(19)
(11)EP 3 360 719 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
09.09.2020 Bulletin 2020/37

(21)Application number: 17155310.0

(22)Date of filing:  09.02.2017
(51)International Patent Classification (IPC): 
B60L 1/00(2006.01)
H02J 7/00(2006.01)
B60L 58/18(2019.01)
B60L 3/00(2019.01)
H02M 1/00(2006.01)

(54)

DUAL POWER SUPPLY SYSTEM

DOPPELTES STROMVERSORGUNGSSYSTEM

SYSTÈME D'ALIMENTATION ÉLECTRIQUE DOUBLE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(43)Date of publication of application:
15.08.2018 Bulletin 2018/33

(73)Proprietor: Samsung SDI Co., Ltd
Gyeonggi-do 17084 (KR)

(72)Inventors:
  • Erhart, Michael
    8054 Pirka-Seiersberg (AT)
  • Korherr, Thomas
    8230 Hartberg (AT)

(74)Representative: Gulde & Partner 
Patent- und Rechtsanwaltskanzlei mbB Wallstraße 58/59
10179 Berlin
10179 Berlin (DE)


(56)References cited: : 
EP-A2- 2 426 005
US-A1- 2002 167 291
US-B1- 6 982 499
WO-A1-2016/121273
US-A1- 2014 009 105
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    Field of the Invention



    [0001] The present invention relates to a dual power supply system, particularly to a dual power supply battery system for an electric vehicle comprising a 48 V board net and a 12 V board net.

    Technological Background



    [0002] A rechargeable or secondary battery differs from a primary battery in that it can be repeatedly charged and discharged, while the latter provides only an irreversible conversion of chemical to electrical energy. Low-capacity rechargeable batteries are used as power supply for small electronic devices, such as cellular phones, notebook computers and camcorders, while high-capacity rechargeable batteries are used as the power supply for hybrid vehicles and the like.

    [0003] In general, rechargeable batteries include an electrode assembly including a positive electrode, a negative electrode, and a separator interposed between the positive and negative electrodes, a case receiving the electrode assembly, and an electrode terminal electrically connected to the electrode assembly. An electrolyte solution is injected into the case in order to enable charging and discharging of the battery via an electrochemical reaction of the positive electrode, the negative electrode, and the electrolyte solution. The shape of the case, e.g. cylindrical or rectangular, depends on the battery's intended purpose.

    [0004] Rechargeable batteries may be used as a battery module formed of a plurality of unit battery cells coupled in series and/or in parallel so as to provide a high energy density, e.g. for motor driving of a hybrid vehicle. That is, the battery module is formed by interconnecting the electrode terminals of the plurality of unit battery cells depending on a required amount of power and in order to realize a high-power rechargeable battery, e.g. for an electric vehicle. One or more battery modules are mechanically and electrically integrated, equipped with a thermal management system and set up for communication with one or more electrical consumers in order to form a battery system.

    [0005] For meeting the dynamic power demands of various electrical consumers connected to the battery system a static control of battery power output and charging is not sufficient. Thus, steady or intermittent exchange of information between the battery system and the controllers of the electrical consumers is required. This information includes the battery systems actual state of charge (SoC), potential electrical performance, charging ability and internal resistance as well as actual or predicted power demands or surpluses of the consumers.

    [0006] For monitoring, controlling and/or setting of the aforementioned parameters a battery system usually comprises a battery management unit (BMU) and/or a battery management system (BMS). Such control units may be an integral part of the battery system and disposed within a common housing or may be part of a remote control unit communicating with the battery system via a suitable communication bus. In both cases, the control unit communicates with the electrical consumers via a suitable communication bus, e.g. a CAN or SPI interface.

    [0007] The electric engine of electric vehicles may be supplied by a high voltage battery system, e.g. a 48 V battery system. The 48 V battery system is connected to a 48 V board net that may comprise electronic control units (ECUs) powered by the 48 V battery system. The 48 V battery system is usually charged by a electric generator (combined starter generator).

    [0008] The electric vehicles may further comprise a 12 V board net that might be related to security relevant functions. Exemplarily, an ECU of a power steering system or an ECU of an antiskid system may be integrated in the 12 V board net. The 12 V board net may comprise a 12 V battery system, e.g. a lead-acid based 12 V battery, that may be charged by the 48 V board net via a DC/DC converter.

    [0009] Hence an electric vehicle according to the prior art usually comprises a 12 V battery system, a DC/DC converter and a 48 V battery system, wherein each of these components requires installation space, increases the weight of the vehicle, reduces the efficiency of the vehicle and increases the costs of the vehicle. Battery systems with battery cell stacks and an integrated DC/DC converter are known from each of the documents US 6 982 499 B1, US 2014/009105 A1, US 2002/167291 A1 and WO 2016/121273 A1.

    [0010] It is thus an object of the present invention to provide an alternative dual power supply system, particularly for an electric vehicle, for supplying different operating voltages, particularly for supplying two different board nets of an electric vehicle. The production costs, weight and installation space requirements of the dual power supply system shall be decreased compared to the prior art. In an electric vehicle, the dual power supply system shall further ensure security relevant functions of the electric vehicle.

    Summary of Invention



    [0011] One or more of the drawbacks of the prior art could be avoided or at least reduced by means of the present invention, according to which a dual power supply system is provided that comprises a first system terminal, a second system terminal and a third system terminal. Each of the system terminals is configured for externally and electrically contacting the dual power supply system. The dual power supply system further comprises a first battery cell stack that is interconnected between a first stack node and a second stack node and that is configured for providing a first operation voltage. The dual power supply system further comprises a second battery cell stack that is interconnected between the second stack node and a third stack node and that is configured for providing a second operation voltage.

    [0012] Each of the first and second battery cell stacks comprises a plurality of battery cells that are electrically connected in series between the respective stack nodes. The battery cell stacks may further comprise battery cells connected in parallel between the respective stack nodes. The amount of cells connected in parallel or series between the stack nodes might differ between the first and second battery cell stack. A plurality of submodules, each comprising a plurality of cells connected in parallel, may be connected in series between the first stack node and the second stack node or the second stack node and the third stack node. The first battery cell stack and the second battery cell stack are connected in series between the first stack node and the third stack node. The added voltage of all battery cells connected in series between the first stack node and the third stack node applies between these stack nodes. The added voltage of all cells connected in series between the first and second stack node applies between these stack nodes. The added voltage of all cells connected in series between the second and third stack node applies between these stack nodes. Preferably, the voltage applied between the first stack node and second node differs from the voltage applied between the second stack node and third stack node for dual power supply. The battery cells of the first battery cell stack may comprise a different capacity than the battery cells of the second battery cell stack.

    [0013] The dual power supply system of the invention further comprises a DC/DC converter with a first converter node, a second converter node and a third converter node. Preferably, the DC/DC converter is one of a buck converter, a boost converter, a forward converter, and a flyback converter. Particularly preferred, the converter is one of a full bridge converter, a buck-boost converter and a push-pull converter. Essentially, the DC/DC converter is configured for converting a first voltage (input voltage) between the second converter node and one of the first converter node and the third converter node to a second voltage (output voltage) between the second converter node and the other one of the first converter node and the third converter node. The converted voltage (output voltage) may be higher or lower than the initial voltage (input voltage). Preferably, the DC/DC converter can be set to provide either an output voltage that is higher or a lower than the input voltage.

    [0014] According to the present invention, the first system terminal is connected to the first stack node and the first converter node in parallel. Further, the second system terminal is connected to the second stack node and the second converter node in parallel and the third system terminal is connected to the third stack node and the third converter node in parallel. In other words, the system terminals are interconnected between the stack nodes and the converter nodes. Essentially, the converter nodes are not interconnected between the system terminals and the stack nodes. According to the invention, each system terminal is connected to the respective stack node via a first conductor or first power line and is connected to the respective converter node via a second conductor or second power line that is different from the first conductor or first power line. The dual power supply system further comprises a first blocking element that is configured for blocking a current from the first system terminal to the first stack node. This allows for using the DC/DC converter in a redundant power supply, e.g. for ensuring security relevant functions in an electric vehicle. It further allows for using the DC/DC converter for active balancing between the first battery cell stack and second battery cell stack.

    [0015] According to the present invention a dual power supply system, particularly a dual power supply battery system, is provided with a double power supply as an integrated feature of a single battery system. Particularly preferred, the aforementioned features are arranged in a common housing. By integrating the DC/DC converter into the battery system of the invention as described above, the DC/DC converter can be utilized for redundant power supply as well as for active and bidirectional balancing between the two battery cell stacks.

    [0016] According to a preferred embodiment of the invention, , the dual power supply system comprises a second blocking element configured for blocking a current from the third system terminal to the third stack node. The blocking elements hinder backflow of electric power from the output nodes of the DC/DC converter to one of the battery cell stacks. Hence the converted voltage can be exclusively provided to an external load via the system terminal and the dual power supply system can be efficiently utilized for redundant power supply. Particularly preferred, the first blocking element is a first diode with its anode connected to the first stack node and its cathode connected to the first system terminal. Further preferred the second blocking element is a second diode with its anode connected to the third stack node and its cathode connected to the third system terminal. Particularly preferred only one of the first and second blocking elements is arranged in the dual power supply system. Hence, the DC/DC converter can be used for one-directional active balancing towards one of the battery cell stacks via the respective unblocked first conductor and for redundant power supply in frame for the other one of the battery cell stacks.

    [0017] According to a further preferred embodiment, the first blocking element is a first switching element that is configured for selectively blocking a current from the first system terminal to the first stack node. Alternatively or additionally, the second blocking element is a third switching element that is configured for selectively blocking a current from the third system terminal to the third stack node. By utilizing switching elements as selective blocking elements the DC/DC converter can be utilized for redundant power supply as well as for active bidirectional balancing with respect to both battery cell stacks. A switching element set nonconductive interrupts the respective first conductor. Hence no current flows from the DC/DC converter to the respective battery cell stack but can be exclusively provided to external loads. A switching element set conductive enables a current from the DC/DC converter to flow into the respective battery cell stack instead to an external load.

    [0018] Preferably, the dual power supply system further comprises a second switching element that is interconnected between the second terminal and the second stack node. By disposing a respective switching element between each of the system terminals and the respective stack node, one can cut the battery cell stacks completely from any external load. Hence, an emergency shutdown of the battery cell stacks may be realized. Further preferred, at least one of the first switching element, the second switching element and the third switching element is a semiconductor switch. Further preferred, transistor switches are used for the first and/or second switching element.

    [0019] In a preferred embodiment of the dual power supply system the sum of the first operation voltage and the second operation voltage is about 48 V. Further, the second operation voltage is about 12 V. Hence, the first operation voltage is about 36 V. According to this embodiment, the dual power supply system is adapted to be utilized in an electric vehicle comprising a 48 V board net and a 12 V board net. Therein, the second battery cell stack supplies the 12 V board net and the first battery cell stack connected in series with the second battery cell stack supplies the 48 V board net. Via the DC/DC converter, the 12 V board net can also be supplied via the first battery cell stack. Via the DC/DC converter, the 48 V board net can be supplied by one of the first battery cell stack and the second battery cell stack. Hence, redundant power supply, e.g. in case of a cell failure in one of the first and second battery cell stack, is ensured.

    [0020] Particularly preferred, the DC/DC converter comprises an inductance, e.g. a choke, which is electrically connected to the second converter node. Particularly, a first node of the inductance is electrically connected to the second converter node. Further, a switching transistor is interconnected between the second node of the inductance and one of the first converter node and the third converter node. A diode is connected with its cathode to the second node of the inductance and with its anode to the other one of the first converter node and the third converter node. According to this exemplary embodiment, one of the first and second battery cell stacks can be used for redundant power supply of an external load and also for active balancing, i.e. power transfer, to the other one of the first and second battery cell stack. Particularly preferred, the first battery cell stack, e.g. a 36 V battery cell stack, is utilized for transferring power to the second battery cell stack, e.g. a 12 V battery cell stack, that might be drained also during a sleep mode of the dual power supply system. Further preferred, the first battery cell stack, e.g. a 36 V battery cell stack, is utilized for redundant power supply to loads of the second battery cell stack, e.g. in a vehicle's 12 V board net. In this case, the diode is interconnected between the inductance and the third converter node.

    [0021] In a further preferred embodiment, the DC/DC converter comprises an inductance, e.g. a choke, which is electrically connected to the second converter node. Particularly, a first node of the inductance is electrically connected to the second converter node. The DC/DC converter further comprises a first switching transistor that is interconnected between the second node of the inductance and the first converter node and a second switching transistor that is interconnected between the second node of the inductance and the third converter node. According to this exemplary embodiment, each of the first and second battery cell stacks can be used for redundant power supply of an external load and also for active balancing, i.e. power transfer, to the other one of the first and second battery cell stack. Further preferred, a first free wheeling diode is connected in parallel with the first switching transistor and configured to block overcurrent from the inductance to the first converter node. Thus, the free wheeling diode is connected with its cathode to the inductance and with its anode to the first converter node. Preferably, a second free wheeling diode is connected in parallel with the second switching transistor and configured to block overcurrent from the inductance to the third converter node. Thus, the free wheeling diode is connected with its cathode to the inductance and with its anode to the third converter node.

    [0022] According to a further preferred embodiment of the dual power system, the DC/DC converter comprises at least one of a first capacitor interconnected between the first converter node and the third (or second) converter node. The first capacitor may be configured as high pass filter in order to protect a first switching transistor and/or the inductance against AC components. The first capacitor may further be configured for limiting the total voltage supplied to the inductance by the first battery cell stack and/or for limiting the total current across a first switching transistor during a single period. The DC/DC converter may further comprise a second filter capacitor that is interconnected between the third converter node and the second (or first) converter node. The second capacitor may be configured as high pass filter in order to protect a second switching transistor and/or the inductance against AC components. The second capacitor may further be configured for limiting the total voltage supplied to the inductance by the second battery cell stack and/or for limiting the total current across a second switching transistor during a single period.

    [0023] Preferably, the dual power supply system further comprises a control unit that is configured for setting the duty cycle of at least one switching transistor. Further preferred, the control unit may be configured for alternatingly setting first switching transistor and second switching transistor conductive. The control unit may be an internal part of the dual power supply system and further may be an integral part of the DC/DC converter. Alternatively, the control is external to the dual power supply system but is functionally integrated with the dual power supply system. In an electric vehicle, the control unit may be a control unit of the vehicle.

    [0024] Another aspect of the present invention relates to a vehicle comprising a dual power supply system according to the invention as described above. Preferably, the vehicle further comprises a starter generator that is interconnected between the first system terminal and the second system terminal. Hence, the first battery cell stack can be charged by the starter generator. Alternatively, the starter generator is interconnected between the first system terminal and the third system terminal. Hence, the first and second battery cell stack can be charged by the starter generator. Further, external loads interconnected between the first and third (or second) system terminal can be powered directly by the starter generator.

    [0025] Alternatively or additionally, the vehicle further comprises at least one first load interconnected between the first system terminal and the third system terminal and at least one second load interconnected between the second system terminal and the third system terminal. Preferably, the first load has an operation voltage of about 48 V and the second load has an operation voltage of about 12 V. The vehicle may further comprise a third load interconnected between the first system terminal and the second system terminal. The third load may be operated at a voltage of 36 V.

    [0026] Another aspect of the present invention relates to a method for operating a dual power supply system according to the invention that is part of a vehicle according to the invention as described above. According to the method of the invention, the dual power supply system is operated in one of a first, second or third operation mode.

    [0027] Therein, in the first operation mode, at least one first load is power supplied by the first battery cell stack and the second battery cell stack. In other words, an operation voltage is supplied to at least one first load by the first battery cell stack that is connected in series with the second battery cell stack. Alternatively, at least one first load is power supplied directly by the starter generator, i.e. the starter generator supplies the operation voltage to the at least one first load. Further, at least one second load is power supplied by the second battery cell stack, i.e. an operation voltage is supplied to at least one second load by the second battery cell stack. In other words, the first operation mode is a normal operation mode with the first battery cell stack and the second battery cell stack in a normal operation condition. In the first operation mode, the first battery cell stack may be charged via the starter generator, while the second battery cell stack may be charged by the first battery cell stack via the DC/DC converter. Alternatively, first and second battery cell stack are directly charged by the starter generator.

    [0028] Particularly preferred, the dual power supply system comprises a first switching element and a third switching element as described above. Then, the first operation mode further may further comprise active balancing, wherein the third switching element is set conductive and electric power is transferred from the first battery cell stack to the second battery cell stack via the DC/DC converter. The first operation mode may further comprise active balancing, wherein the first switching element is set conductive and electric power is transferred from the second battery cell stack to the first battery cell stack via the DC/DC converter. Exemplarily, the second battery cell stack may receive power from the first battery cell stack after wake up from a sleep mode, wherein solely power of the second battery cell stack is consumed during sleep mode. Exemplarily, the first battery cell stack may receive power from the second battery cell stack for supplying one or more third loads, i.e. for supplying an operation voltage to one or more third loads.

    [0029] In the second operation mode of the dual power supply system of the vehicle as described above at least one first load is power supplied by the first battery cell stack via the DC/DC converter, i.e. an operation voltage is supplied to at least one first load by the first battery cell stack via the DC/DC converter. Alternatively or additionally at least one second load is power supplied by the first battery cell stack via the DC/DC converter, i.e. an operation voltage is supplied to at least one second load by the first battery cell stack via the DC/DC converter. The second operation mode might be initiated in response to a failure, e.g. a cell failure, in the second battery cell stack. Hence, for supplying a first load, a (output) voltage is boosted (step-up conversion) from the (input) voltage of the first battery cell stack. For supplying a second load, a (output) voltage is stepped down from the (input) voltage of the first battery cell stack. Particularly preferred, the third switching element is set nonconductive in the second operation mode in order to isolate the malfunctioning second battery cell stack from the board net(s) of the electric vehicle.

    [0030] In the third operation mode of the dual power supply system of the vehicle as described above at least one first load is power supplied by the second battery cell stack via the DC/DC converter, i.e. an operation voltage is supplied to at least one first load by the second battery cell stack via the DC/DC converter. Alternatively or additionally at least one second load is power supplied by the second battery cell stack, i.e. an operation voltage is supplied to at least one second load by the second battery cell stack. The third operation mode might be initiated in response to a failure, e.g. a cell failure, in the first battery cell stack. Hence, for supplying a first load, a (output) voltage is boosted (step-up conversion) from the (input) voltage of the second battery cell stack. A second load can be power supplied directly from the second battery cell stack. Particularly preferred, the first switching element is set nonconductive in the third operation mode in order to isolate the malfunctioning first battery cell stack from the board net(s) of the electric vehicle.

    [0031] Further aspects of the present invention are disclosed in the dependent claims or the following description of the drawings.

    Brief Description of the Drawings



    [0032] Features will become apparent to those of ordinary skill in the art by describing in detail exemplary embodiments with reference to the attached drawings in which:
    Fig. 1
    schematically illustrates a prior art dual power supply system of an electric vehicle;
    Fig. 2
    schematically illustrates a circuit diagram of a vehicle according to the invention with a dual power supply system according to a first embodiment of the invention;
    Fig. 3
    schematically illustrates a circuit diagram of a vehicle according to the invention with a dual power supply system according to a second embodiment of the invention; and
    Fig. 4
    schematically illustrates a circuit diagram of a vehicle according to the invention with a dual power supply system according to a third embodiment of the invention.

    Detailed Description of the Invention



    [0033] Reference will now be made in detail to embodiments, examples of which are illustrated in the accompanying drawings. Effects and features of the exemplary embodiments, and implementation methods thereof will be described with reference to the accompanying drawings. In the drawings, like reference numerals denote like elements, and redundant descriptions are omitted. The present invention, however, may be embodied in various different forms, and should not be construed as being limited to only the illustrated embodiments herein. Rather, these embodiments are provided as examples so that this disclosure will be thorough and complete, and will fully convey the aspects and features of the present invention to those skilled in the art.

    [0034] Accordingly, processes, elements, and techniques that are not considered necessary to those having ordinary skill in the art for a complete understanding of the aspects and features of the present invention may not be described. In the drawings, the relative sizes of elements, layers, and regions may be exaggerated for clarity.

    [0035] As used herein, the term "and/or" includes any and all combinations of one or more of the associated listed items. Further, the use of "may" when describing embodiments of the present invention refers to "one or more embodiments of the present invention." In the following description of embodiments of the present invention, the terms of a singular form may include plural forms unless the context clearly indicates otherwise.

    [0036] It will be understood that although the terms "first" and "second" are used to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another element. For example, a first element may be named a second element and, similarly, a second element may be named a first element, without departing from the scope of the present invention. As used herein, the term "and/or" includes any and all combinations of one or more of the associated listed items. Expressions such as "at least one of," when preceding a list of elements, modify the entire list of elements and do not modify the individual elements of the list.

    [0037] As used herein, the term "substantially," "about," and similar terms are used as terms of approximation and not as terms of degree, and are intended to account for the inherent deviations in measured or calculated values that would be recognized by those of ordinary skill in the art. Further, if the term "substantially" is used in combination with a feature that could be expressed using a numeric value, the term "substantially" denotes a range of +/- 5% of the value centered on the value.

    [0038] Figure 1 schematically illustrates the dual power supply system of an electric vehicle according to the prior art.

    [0039] The dual power supply system according to the prior art comprises a 48 V battery system 1 and an additional 12 V battery system 2 that is external to the 48 V battery system 1. The 48 V battery system 1 is charged by a starter generator 40 and the 12 V battery system 2 is charged by the 48 V battery system 1 via an additional DC/DC converter 3 that is external to the battery systems 1, 2. The 48 V battery system 1 is connected via a 48 V board net to 48 V supplied loads, e.g. to 48 V supplied ECU 5, and the 12 V battery system 2 is connected to 12 V supplied loads, e.g. to 12 V supplied ECU 6. A voltage variable load, e.g. a voltage variable ECU 4 with internal DC/DC converter, may be connected to the 48 V battery system 1 and the 12 V battery system 2. The dual power supply system according to the prior art comprises separate 48 V battery system, 12 V battery system and DC/DC converter and hence requires a lot of installation space, is heavy and high in production costs.

    [0040] Figure 2 schematically illustrates a circuit diagram of a vehicle 200 with dual power supply system 100 according to a first embodiment of the present invention.

    [0041] Therein, the dual power supply system 100 comprises a battery cell stack 16 that is interconnected between a first stack node 11 and a third stack node 13. The battery cell stack 16 divides into a first battery cell stack 14 that is interconnected between the first stack node 11 and a second stack node 12 and a second battery cell stack 15 that is interconnected between the second stack node 12 and a third stack node 13.

    [0042] Each of the first and second battery cell stack 14, 15 comprises a plurality of battery cells 10 connected in series. In detail, the first battery cell stack 14 comprises 8 battery cells 10, each with a capacity of about 4.5 V, and the second battery cell stack 15 comprises 4 battery cells 10, each with a capacity of about 3 V. The first battery cell stack 14 and the second battery cell 15 stack are connected in series between the first and second stack nodes 11, 12.

    [0043] The dual power supply system further comprises a DC/DC converter 20 with a first converter node 21, a second converter node 22 and a third converter node 23. The DC/DC converter 20 is configured for converting a voltage (input voltage) between the second converter node 22 and one of the first converter node 21 and the third converter node 23 into a converted voltage (output voltage) between the second converter node 22 and the other one of the first converter node 21 and the second converter node 23. The converted output voltage can be set to be either higher or lower than the input voltage. Preferably, the DC/DC converter is a buck-boost-converter.

    [0044] The dual power supply system 100 comprises a first system terminal 101, a second system terminal 102 and a third system terminal 103 that are each configured as external contacts of the dual power supply system 100. External loads 50, 60 can be connected to respective two of the system terminals 101, 102, 103 for being supplied with power by the dual power supply system 100. Each of the system terminals 101, 102, 103 is connected to a respective stack node 11, 12, 13 and a respective converter node 21, 22, 23 in parallel. Exemplarily, the first system terminal 101 is electrically connected to the first stack node 11 via a first conductor and to the first converter node 12 via a second conductor that is different from the first conductor. A first diode 33 is disposed as first blocking element 31 within the first conductor.

    [0045] The vehicle 200 further comprises a combined starter generator 40 that is electrically interconnected between the first system terminal 101 and the third system terminal 103. A first load 50 that is configured to be supplied with about 48 V is also electrically interconnected between the first system terminal 101 and the third system terminal 103. Two second loads 60 that are each configured to be supplied with about 12 V are electrically interconnected between the second system terminal 102 and the third system terminal 103.

    [0046] During a normal or first operation mode, the first battery cell stack 14 and the second battery cell stack15 are charged by the starter generator 40. The second battery cell stack 15 may be drained strongly by the two second loads 60 and is hence additionally charged by the first battery cell stack 14 via the DC/DC generator 20. Therein, the voltage applied by the first battery cell stack 14 between the first and second stack nodes 11, 12 is also applied between the first and second converter nodes 21, 22 via the first and second system terminals 101, 102. Electric current flows from the first stack node 11 towards the first converter node 21 via first diode 22 and first system terminal 101. The DC/DC converter 20 steps down the voltage applied between first and second converter nodes 21, 22 to a lower output voltage applied between second and third converter nodes 22, 23. An electric current flows from the third converter node 23 to the third stack node 13 via the third system terminal 103.

    [0047] In case of a cell failure in the first battery cell stack 14, the first and second battery cell stacks 14, 15 connected in series may fail to supply the first load 50. Exemplarily, the whole first battery cell stack 14 may shut down and zero voltage may apply between the first and second stack nodes 11, 12. In order to ensure continued function of the first load 50 a redundant power supply may be provided by the dual power supply system 100 in the third operation mode of the dual power supply system 100 according to the invention.

    [0048] Particularly, the voltage applied by the second battery cell stack 15 between the second and third stack nodes 12, 13 is also applied between the second and third converter nodes 22, 23 via the second and third system terminals 102, 103. Electric current flows from the third stack node 13 towards the third converter node 23 via the third system terminal 103. The DC/DC converter 20 boosts (steps up) the voltage applied between second and third converter nodes 22, 23 to a higher output voltage applied between first and second converter nodes 21, 22. Electric current cannot flow from the first converter node 21 to the first stack node 11 due to first diode 33 and thus the boosted voltage is exclusively supplied to the first load 50. The DC/DC converter 20 hence provides redundant power supply of first load 50 as well as active balancing between the battery cell stacks 14, 15.

    [0049] Figure 3 schematically illustrates a circuit diagram of a vehicle 200 with dual power supply system 100 according to a second embodiment of the present invention. A description is omitted where the dual power supply system 100 of Figure 3 equals the one of Figure 2.

    [0050] The dual power supply system 100 of Figure 3 differs from the one of Figure 2 in that the first blocking element 31 is a first switching element 34. The dual power supply system 100 further comprises a third switching element 36 as a second blocking element 32 interconnected between the third system terminal 103 and the third stack node 13.

    [0051] The DC/DC generator 20 illustrated in Figure 3 comprises an inductance 24 that is connected with its first node to a second converter node 22. A first switching transistor 25 is interconnected between a second node of the inductance 24 and the third converter node 23. The gate of the switching transistor 25 is connected to a control unit 30 that is configured for setting the switching transistor 25 either conductive or nonconductive. A diode 26 is connected with its cathode to the second node of the inductance 24 and with its anode to the first converter node 21.

    [0052] During a normal or first operation mode, the first battery cell stack 14 and the second battery cell stack 15 are charged by the starter generator 40. The second battery cell stack 15 may be drained strongly by the two second loads 60 and is hence additionally charged by the first battery cell stack 14 via the DC/DC generator 20. Therein, the voltage applied by the first battery cell stack 14 between the first and second stack nodes 11, 12 is also applied between the first and second converter nodes 21, 22 via the first and second system terminals 101, 102.

    [0053] Electric current flows from the first stack node 11 towards the first converter node 21 via first switching element 34 and first system terminal 101. In the DC/DC converter 20, a current flows via diode 26 to inductance 24 and magnetic energy is stored in the inductance 24. The first switching element 34 is set nonconductive and simultaneously or subsequently the switching transistor 25 is set conductive. Hence, the magnetic energy in the inductance 24 causes a current to flow into the third stack node 13 via third converter node 23, third system terminal 103 and third switching element 36 that is set conductive. The amplitude ratio of the input voltage of the and the output voltage of the DC/DC converter 20 is determined by the duty cycles of first switching element 34 and switching transistor 25.

    [0054] A cell failure in the second battery cell stack 15 may shut down the whole second battery cell stack 15 such that zero voltage applies between the second and third stack nodes 12, 13. Hence, the second loads 60 are no longer supplied. In order to ensure continued function of the second loads 60 a redundant power supply may be provided by the dual power supply system 100 in the second operation mode according to the invention. Further, the second battery cell stack 15 may be disconnected from the board nets of the vehicle 200 by setting the third switching element 36 nonconductive in the second operation mode.

    [0055] Particularly, the voltage applied by the first battery cell stack 14 between the first and second stack nodes 11, 12 is also applied between the first and second converter nodes 21, 22 via the first and second system terminals 101, 102. Electric current flows from the first stack node 11 towards the first converter node 21 via first switching element 34 and first system terminal 101. The DC/DC converter 20 steps down the voltage applied between first and second converter nodes 21, 22 to a lower output voltage applied between second and third converter nodes 22, 23 as described above with respect to balancing. The third switching element 36 is set nonconductive and the current cannot flow into the third stack node 13 but flows out from third system terminal 103 and redundant power supply is provided to the second loads 60. Hence, in Figure 3 the DC/DC converter 20 is a step-down converter that provides the function of a redundant power supply as well of active balancing.

    [0056] Figure 4 schematically illustrates a circuit diagram of a vehicle 200 with dual power supply system 100 according to a third embodiment of the present invention. A description is omitted where the dual power supply system 100 of Figure 3 equals the one of Figure 2 or 3.

    [0057] The dual power supply system 100 of Figure 4 differs from the ones of Figures 2 and 3 in that it comprises a first switching element 34 as first blocking element 31, a third switching element 36 as a second blocking element 32 and further comprises a second switching element 35 interconnected between the second stack node 12 and the second system terminal 102. Each of the switching elements 34, 35, 36 is wirelessly controlled by control unit 30 as indicated by the dashed dotted line.

    [0058] The DC/DC converter 20 of Figure 4 differs from that of Figure 3 in that it comprises a first switching transistor 25 interconnected between the second node of inductance 24 and the first converter node 21 and a second switching transistor 27 interconnected between the second node of inductance 24 and the third converter node 23. The gate of each of the switching transistors 25, 27 is connected to control unit 30 that sets the transistors 25, 27 either conductive or nonconductive in an alternating manner.

    [0059] The DC/DC converter 20 of Figure 4 further comprises a first capacitor 28 interconnected between the first converter node 21 and the third converter node 23 and connected in parallel to the first switching transistor 25. The DC/DC converter 20 further comprises a second capacitor 29 interconnected between the second converter node 22 and the third converter node 23 and connected in parallel to the second switching transistor 27.

    [0060] During a normal or first operation mode, the second battery cell stack 15 may be drained strongly by the two second loads 60 and is hence additionally charged by the first battery cell stack 14 via the DC/DC generator 20. Therein, the first switching element 34 and the third switching element 36 are set conductive, the first switching transistor 25 is set conductive, the second switching transistor 27 is set nonconductive and hence the inductance 24 is charged via first converter node 21 by first battery cell stack 14. Therein, the first capacitor 28 protects first switching transistor 25 against AC components and further limits the total current over first switching transistor 25. Subsequently, the first switching transistor 25 is set nonconductive, the second switching transistor 27 is set nonconductive and the inductance 24 is discharged via third converter node 23 and third switching element 36 into the second battery cell stack 15. The second capacitor 29 protects second switching transistor 27 against AC components and further limits the total current over second switching transistor 27. The DC/DC converter 20 acts as step down converter, wherein the ratio of input and output voltages of DC/DC converter 20 is set by the duty cycles of transistors 25, 27.

    [0061] During a normal or first operation mode, the first battery cell stack 14 may be drained strongly by the first loads 50 and is hence additionally charged by the second battery cell stack 15 via the DC/DC generator 20. Therein, the first switching element 34 and the third switching element 36 are set conductive, the second switching transistor 27 is set conductive, the first switching transistor 25 is set nonconductive and hence the inductance 24 is charged via third converter node 23 by the second battery cell stack 15. The second capacitor 29 protects second switching transistor 27 against AC components and further limits the total current over second switching transistor 27. Subsequently, the second switching transistor 27 is set nonconductive, the first switching transistor 25 is set nonconductive and hence the inductance 24 is discharged via first converter node 21 and first switching element 34 into the first battery cell stack 14. 27 The DC/DC converter 20 acts as step up converter in this case, wherein the ratio of input and output voltages of DC/DC converter 20 is set by the duty cycles of transistors 25, 27.

    [0062] A cell failure in the second battery cell stack 15 may shut down whole second battery cell stack 15 such that zero voltage applies between the second and third stack nodes 12, 13. Hence, the second loads 60 are not longer supplied. In order to provide continued function of the second loads 60 a redundant power supply may be provided by the dual power supply system 100 in the second operation mode according to the invention. Further, the second battery cell stack 15 may be disconnected from the board nets of the vehicle 200 by setting the third switching element 36 nonconductive in the second operation mode. The first switching element 34 is set conductive in the in the first operation mode.

    [0063] Particularly, the voltage applied by the first battery cell stack 14 between the first and second stack nodes 11, 12 is also applied between the first and second converter nodes 21, 22 via the first and second system terminals 101, 102. Electric current flows from the first stack node 11 towards the first converter node 21 via first switching element 34 and first system terminal 101. The DC/DC converter 20 steps down the voltage applied between first and second converter nodes 21, 22 to a lower output voltage applied between second and third converter nodes 22, 23 as described above with respect to balancing. The third switching element 36 is set nonconductive and a current cannot flow into the third stack node 13 but flows out from third system terminal 103. Hence redundant power supply is provided to the second loads 60 by the DC/DC converter 20 acting as a step down converter.

    [0064] A cell failure in the first battery cell stack 14 may shut down the whole first battery cell stack 14 and zero voltage may apply between the first and second stack nodes 11, 12. In order to provide continued function of the first load 50 a redundant power supply may be provided by the dual power supply system 100 in the third operation mode according to the invention. Further, the first battery cell stack 14 may be disconnected from the board nets of the vehicle 200 by setting the first switching element 34 nonconductive in the third operation mode. The third switching element 36 is set conductive in the in the third operation mode.

    [0065] Particularly, the voltage applied by the second battery cell stack 15 between the second and third stack nodes 12, 13 is also applied between the second and third converter nodes 22, 23 via the second and third system terminals 102, 103. Electric current flows from the third stack node 13 towards the third converter node 23 via third switching element 36 and third system terminal 103. The DC/DC converter 20 boosts (steps up) the voltage applied between second and third converter nodes 22, 23 to a higher output voltage applied between first and second converter nodes 21, 22 as described above with respect to balancing. The first switching element 34 is set nonconductive and a current cannot flow into the first stack node 11 but flows out from first system terminal 101. Hence redundant power supply is provided to the first load 50 by the DC/DC converter 20 as a step up converter.

    [0066] According to Figure 4 the DC/DC converter 20 is a buck boost converter that provides redundant power supply with respect to the first load 50 and the second loads 60 and that further provides bidirectional active balancing between the first and second battery cell stacks 14, 15.

    [0067] The electronic or electric devices and/or any other relevant devices or components according to embodiments of the present invention described herein may be implemented utilizing any suitable hardware, firmware (e.g. an application-specific integrated circuit), software, or a combination of software, firmware, and hardware. For example, the various components of these devices may be formed on one integrated circuit (IC) chip or on separate IC chips. Further, the various components of these devices may be implemented on a flexible printed circuit film, a tape carrier package (TCP), a printed circuit board (PCB), or formed on one substrate. The electrical connections or interconnections described herein may be realized by wires or conducting elements, e.g. on a PCB or another kind of circuit carrier. The conducting elements may comprise metallization, e.g. surface metallizations and/or pins, and/or may comprise conductive polymers or ceramics. Further electrical energy might be transmitted via wireless connections, e.g. using electromagnetic radiation and/or light.

    [0068] Further, the various components of these devices may be a process or thread, running on one or more processors, in one or more computing devices, executing computer program instructions and interacting with other system components for performing the various functionalities described herein. The computer program instructions are stored in a memory which may be implemented in a computing device using a standard memory device, such as, for example, a random access memory (RAM). The computer program instructions may also be stored in other non-transitory computer readable media such as, for example, a CD-ROM, flash drive, or the like.

    [0069] Also, a person of skill in the art should recognize that the functionality of various computing devices may be combined or integrated into a single computing device, or the functionality of a particular computing device may be distributed across one or more other computing devices without departing from the scope of the exemplary embodiments of the present invention.

    Reference signs



    [0070] 
    1
    48 V battery system
    2
    12 V battery system
    3
    external DC/DC converter
    4
    voltage variable ECU
    5
    48 V ECU
    6
    12 V ECU
    10
    battery cell
    11
    first stack node
    12
    second stack node
    13
    third stack node
    14
    first battery cell stack
    15
    second battery cell stack
    16
    battery cell stack
    20
    DC/DC converter
    21
    first converter node
    22
    second converter node
    23
    third converter node
    24
    inductance (choke)
    25
    first switching transistor
    26
    diode
    27
    second switching transistor
    28
    first capacitor
    29
    second capacitor
    30
    control unit
    31
    first blocking element
    32
    second blocking element
    33
    first diode
    34
    first switching element
    35
    second switching element
    36
    third switching element
    40
    starter generator
    50
    first load
    60
    second load



    Claims

    1. Dual power supply system (100) with a first system terminal (101), a second system terminal (102), and a third system terminal (103), comprising
    a first battery cell stack (14) interconnected between a first stack node (11) and a second stack node (12) and providing a first operation voltage;
    a second battery cell stack (15) interconnected between the second stack node (12) and a third stack node (13) and providing a second operation voltage; and
    a DC/DC converter (20) with a first converter node (21), a second converter node (22) and a third converter node (23) and configured for converting an input voltage between the second converter node (22) and the first converter node (21) to an output voltage between the second converter node (22) and the third converter node (23) and for converting an input voltage between the second converter node (22) and third converter node (23) to an output voltage between the second converter node (22) and the first converter node (21),
    wherein each of the system terminals (101,102,103) is configured for externally and electrically connecting the dual power supply system (100),
    wherein each of the first to third system terminal (101,102,103) is connected to the respective first to third stack node (11,12,13) via a respective first conductor and to the respective first to third converter node (21,22,23) via a respective second conductor, that is different from the first conductor, and
    wherein a first blocking element (31) configured for continuously or selectively blocking a current from the first system terminal (101) to the first stack node (11) is disposed in the respective first conductor.
     
    2. Dual power supply system (100) according to claim 1, further comprising
    a second blocking element (32) configured for blocking a current from the third system terminal (103) to the third stack node (13).
     
    3. Dual power supply system (100) according to claim 2,
    wherein the first blocking element (31) is a first switching element (34) configured for selectively blocking a current from the first system terminal (101) to the first stack node (11), and/or
    wherein the second blocking element (32) is a third switching element (36) configured for selectively blocking a current from the third system terminal (103) to the third stack node (13).
     
    4. Dual power supply system (100) according to any one of the preceding claims, further comprising a second switching element (35) interconnected between the second system terminal (102) and the second stack node (12).
     
    5. Dual power supply system (100) according to claim 3 or 4, wherein at least one of the first switching element (34), the second switching element (35) and the third switching element (36) is a semiconductor switch.
     
    6. Dual power supply system (100) according to any one of the preceding claims, wherein the sum of the first operation voltage and the second operation voltage is about 48 V, and wherein the second operation voltage is about 12 V.
     
    7. Dual power supply system (100) according to any one of the preceding claims, wherein the DC/DC converter (20) comprises an inductance (24) electrically connected to the second converter node (22), a switching transistor (25) interconnected between the inductance (24) and one of the first converter node (21) and the third converter node (23), and a diode (26) with its cathode connected to the inductance (24) and its anode connected to the other one of the first converter node (21) and the third converter node (23).
     
    8. Dual power supply system (100) according to any one of the preceding claims, wherein the DC/DC converter (20) comprises an inductance (24) electrically connected to the second converter node (22), a first switching transistor (25) interconnected between the inductance (24) and the first converter node (21), and a second switching transistor (27) interconnected between the inductance (24) and the third converter node (23).
     
    9. Dual power battery system (100) according to claim 7 or 8, further comprising a control unit (30) configured for setting the duty cycle of at least one of the switching transistors (25, 27).
     
    10. Vehicle (200) comprising a dual power supply system (100) according to any one of the claims 1 to 9, further comprising a starter generator (40) interconnected between the first system terminal (101) and the third system terminal (103).
     
    11. Vehicle comprising (200) a dual power supply system (100) according to any one of the claims 2 to 9, when dependent on claim 2, further comprising at least one first load (50) interconnected between the first system terminal (101) and the third system terminal (103) and at least one second load (60) interconnected between the second system terminal (102) and the third system terminal (103), wherein the first load (50) has an operation voltage of about 48 V and the second load (60) has an operation voltage of about 12 V.
     
    12. Method for operating the dual power supply system (100) of the vehicle (200) according to claim 11, comprising the steps

    (a) in a first operation mode supplying an operation voltage to at least one first load (50) by the first battery cell stack (14) and the second battery cell stack (15) or by a starter generator (40) interconnected between the first system terminal (101) and the third system terminal (103) and/or supplying an operation voltage to at least second load (60) by the second battery cell stack (15);

    (b) in a second operation mode supplying an operation voltage to at least one first load (50) by the first battery cell stack (14) via the DC/DC converter (20) and/or supplying an operation voltage to at least one second load (60) by the first battery cell stack (14) via the DC/DC converter (20); and

    (c) in a third operation mode supplying an operation voltage to at least one first load (50) by the second battery cell stack (15) via the DC/DC converter (20) and/or supplying an operation voltage to at least one second load (60) by the second battery cell stack (15),
    wherein the at least one first load (50) and the at least one second load (60) are each different from the first battery cell stack (14) and the second battery cell stack (15).


     
    13. Method according to claim 12 with a dual power supply system (100) of claim 3 comprising the first switching element (34) and the third switching element (36), wherein the first operation mode further comprises the steps

    (a1) setting the third switching element (36) conductive and transferring electric power from the first battery cell stack (14) to the second battery cell stack (15) via the DC/DC converter (20); or

    (a2) setting the first switching element (34) conductive and transferring electric power from the second battery cell stack (15) to the first battery cell stack (14) via the DC/DC converter (20).


     
    14. Method according to claim 12 or 13 with a dual power supply system (100) of claim 3 comprising the first switching element (34) and the third switching element (36), further comprising the steps

    (b1) setting the third switching element (36) nonconductive in the second operation mode; and

    (c1) setting the first switching element (34) nonconductive in the third operation mode.


     


    Ansprüche

    1. Doppeltes Stromversorgungssystem (100) mit einem ersten Systemendgerät (101), einem zweiten Systemendgerät (102) und einem dritten Systemendgerät (103), umfassend
    einen ersten Batteriezellenstapel (14), der zwischen einen ersten Stapelknoten (11) und einen zweiten Stapelknoten (12) geschaltet ist und eine erste Betriebsspannung vorsieht;
    einen zweiten Batteriezellenstapel (15), der zwischen den zweiten Stapelknoten (12) und einen dritten Stapelknoten (13) geschaltet ist und eine zweite Betriebsspannung vorsieht; und
    einen DC/DC-Wandler (20) mit einem ersten Wandlerknoten (21), einem zweiten Wandlerknoten (22) und einem dritten Wandlerknoten (23) und konfiguriert zum Umwandeln einer Eingangsspannung zwischen dem zweiten Wandlerknoten (22) und dem ersten Wandlerknoten (21) in eine Ausgangsspannung zwischen dem zweiten Wandlerknoten (22) und dem dritten Wandlerknoten (23) und zum Umwandeln einer Eingangsspannung zwischen dem zweiten Wandlerknoten (22) und dem dritten Wandlerknoten (23) in eine Ausgangsspannung zwischen dem zweiten Wandlerknoten (22) und dem ersten Wandlerknoten (21),
    wobei jedes der Systemendgeräte (101, 102, 103) zur externen und elektrischen Verbindung des doppelten Stromversorgungssystems (100) konfiguriert ist,
    wobei jedes der ersten bis dritten Systemendgeräte (101, 102, 103) mit dem jeweiligen ersten bis dritten Stapelknoten (11, 12, 13) über einen jeweiligen ersten Leiter und mit dem jeweiligen ersten bis dritten Wandlerknoten (21, 22, 23) über einen jeweiligen zweiten Leiter, der sich von dem ersten Leiter unterscheidet, verbunden ist, und
    wobei ein erstes Sperrelement (31), das zum kontinuierlichen oder selektiven Sperren eines Stroms von dem ersten Systemendgerät (101) zu dem ersten Stapelknoten (11) konfiguriert ist, in dem jeweiligen ersten Leiter angeordnet ist.
     
    2. Doppeltes Stromversorgungssystem (100) nach Anspruch 1, ferner umfassend
    ein zweites Sperrelement (32), das zum Sperren eines Stroms vom dritten Systemendgerät (103) zum dritten Stapelknoten (13) konfiguriert ist.
     
    3. Doppeltes Stromversorgungssystem (100) nach Anspruch 2,
    wobei das erste Sperrelement (31) ein erstes Schaltelement (34) ist, das zum selektiven Sperren eines Stroms von dem ersten Systemendgerät (101) zu dem ersten Stapelknoten (11) konfiguriert ist, und/oder
    wobei das zweite Sperrelement (32) ein drittes Schaltelement (36) ist, das zum selektiven Sperren eines Stroms von dem dritten Systemendgerät (103) zu dem dritten Stapelknoten (13) konfiguriert ist.
     
    4. Doppeltes Stromversorgungssystem (100) nach einem der vorhergehenden Ansprüche, ferner umfassend ein zweites Schaltelement (35), das zwischen dem zweiten Systemendgerät (102) und dem zweiten Stapelknoten (12) geschaltet ist.
     
    5. Doppeltes Stromversorgungssystem (100) nach Anspruch 3 oder 4, wobei mindestens eines von dem ersten Schaltelement (34), dem zweiten Schaltelement (35) und dem dritten Schaltelement (36) ein Halbleiterschalter ist.
     
    6. Doppeltes Stromversorgungssystem (100) nach einem der vorhergehenden Ansprüche, wobei die Summe der ersten Betriebsspannung und der zweiten Betriebsspannung etwa 48 V beträgt und wobei die zweite Betriebsspannung etwa 12 V beträgt.
     
    7. Doppeltes Stromversorgungssystem (100) nach einem der vorhergehenden Ansprüche, wobei der DC/DC-Wandler (20) eine Induktivität (24) umfasst, die elektrisch mit dem zweiten Wandlerknoten (22) verbunden ist, einen Schalttransistor (25) umfasst, der zwischen der Induktivität (24) und einem von dem ersten Wandlerknoten (21) und dem dritten Wandlerknoten (23) geschaltet ist, und eine Diode (26) umfasst, deren Kathode mit der Induktivität (24) und deren Anode mit dem anderen von dem ersten Wandlerknoten (21) und dem dritten Wandlerknoten (23) verbunden ist.
     
    8. Doppeltes Stromversorgungssystem (100) nach einem der vorhergehenden Ansprüche, wobei der DC/DC-Wandler (20) eine Induktivität (24) umfasst, die elektrisch mit dem zweiten Wandlerknoten (22) verbunden ist, einen ersten Schalttransistor (25) umfasst, der zwischen die Induktivität (24) und den ersten Wandlerknoten (21) geschaltet ist, und einen zweiten Schalttransistor (27) umfasst, der zwischen die Induktivität (24) und den dritten Wandlerknoten (23) geschaltet ist.
     
    9. Doppeltes Power-Batteriesystem (100) nach Anspruch 7 oder 8, ferner umfassend eine Steuereinheit (30), die zum Einstellen des Tastverhältnisses von mindestens einem der Schalttransistoren (25, 27) konfiguriert ist.
     
    10. Fahrzeug (200), umfassend ein doppeltes Stromversorgungssystem (100) nach einem der Ansprüche 1 bis 9, ferner umfassend einen Startergenerator (40), der zwischen dem ersten Systemendgerät (101) und dem dritten Systemendgerät (103) geschaltet ist.
     
    11. Fahrzeug (200), umfassend ein doppeltes Stromversorgungssystem (100) nach einem der Ansprüche 2 bis 9, wenn abhängig von Anspruch 2, ferner umfassend mindestens eine erste Last (50), die zwischen dem ersten Systemendgerät (101) und dem dritten Systemendgerät (103) geschaltet ist, und mindestens eine zweite Last (60), die zwischen dem zweiten Systemendgerät (102) und dem dritten Systemendgerät (103) geschaltet ist, wobei die erste Last (50) eine Betriebsspannung von etwa 48 V und die zweite Last (60) eine Betriebsspannung von etwa 12 V aufweist.
     
    12. Verfahren zum Betreiben des doppelten Energieversorgungssystems (100) des Fahrzeugs (200) nach Anspruch 11, umfassend die Schritte

    (a) in einem ersten Betriebsmodus Liefern einer Betriebsspannung an mindestens eine erste Last (50) durch den ersten Batteriezellenstapel (14) und den zweiten Batteriezellenstapel (15) oder durch einen Startergenerator (40), der zwischen das erste Systemendgerät (101) und das dritte Systemendgerät (103) geschaltet ist, und/oder Liefern einer Betriebsspannung an mindestens eine zweite Last (60) durch den zweiten Batteriezellenstapel (15);

    (b) in einem zweiten Betriebsmodus Liefern einer Betriebsspannung an mindestens eine erste Last (50) durch den ersten Batteriezellenstapel (14) über den DC/DC-Wandler (20) und/oder Liefern einer Betriebsspannung an mindestens eine zweite Last (60) durch den ersten Batteriezellenstapel (14) über den DC/DC-Wandler (20); und

    (c) in einem dritten Betriebsmodus Liefern einer Betriebsspannung an mindestens eine erste Last (50) durch den zweiten Batteriezellenstapel (15) über den DC/DC-Wandler (20) und/oder Liefern einer Betriebsspannung an mindestens eine zweite Last (60) durch den zweiten Batteriezellenstapel (15),
    wobei die mindestens eine erste Last (50) und die mindestens eine zweite Last (60) jeweils verschieden von dem ersten Batteriezellenstapel (14) und dem zweiten Batteriezellenstapel (15) sind.


     
    13. Verfahren nach Anspruch 12 mit einem doppelten Stromversorgungssystem (100) nach Anspruch 3, das das erste Schaltelement (34) und das dritte Schaltelement (36) umfasst, wobei die erste Betriebsart ferner die folgenden Schritte umfasst

    (a1) Leiten des dritten Schaltelements (36) und Übertragen elektrischer Leistung von dem ersten Batteriezellenstapel (14) zu dem zweiten Batteriezellenstapel (15) über den DC/DC-Wandler (20); oder

    (a2) Leiten des ersten Schaltelements (34) und Übertragen elektrischer Energie vom zweiten Batteriezellenstapel (15) zum ersten Batteriezellenstapel (14) über den DC/DC-Wandler (20) .


     
    14. Verfahren nach Anspruch 12 oder 13 mit einem doppelten Stromversorgungssystem (100) nach Anspruch 3, das das erste Schaltelement (34) und das dritte Schaltelement (36) umfasst, ferner umfassend die Schritte

    (b1) Einstellen des dritten Schaltelements (36) als nicht leitend in der zweiten Betriebsart; und

    (c1) Einstellen des ersten Schaltelements (34) als nicht leitend in der dritten Betriebsart.


     


    Revendications

    1. Système de double alimentation (100) avec une première borne de système (101), une deuxième borne de système (102), et une troisième borne de système (103), comprenant
    une première pile d'élément de batterie (14) interconnectée entre un premier nœud de pile (11) et un deuxième nœud de pile (12) et fournissant une première tension de fonctionnement ;
    une deuxième pile d'élément de batterie (15) interconnectée entre le deuxième nœud de pile (12) et un troisième nœud de pile (13) et fournissant une deuxième tension de fonctionnement ; et
    un convertisseur CC/CC (20) avec un premier nœud de convertisseur (21), un deuxième nœud de convertisseur (22) et un troisième nœud de convertisseur (23) et configuré pour convertir une tension d'entrée entre le deuxième nœud de convertisseur (22) et le premier nœud de convertisseur (21) en une tension de sortie entre le deuxième nœud de convertisseur (22) et le troisième nœud de convertisseur (23) et pour convertir une tension d'entrée entre le deuxième nœud de convertisseur (22) et le troisième nœud de convertisseur (23) en une tension de sortie entre le deuxième nœud de convertisseur (22) et le premier nœud de convertisseur (21),
    dans lequel chacune des bornes de système (101, 102, 103) est configurée pour connecter extérieurement et électriquement le système de double alimentation (100),
    dans lequel chacune des première à troisième bornes de système (101, 102, 103) est connectée aux premier à troisième nœuds de pile (11, 12, 13) respectifs via un premier conducteur respectif et aux premier à troisième nœuds de convertisseur (21, 22, 23) respectifs via un deuxième conducteur respectif, qui est différent du premier conducteur, et
    dans lequel un premier élément de blocage (31), configuré pour bloquer en continu ou sélectivement un courant circulant de la première borne de système (101) vers le premier nœud de pile (11), est disposé dans le premier conducteur respectif.
     
    2. Système de double alimentation (100) selon la revendication 1, comprenant en outre
    un deuxième élément de blocage (32) configuré pour bloquer un courant circulant de la troisième borne de système (103) vers le troisième nœud de pile (13).
     
    3. Système de double alimentation (100) selon la revendication 2,
    dans lequel le premier élément de blocage (31) est un premier élément de commutation (34) configuré pour bloquer sélectivement un courant circulant de la première borne de système (101) vers le premier nœud de pile (11), et/ou
    dans lequel le deuxième élément de blocage (32) est un troisième élément de commutation (36) configuré pour bloquer sélectivement un courant circulant de la troisième borne de système (103) vers le troisième nœud de pile (13).
     
    4. Système de double alimentation (100) selon l'une quelconque des revendications précédentes, comprenant en outre un deuxième élément de commutation (35) interconnecté entre la deuxième borne de système (102) et le deuxième nœud de pile (12).
     
    5. Système de double alimentation (100) selon la revendication 3 ou 4, dans lequel au moins l'un parmi le premier élément de commutation (34), le deuxième élément de commutation (35) et le troisième élément de commutation (36) est un commutateur à semi-conducteur.
     
    6. Système de double alimentation (100) selon l'une quelconque des revendications précédentes, dans lequel la somme de la première tension de fonctionnement et de la deuxième tension de fonctionnement est d'environ 48 V, et dans lequel la deuxième tension de fonctionnement est d'environ 12 V.
     
    7. Système de double alimentation (100) selon l'une quelconque des revendications précédentes, dans lequel le convertisseur CC/CC (20) comprend une bobine d'induction (24) connectée électriquement au deuxième nœud de convertisseur (22), un transistor de commutation (25) interconnecté entre la bobine d'induction (24) et l'un parmi le premier nœud de convertisseur (21) et le troisième nœud de convertisseur (23), et une diode (26) dont la cathode est connectée à la bobine d'induction (24) et dont l'anode est connectée à l'autre parmi le premier nœud de convertisseur (21) et le troisième nœud de convertisseur (23) .
     
    8. Système de double alimentation (100) selon l'une quelconque des revendications précédentes, dans lequel le convertisseur CC/CC (20) comprend une bobine d'induction (24) connectée électriquement au deuxième nœud de convertisseur (22), un premier transistor de commutation (25) interconnecté entre la bobine d'induction (24) et le premier nœud de convertisseur (21), et un deuxième transistor de commutation (27) interconnecté entre la bobine d'induction (24) et le troisième nœud de convertisseur (23).
     
    9. Système de batterie à double alimentation (100) selon la revendication 7 ou 8, comprenant en outre une unité de commande (30) configurée pour définir le rapport cyclique d'au moins l'un des transistors de commutation (25, 27).
     
    10. Véhicule (200) comprenant un système de double alimentation (100) selon l'une quelconque des revendications 1 à 9, comprenant en outre un générateur de démarreur (40) interconnecté entre la première borne de système (101) et la troisième borne de système (103).
     
    11. Véhicule comprenant (200) un système de double alimentation (100) selon l'une quelconque des revendications 2 à 9, lorsqu'elle dépend de la revendication 2, comprenant en outre au moins une première charge (50) interconnectée entre la première borne de système (101) et la troisième borne de système (103) et au moins une deuxième charge (60) interconnectée entre la deuxième borne de système (102) et la troisième borne de système (103), dans lequel la première charge (50) a une tension de fonctionnement d'environ 48 V et la deuxième charge (60) a une tension de fonctionnement d'environ 12 V.
     
    12. Procédé pour faire fonctionner le système de double alimentation (100) du véhicule (200) selon la revendication 11, comprenant les étapes consistant à

    (a) dans un premier mode de fonctionnement, fournir une tension de fonctionnement à au moins une première charge (50) par la première pile d'élément de batterie (14) et la deuxième pile d'élément de batterie (15) ou par un générateur de démarreur (40) interconnecté entre la première borne de système (101) et la troisième borne de système (103) et/ou fournir une tension de fonctionnement à au moins une deuxième charge (60) par la deuxième pile d'élément de batterie (15) ;

    (b) dans un deuxième mode de fonctionnement, fournir une tension de fonctionnement à au moins une première charge (50) par la première pile d'élément de batterie (14) via le convertisseur CC/CC (20) et/ou fournir une tension de fonctionnement à au moins une deuxième charge (60) par la première pile d'élément de batterie (14) via le convertisseur CC/CC (20) ; et

    (c) dans un troisième mode de fonctionnement, fournir une tension de fonctionnement à au moins une première charge (50) par la deuxième pile d'élément de batterie (15) via le convertisseur CC/CC (20) et/ou fournir une tension de fonctionnement à au moins une deuxième charge (60) par la deuxième pile d'élément de batterie (15),
    dans lequel l'au moins une première charge (50) et l'au moins une deuxième charge (60) sont chacune différentes de la première pile d'élément de batterie (14) et de la deuxième pile d'élément de batterie (15).


     
    13. Procédé selon la revendication 12 avec un système de double alimentation (100) de la revendication 3 comprenant le premier élément de commutation (34) et le troisième élément de commutation (36), dans lequel le premier mode de fonctionnement comprend en outre les étapes consistant à :

    (a1) mettre le troisième élément de commutation (36) en état de conduction et transférer l'énergie électrique de la première pile d'élément de batterie (14) à la deuxième pile d'élément de batterie (15) via le convertisseur CC/CC (20) ; ou

    (a2) mettre le premier élément de commutation (34) en état de conduction et transférer l'énergie électrique de la deuxième pile d'élément de batterie (15) à la première pile d'élément de batterie (14) via le convertisseur CC/CC (20).


     
    14. Procédé selon la revendication 12 ou 13 avec un système de double alimentation (100) de la revendication 3 comprenant le premier élément de commutation (34) et le troisième élément de commutation (36), comprenant en outre les étapes consistant à :

    (b1) mettre le troisième élément de commutation (36) en état de non-conduction dans le deuxième mode de fonctionnement ; et

    (c1) mettre le premier élément de commutation (34) en état de non-conduction dans le troisième mode de fonctionnement.


     




    Drawing











    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description