(19)
(11)EP 3 359 952 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
13.04.2022 Bulletin 2022/15

(21)Application number: 16775725.1

(22)Date of filing:  04.10.2016
(51)International Patent Classification (IPC): 
G01N 21/552(2014.01)
(52)Cooperative Patent Classification (CPC):
G01N 21/554
(86)International application number:
PCT/EP2016/073673
(87)International publication number:
WO 2017/060239 (13.04.2017 Gazette  2017/15)

(54)

ANALYSING APPARATUS AND METHOD

ANALYSEVORRICHTUNG UND -VERFAHREN

APPAREIL ET PROCÉDÉ D'ANALYSE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 06.10.2015 GB 201517626

(43)Date of publication of application:
15.08.2018 Bulletin 2018/33

(73)Proprietor: Causeway Sensors Limited
Belfast BT7 1NF (GB)

(72)Inventors:
  • POLLARD, Robert
    Bangor County Down BY20 5HX (GB)
  • MURPHY, Anthony
    Annacloy County Down BT30 9AP (GB)
  • HILL, Breandan
    County Antrim BT36 7JR (GB)

(74)Representative: FRKelly 
27 Clyde Road
Dublin D04 F838
Dublin D04 F838 (IE)


(56)References cited: : 
WO-A1-2007/108453
US-A1- 2011 212 512
WO-A1-2010/066727
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    Field of the Invention



    [0001] The present invention relates to analysing apparatus and methods. The invention relates particularly to the analysis of chemical and biological material using a plasmonic sensor.

    Background to the Invention



    [0002] Plasma oscillations are rapid oscillations of electron density in conducting media such as plasmas or metals. A plasmon is a quasiparticle resulting from the quantization of these oscillations.

    [0003] Analysing apparatus using plasmonic sensors to analyse chemical and biological material are known. Typically such apparatus use surface plasmon resonance (SPR) sensors. Surface plasmon resonance (SPR) occurs when polarized light strikes an electrically conducting surface at an interface between two media. This generates electron charge density waves, i.e. plasmons, reducing the intensity of reflected light at a specific angle known as the resonance angle, in proportion to the mass on the sensor surface.

    [0004] SPR analysing apparatus normally include a cuvette for a liquid assay containing the biological material to be analysed. The cuvette includes an SPR sensor, typically comprising a gold thin film, that is illuminated by polarised light directed through a prism in attenuated total reflection to generate surface plasmons in the sensor. Interactions between the surface plasmons and the biological material affects the light reflected from the sensor and these affects are detected by an optical detector.

    [0005] The document WO2010/066727 discloses a plasmonic sensor wherein metallic nanoparticles of anisotropic shape are located on the surface of a transparent substrate, and are illuminated through the substrate at the Brewster's angle of the substrate with p-polarized illumination.

    [0006] It would be desirable to provide an improved plasmonic sensor analysing apparatus.

    Summary of the Invention



    [0007] The invention is defined by the apparatus of claim 1 and by the method of claim 15.

    [0008] The invention is related to an analysing apparatus comprising:

    a fluid container defining a sample chamber;

    a sensor comprising a transparent body with a reverse face and an obverse face, the obverse face having a nanostructured surface, the nanostructured surface comprising a plurality of nanostructures;

    an excitation and detection apparatus comprising an excitation source for generating a beam of polarised radiation and a corresponding radiation detector,

    wherein, the sensor is coupled to the fluid container such that the nanostructured surface is exposed to the sample chamber,

    and wherein the excitation and detection apparatus is configured to direct a beam of incident polarised electromagnetic radiation onto the reverse face of the body at an angle that causes no or substantially no reflection of the polarised radiation from the reverse face,

    and wherein said excitation and detection apparatus is configured to direct to said detector a beam of reflected radiation, said beam of reflected radiation comprising said incident radiation emerging in use from the reverse face after reflection from said nanostructured surface.



    [0009] Preferably, said obverse and reverse faces are substantially parallel with one another. The body is typically substantially planar in shape, said obverse and reverse faces being oppositely disposed on the planar body. The body may be formed from glass.

    [0010] Preferably, said excitation and detection apparatus includes a medium, typically air, through which said incident radiation beam travels, in use, to said reverse face of the sensor, wherein the refractive index of said medium is less than the refractive index of the material from which said body is made.

    [0011] Said beam of incident radiation comprises p-polarised radiation. The radiation typically has a wavelength between approximately 300 nm to 1500 nm.

    [0012] In preferred embodiments, the excitation and detection apparatus is configured to direct said beam of incident polarised electromagnetic radiation onto the reverse face of the body through a first medium with a first refractive index, said body being formed from a material with a second refractive index different from said first refractive index, said beam being directed to impinge upon said reverse face substantially at the Brewster angle corresponding to said first and second refractive indices. Typically, said first medium is air and said second medium is glass, the Brewster angle being approximately 57°.

    [0013] In the invention, the nanostructures extend from the obverse face substantially parallel with each other, and are spaced apart from one another. The nanostructures are elongate, having a respective longitudinal axis that is disposed substantially perpendicularly to the obverse face. The aspect ratio of the length to the width of each nanostructure is greater than 1. At least some and preferably all of the nanostructures may be nanoparticles, having three dimensions on the nanoscale. The nanostructures are provided on a conductive layer on said obverse face.

    [0014] Typically, the excitation and detection apparatus includes a light guide configured to direct the incident radiation beam to, and the reflected radiation beam from, the reverse face of the body. The light guide typically includes an excitation channel for directing the incident radiation to the reverse face of the body. The light guide typically also includes a detection channel for directing the reflected radiation beam from the reverse face of the body to the detector.

    [0015] The nanostructured surface may comprise at least one nanostructured region connected to an electrical terminal, preferably a respective electrical terminal where there is more than one nanostructured region. An electrical power source may be connected to the or each electrical terminal. Optionally, said nanostructured surface comprises at least two spaced apart nanostructured regions, each region comprising a respective plurality of said nanostructures, each nanostructured region optionally being connected to a respective electrical terminal. The apparatus may be configured to apply a respective different electrical bias to each of said nanostructured regions. Optionally, the respective nanostructures of each region are configured to resonate when illuminated by radiation at a respective different wavelength. The respective nanostructures of each region may be configured to resonate at a respective wavelength that corresponds to a respective wavelength of the radiation produced by said excitation source. The excitation source may be operable to produce radiation at more than one wavelength, and wherein said nanostructures surface includes at least one nanostructured region for each of said wavelengths in which the respective nanostructures are configured to resonate when illuminated by the radiation at the respective wavelength.

    [0016] A second aspect of the invention is related to a method of analysing a sample using a sensor comprising a transparent body with a reverse face and an obverse face, the obverse face having a nanostructured surface, the nanostructured surface comprising a plurality of elongate nanostructures having a respective longitudinal axis that is disposed substantially perpendicularly to the obverse face, the method comprising:

    exposing the nanostructured surface to the sample;

    directing a beam of incident polarised electromagnetic radiation onto the reverse face of the body at an angle that causes no or substantially no reflection of the polarised radiation from the reverse face; and

    directing to a detector a beam of reflected radiation, said beam of reflected radiation comprising said incident radiation that emerges from the reverse face after reflection from said nanostructured surface.



    [0017] Other preferred features are recited in the dependent claims filed herewith.

    [0018] Further advantageous aspects of the invention will be apparent to those ordinarily skilled in the art upon review of the following description of a specific embodiment and with reference to the accompanying drawings.

    Brief Description of the Drawings



    [0019] An embodiment of the invention is now described by way of example with reference to the accompanying drawings in which:

    Figure 1 is a perspective view of a nanostructured plasmonic sensor for use in analysing apparatus embodying the invention;

    Figure 1A is a detail view of the nanostructured surface of the plasmonic sensor of Figure 1;

    Figure 2 is a schematic view of an analysing apparatus embodying one aspect of the invention, the apparatus including the plasmonic sensor of Figure 1;

    Figure 3 is an illustration of radiation incidence angles at the reverse and obverse faces of the sensor;

    Figure 4 is a perspective view of the plasmonic sensor of Figure 1, showing one embodiment of how the sensor may be mounted on a transparent substrate; and

    Figure 5 is a perspective view of the plasmonic sensor of Figure 1, showing another embodiment of how the sensor may be mounted on a transparent substrate.


    Detailed Description of the Drawings



    [0020] Referring now to Figure 1 of the drawings there is shown, generally indicated as 10, a nanostructured plasmonic sensor. The sensor 10 comprises a body 12 with a reverse face 13 and an obverse face 14, the obverse face 14 having a nanostructured surface.

    [0021] A nanostructured surface is a surface on which there is formed a plurality of nanostructures. A nanostructure is a structure that has at least one dimension on the nanoscale. For the purposes of the present invention, nanoscale means between 0.1 nm and 1000 nm, more typically between 1 nm and 100 nm.

    [0022] A nanostructure may have only one dimension on the nanoscale, or two dimensions on the nanoscale, or three dimensions on the nanoscale. Nanostructures having three dimensions on the nanoscale are referred to as nanoparticles.

    [0023]  Figure 1A shows a more detailed view of the nanostructured surface of the obverse face 14. The nanostructured surface comprises a plurality of nanostructures 16 that are elongate, having a respective longitudinal axis that is disposed substantially perpendicularly to the obverse face 14. The nanostructures 16 may therefore be said to be elongated in a direction perpendicular to the obverse face 14. The nanostructures 16 are therefore substantially parallel with each other. In the invention, the nanostructures 16 are spaced apart from one another, e.g. each nanostructure 16 is spaced apart from the, or each, adjacent nanostructure 16. Alternatively, outside the scope of the invention, at least some and optionally all of the nanostructures 16 are contiguous with the, or each, adjacent nanostructure 16. The nanostructures 16 may be arranged in a one or two dimensional array, preferably being aligned with each other along the, or each, dimension of the array. The aspect ratio of the length L to the width W of each nanostructure 16 is greater than 1. The third dimension (not illustrated) of the nanostructures 16 may be of any desired size depending on the application, for example it may be similar to the width W or the length L, or may be unlimited, e.g. the nanostructures may form a grating. In preferred embodiments, at least some and preferably all of the nanostructures 16 are nanoparticles, having three dimensions on the nanoscale.

    [0024] For example, some or all of the nanostructures 16 may comprise a wire or a tube, in particular a nanowire or nanotube, which may take any suitable shape for example substantially cylindrical or substantially conical. The nanostructures 16 may be solid or hollow.

    [0025] The nanostructures 16 are formed from an electrically conductive material, typically a metallic material, for example, any of silver, gold, aluminium, platinum, copper or any noble metal or any combinations of the aforesaid.

    [0026] In typical embodiments, the width W of the nanostructures 16 is approximately 2 nm to approximately 500 nm, usually approximately 10 nm to approximately 100 nm, and the length L of the nanostructures 16 is approximately 10 nm to approximately 2 µm, usually approximately 50 nm to approximately 500 nm. For example, the nanostructures 16 may have a width of approximately 20 nm and a length of approximately 500 nm. It is preferred that the nanostructures 16 are substantially uniform in width and/or height although this need not necessarily be the case.

    [0027] Typically, the spacing between adjacent nanostructures 16 is approximately 2 nm to approximately 1500 nm, usually approximately 20 nm to approximately 500 nm. In preferred embodiments of the invention, the nanostructures 16 are spaced apart from one another by a distance less than the wavelength of the excitation light used to cause plasmonic oscillations, as is described in further detail below. The nanoparticle to nanoparticle separation may be periodic, at a scale of approximately 20 nm to approximately 1.5 µm. The nanoparticle to nanoparticle separation may be quasi-periodic, at a scale of approximately 20 nm to approximately 1500 nm. Typically, the sensor 10 includes in the order of one billion nanoparticles 16.

    [0028] The body 12 provides a mechanical support for the nanostructures 16. The body 12 may be made of any convenient material, preferably a dielectric material, for example glass, crystal or plastics. Typically, the body 12 is substantially planar in shape, having spaced apart, oppositely disposed obverse and reverse faces 14, 13 that are preferably parallel with one another. By way of example, the body 12 may be between approximately 0.3 to approximately 2 mm thick (i.e. between faces 13, 14. The body 12 is made from material that is transparent to the electromagnetic radiation (usually light radiation) that is used to illuminate the sensor 10, as is described in more detail below. In the case where the illuminating radiation is light, the body 12 may for example be formed from glass.

    [0029] In the invention, the nanostructures 16 are formed on a layer 17 of electrically conductive material, typically a metallic layer, provided at the obverse face 14 of the body 12, i.e. as part of a nanostructured metallic layer on the body 12. The layer 17 is typically between 1 nm and 10 nm thick. In preferred embodiments the layer 17 is formed from gold but may be formed from any other suitable material, for example silver, aluminium, platinum, copper or any noble metal or any combinations of the aforesaid. Any conventional fabrication technique that is suitable for forming a nanostructured metallic layer may be used to create the layer 17. For example, the nanostructures may be formed by electrodeposition, optionally in pores formed in a layer of insulating material, e.g. aluminium oxide. Typically, an adhesive layer 19 is provided between the body 20 and the metallic layer 17. Any conventional adhesive layer material may be used, e.g. titanium or tantalum, and is typically formed by physical vapour deposition. In alternative embodiments, the layers 17, 19 may be omitted and the nanostructures may be provided on the body by any other means, e.g.by dispersion of a liquid with a dispersion of nanostructures and subsequent evaporation of the liquid.

    [0030] The layer 17 is made from material that is not only conductive but which is also sufficiently transparent to the electromagnetic radiation (usually light radiation) that is used to illuminate the sensor 10 to allow excitation of the plasmonic modes on the nanostructures 16. In some embodiments the nanostructures 16 may cover the whole of the obverse face 14. Alternatively, the nanostructures 16 cover one or more parts of the obverse face 14. Optionally, the layer 17 may be patterned by any convenient conventional techniques, for example optical, e-beam or other lithographic technique, to spatially define the location of one or more regions in which the nanostructures 16 are provided. By way of example only, Figure 1 shows two such regions R. The number of regions and the shape, size and spacing of the, or each, region may be selected to suit the application. The density and size of the nanostructures 16 is typically the same in each region R, although either or both of these properties may vary from region to region.

    [0031] Lithographic techniques can remove the conductive layer 17 in areas defined by any desired pattern such that subsequent growth of the nanostructures 16 only occurs in region(s) where the layer 17 remains. Patterning the layer 17 to define one or more regions R for the nanostructures 16 is useful where, for example, a detector comprising a CMOS or CCD camera is used, since separate nanostructure regions, and hence corresponding optical resonances, will be easily identifiable.

    [0032] Optionally each nanostructure region R may be electrically biased giving the nanostructures 16 in that region an electrical charge. In this way the binding of biological entities to the surface, during use, is affected as these in many cases have well defined electrical charge states. By controlling the electrical charge of the regions R, each region R may be made to target a different biological entity. To this end, each region R may be electrically connected to an electrical terminal T that may be connected in use, to an electrical power source (not shown) by which a voltage (typically d.c.) may be applied to electrically charge the nanostructures 16 of the respective region R. Optionally a different voltage level, or bias, may be applied to each region R. As a result the respective nanostructures 16 of each region R have a different electrical charge. Conveniently, the terminals T and the electrical connection C connecting them to the respective nanostructure region R may be formed by the layer 17, e.g. by patterning the layer 17 using lithographic or other suitable techniques.

    [0033] The electrical power source may take any suitable conventional form and may be connected to the terminals T using any suitable conventional connector (not shown).

    [0034] Formation of the nanostructures 16 in each region may also be achieved by controlled (e.g. in terms of duration of application and/or voltage level) application of voltage to the respective terminal T. The application of electrical voltage to the regions R causes the nanostructures to grow by electrodeposition. The type of nanostructures grown depends on the characteristics of the voltage that is applied. For example, the time for which the voltage is applied may be controlled to control the length of the nanostructures.

    [0035] In any event, the regions R can be made to have different properties in the nanostructures, e.g. the regions having a respective different size and/or shape. For example one defined area of nanostructure could be longer than another giving a different optical signature. The illuminating excitation source can then be designed to address the different regions of interest by having a multispectral output, e.g. being capable of producing illuminating radiation in two or more modes, i.e. at two or more different wavelengths, preferably a respective different wavelength for each type of region R. This may be achieved by, for example using a multi LED light source or having a filter wheel in front of a white light source. The nanostructures 16 resonate when illuminated by radiation at a respective resonant frequency, the resonant frequency depending on one or more of the physical characteristics of the nanostructure (e.g. its length, width and or other relevant dimension). Advantageously the respective nanostructures 16 of each region R are created to have a resonant frequency (or resonant mode) that matches a respective mode of illumination supported by the radiation source. The response of the sensor 10 therefore depends on how it is illuminated. For example, assume the radiation source can produce light at first and second distinct wavelengths of, say, 600nm and 700nm. The nanostructures in a first of the regions R are grown to be resonant at 600 nm and those in a second region are grown to be resonant at 700 nm. In this case the illuminating light can be alternated (e.g. by pulsing) between 600nm and 700nm and the sensor response would come from the first region and then the second region. Alternatively, the sensor 10 may be excited with both wavelengths at once and the response may be monitored at the different wavelengths, e.g. using filters (not shown) or a spectrometer (not shown).

    [0036] To facilitate incorporating the sensor 10 into an analysing apparatus, the sensor 10 may be mounted on a carrier 18 that exposes the reverse face 13 to allow the radiation to impinge upon and emerge from the reverse face as described herein, and exposes the obverse face to the sample chamber. The carrier 18 may be formed form any convenient material, e.g. plastics. The preferred carrier 18 is illustrated in Figures 4 and 4A and comprises a body in which a through-aperture 21 is formed, the sensor 10 being mounted in the aperture 21 such that its faces 13, 14 are exposed. The body may for example comprise a substantially planar body and may be in the order of 1 mm thick.

    [0037]  Figure 5 shows an alternative embodiment in which the sensor 10 is mounted on a transparent carrier 118 having no through-aperture. The carrier 118 is substantially planar in shape, having oppositely disposed obverse and reverse faces 120, 122 that are preferably parallel with one another. Conveniently, the carrier 118 comprises a slide of transparent material. The reverse face 13 of the sensor 10 is mounted on the obverse face 120 of the carrier 118. Optionally, a layer of index-matching material is provided between the carrier 118 and the sensor 10 to reduce or eliminate reflection and refraction of the illuminating radiation at the interface between the carrier 118 and the sensor 10. Any conventional index-matching material may be used, e.g. epoxy resin or any suitable synthetic adhesive, usually in a liquid or gel form. Typically, the index-matching material also serves as an adhesive for holding the carrier 118 and the sensor 10 together.

    [0038] Referring now to Figure 2, there is shown an analysing apparatus 30 comprising a fluid container 32, e.g. a cuvette, defining a sample chamber 34 for containing a sample, e.g. an assay sample, to be analysed. Typically the sample is a liquid or fluid that includes chemical or biological material. The sensor 10 is coupled to the fluid container 32 (via the carrier 18 in this example) such that the obverse face 14 and in particular the nanostructured surface is exposed to the chamber 34, i.e. exposed to and typically immersed in the sample during use. Preferably, there is direct contact between the nanostructured surface of the sensor 10 and the sample during use. A seal (not shown) such as an O-ring is typically provided between the sensor 10 and the fluid container 32 to keep the sample within the chamber 34. The reverse face 13 of the sensor 10 is exposed to allow excitation radiation to be directed onto the reverse face 13 of the sensor 10, thereby reaching the nanoparticles 16 through the body 12, and to allow radiation reflected from the nanoparticles 16 to emerge out of the body 12 through the reverse face 13.

    [0039] The analysis apparatus 30 includes an excitation and detection apparatus 35 configured to direct a beam of incident radiation Li, e.g. a beam of light in preferred embodiments, from an excitation source 36 to the sensor 10, and in particular to the reverse face 13 of the body 12, and to direct a beam of reflected radiation Lr, e.g. a beam of reflected light in preferred embodiments, from the sensor 10, and in particular radiation emerging from the sensor 10 through the reverse face 13 to a detector 40.

    [0040] Conveniently, the container 32 is received in a cuvette block 33 which can be releasably secured to the excitation and detection apparatus 35, for example by one or more clamps (not shown). The carrier 18 may be fixed to the block 33 by any convenient means, e.g. adhesive, or under the action of the clamps. In use, the sensor 10 is positioned between the block 33 and the excitation and detection apparatus 35.

    [0041] The excitation source 36 generates a beam of electromagnetic radiation. In typical embodiments the excitation source 36 is of a type that generates light, especially visible light but more generally light having a wavelength typically between approximately 300 nm to 1500 nm.

    [0042] More particularly, the preferred excitation source 36 is of a type that generates p-polarised light, also known as transverse-magnetic light. P-polarized light is linearly polarized light with polarization direction lying in the plane of incidence. The plane of incidence is the plane which contains the surface normal and the propagation vector of the incoming light radiation. Polarized light with its electric field along the plane of incidence is thus denoted p-polarized. P polarized radiation is commonly referred to as transverse-magnetic (TM) radiation. By way of example a stand LED light source with a polarising filter may be used as the light source 36.

    [0043] The detector 40 detects electromagnetic radiation that is reflected from the sensor 10. The detector 40 is of a type that is compatible with the excitation source 36 and so, in typical embodiments, comprises a light detector. e.g. a photodetector such as the Thorlabs PDA 100 (trade mark).

    [0044] In preferred embodiments, the excitation and detection apparatus 35 includes a light guide 42 configured to direct the incident and reflected beams Li, Lr to and from the sensor 10. The preferred light guide 42 includes an excitation channel 44 for directing the incident radiation to the sensor 10. The channel 44, which is typically linear, extends from the excitation source 36 to the exposed reverse face 13 of the body 12. The light guide 42 preferably includes a detection channel 46 for directing the reflected radiation to the detector 40. The detection channel 46, which is typically linear, extends from the exposed reverse face 13 of the body 12 to the detector 40. Optionally, the channels 44, 46 contact the reverse face 13 at a respective separate part of the reverse face 13.

    [0045] In alternative embodiments, the light guide 42 and channels 44, 46 may be omitted. In such cases, the excitation and detection apparatus may for example comprise the excitation source, the detector and means for focussing and/or collimating one or both of the radiation beams, e.g. one or more lenses, and/or the excitation source may be of a type that generates a focussed beam, e.g. a laser. For example the excitation and detection apparatus may comprise a hollow block on which the excitation source and detector are mounted and positioned to direction light to and receive light from the sensor through the hollow interior of the block. Optionally, one or more focussing and/or collimating lenses may be provided at the excitation source and/or at the detector. Optionally, a non-reflective coating may be applied to the interior of the block.

    [0046] In the illustrated embodiment, the light guide 42 has a solid body 48 in which the channels 44, 46 are formed by any conventional means, e.g. drilling or moulding. In alternative embodiments, the body 48 need not be solid. For example it may comprise a frame holding one or more tubes which define the or each channel 44, 46. In any event, the walls forming the channels 44, 46 are typically opaque to the radiation although this is not essential depending on how the radiation is carried through the channels 44, 46. For example, the radiation may propagate directly through the, or each, channel 44, 46 in which case the channel walls should be opaque. Alternatively, the radiation may propagate through a light guide, e.g. a fibre optic cable, which is located in the respective channel 44, 46, in which case the channel walls need not be opaque. Optionally, a non-reflective coating may be applied to the interior surface of the channels.

    [0047] In the invention, the excitation and detection apparatus 35 is configured so that the excitation radiation Li is incident on the reverse face 13 of the body 12 at an angle Θ1, measured with respect to the surface normal, that is equal to or substantially equal to the Brewster angle (also known as Brewster's angle or the polarisation angle). The Brewster angle is the angle of incidence at which light with a particular polarization, in this case p-polarisation, is perfectly transmitted through the surface, in this case the reverse face 13 of the body 12, of a transparent medium when passing from a first medium to a second medium which have different refractive indicies, with no reflection from the surface. In this example, the first medium is that of the channel 44 and is typically air, while the second medium is that of the body 12, which is typically glass. The Brewster angle for an air/glass interface is approximately 57° (where the glass has a refractive index of 1.52). It will be understood that the Brewster angle may be different for different media that may be used in alternative embodiments of the invention, including glass having a different refractive index than 1.52.

    [0048] Hence, in the invention, the channel 44 is angled with respect to the reverse face 13 such that the radiation beam Li is incident on the reverse face 13 at or substantially at the Brewster angle, thereby eliminating or substantially eliminating reflections from the reverse face 13. In embodiments where the light guide is omitted, the radiation may be directed by other means as indicated above, but still passes through a medium, typically air, as it travels from the excitation source to the reverse face of the sensor, and from the sensor to the detector. In such cases, the medium is contained within the excitation and detection apparatus 35, e.g. in one or more chambers through which the radiation travels.

    [0049] In use, and as illustrated in Figure 3, when the excitation beam Li hits the reverse face 13, it is refracted by the body 12. Hence, the angle of incidence Θ2 of the excitation beam Li at the obverse face 14 of the body 12 (with respect to the normal of those surfaces) is less than the angle of incidence Θ1 of the beam Li at the reverse face 13 (with respect to the normal) of the substrate 18. Advantageously, the arrangement is such that Θ2 is less than the angle required to achieve attenuated total reflection (ATR) within the body 12. Typically, the body 12 is made of a material (e.g. glass) having a higher refractive index than the medium (e.g. air) through which the light is propagated to reach the body 12.

    [0050] In use, plasmonic oscillations, which may also be referred to as plasmonic resonance, are caused in the nanostructured surface 14 of the sensor 10 in response to radiation beam Li incident at the reverse of the nanostructured face 14 of the sensor, advantageously at an angle of incidence below that required for ATR. Plasmonic oscillations occur in the nanostructured surface in a direction that is normal to the obverse face 14. More generally, the plasmonic oscillations occur in directions that are possible to be excited by the radiation. In the preferred embodiments where the nanostructures 16 are elongate, plasmonic oscillations occur both along and transverse to the longitudinal axis of the nanostructures 16. The plasmonic oscillations along the longitudinal axis resonances are in this case used for sensing, which requires a component of the excitation light to be at non-normal incidence on the reverse face 13.

    [0051] In the invention, a mode of radiation is excited between the nanostructures 16, an in particular in the spaces between the nanostructures. For this to occur a component of momentum in the excitation radiation Li is in the direction of the longitudinal axis of the nanostructures 16. This direction is perpendicular to faces 14 and 13. Hence, the nanostructures 16 are excited with P polarised radiation at an angle oblique to the surface normal of 14. This requires the nanostructures 16 to be extending perpendicularly to the conductive layer 17, and illumination by the radiation Li through the layer 17, i.e. the radiation Li is incident on the underside of the layer 17 with respect to the nanostructures, to properly excite the mode.

    [0052] In the invention therefore, the incident radiation Li is at an oblique angle and polarised with an electrical component along the length of the nanostructures 16. This excites a "longitudinal" localised surface plasmon resonance (along the length), which for an isolated gold nanorod naturally resonates in the Infrared wavelength regime (1000 nm). The arrangement of nanostructures 16, particularly their close packed nature (i.e. in the invention with a spacing of less than 50nm) means the localised resonance modes delocalise, and energy is transferred to neighbouring nanostructures. This has an effect of shifting the resonance into the visible wavelength regime (550 - 700nm), depending on the geometry and spacing of the nanostructures, which is more desirable for most optical applications. The resonance mode is further altered by the conductive layer 17, which has a waveguiding nature, further adding to the delocalisation of the mode. Exciting the nanostructures 16 in this configuration means the electric field enhancements from the "isolated" longitudinal plasmon resonance are no longer confined at the tips of nanostructures 16 but are in the space between the nanostructures 16. This means the most sensitive part of the sensor 10 is where biological interactions will occur.

    [0053] In preferred embodiments, ATR is not possible at face 14 because face 13 is parallel to it. For ATR to occur, a prism (not shown) would have to be used instead of the preferred slide. Accordingly, in the invention, plasmons can be excited in the nanostructured surface 14 with the excitation incident at any angle without getting to an ATR angle. The only incidence angle that gives low reflection from parallel face 13 is the Brewster angle.

    [0054] Advantageously , in the invention the incident radiation impinges on the face 13 at the Brewster angle to eliminate or substantially eliminate reflections from the face 13. The incident radiation Li subsequently impinges on the reverse of the nanostructured surface 14, and is reflected by the reverse face of the nanostructured surface 14 whereupon it travels back through the body 12, emerging from the reverse face 13 and being directed to the detector 40 as the reflected radiation beam Lr. Advantageously, there is no ATR of the beams Li, Lr within the body 12. In preferred embodiments, the reflected beam Lr is directed from the body 12 to the detector 40 by the channel 46 (either directly by the channel 46 or by a light guide (not shown) located in the channel 46).

    [0055] The plasmonic oscillations in the nanostructured surface 14 of the sensor 10 interact with the sample in the chamber 34 and, depending on what is contained in the sample, these interactions affect one or more characteristics of the reflected beam Lr, for example its intensity. For example, changes in the intensity (e.g. a modulation of intensity) can be caused by an alteration of the resonance conditions of the nanostructures 16. Hence, by analysing one or more characteristics of the reflected beam Lr, the detector 40 can determine one or more characteristics of the sample, e.g. relating to its composition. Any suitable conventional analysis may be used for this purpose.

    [0056] It will be seen that in preferred embodiments, plasmonic oscillations in the sensor 10 are caused by an excitation beam Li incident on the reverse face nanostructured surface 14. The Brewster angle is not used to get minimum reflectivity at the reverse face nanostructure surface 14; instead the invention uses the Brewster angle for p-polarised radiation to minimise unwanted reflection from the reverse face 13 of the body 12. This is possible because the nanostructured surface 14 of the sensor 10 can generate plasmonic oscillations when excited at an angle less than required for ATR. This makes the apparatus 30 simpler and cheaper in comparison with known alternatives that use ATR prisms to create ATR of the light to excite surface plasmons in a gold or silver planar film.

    [0057] The invention is not limited to the embodiment(s) described herein but can be amended or modified without departing from the scope of the present invention, as defined by the appended claims.


    Claims

    1. An analysing apparatus comprising:

    a fluid container (32) defining a sample chamber;

    a sensor (10) comprising a transparent body (12) with a reverse face (13) and an obverse face (14), the obverse face (14) having a nanostructured surface, the nanostructured surface comprising a plurality of nanostructures (16); ;

    an excitation and detection apparatus (35) comprising an excitation source (36) for generating a beam (Li) of polarised radiation and a corresponding radiation detector (40),

    wherein, the sensor (10) is coupled to the fluid container (32) such that the nanostructured surface is exposed to the sample chamber,

    and wherein the excitation and detection apparatus (35) is configured to direct the beam (Li) of incident polarised electromagnetic radiation onto the reverse face (13) of the body (12) at an angle that causes no or substantially no reflection of the polarised radiation from the reverse face,

    and wherein said excitation and detection apparatus (35) is configured to direct to said detector (40) a beam (Lr) of reflected radiation, said beam of reflected radiation comprising said incident radiation emerging in use from the reverse face (13) after reflection from said nanostructured surface,

    wherein said nanostructures (16) are elongate, having a respective longitudinal axis that is disposed substantially perpendicularly to the obverse face, so that the incident radiation is polarised with an electrical component along the longitudinal axis of the nanostructures (16),

    wherein the excitation and detection apparatus (35) is configured to direct said beam of incident polarised electromagnetic radiation onto the reverse face (13) of the body (12)

    such that, upon travelling though said body, said incident beam impinges upon said nanostructured surface at an angle less than that required for attenuated total reflection (ATR),

    wherein the nanostructures (16) are formed from an electrically conductive material,

    wherein the nanostructures (16) are formed on an electrically conductive layer (17) provided at the obverse face (14) of the body (14),

    wherein the nanostructures (16) are spaced apart from one another with a spacing of less than 50nm.


     
    2. The apparatus of claim 1, wherein said obverse (14) and reverse (13) faces are substantially parallel with one another; and/or wherein said body (12) is substantially planar in shape, said obverse and reverse faces being oppositely disposed on the planar body; and/or wherein said body is formed from glass.
     
    3. The apparatus as claimed in any preceding claim, wherein said excitation and detection apparatus (35) includes a medium through which said incident radiation beam travels, in use, to said reverse face (13) of the sensor (10), wherein the refractive index of said medium is less than the refractive index of the material from which said body (12) is made; and/or wherein said medium is air.
     
    4. The apparatus of any preceding claim, wherein said radiation has a wavelength between approximately 300 nm to 1500 nm; and/or wherein said electromagnetic radiation is light.
     
    5. The apparatus of any preceding claim, wherein the excitation and detection apparatus (35) is configured to direct said beam of incident polarised electromagnetic radiation onto the reverse face (13) of the body (12) through a first medium with a first refractive index, said body being formed from a material with a second refractive index different from said first refractive index, said beam being directed to impinge upon said reverse face substantially at the Brewster angle corresponding to said first and second refractive indices; wherein said first medium is air and said second medium is glass, said angle being approximately 57º.
     
    6. The apparatus of any preceding claim, wherein the nanostructures (16) are substantially parallel with each other; and/or wherein the nanostructures are arranged in a one or two dimensional array.
     
    7. The apparatus of any preceding claim, wherein at least some and preferably all of the nanostructures (16) are nanoparticles, having three dimensions on the nanoscale.
     
    8. The apparatus of claim 1, wherein the nanostructures (16) are formed from a metallic material.
     
    9. The apparatus of any preceding claim, wherein the excitation and detection apparatus (35) includes a light guide (42) configured to direct the incident radiation beam to, and the reflected radiation beam from, the reverse face (13) of the body.
     
    10. The apparatus of claim 9, wherein the light guide (42) includes an excitation channel (44) for directing the incident radiation to the reverse face (13) of the body (12); and/or wherein the excitation channel extends from the excitation source (36) to the reverse face of the body.
     
    11. The apparatus of any one of claims 9 to 10, wherein the light guide (42) includes a detection channel (46) for directing the reflected radiation beam from the reverse face (13) of the body (12) to the detector (40); and/or wherein the detection channel extends from the reverse face of the body to the detector.
     
    12. The apparatus of claim 11 when dependent on claim 10, wherein the excitation (44) and detection (46) channels contact the reverse face in (13) at a respective separate part of the reverse face.
     
    13. The apparatus of any preceding claim, further including a cuvette block (33) having a recess for receiving said fluid chamber (34).
     
    14. The apparatus of claim 13, wherein the cuvette block (33) is releasably securable to the excitation and detection apparatus (35).
     
    15. A method of analysing a sample using a sensor (10) comprising a transparent body (12) with a reverse face (13) and an obverse face (14), the obverse face having a nanostructured surface, the nanostructured surface comprising a plurality of elongate nanostructures (16) having a respective longitudinal axis that is disposed substantially perpendicularly to the obverse face, wherein the nanostructures (16) are formed from an electrically conductive material, wherein the nanostructures (16) are formed on an electrically conductive layer (17) provided at the obverse face (14) of the body (12), wherein the nanostructures (16) are spaced apart from one another with a spacing of less than 50nm, the method comprising:

    exposing the nanostructured surface to the sample;

    directing a beam of incident polarised electromagnetic radiation (Li) from an excitation source (36) onto the reverse face of the body at an angle that causes no or substantially no reflection of the polarised radiation from the reverse face (13), wherein the incident radiation is polarised with an electrical component along the longitudinal axis of the nanostructures (16), and such that, upon travelling though said body (12), said incident beam impinges upon said nanostructured surface at an angle less than that required for attenuated total reflection (ATR); and

    directing to a detector (40) a beam of reflected radiation (Lr), said beam of reflected radiation comprising said incident radiation that emerges from the reverse face (13) after reflection from said nanostructured surface.


     


    Ansprüche

    1. Analysevorrichtung, umfassend:

    einen Fluidbehälter (32), der eine Probenkammer definiert;

    einen Sensor (10), der einen transparenten Körper (12) mit einer Rückseite (13) und einer Vorderseite (14) umfasst, wobei die Vorderseite (14) eine nanostrukturierte Oberfläche aufweist, wobei die nanostrukturierte Oberfläche eine Vielzahl von Nanostrukturen (16) umfasst;

    eine Anregungs- und Detektionsvorrichtung (35), die eine Anregungsquelle (36) zum Erzeugen eines Strahls (Li) polarisierter Strahlung und einen entsprechenden Strahlungsdetektor (40) umfasst,

    wobei der Sensor (10) mit dem Fluidbehälter (32) so gekoppelt ist, dass die nanostrukturierte Oberfläche der Probenkammer ausgesetzt ist,

    und wobei die Anregungs- und Detektionsvorrichtung (35) so konfiguriert ist, dass sie den Strahl (Li) einfallender polarisierter elektromagnetischer Strahlung auf die Rückseite (13) des Körpers (12) in einem Winkel lenkt, der keine oder im Wesentlichen keine Reflexion der polarisierten Strahlung von der Rückseite verursacht,

    und wobei die Anregungs- und Detektionsvorrichtung (35) so konfiguriert ist, dass sie zu dem Detektor (40) einen Strahl (Lr) reflektierter Strahlung lenkt, wobei der Strahl reflektierter Strahlung die einfallende Strahlung umfasst, die bei Betrieb von der Rückseite (13) nach Reflexion von der nanostrukturierten Oberfläche entsteht,

    wobei die Nanostrukturen (16) länglich sind und eine jeweilige Längsachse, die im Wesentlichen lotrecht zur Vorderseite angeordnet ist, aufweisen, so dass die einfallende Strahlung mit einer elektrischen Komponente entlang der Längsachse der Nanostrukturen (16) polarisiert wird,

    wobei die Anregungs- und Detektionsvorrichtung (35) so konfiguriert ist, dass sie den Strahl einfallender polarisierter elektromagnetischer Strahlung auf die Rückseite (13) des Körpers (12) so lenkt, dass beim Wandern durch den Körper der einfallende Strahl auf die nanostrukturierte Oberfläche in einem Winkel auftrifft, der kleiner als derjenige ist, der für eine abgeschwächte Totalreflexion (ATR) erforderlich ist,

    wobei die Nanostrukturen (16) aus einem elektrisch leitfähigen Material ausgebildet sind,

    wobei die Nanostrukturen (16) auf einer elektrisch leitfähigen Schicht (17) ausgebildet sind, die an der Vorderseite (14) des Körpers (14) bereitgestellt ist,

    wobei die Nanostrukturen (16) voneinander mit einem Abstand von weniger als 50 nm beabstandet sind.


     
    2. Vorrichtung nach Anspruch 1, wobei die Vorderseite (14) und die Rückseite (13) im Wesentlichen zueinander parallel sind; und/oder wobei der Körper (12) im Wesentlichen der Form nach plan ist, wobei die Vorderseite und die Rückseite an dem planen Körper gegenüberliegend angeordnet sind; und/oder wobei der Körper aus Glas ausgebildet ist.
     
    3. Vorrichtung nach einem der vorstehenden Ansprüche, wobei die Anregungs- und Detektionsvorrichtung (35) ein Medium beinhaltet, durch das der Strahl der einfallenden Strahlung im Betrieb zur Rückseite (13) des Sensors (10) wandert, wobei der Brechungsindex des Mediums kleiner als der Brechungsindex des Materials ist, aus dem der Körper (12) hergestellt ist; und/oder wobei das Medium Luft ist.
     
    4. Vorrichtung nach einem der vorstehenden Ansprüche, wobei die Strahlung eine Wellenlänge von etwa 300 nm bis 1.500 nm aufweist; und/oder wobei die elektromagnetische Strahlung Licht ist.
     
    5. Vorrichtung nach einem der vorstehenden Ansprüche, wobei die Anregungs- und Detektionsvorrichtung (35) so konfiguriert ist, dass sie den Strahl einfallender polarisierter elektromagnetischer Strahlung auf die Rückseite (13) des Körpers (12) durch ein erstes Medium mit einem ersten Brechungsindex lenkt, wobei der Körper aus einem Material mit einem zweiten Brechungsindex, der sich von dem ersten Brechungsindex unterscheidet, ausgebildet ist, wobei der Strahl so gelenkt wird, dass er auf der Rückseite im Wesentlichen im Brewster-Winkel, der dem ersten und dem zweiten Brechungsindex entspricht, auftrifft; wobei das erste Medium Luft ist und das zweite Medium Glas ist, wobei der Winkel etwa 57° beträgt.
     
    6. Vorrichtung nach einem der vorstehenden Ansprüche, wobei die Nanostrukturen (16) im Wesentlichen zueinander parallel sind; und/oder wobei die Nanostrukturen in einer ein- oder zweidimensionalen Anordnung angeordnet sind.
     
    7. Vorrichtung nach einem der vorstehenden Ansprüche, wobei mindestens einige und bevorzugt alle Nanostrukturen (16) Nanopartikel sind, die drei Dimensionen im Nanobereich aufweisen.
     
    8. Vorrichtung nach Anspruch 1, wobei die Nanostrukturen (16) aus einem metallischen Material ausgebildet sind.
     
    9. Vorrichtung nach einem der vorstehenden Ansprüche, wobei die Anregungs- und Detektionsvorrichtung (35) einen Lichtleiter (42) beinhaltet, der so konfiguriert ist, dass er den Strahl der einfallenden Strahlung zu und den Strahl der reflektierten Strahlung von der Rückseite (13) des Körpers lenkt.
     
    10. Vorrichtung nach Anspruch 9, wobei der Lichtleiter (42) einen Anregungskanal (44) zum Lenken der einfallenden Strahlung zur Rückseite (13) des Körpers (12) beinhaltet; und/oder wobei sich der Anregungskanal von der Anregungsquelle (36) zur Rückseite des Körpers erstreckt.
     
    11. Vorrichtung nach einem der Ansprüche 9 bis 10, wobei der Lichtleiter (42) einen Detektionskanal (46) zum Lenken des Strahls der reflektierten Strahlung von der Rückseite (13) des Körper (12) zum Detektor (40) beinhaltet; und/oder wobei sich der Detektionskanal von der Rückseite des Körpers zum Detektor erstreckt.
     
    12. Vorrichtung nach Anspruch 11, wenn abhängig von Anspruch 10, wobei die Kanäle zur Anregung (44) und zur Detektion (46) die Rückseite (13) an einem jeweiligen gesonderten Teil der Rückseite berühren.
     
    13. Vorrichtung nach einem der vorstehenden Ansprüche, ferner einen Küvettenblock (33) beinhaltend, der eine Aussparung zum Aufnehmen der Fluidkammer (34) aufweist.
     
    14. Vorrichtung nach Anspruch 13, wobei der Küvettenblock (33) lösbar an der Anregungs- und Detektionsvorrichtung (35) fixiert werden kann.
     
    15. Verfahren zum Analysieren einer Probe unter Verwendung eines Sensors (10), der einen transparenten Körper (12) mit einer Rückseite (13) und einer Vorderseite (14) umfasst, wobei die Vorderseite eine nanostrukturierte Oberfläche aufweist, wobei die nanostrukturierte Oberfläche eine Vielzahl von länglichen Nanostrukturen (16) umfasst, die eine jeweilige Längsachse aufweisen, die im Wesentlichen lotrecht zur Vorderseite angeordnet ist, wobei die Nanostrukturen (16) aus einem elektrisch leitfähigen Material ausgebildet sind, wobei die Nanostrukturen (16) auf einer elektrisch leitfähigen Schicht (17) ausgebildet sind, die an der Vorderseite (14) des Körpers (12) bereitgestellt ist, wobei die Nanostrukturen (16) voneinander mit einem Abstand von weniger als 50 nm beabstandet sind, wobei das Verfahren Folgendes umfasst:

    Aussetzen der nanostrukturierten Oberfläche gegenüber der Probe;

    Lenken eines Strahls einfallender polarisierter elektromagnetischer Strahlung (Li) von einer Anregungsquelle (36) auf die Rückseite des Körpers in einem Winkel, der keine oder im Wesentlichen keine Reflexion der polarisierten Strahlung von der Rückseite (13) verursacht, wobei die einfallende Strahlung mit einer elektrischen Komponente entlang der Längsachse der Nanostrukturen (16) polarisiert wird, und derart, dass beim Wandern durch den Körper (12) der einfallende Strahl auf die nanostrukturierte Oberfläche in einem Winkel auftrifft, der kleiner ist als derjenige, der für eine abgeschwächte Totalreflexion (ATR) erforderlich ist;

    und Lenken zu einem Detektor (40) eines Strahls reflektierter Strahlung (Lr), wobei der Strahl reflektierter Strahlung die einfallende Strahlung umfasst, die von der Rückseite (13) nach Reflexion von der nanostrukturierten Oberfläche austritt.


     


    Revendications

    1. Appareil d'analyse comprenant :

    un contenant de fluide (32) définissant une chambre d'échantillon ;

    un capteur (10) comprenant un corps transparent (12) ayant une face opposée (13) et une face d'observation (14), la face d'observation (14) ayant une surface nanostructurée, la surface nanostructurée comprenant une pluralité de nanostructures (16) ;

    un appareil d'excitation et de détection (35) comprenant une source d'excitation (36) pour générer un faisceau (Li) de rayonnement polarisé et un détecteur de rayonnement (40) correspondant,

    dans lequel, le capteur (10) est couplé au contenant de fluide (32) de sorte que la surface nanostructurée est exposée à la chambre d'échantillon,

    et dans lequel l'appareil d'excitation et de détection (35) est conçu pour diriger le faisceau (Li) de rayonnement électromagnétique polarisé incident sur la face opposée (13) du corps (12) à un angle qui ne provoque pas ou sensiblement pas de réflexion du rayonnement polarisé à partir de la face opposée,

    et dans lequel ledit appareil d'excitation et de détection (35) est conçu pour diriger vers ledit détecteur (40) un faisceau (Lr) de rayonnement réfléchi, ledit faisceau de rayonnement réfléchi comprenant ledit rayonnement incident émergeant lors de l'utilisation de la face opposée (13) après réflexion à partir de ladite surface nanostructurée,

    dans lequel lesdites nanostructures (16) sont allongées, en ayant un axe longitudinal respectif qui est disposé sensiblement perpendiculairement à la face d'observation, de sorte que le rayonnement incident est polarisé avec une composante électrique le long de l'axe longitudinale des nanostructures (16),

    dans lequel l'appareil d'excitation et de détection (35) est conçu pour diriger ledit faisceau de rayonnement électromagnétique polarisé incident sur la face opposée (13) du corps (12) de sorte que, lors d'un déplacement à travers ledit corps, ledit faisceau incident frappe ladite surface nanostructurée à un angle inférieur à celui requis pour une réflexion totale atténuée (ATR),

    dans lequel les nanostructures (16) sont formées à partir d'un matériau électroconducteur,

    dans lequel les nanostructures (16) sont formées sur une couche électroconductrice (17) fournie sur la face d'observation (14) du corps (14),

    dans lequel les nanostructures (16) sont espacées les unes des autres avec un espacement inférieur à 50 nm.


     
    2. Appareil selon la revendication 1, dans lequel lesdites faces d'observation (14) et opposée (13) sont sensiblement parallèles l'une à l'autre ; et/ou dans lequel ledit corps (12) est de forme sensiblement plane, lesdites faces d'observation et opposée étant disposées de manière opposée sur le corps plan ; et/ou dans lequel ledit corps est formé à partir d'un verre.
     
    3. Appareil selon une quelconque revendication précédente, dans lequel ledit appareil d'excitation et de détection (35) comprend un milieu à travers lequel ledit faisceau de rayonnement incident se déplace, lors de l'utilisation, vers ladite face opposée (13) du capteur (10), dans lequel l'indice de réfraction dudit milieu est inférieur à l'indice de réfraction du matériau à partir duquel ledit corps (12) est fabriqué ; et/ou dans lequel ledit milieu est l'air.
     
    4. Appareil selon une quelconque revendication précédente, dans lequel ledit rayonnement présente une longueur d'onde entre approximativement 300 nm et 1 500 nm ; et/ou ledit rayonnement électromagnétique est de la lumière.
     
    5. Appareil selon une quelconque revendication précédente, dans lequel l'appareil d'excitation et de détection (35) est conçu pour diriger ledit faisceau de rayonnement électromagnétique polarisé incident sur la face opposée (13) du corps (12) à travers un premier milieu ayant un premier indice de réfraction, ledit corps étant formé d'un matériau ayant un second indice de réfraction différent dudit premier indice de réfraction, ledit faisceau étant dirigé pour frapper ladite face opposée sensiblement à l'angle de Brewster correspondant auxdits premier et second indices de réfraction ; dans lequel ledit premier milieu est de l'air et ledit second milieu est un verre, ledit angle étant approximativement de 57°.
     
    6. Appareil selon une quelconque revendication précédente, dans lequel les nanostructures (16) sont sensiblement parallèles les unes aux autres ; et/ou dans lequel les nanostructures sont agencées selon un réseau à une ou deux dimensions.
     
    7. Appareil selon une quelconque revendication précédente, dans lequel au moins certaines et de préférence toutes les nanostructures (16) sont des nanoparticules, ayant trois dimensions à l'échelle nanométrique.
     
    8. Appareil selon la revendication 1, dans lequel les nanostructures (16) sont formées à partir d'un matériau métallique.
     
    9. Appareil selon une quelconque revendication précédente, dans lequel l'appareil d'excitation et de détection (35) comprend un guide de lumière (42) conçu pour diriger le faisceau de rayonnement incident vers, et le faisceau de rayonnement réfléchi depuis, la face opposée (13) du corps.
     
    10. Appareil selon la revendication 9, dans lequel le guide de lumière (42) comprend un canal d'excitation (44) pour diriger le rayonnement incident vers la face opposée (13) du corps (12) ; et/ou le canal d'excitation s'étend à partir de la source d'excitation (36) vers la face opposée du corps.
     
    11. Appareil selon l'une quelconque des revendications 9 à 10, dans lequel le guide de lumière (42) comprend un canal de détection (46) pour diriger le faisceau de rayonnement réfléchi depuis la face opposée (13) du corps (12) vers le détecteur (40) ; et/ou dans lequel le canal de détection s'étend à partir de la face opposée du corps vers le détecteur.
     
    12. Appareil selon la revendication 11 lorsqu'elle dépend de la revendication 10, dans lequel les canaux d'excitation (44) et de détection (46) sont en contact avec la face opposée (13) au niveau d'une partie séparée respective de la face opposée.
     
    13. Appareil selon une quelconque revendication précédente, comprenant en outre un bloc de cuvette (33) comportant un évidement pour recevoir ladite chambre de fluide (34).
     
    14. Appareil selon la revendication 13, dans lequel le bloc de cuvette (33) peut être fixé de manière amovible à l'appareil d'excitation et de détection (35).
     
    15. Procédé d'analyse d'un échantillon au moyen d'un capteur (10) comprenant un corps transparent (12) ayant une face opposée (13) et une face d'observation (14), la face d'observation ayant une surface nanostructurée, la surface nanostructurée comprenant une pluralité de nanostructures (16) allongée ayant un axe longitudinal respectif qui est disposé sensiblement perpendiculairement à la face d'observation, dans lequel les nanostructures (16) sont formées à partir d'un matériau électroconducteur, dans lequel les nanostructures (16) sont formées sur une couche électroconductrice (17) fournie sur la face d'observation (14) du corps (12), dans lequel les nanostructures (16) sont espacées les unes des autres avec un espacement inférieur à 50 nm, le procédé comprenant :

    l'exposition de la surface nanostructurée à l'échantillon ;

    l'orientation d'un faisceau de rayonnement électromagnétique polarisé incident (Li) depuis une source d'excitation (36) sur la face opposée du corps à un angle qui ne provoque pas ou sensiblement pas de réflexion du rayonnement polarisé à partir de la face opposée (13), dans lequel le rayonnement incident est polarisé avec une composante électrique le long de l'axe longitudinale des nanostructures (16), et de sorte que, lors d'un déplacement à travers ledit corps (12), ledit faisceau incident frappe ladite surface nanostructurée à un angle inférieur à celui requis pour une réflexion totale atténuée (ATR) ; et

    l'orientation vers un détecteur (40) d'un faisceau de rayonnement réfléchi (Lr), ledit faisceau de rayonnement réfléchi comprenant ledit rayonnement incident qui émerge de la face opposée (13) après réflexion à partir de ladite surface nanostructurée.


     




    Drawing

















    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description