is circumscribed by first, second, third, and fourth outer edges 42, 44, 46, 48. A dashed line box represents the outer perimeter of cavity 32 underlying diaphragm 34. Although a rectangular diaphragm 34 is shown, diaphragm 34 may be round, oval, or any other suitable shape in other embodiments.

    [0015] The stress levels are higher near the edges of the region above cavity 32. In the illustrated configuration, the edges of the region above cavity 32 are approximately along the perimeter of diaphragm 34, i.e. near first, second, third, and fourth outer edges 42, 44, 46, 48 relative to other regions of diaphragm 34. Thus, in an embodiment, pressure sensing element 41 includes multiple Wheatstone bridge circuits. Each of the Wheatstone bridges includes four piezoresistors, with the four piezoresistors being placed together in a localized manner near one outer edge of diaphragm 34. In this example, a first group of piezoresistors is provided in diaphragm 34 proximate first outer edge 42 of diaphragm 34. The piezoresistors of the first group are coupled to one another to form a first Wheatstone bridge 52. A second group of piezoresistors is provided in diaphragm 34 proximate second outer edge 44 of diaphragm 34. The piezoresistors of the second group are coupled to one another to form a second Wheatstone bridge 54. Similarly, a third group of piezoresistors is provided in diaphragm 34 proximate third outer edge 46 of diaphragm 34. The piezoresistors of the third group are coupled to one another to form a third Wheatstone bridge 56. A fourth group of piezoresistors is provided in diaphragm 34 proximate fourth outer edge 48 of diaphragm 34. The piezoresistors of the fourth group are coupled to one another to form a fourth Wheatstone bridge 58.

    [0016] Each of first, second, third, and fourth Wheatstone bridges 52, 54, 56, 58 is approximately equidistant from its respective, first, second, third, and fourth outer edges 42, 44, 46, 48. In an ideal configuration, diaphragm 34 would be centered over cavity 32 (as shown in FIG. 2) so that each of first, second, third, and fourth Wheatstone bridges 52, 54, 56, 58 is subject to approximately the same stress level on surface 50 of diaphragm 34 as a function of the distance from a center of cavity 32 in response to external applied pressure 40 (FIG. 1).

    [0017] With particular reference to the structure and arrangement of the Wheatstone bridges, first Wheatstone bridge 52 includes a first leg 62 having a first piezoresistor 64, labeled R1, a second leg 66 having a second piezoresistor 68, labeled R2, a third leg 70 having a third piezoresistor 72, labeled R3, and a fourth leg 74 having a fourth piezoresistor 76, labeled R4. First and fourth piezoresistors 64, 76 are coupled in series to form a first half of first Wheatstone bridge 52. Second and third piezoresistors 68, 72 are coupled in series to form a second half of first Wheatstone bridge 52. The first half of first Wheatstone bridge 52 is coupled in parallel with the second half of first Wheatstone bridge 52 such that a first node between first and second piezoresistors 64, 68 forms a first positive input node 78, labeled VP1, and a second node between third and fourth piezoresistors 72, 76 forms a first negative input node 80, labeled VN1. In accordance with the Wheatstone bridge configuration, a third node between first and fourth piezoresistors 64, 76 forms a first positive output node 82, labeled SP1, and a fourth node between second and third piezoresistors 68, 72 forms a first negative output node 84, labeled SN1. The nomenclature "first" with respect to the specific nodes and the subscript "1" is used herein to correlate with first Wheatstone bridge 52. It can be readily observed that first and third legs 62, 70 are oriented substantially parallel to first outer edge 42 of diaphragm 34. Additionally, second and fourth legs 66, 74 are oriented substantially normal, i.e., perpendicular, to first outer edge 42 of diaphragm 34.

    [0018] Now with reference to second Wheatstone bridge 54, second Wheatstone bridge 54 includes a first leg 86 having a first piezoresistor 88, labeled R5, a second leg 90 having a second piezoresistor 92, labeled R6, a third leg 94 having a third piezoresistor 96, labeled R7, and a fourth leg 98 having a fourth piezoresistor 100, labeled R8. First and fourth piezoresistors 88, 100 are coupled in series to form a first half of second Wheatstone bridge 54. Second and third piezoresistors 92, 96 are coupled in series to form a second half of second Wheatstone bridge 54. The first half of second Wheatstone bridge 54 is coupled in parallel with the second half of second Wheatstone bridge 54 such that a first node between first and second piezoresistors 88, 92 forms a second positive input node 102, labeled VP2, and a second node between third and fourth piezoresistors 96, 100 forms a second negative input node 104, labeled VN2. In accordance with the Wheatstone bridge configuration, a third node between first and fourth piezoresistors 88, 100 forms a second positive output node 106, labeled SP2, and a fourth node between second and third piezoresistors 92, 96 forms a second negative output node 108, labeled SN2. The nomenclature "second" with respect to the specific nodes and the subscript "2" is used herein to correlate with second Wheatstone bridge 54. First and third legs 86, 94 are oriented substantially parallel to second outer edge 44 of diaphragm 34. Additionally, second and fourth legs 90, 98 are oriented substantially normal, i.e., perpendicular, to second outer edge 44 of diaphragm 34.

    [0019] Referring now to third Wheatstone bridge 56, third Wheatstone bridge 56 includes a first leg 112 having a first piezoresistor 114, labeled R9, a second leg 116 having a second piezoresistor 118, labeled R10, a third leg 120 having a third piezoresistor 122, labeled R11, and a fourth leg 124 having a fourth piezoresistor 126, labeled R12. First and fourth piezoresistors 114, 126 are coupled in series to form a first half of third Wheatstone bridge 56. Second and third piezoresistors 118, 122 are coupled in series to form a second half of third Wheatstone bridge 56. The first half of third Wheatstone bridge 56 is coupled in parallel with the second half of third Wheatstone bridge 56 such that a first node between first and second piezoresistors 114, 118 forms a third positive input node 128, labeled VP3, and a second node between third and fourth piezoresistors 122, 126 forms a third negative input node 130, labeled VN3. In accordance with the Wheatstone bridge configuration, a third node between first and fourth piezoresistors 114, 126 forms a third positive output node 132, labeled SP3, and a fourth node between second and third piezoresistors 118,122 forms a third negative output node 134, labeled SN3. The nomenclature "third" with respect to the specific nodes and the subscript "3" is used herein to correlate with third Wheatstone bridge 56. It can be readily observed that first and third legs 112, 120 are oriented substantially parallel to third outer edge 46 of diaphragm 34. Additionally, second and fourth legs 116, 124 are oriented substantially normal, i.e., perpendicular, to third outer edge 46 of diaphragm 34.

    [0020] Fourth Wheatstone bridge 58 includes a first leg 136 having a first piezoresistor 138, labeled R13, a second leg 140 having a second piezoresistor 142, labeled R16, a third leg 144 having a third piezoresistor 146, labeled R15, and a fourth leg 148 having a fourth piezoresistor 150, labeled R16. First and fourth piezoresistors 138, 150 are coupled in series to form a first half of fourth Wheatstone bridge 58. Second and third piezoresistors 142, 146 are coupled in series to form a second half of fourth Wheatstone bridge 58. The first half of fourth Wheatstone bridge 58 is coupled in parallel with the second half of fourth Wheatstone bridge 58 such that a first node between first and second piezoresistors 138, 142 forms a fourth positive input node 152, labeled VP4, and a second node between third and fourth piezoresistors 146, 150 forms a fourth negative input node 154, labeled VN4. In accordance with the Wheatstone bridge configuration, a third node between first and fourth piezoresistors 138, 150 forms a fourth positive output node 156, labeled SP4, and a fourth node between second and third piezoresistors 142, 146 forms a fourth negative output node 158, labeled SN4. The nomenclature "fourth" with respect to the specific nodes and the subscript "4" is used herein to correlate with fourth Wheatstone bridge 58. Again, it can be readily observed that first and third legs 136, 144 are oriented substantially parallel to fourth outer edge 48 of diaphragm 34. Additionally, second and fourth legs 140, 148 are oriented substantially normal, i.e., perpendicular, to fourth outer edge 48 of diaphragm 34.

    [0021] Referring to FIG. 3 concurrently with FIG. 2, FIG. 3 shows a circuit diagram 159 corresponding to the multiple Wheatstone bridge configuration of pressure sensing element 41. In particular, FIG. 3 shows first, second, third, and fourth Wheatstone bridges 52, 54, 56, 58 of pressure sensing element 41 and their interconnection to form a chained arrangement 174 of Wheatstone bridges in accordance with an embodiment.

    [0022] A pressure sensor, e.g., pressure sensor 20 (FIG. 1), having first, second, third, and fourth Wheatstone bridges 52, 54, 56, 58 of pressure sensing element 41 includes a current source 160 interconnected between respective positive and negative input nodes of each of first, second, third, and fourth Wheatstone bridges 52, 54, 56, 58. It should be understood, that each of first, second, third, and fourth Wheatstone bridges 52, 54, 56, 58 has a distinct current source 160 interconnected between its associated positive and negative input nodes. That is, current source 160 is interconnected between first positive and negative input nodes 78, 80 of first Wheatstone bridge 52. Similarly, current source 160 is interconnected between second positive and negative input nodes 102, 104 of second Wheatstone bridge 54. Current source 160 is interconnected between third positive and negative input nodes 128, 130 of third Wheatstone bridge 56. And, current source 160 is interconnected between fourth positive and negative input nodes 152, 154 of fourth Wheatstone bridge 58. Thus, current source 160 is configured to deliver a supply current, denoted by an arrow 162, to each of first, second, third, and fourth Wheatstone bridges 52, 54, 56, 58. However, in the illustrated configuration, first negative input node 80 is electrically coupled to a system ground 164, whereas the remaining second, third, and fourth negative nodes 104, 130, 154 are not coupled to system ground 164.

    [0023] Now with reference to the Wheatstone bridge outputs, first positive output node 82 of first Wheatstone bridge 52 is electrically connected to a positive terminal 166 of a differential amplifier 168 within, for example, ASIC portion 26 (FIG. 1) of pressure sensor 20 (FIG. 1). However, first negative output node 84 of first Wheatstone bridge 52 is electrically connected to second positive output node 106 of second Wheatstone bridge 54. Similarly, second negative output node 108 of second Wheatstone bridge 54 is electrically connected to third positive output node 132 of third Wheatstone bridge 56. Third negative output node 134 of third Wheatstone bridge 56 is electrically connected to fourth positive output node 156 of fourth Wheatstone bridge 58. And, fourth negative output node 158 of fourth Wheatstone bridge is electrically connected to a negative terminal 170 of differential amplifier 168. Differential amplifier 168 further includes an output terminal 172 configured to provide a conditioned composite output signal, A(NVOUT), as a function of external pressure stimulus 40 (FIG. 1) detected by each of first, second, third, and fourth Wheatstone bridges 52, 54, 56, 58, where "A" denotes the gain imposed by differential amplifier 168.

    [0024] Accordingly, circuit diagram 159 illustrates a directly chained (i.e., linked, stacked, or cascaded) arrangement 174 of Wheatstone bridges. More particularly, chained arrangement 174 is produced via an interconnection of a negative output node of a preceding Wheatstone bridge with a positive output node of a successive Wheatstone bridge. This direct chaining can be accomplished within pressure sensor portion 24 of pressure sensor 20 (FIG. 1), by forming the interconnects between bridges either on or immediately surrounding diaphragm 34.

    [0025] To allow the Wheatstone bridge outputs to be chained together (e.g., chained arrangement 174), Wheatstone bridges 52, 54, 56, 58 are driven with current source 160 in lieu of a traditional voltage source. This allows all but one of Wheatstone bridges 52, 54, 56, 58 in chained arrangement 174 to float to voltage potentials set by the chained voltages of their outputs (as will be discussed in greater detail below). With each Wheatstone bridge 52, 54, 56, 58 driven by supply current 162, I, equivalent to the current of a maximally-biased, standard bridge configuration (VP/R=VS/R), a chained output signal is a composite, or combination, of each of Wheatstone bridges 52, 54, 56, 58. The chained output signal, referred to herein as composite output signal 176, labeled NVOUT, will be approximately "N" times that of a single Wheatstone bridge, where "N" represents the number of Wheatstone bridges, as will be discussed in greater detail in connection with FIGs. 4 and 5. In addition, the noise will only be the square root of N as large so that the signal-to-noise ratio will also improve (discussed below). Still further, the offset distribution may be narrowed by the square root of N as the offsets of the Wheatstone bridges will add algebraically so that the random components of the offsets will see some cancellation effect.

    [0026] Referring now to FIGs. 4 and 5, FIG. 4 shows a generalized circuit diagram 178 demonstrating a chained arrangement 180 of Wheatstone bridges 182, 184, 186 of sense elements 187 (e.g., piezoresistors) of the multiple embodiments of pressure sensor 20 (FIG. 1), and FIG. 5 shows a table 188 associated with circuit diagram 178 demonstrating sensitivity enhancement of a pressure sensor having chained arrangement 180 of multiple Wheatstone bridges 182, 184, 186. Ellipses 190 provided in circuit diagram 178 indicate that chained arrangement 180 can have any suitable number "N" of Wheatstone bridges in accordance with an implementation of a pressure sensing element of a pressure sensor.

    [0027] Each of Wheatstone bridges is driven by a current source 192 interconnected between positive input nodes 194 and negative input nodes 196 of each of Wheatstone bridges 182, 184, 186. Additionally, a positive output node 198 of a "first" Wheatstone bridge 182 is electrically connected to a positive terminal 200 of a differential amplifier 202. A negative output node 204 of Wheatstone bridge 182 is electrically connected to a positive output node 206 of the "second" Wheatstone bridge 184 in chained arrangement 180. A negative output node 208 of Wheatstone bridge 184 is electrically connected to a positive output node 210 of the "third" Wheatstone bridge 186 in chained arrangement. A negative output node 212 of Wheatstone bridge 186 is electrically connected to a positive output node, labeled SPN, of the next Wheatstone bridge, and so forth. Thus, the negative output node, labeled SNN, of the last Wheatstone bridge of chained arrangement is electrically coupled to a negative terminal 214 of differential amplifier 202.

    [0028] Only one of Wheatstone bridges (i.e., Wheatstone bridge 182 in this example) is electrically connected to a system ground 213, while the remaining Wheatstone bridges 184, 186 are not. As such, the voltage potentials of each of Wheatstone bridges 184, 186 are allowed to float and their differential voltage outputs, VOUT, can be combined by directly chaining the Wheatstone bridges together in chained arrangement 180, as described above.

    [0029] In an embodiment, the resistance, R, of each of sense elements 187 of Wheatstone bridges 182, 184, 186 is the same without application of external pressure 40 (FIG. 1). When currents 216 are injected into the input nodes of the Wheatstone bridges, voltages appear at the output nodes of the Wheatstone bridges. The voltages change in response to changes in the values, R, of sense elements 187. Since sense elements 187 are formed in diaphragm 34 (FIG. 1) of the pressure sensing element, the nominal resistance of each of sense elements 187 will change when diaphragm 34 deflects in response to external pressure 40 (FIG. 1).

    [0030] Accordingly, and with particular reference to table 188 of FIG. 5, when supply current 216 is applied between positive and negative input nodes 194, 196 of Wheatstone bridge 182, the voltage at positive input node 194, VP1, is IR (current times resistance, where R represents the impedance of the bridge) while the voltage at negative input node 196, VN1 is zero since negative input node 196 is tied to system ground 213 (whether or not external pressure is applied). Without application of external pressure 40, none of Wheatstone bridges 182, 184, 186 float to higher potentials and the voltages of similar nodes in each of Wheatstone bridges 184, 186 mirrors Wheatstone bridge 182. Thus, positive output node 194 (VP2, VP3) of each of Wheatstone bridges 184, 186 is approximately IR and negative output node 196 (VN2, VN3) of each of Wheatstone bridges 184, 186 is approximately zero. Further, voltages at each of positive output nodes 198, 206, 210 and at each of negative output nodes 204, 208, 212 sit at IR/2.

    [0031] However, with application of external pressure 40, positive output node 198 (electrically connected to positive terminal 200 of differential amplifier 202) has a voltage potential of IR/2+VOUT/2 and negative output node 208 has a voltage potential of IR/2-VOUT/2. Due to chained arrangement 180, the voltage at positive output node 206 (SP2) of the successive Wheatstone bridge 184 is equal to negative output node 204 (SN1) of the preceding Wheatstone bridge 182. Similarly, the voltage at positive output node 210 of the successive Wheatstone bridge 186 (SP3) is equal to negative output node 208 (SN2) of the preceding Wheatstone bridge 184. This analysis can be carried further with the successive Wheatstone bridge following Wheatstone bridge 186 in chained arrangement 180. By implementing current sources 192, the potentials of each of Wheatstone bridges are allowed to float. As such, their differential voltage outputs are combined by directly chaining the signals together in chained arrangement 180. Effectively, the net result is that the voltage output of chained arrangement 180 of the Wheatstone bridges is a composite output signal of NVOUT where N is the quantity of Wheatstone bridges in chained arrangement 180. In other words, the voltage output, VOUT, of each Wheatstone bridge is effectively summed together.

    [0032] Summation of the voltage output of each Wheatstone bridge yields higher sensitivity to the application of external pressure 40 than that of a single Wheatstone bridge. Further, signal-to-noise benefits can be achieved. For example, when combining two nominally equal noisy voltage signals, the resultant output voltage is the sum of the two signals. However, the resulting noise level in the output is only

    of the noise in each signal. Extending this principle to the combination of "N" of the same but independent voltage signals, the output signal level is increased by a factor of "N" while the noise increases by only

    This yields a net improvement in the signal-to-noise ratio (SNR) by a factor of

    albeit at an increased power level. This principle applies only if the signals are totally uncorrelated. The signals coming from multiple Wheatstone bridges placed on the same diaphragm are generally uncorrelated. Therefore, the SNR is approximately

    greater than a conventional single Wheatstone bridge design. Accordingly, by combining outputs of multiple Wheatstone bridges, the SNR will scale with

    Additionally, the offset distribution may be narrowed by

    as the offset error of each of the Wheatstone bridges will add algebraically so that the random components of the offset error will see some cancellation effects. Further, for a fixed SNR, a reduction in sensor power consumption may be realized by summing the independent voltages across multiple resistive segments (e.g., multiple Wheatstone bridge outputs) when each are driven independently at proportionally reduced current levels.

    [0033] FIGs. 6-13 provide alternative configurations of sense elements provided in diaphragm 34 of a pressure sensing element. Each of the alternative configurations includes multiple Wheatstone bridges suitably positioned in high stress regions of diaphragm 34 relative to the remainder of diaphragm 34. However, each of the alternative configurations entails the chained configuration of multiple Wheatstone bridges in order to realize the benefits of increased sensitivity, improved SNR performance, reduced offset error, and so forth.

    [0034] Referring to FIGs. 6 and 7, FIG. 6 shows a top view of a pressure sensing element 218 for a pressure sensor (e.g., pressure sensor 20 of FIG. 1) in accordance with another embodiment and FIG. 7 shows a circuit diagram 220 corresponding to a multiple Wheatstone bridge configuration of pressure sensing element 218. The small size of localized Wheatstone bridges of sense elements 187 (e.g., piezoresistors) can enable the placement of multiple Wheatstone bridges located along the perimeter of diaphragm 34, i.e. near first, second, third, and fourth outer edges 42, 44, 46, 48.

    [0035] In this illustration, two Wheatstone bridges 222 (having sense elements 187 of R1, R2, R3, R4) and 224 (having sense elements 187 of R5, R6, R7, R8) are located proximate first outer edge 42 of diaphragm 34. Two Wheatstone bridges 226 (having sense elements 187 of R9, R10, R11, R12) and 228 (having sense elements 187 of R13, R14, R15, R16) are located proximate second outer edge 44 of diaphragm 34. Two Wheatstone bridges 230 (having sense elements 187 of R17, R18, R19, R20) and 232 (having sense elements 187 of R21, R22, R23, R24) are located proximate third outer edge 46 of diaphragm 34. And, two Wheatstone bridges 234 (having sense elements 187 of R25, R26, R27, R28) and 236 (having sense elements 187 of R29, R30, R31, R32) are located proximate fourth outer edge 48 of diaphragm 34.

    [0036] With particular reference to FIG. 7, each of Wheatstone bridges 222, 224, 226, 228, 230, 232, 234, 236 is driven by a current source 238 interconnected between positive input nodes 240 and negative input nodes 242 of each of Wheatstone bridges 222, 224, 226, 228, 230, 232, 234, 236. Additionally, only one of Wheatstone bridges (i.e., Wheatstone bridge 222) is electrically connected to a system ground 244, while the remaining Wheatstone bridges 224, 226, 228, 230, 232, 234, 236 are not.

    [0037] Each of Wheatstone bridges 222, 224, 226, 228, 230, 232, 234, 236 of pressure sensing element 218 includes a positive output node 246 and a negative output node 248. Further, like the previously described configuration, Wheatstone bridges 222, 224, 226, 228, 230, 232, 234, 236 are suitably connected to form a chained arrangement 250 of Wheatstone bridges 222, 224, 226, 228, 230, 232, 234, 236. As such, positive output node 246 of a "first" Wheatstone bridge 222 is electrically connected to a positive terminal 252 of a differential amplifier 254. Negative output node 248 of the preceding Wheatstone bridge 222 is electrically connected to positive output node 246 of the successive, i.e., next, Wheatstone bridge 224 in chained arrangement 250. Negative output node 248 of the preceding Wheatstone bridge 224 is electrically connected to a positive output node 246 of the next Wheatstone bridge 226 in chained arrangement 250, and so forth. Thus, negative output node 248 of the last Wheatstone bridge 236 of chained arrangement 250 is electrically coupled to a negative terminal 256 of differential amplifier 254. Accordingly, the differential outputs of Wheatstone bridges 222, 224, 226, 228, 230, 232, 234, 236 are combined by directly chaining the Wheatstone bridges to produce a composite output signal 258 that is approximately eight times that of a single one of Wheatstone bridges 222, 224, 226, 228, 230, 232, 234, 236 with enhanced signal to noise performance.

    [0038] Referring now to FIGs. 8 and 9, FIG. 8 shows a top view of a pressure sensing element 260 for a pressure sensor (e.g., pressure sensor 20 of FIG. 1) in accordance with another embodiment, and FIG. 9 shows a circuit diagram 261 corresponding to the multiple Wheatstone bridge configuration of pressure sensing element 260.

    [0039] Diaphragm 34 is circumscribed by first, second, third, and fourth outer edges 42, 44, 46, 48 and includes a central region 262. Along with the perimeter of diaphragm 34, central region 262 (excluding the midpoint of central region 262) along the principle axes may also be a high stress region of diaphragm 34. In principle, Wheatstone bridges of sense elements 187 may be provided at any location on diaphragm 34 where stress exists. Thus, FIGs. 8 and 9 provide an example in which four Wheatstone bridges are located at central region 262 and four Wheatstone bridges are located at the perimeter of diaphragm 34.

    [0040] In this illustration, a first Wheatstone bridge 264 (having sense elements 187 of R1, R2, R3, R4) is located at central region 262 and a corresponding second Wheatstone bridge 266 (having sense elements 187 of R5, R6, R7, R8) is located proximate first outer edge 42 of diaphragm 34. Similarly, a third Wheatstone bridge 268 (having sense elements 187 of R9, R10, R11, R12) is located at central region 262 and a fourth Wheatstone bridge 270 (having sense elements 187 of R13, R14, R15, R16) is located proximate second outer edge 44 of diaphragm 34. A fifth Wheatstone bridge 272 (having sense elements 187 of R17, R18, R19, R20) is located at central region 262 and a sixth Wheatstone bridge 274 (having sense elements 187 of R21, R22, R23, R24) is located proximate third outer edge 46 of diaphragm 34. And, a seventh Wheatstone bridge 276 (having sense elements 187 of R25, R26, R27, R28) is located at central region 262 and an eighth Wheatstone bridge 278 (having sense elements 187 of R29, R30, R31, R32) is located proximate fourth outer edge 48 of diaphragm 34.

    [0041] With particular reference to FIG. 9, each of Wheatstone bridges 264, 266, 268, 270, 272, 274, 276, 278 is driven by a current source 280 interconnected between positive input nodes 282 and negative input nodes 284 of each of Wheatstone bridges 264, 266, 268, 270, 272, 274, 276, 278. Additionally, only one of Wheatstone bridges (i.e., Wheatstone bridge 264) is electrically connected to a system ground 286, while the remaining Wheatstone bridges 266, 268, 270, 272, 274, 276, 278 are not.

    [0042] Each of Wheatstone bridges 264, 266, 268, 270, 272, 274, 276, 278 of pressure sensing element 260 includes a positive output node 288 and a negative output node 290. Like the previously described configurations, Wheatstone bridges 264, 266, 268, 270, 272, 274, 276, 278 are suitably connected to form a chained arrangement 292 of Wheatstone bridges 264, 266, 268, 270, 272, 274, 276, 278. As such, positive output node 288 of first Wheatstone bridge 264 is electrically connected to a positive terminal 294 of a differential amplifier 296. Negative output node 290 of the preceding Wheatstone bridge 264 is electrically connected to positive output node 288 of the successive, i.e., next, Wheatstone bridge 266 in chained arrangement 292. Negative output node 290 of the preceding Wheatstone bridge 266 is electrically connected to positive output node 288 of the next Wheatstone bridge 268 in chained arrangement 292, and so forth. Thus, negative output node 290 of the last Wheatstone bridge 278 of chained arrangement 292 is electrically coupled to a negative terminal 298 of differential amplifier 296. Accordingly, the differential outputs of Wheatstone bridges 264, 266, 268, 270, 272, 274, 276, 278 are combined by directly chaining the Wheatstone bridges to produce a composite output signal 300 that is approximately eight times that of a single one of Wheatstone bridges 264, 266, 268, 270, 272, 274, 276, 278 and with enhanced signal to noise performance.

    [0043] Each of pressure sensing elements 42 (FIG. 2), 218 (FIG. 6), and 260 (FIG. 8) are directed toward a localized Wheatstone bridge configuration of sense elements 187. That is, the four legs of each Wheatstone bridge are placed in close proximity to one another within a single high stress area of diaphragm 34. Thus, interconnections between the sense elements 187 may be made with highly conductive implanted layers directly on the diaphragm. The interconnects between the multiple Wheatstone bridges can be done off-diaphragm, i.e., around the perimeter of diaphragm 34, in routing metallization. The localized Wheatstone bridge configurations discussed herein represent only a few embodiments. Other embodiments may include multiple Wheatstone bridges along each outer edge coupled with one or more Wheatstone bridges located near the center of the diaphragm. Symmetrical implementations have been shown in the example embodiments. However, asymmetric implementations (e.g., different number of Wheatstone bridges) within the high stress regions of the diaphragm may be envisioned.

    [0044] Referring now to FIGs. 10 and 11, FIG. 10 shows a top view of a pressure sensing element 302 for a pressure sensor (e.g., pressure sensor 20 of FIG. 1) in accordance with another embodiment, and FIG. 11 shows a circuit diagram 304 corresponding to the multiple Wheatstone bridge configuration of pressure sensing element of 302. Again, the previous Wheatstone bridge configurations were directed toward a localized Wheatstone bridge approach. The following discussion will pertain to a distributed Wheatstone bridge approach. A distributed approach is one in which a sense element of a Wheatstone bridge is placed within each of four corresponding high stress regions of the diaphragm with appropriate orientation to generate the differential signal. Embodiments described herein includes multiple distributed Wheatstone bridges having their composite sense elements (i.e., piezoresistors) located within differing high stress regions of a pressure sensor diaphragm, with their bridge outputs being chained together.

    [0045] Pressure sensing element 302 includes a first Wheatstone bridge 306 (having pairs of sense elements 187 of R1, R2, R3, R4 provided in diaphragm 34) and a second Wheatstone bridge 308 (having sense elements 187 of R5, R6, R7, R8 provided in diaphragm 34). One each of sense elements 187 forming first Wheatstone bridge 306 is located proximate one of each of first, second, third, and fourth outer edges 42, 44, 46, 48 of diaphragm 34. Thus, R1 is located proximate first outer edge 42, R2 is located proximate second outer edge 44, R3 is located proximate third outer edge 46, and R4 is located proximate fourth outer edge 48. Likewise, one each of sense elements 187 forming second Wheatstone bridge 308 is located proximate one of each of first, second, third, and fourth outer edges 42, 44, 46, 48 of diaphragm 34. Thus, R5 is located proximate first outer edge 42 and adjacent to R1. R6 is located proximate second outer edge 44 and adjacent to R2. R7 is located proximate third outer edge 46 and adjacent to R3. And, R8 is located proximate fourth outer edge 48 and adjacent to R4. Thus, a sense element 187 from each of the two Wheatstone bridges 306, 308 is placed within each of the four equivalent high stress regions around the perimeter of diaphragm.

    [0046] With particular reference to FIG. 11, each of Wheatstone bridges 306, 308 is driven by a current source 312 interconnected between positive input nodes 314 and negative input nodes 316 of each of Wheatstone bridges 306, 308. Additionally, only one of Wheatstone bridges (i.e., Wheatstone bridge 306) is electrically connected to a system ground 318, while the other Wheatstone bridge 308 is not.

    [0047] Each of Wheatstone bridges 306, 308 of pressure sensing element 302 includes a positive output node 320 and a negative output node 322. Like the previously described configurations, Wheatstone bridges 306, 308 are connected to form a chained arrangement 324 of Wheatstone bridges 306, 308. As such, positive output node 320 of a "first" Wheatstone bridge 306 is electrically connected to a positive terminal 326 of a differential amplifier 328. Negative output node 322 of the preceding Wheatstone bridge 306 is electrically connected to positive output node 320 of the successive, i.e., next, Wheatstone bridge 308 in chained arrangement 324. Since pressure sensing element 302 only has two Wheatstone bridges 306, 308, negative output node 322 Wheatstone bridge 308 is electrically connected to a negative terminal 330 of differential amplifier 328. Accordingly, the differential outputs of the distributed configuration of Wheatstone bridges 306, 308 are combined by directly chaining the Wheatstone bridges to produce a composite output signal 332 that is approximately twice that of a single one of Wheatstone bridges 306, 308.

    [0048] The interconnection of sense elements 187 in a distributed Wheatstone bridge configuration may be complex. Because of the need for so many cross-overs to connect sense elements 187, a distributed approach may be most suitably implemented in an integrated process in which the interconnections and routing can all be done off of diaphragm 34 (as indicated in FIG. 10) and accomplished within multiple levels of backend metallization. To allow the chaining together of the bridge outputs with a simple interconnection at one corner, Wheatstone bridges 306, 308 may be driven from the complementary opposing corners.

    [0049] Referring now to FIGs. 12 and 13, FIG. 12 shows a top view of a pressure sensing element 334 for a pressure sensor (e.g., pressure sensor 20 of FIG. 1) in accordance with another embodiment, and FIG. 13 shows a circuit diagram 336 corresponding to the multiple Wheatstone bridge configuration of pressure sensing element 334. FIGs. 12 and 13 demonstrate another distributed Wheatstone bridge configuration which utilizes the high stress regions around the perimeter of diaphragm 34 as well as in central region 262 of diaphragm 34. Such a configuration may be a less interconnect-intensive implementation than that shown in FIGs. 10 and 11 since the connections between the sense elements in the central region 262 may be done with an implanted highly conductive layer in the silicon semiconductor. The bridge outputs may be chained together off-diaphragm. Further, since the stress in the central region 262 is in the opposite direction to the stress at the outer edges 42, 44, 46, 48, both Wheatstone bridges may be current driven from the same corner of the layout.

    [0050] Pressure sensing element 334 includes a first Wheatstone bridge 338 (having sense elements 187 of R1, R2, R3, R4 provided in diaphragm 34) and a second Wheatstone bridge 340 (having sense elements 187 of R5, R6, R7, R8 provided in diaphragm 34). In this example, sense elements 187 for R1, R3, R5, R7 are made up of pairs of sense elements 187. Whereas, sense elements 187 for R2, R4, R6, R8 are made up of single sense elements 187 that are illustrated as being longer than sense elements 187 for R1, R3, R5, R7. It should be understood that the nominal resistance for each of the pairs of sense elements 187 that make up R1, R3, R5, R7 is equivalent to the nominal resistance for each of the individual sense elements 187 that make up R2, R4, R6, R8.

    [0051] Sense elements 187 of first Wheatstone bridge 338 are distributed within central region 262. Thus, one each of sense elements 187 forming first Wheatstone bridge 338 is located in central region 262 but is displaced away from a midpoint 342 of diaphragm 34. However, sense elements 187 of second Wheatstone bridge 340 are distributed in proximity to the perimeter of diaphragm 34. Thus, R5 is located proximate first outer edge 42, R6 is located proximate second outer edge 44, R7 is located proximate third outer edge 46, and R8 is located proximate fourth outer edge 48.

    [0052] With particular reference to FIG. 13, each of Wheatstone bridges 338, 340 is driven by a current source 344 interconnected between positive input nodes 346 and negative input nodes 348 of each of Wheatstone bridges 338, 340. Additionally, only one of Wheatstone bridges (i.e., Wheatstone bridge 338) is electrically connected to a system ground 349, while the other Wheatstone bridge 340 is not.

    [0053] Each of Wheatstone bridges 338, 340 of pressure sensing element 334 includes a positive output node 350 and a negative output node 352. Like the previously described configurations, Wheatstone bridges 338, 340 are connected to form a chained arrangement 354 of Wheatstone bridges 338, 340. As such, positive output node 350 of a "first" Wheatstone bridge 338 is electrically connected to a positive terminal 356 of a differential amplifier 358. Negative output node 352 of the preceding Wheatstone bridge 338 is electrically connected to positive output node 350 of the successive, i.e., next, Wheatstone bridge 340 in chained arrangement 354. Since pressure sensing element 334 has two Wheatstone bridges 338, 340, negative output node 352 Wheatstone bridge 340 is electrically connected to a negative terminal 360 of differential amplifier 358. Accordingly, the differential outputs of the distributed configuration of Wheatstone bridges 338, 340 are combined by directly chaining the Wheatstone bridges to produce a composite output signal 362 that is approximately twice that of a single one of Wheatstone bridges 338, 340.

    [0054] FIGs. 10-13 represent a couple of basic embodiments utilizing multiple distributed Wheatstone bridges for enhanced sensitivity. Other embodiments could include a mixture of sense elements in the edge and central regions and/or a different quantity of Wheatstone bridges. Further, some embodiments may implement a combination of localized and distributed Wheatstone bridge configurations.


    Claims

    1. A pressure sensor comprising:

    a substrate (30) having a cavity (32);

    a diaphragm (34) suspended across said cavity (32);

    a first group of sense elements (64, 68, 72, 76, R1 - R4) provided in said diaphragm (34), wherein said sense elements of said first group (64, 68, 72, 76, R1 - R4) is coupled to one another to form a first Wheatstone bridge (52, 182, 222, 264, 306, 338), wherein said first Wheatstone bridge (52, 182, 222, 264, 306, 338) has

    a first positive output node (82, 198, 246, 288, 320, 350, SP1) and a first negative output node (84, 204, 248, 290, 322, 352, SN1), and

    a first positive input node (78, 194, 240, 282, 314, 346, VP1) and a first negative input node (80, 196, 242, 284. 316. 348, VN1);

    a second group of sense elements (88, 92, 96, 100, R5 - R8) provided in said diaphragm (34), wherein said sense elements of said second group (88, 92, 96, 100, R5 - R8) is coupled to one another to form a second Wheatstone bridge (54, 184, 224, 266, 308, 340), wherein said second Wheatstone bridge (54, 184, 224, 266, 308, 340) has

    a second positive output node (106, 206, 246, 288, 320, 350, SP2) and a second negative output node (108, 208, 248, 290, 322, 352, SN2),

    a second positive input node (102, 194, 240, 282, 316, 346, VP2) and a second negative input node (104, 196, 242, 284, 316, 348, VN2);

    a first current source (160, 192, 238, 280, 312, 344) interconnected between said first positive input node (78, 194, 240, 282, 314, 346, VP1) and said first negative input node (80, 196, 242, 284. 316. 348, VN1) of said first Wheatstone bridge (52, 182, 222, 264, 306, 338); and

    a second current source (160, 192, 238, 280, 312, 344) interconnected between said second positive input node (102, 194, 240, 282, 316, 346, VP2) and said second negative input node (104, 196, 242, 284, 316, 348, VN2) of said second Wheatstone bridge (54, 184, 224, 266, 308, 340),

    wherein said first negative output node (84, 204, 248, 290, 322, 352, SN1) of said first Wheatstone bridge (52, 182, 222, 264, 306, 338) is electrically connected to said second positive output node (106, 206, 246, 288, 320, 350, SP2) of said second Wheatstone bridge (54, 184, 224, 266, 308, 340),

    wherein said first and second Wheatstone bridges (52, 182, 222, 264, 306, 338; 54, 184, 224, 266, 308, 340) produce a composite output signal (176, 258, 300, 332, 362) as a function of an external pressure stimulus detected by said each of said first and second Wheatstone bridges (52, 182, 222, 264, 306, 338; 54, 184, 224, 266, 308, 340)

    wherein each of said first and second current sources (160, 192, 238, 280, 312, 344) is configured to deliver a supply current (162, 216) to a respective one of said first and second Wheatstone bridges (52, 182, 222, 264, 306, 338; 54, 184, 224, 266, 308, 340),

    wherein only one of said first and second negative input nodes (80, 196, 242, 284. 316. 348, VN1; 104, 196, 242, 284, 316, 348, VN2) is electrically coupled to a system ground (164, 213, 244, 286, 318, 349).


     
    2. The pressure sensor of any preceding claim, further comprising:

    a differential amplifier (168, 202, 254, 296, 328, 358) having a positive terminal (166, 200, 252, 294, 326, 356), a negative terminal (170, 214, 256, 298, 330, 360), and an output terminal (172),

    wherein said first positive output node (82, 198, 246, 288, 320, 350, SP1) of said first Wheatstone bridge (52, 182, 222, 264, 306, 338) is electrically connected to said positive terminal (166, 200, 252, 294, 326, 356),

    wherein said second negative output node (108, 208, 248, 290, 322, 352, SN2) of said second Wheatstone bridge (54, 184, 224, 266, 308, 340) is in electrical communication with said negative terminal (170, 214, 256, 298, 330, 360),

    wherein said output terminal (172) provides said composite output signal (176, 258, 300, 332, 362).


     
    3. The pressure sensor of any preceding claim, further comprising:

    additional groups of sense elements provided in said diaphragm (34) to form additional Wheatstone bridges (56, 58, 186, 226 - 236, 268 - 278),

    wherein each of said additional Wheatstone bridges (56, 58, 186, 226 - 236, 268 - 278) has a positive output node (132, 156, 210, 246, 288, SP3 - SP8) and a negative output node (134, 158, 212, 248, 290, SN3 - SN8),

    wherein said second negative output node (108, 208, 248, 290, 322, 352, SN2) of said second Wheatstone bridge (54, 184, 224, 266, 308, 340) is electrically connected to said positive output node (132, 156, 210, 246, 288, SP3 - SP8) of a first one of said additional Wheatstone bridges (56, 58, 186, 226 - 236, 268 - 278), and said negative output node (134, 158, 212, 248, 290, SN3 - SN8) of each of said additional Wheatstone bridges (56, 58, 186, 226 - 236, 268 - 278) is electrically connected to said positive output node (132, 156, 210, 246, 288, SP3 - SP8) of a successive one of said additional Wheatstone bridges (56, 58, 186, 226 - 236, 268 - 278) to form a chained arrangement (174, 180, 250, 292, 324, 354) of said first, second, and additional Wheatstone bridges (52 - 58, 182 - 186, 222 - 236, 264 - 278) to produce said composite output signal (176, 258, 300, 332, 362).


     
    4. The pressure sensor of claim 3, further comprising:

    additional current sources (160, 192, 238, 280, 312, 344) each interconnected between a positive input node (78, 102, 128, 152, 194, 240, 282, VP1 - VP8) and a negative input node (80, 104, 130, 154, 196, 242, 284, VN1 - VN8) of each of said additional Wheatstone bridges (56, 58, 186, 226 - 236, 268 - 278),

    wherein each of said additional current sources (160, 192, 238, 280, 312, 344) is configured to deliver a supply current (162, 216) to a respective one of each of said additional Wheatstone bridges (52 - 58, 182 - 186, 222 - 236, 266 - 278.


     
    5. The pressure sensor of claim 3 or claim 4, further comprising:

    a differential amplifier (168, 202, 254, 296, 328, 358) having a positive terminal (166, 200, 252, 294, 326, 356), a negative terminal (170, 214, 256, 298, 330, 360), and an output terminal (172),

    wherein said first positive output node (82, 198, 246, 288, 320, 350, SP1) of said first Wheatstone bridge (52, 182, 222, 264, 306, 338) is electrically connected to said positive terminal (166, 200, 252, 294, 326, 356), wherein

    wherein said negative output node (134, 158, 212, 248, 290, SN3 - SN8) of a last one of said additional Wheatstone bridges (56, 58, 186, 226 - 236, 268 - 278) in said chain is electrically connected to said negative terminal (170, 214, 256, 298, 330, 360),

    wherein said output terminal (172) provides said composite output signal (176, 258, 300, 332, 362).


     
    6. The pressure sensor of any preceding claim, wherein:

    said diaphragm (34) includes regions that are under high stress relative to other regions of said diaphragm (34), and

    said sense elements of each of said first and second groups of sense elements (64, 68, 72, 76, R1 - R4; 88, 92, 96, 100, R5 - R8) are located within said regions that are under high stress.


     
    7. The pressure sensor of any preceding claim, wherein:

    said diaphragm (34) has first and second outer edges (42, 44),

    said first group of sense elements (64, 68, 72, 76, R1 - R4) forming said first Wheatstone bridge (52, 182, 222, 264, 306, 338) is located proximate said first outer edge (42), and

    said second group of sense elements (88, 92, 96, 100, R5 - R8) forming said second Wheatstone bridge (54, 184, 224, 266, 308, 340) is located proximate said second outer edge (44).


     
    8. The pressure sensor of any preceding claim, wherein:

    said diaphragm (34) includes a central region (262) circumscribed by outer edges (42, 44, 46, 48),

    said first group of sense elements (64, 68, 72, 76, R1 - R4) forming said first Wheatstone bridge (52, 182, 222, 264, 306, 338) is located proximate one of said outer edges, and

    said second group of sense elements (88, 92, 96, 100, R5 - R8) forming said second Wheatstone bridge (54, 184, 224, 266, 308, 340) is located at said central region (262).


     
    9. The pressure sensor of any preceding claim, wherein:

    said diaphragm (34) has an outer edge,

    said first group of sense elements (64, 68, 72, 76, R1 - R4) forming said first Wheatstone bridge (52, 182, 222, 264, 306, 338) is located proximate said outer edge, and

    said second group of sense elements (88, 92, 96, 100, R5 - R8) forming said second Wheatstone bridge (54, 184, 224, 266, 308, 340) is located proximate said outer edge and adjacent to said first group of sense elements (64, 68, 72, 76, R1 - R4).


     
    10. The pressure sensor of any preceding claim, wherein:

    said diaphragm (34) has first, second, third, and fourth outer edges (42, 44, 46, 48), said first and second outer edges (42, 44) being disposed on opposing sides of a surface (50) of said diaphragm (34), and said third and fourth outer edges (46, 48) being disposed on opposing sides of said surface (50) of said diaphragm (34) and interposed between said first and

    second outer edges (42, 44) so that said surface (50) of said diaphragm (34) is circumscribed by said first, second, third, and fourth outer edges (42, 44, 46, 48);

    one each of said sense elements of said first group of sense elements (64, 68, 72, 76, R1 - R4) forming said first Wheatstone bridge (52, 182, 222, 264, 306, 338) is located proximate one each of said first, second, third, and fourth edges (42, 44, 46, 48); and

    one each of said sense elements of said second group of sense elements (88, 92, 96, 100, R5 - R8) forming said second Wheatstone bridge (54, 184, 224, 266, 308, 340) is located proximate said one each of said first, second, third, and fourth edges (42, 44, 46, 48).


     
    11. The pressure sensor of any preceding claim, wherein:

    said diaphragm (34) includes a central region (262) circumscribed by first, second, third, and fourth outer edges (42, 44, 46, 48);

    one each of said sense elements of said first group of sense elements (64, 68, 72, 76, R1 - R4) forming said first Wheatstone bridge (52, 182, 222, 264, 306, 338) is located proximate one each of said first, second, third, and fourth edges (42, 44, 46, 48); and

    said second group of sense elements (88, 92, 96, 100, R5 - R8) forming said second Wheatstone bridge (54, 184, 224, 266, 308, 340) is located at said central region (262).


     


    Ansprüche

    1. Drucksensor, umfassend:

    ein Substrat (30) mit einem Hohlraum (32);

    eine Membran (34), die über dem Hohlraum (32) aufgehängt ist;

    eine erste Gruppe von Erfassungselementen (64, 68, 72, 76, R1 - R4), die in der Membran (34) vorgesehen sind,

    wobei die Erfassungselemente der ersten Gruppe (64, 68, 72, 76, R1 - R4) miteinander gekoppelt sind, um eine erste Wheatstone-Brücke (52, 182, 222, 264, 306, 338) zu bilden, wobei die erste Wheatstone-Brücke (52, 182, 222, 264, 306, 338)

    einen ersten positiven Ausgangsknoten (82, 198, 246, 288, 320, 350, SP1) und einen ersten negativen Ausgangsknoten (84, 204, 248, 290, 322, 352, SN1) und

    einen ersten positiven Eingangsknoten (78, 194, 240, 282, 314, 346, VP1) und einen ersten negativen Eingangsknoten (80, 196, 242, 284, 316, 348, VN1) aufweist;

    eine zweite Gruppe von Erfassungselementen (88, 92, 96, 100, R5 - R8), die in der Membran (34) vorgesehen sind,

    wobei die Erfassungselemente der zweiten Gruppe (88, 92, 96, 100, R5 - R8) miteinander gekoppelt sind, um eine zweite Wheatstone-Brücke (54, 184, 224, 266, 308, 340) zu bilden, wobei die zweite Wheatstone-Brücke (54, 184, 224, 266, 308, 340)

    einen zweiten positiven Ausgangsknoten (106, 206, 246, 288, 320, 350, SP2) und einen zweiten negativen Ausgangsknoten (108, 208, 248, 290, 322, 352, SN2),

    einen zweiten positiven Eingangsknoten (102, 194, 240, 282, 316, 346, VP2) und einen zweiten negativen Eingangsknoten (104, 196, 242, 284, 316, 348, VN2) aufweist;

    eine erste Stromquelle (160, 192, 238, 280, 312, 344), die zwischen dem ersten positiven Eingangsknoten (78, 194, 240, 282, 314, 346, VP1) und dem ersten negativen Eingangsknoten (80, 196, 242, 284. 316. 348, VN1) der ersten Wheatstone-Brücke (52, 182, 222, 264, 306, 338) verbunden ist; und

    eine zweite Stromquelle (160, 192, 238, 280, 312, 344), die zwischen dem zweiten positiven Eingangsknoten (102, 194, 240, 282, 316, 346, VP2) und dem zweiten negativen Eingangsknoten (104, 196, 242, 284, 284, 316, 348, VN2) der zweiten Wheatstone-Brücke (54, 184, 224, 266, 308, 340) verbunden ist,

    wobei der erste negative Ausgangsknoten (84, 204, 248, 290, 322, 352, 352, SN1) der ersten Wheatstone-Brücke (52, 182, 222, 264, 306, 338) elektrisch mit dem zweiten positiven Ausgangsknoten (106, 206, 246, 288, 320, 350, SP2) der zweiten Wheatstone-Brücke (54, 184, 224, 266, 308, 340) verbunden ist,

    wobei die erste und die zweite Wheatstone-Brücke (52, 182, 222, 264, 306, 338; 54, 184, 224, 266, 308, 340) ein zusammengesetztes Ausgangssignal (176, 258, 300, 332, 362) als Funktion eines externen Druckstimulus erzeugen, der jeweils von der ersten und der zweiten Wheatstone-Brücke (52, 182, 222, 264, 306, 338; 54, 184, 224, 266, 308, 340) erfasst wird

    wobei die erste und die zweite Stromquelle (160, 192, 238, 280, 312, 344) jeweils dazu konfiguriert sind, einen Versorgungsstrom (162, 216) an eine der ersten und der zweiten Wheatstone-Brücke (52, 182, 222, 264, 306, 338; 54, 184, 224, 266, 308, 340) zu liefern,

    wobei nur einer der ersten und zweiten negativen Eingangsknoten (80, 196, 242, 284, 284, 316, 348, VN1; 104, 196, 242, 284, 316, 348, VN2) elektrisch mit einer Systemmasse (164, 213, 244, 286, 318, 349) gekoppelt ist.


     
    2. Drucksensor nach einem vorhergehenden Anspruch, ferner umfassend:

    einen Differenzverstärker (168, 202, 254, 296, 328, 358) mit einem positiven Anschluss (166, 200, 252, 294, 326, 356), einem negativen Anschluss (170, 214, 256, 298, 330, 360) und einem Ausgangsanschluss (172),

    wobei der erste positive Ausgangsknoten (82, 198, 246, 288, 288, 320, 350, SP1) der ersten Wheatstone Brücke (52, 182, 222, 264, 306, 338) elektrisch mit dem positiven Anschluss (166, 200, 252, 294, 326, 356) verbunden ist,

    wobei der zweite negative Ausgangsknoten (108, 208, 248, 290, 322, 352, 352, SN2) der zweiten Wheatstone-Brücke (54, 184, 224, 266, 308, 340) in elektrischer Verbindung mit dem negativen Anschluss (170, 214, 256, 298, 330, 360) steht,

    wobei der Ausgangsanschluss (172) das zusammengesetzte Ausgangssignal (176, 258, 300, 332, 362) bereitstellt.


     
    3. Drucksensor nach einem vorhergehenden Anspruch, ferner umfassend:

    zusätzliche Gruppen von Erfassungselementen, die in der Membran (34) vorgesehen sind, um zusätzliche Wheatstone-Brücken (56, 58, 186, 226 - 236, 268 - 278) zu bilden,

    wobei jede der zusätzlichen Wheatstone-Brücken (56, 58, 186, 226 - 236, 268 - 278) einen positiven Ausgangsknoten (132, 156, 210, 246, 288, SP3 - SP8) und einen negativen Ausgangsknoten (134, 158, 212, 248, 290, SN3 - SN8) aufweist,

    wobei der zweite negative Ausgangsknoten (108, 208, 248, 290, 322, 352, SN2) der zweiten Wheatstone-Brücke (54, 184, 224, 266, 308, 340) elektrisch mit dem positiven Ausgangsknoten (132, 156, 210, 246, 288, SP3 - SP8) einer ersten der zusätzlichen Wheatstone-Brücken (56, 58, 186, 226 - 236, 268 - 278) verbunden ist, und der negative Ausgangsknoten (134, 158, 212, 248, 290, SN3 - SN8) von jeder zusätzlichen Wheatstone-Brücke (56, 58, 186, 226 - 236, 268 - 278) elektrisch mit dem positiven Ausgangsknoten (132, 156, 210, 246, 288, SP3 - SP8) einer aufeinanderfolgenden der zusätzlichen Wheatstone-Brücken (56, 58, 186, 226 - 236, 268 - 278) verbunden ist, um eine verkettete Anordnung (174, 180, 250, 292, 324, 354) der ersten, der zweiten und der zusätzlichen Wheatstone-Brücken (52 - 58, 182 - 186, 222 - 236, 264 - 278) zu bilden, um das zusammengesetzte Ausgangssignal (176, 258, 300, 332, 362) zu erzeugen.


     
    4. Drucksensor nach Anspruch 3, ferner umfassend:

    zusätzliche Stromquellen (160, 192, 238, 280, 312, 344), die jeweils zwischen einem positiven Eingangsknoten (78, 102, 128, 152, 194, 240, 282, VP1 - VP8) und einem negativen Eingangsknoten (80, 104, 130, 154, 196, 242, 284, VN1 - VN8) von jeder der zusätzlichen Wheatstone Brücken (56, 58, 186, 226 - 236, 268 - 278) verbunden sind,

    wobei jede der zusätzlichen Stromquellen (160, 192, 238, 280, 312, 344) dazu konfiguriert ist, einen Versorgungsstrom (162, 216) zu einer entsprechenden der zusätzlichen Wheatstone-Brücken (52 - 58, 182 - 186, 222 - 236, 266 - 278 zu liefern.


     
    5. Drucksensor nach Anspruch 3 oder Anspruch 4, ferner umfassend:

    einen Differenzverstärker (168, 202, 254, 296, 328, 358) mit einem positiven Anschluss (166, 200, 252, 294, 326, 356), einem negativen Anschluss (170, 214, 256, 298, 330, 360) und einem Ausgangsanschluss (172),

    wobei der erste positive Ausgangsknoten (82, 198, 246, 288, 288, 320, 350, SP1) der ersten Wheatstone-Brücke (52, 182, 222, 264, 306, 338) elektrisch mit dem positiven Anschluss (166, 200, 252, 294, 326, 356) verbunden ist, wobei

    wobei der negative Ausgangsknoten (134, 158, 212, 248, 290, SN3 - SN8) einer letzten der zusätzlichen Wheatstone-Brücken (56, 58, 186, 226 - 236, 268 - 278) in der Kette elektrisch mit dem negativen Anschluss (170, 214, 256, 298, 330, 360) verbunden ist,

    wobei der Ausgangsanschluss (172) das zusammengesetzte Ausgangssignal (176, 258, 300, 332, 362) bereitstellt.


     
    6. Drucksensor eines beliebigen vorhergehenden Anspruchs, wobei:

    die Membran (34) Bereiche aufweist, die im Vergleich zu anderen Bereichen der Membran (34) unter hoher Beanspruchung stehen, und

    die Erfassungselemente jeder der ersten und zweiten Gruppen von Erfassungselementen (64, 68, 72, 76, R1 - R4; 88, 92, 96, 100, R5 - R8) innerhalb der Bereiche angeordnet sind, die unter hoher Beanspruchung stehen.


     
    7. Drucksensor eines beliebigen vorhergehenden Anspruchs, wobei:

    die Membran (34) erste und zweite Außenkanten (42, 44) aufweist,

    die erste Gruppe von Erfassungselementen (64, 68, 72, 76, R1 - R4), die die erste Wheatstone-Brücke (52, 182, 222, 264, 306, 338) bilden, nahe der ersten Außenkante (42) angeordnet ist, und

    die zweite Gruppe von Erfassungselementen (88, 92, 96, 100, R5 - R8), die die zweite Wheatstone-Brücke (54, 184, 224, 266, 308, 340) bilden, nahe der zweiten Außenkante (44) angeordnet ist.


     
    8. Drucksensor eines beliebigen vorhergehenden Anspruchs, wobei:

    die Membran (34) einen zentralen Bereich (262) aufweist, der durch Außenkanten (42, 44, 46, 48) begrenzt ist,

    die erste Gruppe von Erfassungselementen (64, 68, 72, 76, R1 - R4), die die erste Wheatstone-Brücke (52, 182, 222, 264, 306, 338) bilden, in der Nähe einer der Außenkanten angeordnet ist, und

    die zweite Gruppe von Erfassungselementen (88, 92, 96, 100, R5 - R8), die die zweite Wheatstone-Brücke (54, 184, 224, 266, 308, 340) bilden, an dem zentralen Bereich (262) angeordnet ist.


     
    9. Drucksensor eines beliebigen vorhergehenden Anspruchs, wobei:

    die Membran (34) eine Außenkante aufweist,

    die erste Gruppe von Erfassungselementen (64, 68, 72, 76, R1 - R4), die die erste Wheatstone-Brücke (52, 182, 222, 264, 306, 338) bilden, nahe der Außenkante angeordnet ist, und

    die zweite Gruppe von Erfassungselementen (88, 92, 96, 100, R5 - R8), die die zweite Wheatstone-Brücke (54, 184, 224, 266, 308, 340) bilden, nahe der Außenkante und benachbart zu der ersten Gruppe von Erfassungselementen (64, 68, 72, 76, R1 - R4) angeordnet ist.


     
    10. Drucksensor eines beliebigen vorhergehenden Anspruchs, wobei:

    die Membran (34) eine erste, eine zweite, eine dritte und eine vierte Außenkante (42, 44, 46, 48) aufweist, wobei die erste und die zweite Außenkante (42, 44) auf gegenüberliegenden Seiten einer Oberfläche (50) der Membran (34) angeordnet sind, und die dritte und die vierte Außenkante (46), 48) auf gegenüberliegenden Seiten der Oberfläche (50) der Membran (34) angeordnet und zwischen der ersten und der zweiten Außenkante (42, 44) angeordnet ist, so dass die Oberfläche (50) der Membran (34) von der ersten, der zweiten, der dritten und der vierten Außenkante (42, 44, 46, 48) begrenzt ist;

    eines der Erfassungselemente der ersten Gruppe von Erfassungselementen (64, 68, 72, 76, R1 - R4), die die erste Wheatstone-Brücke (52, 182, 222, 264, 306, 338) bilden, nahe jeweils einer der ersten, der zweiten, der dritten und der vierten Kante (42, 44, 46, 48) angeordnet ist; und

    eines der Erfassungselemente der zweiten Gruppe von Erfassungselementen (88, 92, 96, 100, R5 - R8), die die zweite Wheatstone-Brücke (54, 184, 224, 266, 308, 340) bilden, nahe der einen der ersten, der zweiten, der dritten und der vierten Kante (42, 44, 46, 48) angeordnet ist.


     
    11. Drucksensor eines beliebigen vorhergehenden Anspruchs, wobei:

    die Membran (34) einen zentralen Bereich (262) aufweist, der durch eine erste, eine zweite, eine dritte und eine vierte Außenkante (42, 44, 46, 48) begrenzt ist;

    eines der Erfassungselemente der ersten Gruppe von Erfassungselementen (64, 68, 72, 76, R1 -R4), die die erste Wheatstone-Brücke (52, 182, 222, 264, 306, 338) bilden, nahe jeweils einer der ersten, der zweiten, der dritten und der vierten Kante (42, 44, 46, 48) angeordnet ist; und die zweite Gruppe von Erfassungselementen (88, 92, 96, 100, R5 - R8), die die zweite Wheatstone-Brücke (54, 184, 224, 266, 308, 340) bilden, an dem zentralen Bereich (262) angeordnet ist.


     


    Revendications

    1. Capteur de pression comportant :

    un substrat (30) présentant une cavité (32) ;

    un diaphragme (34) suspendu en travers de ladite cavité (32) ;

    un premier groupe d'éléments (64, 68, 72, 76, R1 - R4) de détection placés dans ledit diaphragme (34), lesdits éléments de détection dudit premier groupe (64, 68, 72, 76, R1 - R4) étant couplés les uns aux autres pour former un premier pont (52, 182, 222, 264, 306, 338) de Wheatstone, ledit premier pont (52, 182, 222, 264, 306, 338) de Wheatstone comprenant

    un premier nœud (82, 198, 246, 288, 320, 350, SP1) à sortie positive et un premier nœud (84, 204, 248, 290, 322, 352, SN1) à sortie négative, et

    un premier nœud (78, 194, 240, 282, 314, 346, VP1) à entrée positive et un premier nœud (80, 196, 242, 284, 316, 348, VN1) à entrée négative ;

    un deuxième groupe d'éléments (88, 92, 96, 100, R5 - R8) de détection placés dans ledit diaphragme (34), lesdits éléments de détection dudit deuxième groupe (88, 92, 96, 100, R5 - R8) étant couplés les uns aux autres pour former un deuxième pont (54, 184, 224, 266, 308, 340) de Wheatstone, ledit deuxième pont (54, 184, 224, 266, 308, 340) de Wheatstone comprenant

    un deuxième nœud (106, 206, 246, 288, 320, 350, SP2) à sortie positive et un deuxième nœud (108, 208, 248, 290, 322, 352, SN2) à sortie négative,

    un deuxième nœud (102, 194, 240, 282, 316, 346, VP2) à entrée positive et un deuxième nœud (104, 196, 242, 284, 316, 348, VN2) à entrée négative ;

    une première source (160, 192, 238, 280, 312, 344) de courant interconnectée entre ledit premier nœud (78, 194, 240, 282, 314, 346, VP1) à entrée positive et ledit premier nœud (80, 196, 242, 284, 316, 348, VN1) à entrée négative dudit premier pont (52, 182, 222, 264, 306, 338) de Wheatstone ; et

    une deuxième source (160, 192, 238, 280, 312, 344) de courant interconnectée entre ledit deuxième nœud (102, 194, 240, 282, 316, 346, VP2) à entrée positive et ledit deuxième nœud (104, 196, 242, 284, 316, 348, VN2) à entrée négative dudit deuxième pont (54, 184, 224, 266, 308, 340) de Wheatstone,

    ledit premier nœud (84, 204, 248, 290, 322, 352, SN1) à sortie négative dudit premier pont (52, 182, 222, 264, 306, 338) de Wheatstone étant relié électriquement audit deuxième nœud (106, 206, 246, 288, 320, 350, SP2) à sortie positive dudit deuxième pont (54, 184, 224, 266, 308, 340) de Wheatstone,

    lesdits premier et deuxième ponts (52, 182, 222, 264, 306, 338 ; 54, 184, 224, 266, 308, 340) de Wheatstone produisant un signal (176, 258, 300, 332, 362) de sortie composite en fonction d'un stimulus de pression externe détecté par chacun desdits premier et deuxième ponts (52, 182, 222, 264, 306, 338 ; 54, 184, 224, 266, 308, 340) de Wheatstone,

    chacune desdites première et deuxième sources (160, 192, 238, 280, 312, 344) de courant étant configurée pour délivrer un courant (162, 216) d'alimentation à un pont respectif parmi lesdits premier et deuxième ponts (52, 182, 222, 264, 306, 338 ; 54, 184, 224, 266, 308, 340) de Wheatstone,

    un seul desdits premier et deuxième nœuds (80, 196, 242, 284, 316, 348, VN1 ; 104, 196, 242, 284, 316, 348, VN2) à entrée négative étant couplé électriquement à une masse (164, 213, 244, 286, 318, 349) du système.


     
    2. Capteur de pression selon l'une quelconque des revendications précédentes, comportant en outre :

    un amplificateur différentiel (168, 202, 254, 296, 328, 358) doté d'une borne positive (166, 200, 252, 294, 326, 356), d'une borne négative (170, 214, 256, 298, 330, 360), et d'une borne (172) de sortie,

    ledit premier nœud (82, 198, 246, 288, 320, 350, SP1) à sortie positive dudit premier pont (52, 182, 222, 264, 306, 338) de Wheatstone étant relié électriquement à ladite borne positive (166, 200, 252, 294, 326, 356),

    ledit deuxième nœud (108, 208, 248, 290, 322, 352, SN2) à sortie négative dudit deuxième pont (54, 184, 224, 266, 308, 340) de Wheatstone étant en communication électrique avec ladite borne négative (170, 214, 256, 298, 330, 360),

    ladite borne (172) de sortie fournissant ledit signal (176, 258, 300, 332, 362) de sortie composite.


     
    3. Capteur de pression selon l'une quelconque des revendications précédentes, comportant en outre :

    des groupes supplémentaires d'éléments de détection placés dans ledit diaphragme (34) pour former des ponts (56, 58, 186, 226 - 236, 268 - 278) de Wheatstone supplémentaires,

    chacun desdits ponts (56, 58, 186, 226 - 236, 268 - 278) de Wheatstone supplémentaires comprenant un nœud à sortie positive (132, 156, 210, 246, 288, SP3 - SP8) et un nœud à sortie négative (134, 158, 212, 248, 290, SN3 - SN8),

    ledit deuxième nœud (108, 208, 248, 290, 322, 352, SN2) à sortie négative dudit deuxième pont (54, 184, 224, 266, 308, 340) de Wheatstone étant relié électriquement audit nœud à sortie positive (132, 156, 210, 246, 288, SP3 - SP8) d'un premier desdits ponts (56, 58, 186, 226 - 236, 268 - 278) de Wheatstone supplémentaires, et ledit nœud à sortie négative (134, 158, 212, 248, 290, SN3 - SN8) de chacun desdits ponts (56, 58, 186, 226 - 236, 268 - 278) de Wheatstone supplémentaires étant relié électriquement audit nœud à sortie positive (132, 156, 210, 246, 288, SP3 - SP8) d'un pont suivant parmi lesdits ponts (56, 58, 186, 226 - 236, 268 - 278) de Wheatstone supplémentaires pour former un agencement chaîné (174, 180, 250, 292, 324, 354) desdits premier, deuxième, et ponts (52 - 58, 182 - 186, 222 - 236, 264 - 278) de Wheatstone supplémentaires pour produire ledit signal (176, 258, 300, 332, 362) de sortie composite.


     
    4. Capteur de pression selon la revendication 3, comportant en outre :

    des sources (160, 192, 238, 280, 312, 344) de courant supplémentaires dont chacune est interconnectée entre un nœud (78, 102, 128, 152, 194, 240, 282, VP1 - VP8) à entrée positive et un nœud (80, 104, 130, 154, 196, 242, 284, VN1 - VN8) à entrée négative de chacun desdits ponts (56, 58, 186, 226 - 236, 268 - 278) de Wheatstone supplémentaires,

    chacune desdites sources (160, 192, 238, 280, 312, 344) de courant supplémentaires étant configurée pour délivrer un courant (162, 216) d'alimentation à un pont respectif parmi chacun desdits ponts (52 - 58, 182 - 186, 222 - 236, 266 - 278) de Wheatstone supplémentaires.


     
    5. Capteur de pression selon la revendication 3 ou claim 4, comportant en outre :

    un amplificateur différentiel (168, 202, 254, 296, 328, 358) doté d'une borne positive (166, 200, 252, 294, 326, 356), d'une borne négative (170, 214, 256, 298, 330, 360), et d'une borne (172) de sortie,

    ledit premier nœud (82, 198, 246, 288, 320, 350, SP1) à sortie positive dudit premier pont (52, 182, 222, 264, 306, 338) de Wheatstone étant relié électriquement à ladite borne positive (166, 200, 252, 294, 326, 356), ledit nœud (134, 158, 212, 248, 290, SN3 - SN8) à sortie négative d'un dernier desdits ponts (56, 58, 186, 226 - 236, 268 - 278) de Wheatstone supplémentaires dans ladite chaîne étant relié électriquement à ladite borne négative (170, 214, 256, 298, 330, 360),

    ladite borne (172) de sortie fournissant ledit signal (176, 258, 300, 332, 362) de sortie composite.


     
    6. Capteur de pression selon l'une quelconque des revendications précédentes :

    ledit diaphragme (34) comprenant des régions qui se trouvent sous forte contrainte par rapport à d'autres régions dudit diaphragme (34), et

    lesdits éléments de détection de chaque desdits premier et deuxième groupes d'éléments (64, 68, 72, 76, R1 - R4 ; 88, 92, 96, 100, R5 - R8) de détection étant situés au sein desdites régions qui se trouvent sous forte contrainte.


     
    7. Capteur de pression selon l'une quelconque des revendications précédentes :

    ledit diaphragme (34) présentant des premier et deuxième bords extérieurs (42, 44),

    ledit premier groupe d'éléments (64, 68, 72, 76, R1 - R4) de détection qui forme ledit premier pont (52, 182, 222, 264, 306, 338) de Wheatstone étant situé à proximité dudit premier bord extérieur (42), et

    ledit deuxième groupe d'éléments (88, 92, 96, 100, R5 - R8) de détection qui forme ledit deuxième pont (54, 184, 224, 266, 308, 340) de Wheatstone étant situé à proximité dudit deuxième bord extérieur (44).


     
    8. Capteur de pression selon l'une quelconque des revendications précédentes :

    ledit diaphragme (34) comprenant une région centrale (262) circonscrite par les bords extérieurs (42, 44, 46, 48),

    ledit premier groupe d'éléments (64, 68, 72, 76, R1 - R4) de détection qui forme ledit premier pont (52, 182, 222, 264, 306, 338) de Wheatstone étant situé à proximité d'un desdits bords extérieurs, et

    ledit deuxième groupe d'éléments (88, 92, 96, 100, R5 - R8) de détection qui forme ledit deuxième pont (54, 184, 224, 266, 308, 340) de Wheatstone étant situé au niveau de ladite région centrale (262).


     
    9. Capteur de pression selon l'une quelconque des revendications précédentes :

    ledit diaphragme (34) présentant un bord extérieur,

    ledit premier groupe d'éléments (64, 68, 72, 76, R1 - R4) de détection qui forme ledit premier pont (52, 182, 222, 264, 306, 338) de Wheatstone étant situé à proximité dudit bord extérieur, et

    ledit deuxième groupe d'éléments (88, 92, 96, 100, R5 - R8) de détection qui forme ledit deuxième pont (54, 184, 224, 266, 308, 340) de Wheatstone étant situé à proximité dudit bord extérieur et adjacent audit premier groupe d'éléments (64, 68, 72, 76, R1 - R4) de détection.


     
    10. Capteur de pression selon l'une quelconque des revendications précédentes :

    ledit diaphragme (34) présentant des premier, deuxième, troisième et quatrième bords extérieurs (42, 44, 46, 48), lesdits premier et deuxième bords extérieurs (42, 44) étant disposés sur des côtés opposés d'une surface (50) dudit diaphragme (34), et lesdits troisième et quatrième bords extérieurs (46, 48) étant disposés sur des côtés opposés de ladite surface (50) dudit diaphragme (34) et interposés entre lesdits premier et deuxième bords extérieurs (42, 44) de telle façon que ladite surface (50) dudit diaphragme (34) soit circonscrite par lesdits premier, deuxième, troisième, et quatrième bords extérieurs (42, 44, 46, 48) ;

    chacun desdits éléments de détection dudit premier groupe d'éléments (64, 68, 72, 76, R1 - R4) de détection qui forme ledit premier pont (52, 182, 222, 264, 306, 338) de Wheatstone étant situé à proximité d'un bord respectif parmi lesdits premier, deuxième, troisième, et quatrième bords (42, 44, 46, 48) ; et

    chacun desdits éléments de détection dudit deuxième groupe d'éléments (88, 92, 96, 100, R5 - R8) de détection qui forme ledit deuxième pont (54, 184, 224, 266, 308, 340) de Wheatstone étant situé à proximité dudit bord respectif parmi lesdits premier, deuxième, troisième, et quatrième bords (42, 44, 46, 48).


     
    11. Capteur de pression selon l'une quelconque des revendications précédentes :

    ledit diaphragme (34) comprenant une région centrale (262) circonscrite par des premier, deuxième, troisième, et quatrième bords extérieurs (42, 44, 46, 48) ;

    chacun desdits éléments de détection dudit premier groupe d'éléments (64, 68, 72, 76, R1 - R4) de détection qui forme ledit premier pont (52, 182, 222, 264, 306, 338) de Wheatstone étant situé à proximité d'un bord respectif parmi lesdits premier, deuxième, troisième, et quatrième bords (42, 44, 46, 48) ; et

    ledit deuxième groupe d'éléments (88, 92, 96, 100, R5 - R8) de détection qui forme ledit deuxième pont (54, 184, 224, 266, 308, 340) de Wheatstone étant situé au niveau de ladite région centrale (262).


     




    Drawing






































    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description