(19)
(11)EP 3 361 031 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
12.01.2022 Bulletin 2022/02

(21)Application number: 17743586.4

(22)Date of filing:  16.01.2017
(51)International Patent Classification (IPC): 
E05F 3/04(2006.01)
E05F 3/20(2006.01)
E05F 3/02(2006.01)
F16F 9/516(2006.01)
A47K 13/10(2006.01)
A47K 13/12(2006.01)
E05F 3/14(2006.01)
(52)Cooperative Patent Classification (CPC):
E05F 3/04; A47K 13/12; A47K 13/10
(86)International application number:
PCT/CN2017/071226
(87)International publication number:
WO 2017/128971 (03.08.2017 Gazette  2017/31)

(54)

DAMPING DEVICE

DÄMPFUNGSVORRICHTUNG

DISPOSITIF D'AMORTISSEMENT


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 29.01.2016 CN 201610063943

(43)Date of publication of application:
15.08.2018 Bulletin 2018/33

(73)Proprietor: Wang, Xiangji
Xiamen, Fujian 361028 (CN)

(72)Inventors:
  • LIN, Yaohui
    Xiamen, Fujian 361028 (CN)
  • ZHANG, Yuanhuai
    Xiamen, Fujian 361028 (CN)
  • WANG, Xiangji
    Xiamen, Fujian 361028 (CN)

(74)Representative: Verscht, Thomas Kurt Albert 
Josephsburgstrasse 88 A
81673 München
81673 München (DE)


(56)References cited: : 
CN-U- 201 899 438
CN-Y- 201 033 049
US-B1- 6 464 052
CN-U- 205 531 896
US-A- 5 419 013
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    Technical field



    [0001] The present invention relates to a damper capable of slowly falling after a rapid falling of a pivoting member, and to a damping method using such a damper.

    Background technique



    [0002] Toilet is closely related to people's lives , people use the toilet, it is most frequent that the toilet lid is opened or closed. In the traditional toilet, the toilet lid and the toilet seat are mostly connected through an unhindered hinge, the advantage is that the toilet lid can be flipped quickly, the disadvantage is that when the toilet lid closed the toilet lid easily collide with the toilet seat, which not only exist noise pollution, but also the toilet lids are also prone to wear. For this reason, the damper is generally used to connect the toilet lid and the toilet seat to make the toilet lid closure can be landed slowly . However, the damper used in the prior art has a long damping time to close the toilet lid ,the closing process is too slow, it is difficult to meet the user's needs. In particular, for some lighter toilet lid, due to the damper damping force is large, the toilet lid is more difficult to land.

    [0003] With regard to the prior art attention is drawn to CN 201 899 438 U from which a damper known.

    Content of the invention



    [0004] The present invention relates to a damper as defined in claim 1, and to a damping method as defined in claim 11.

    [0005] Preferred embodiments of the invention are disclosed in the dependent claims.

    [0006] The technical solution adopted by the present invention for solving the technical problem is as follows:
    A damper for pivotally connecting a pivoting member to a fixed seat, including:

    A shell for connecting to one of the pivoting member and the fixed seat, the shell has a cavity containing some viscous fluid medium;

    A rotating shaft for connecting to the pivoting member and the fixed seat, rotatably inserted into the cavity of the shell, the portion of the rotating shaft located in the cavity is provided with an external thread;

    A guiding sleeve, which is provided with an internal thread, the guiding sleeve can be axially reciprocatingly attached in the cavity of the shell, and its internal thread is screwed with the external thread of the rotating shaft; the cavity of the shell is also provided with a guiding structure for guiding the axial movement of the guiding sleeve, the guiding sleeve meshes with or disengaged from the guiding structure through the axial movement , and when the two are disengaged, the guiding sleeve can rotate with the rotating shaft .



    [0007] The guiding sleeve is provided with a one-way valve passage, when the guiding sleeve is axially moved to transit from been engaged to been disengaged with the guiding structure, the one-way valve passage is open for passage of the fluid medium. When the guiding sleeve is axially moved to transit from been disengaged to been engaged with the guiding structure, the one-way valve is closed, and the fluid medium is forced to pass through any one or more of the gap between the rotating shaft and the guiding sleeve, the gap between the guiding sleeve and the shell, and the damping passage provided on the rotating shaft.

    [0008] Further, the guiding sleeve includes, in the axial direction thereof, a guiding sleeve head and a guiding sleeve body provided within the internal thread, the guiding sleeve head is provided with the one-way valve passage .

    [0009] Further, the one-way valve passage includes an annular groove provided on the outer periphery of the guiding sleeve head, and a set of one-way valve ring in the annular groove and can move axially in the annular groove , the outer periphery of the one-way valve ring and the inner wall of the cavity of the shell is softly sealed, after the one-way valve passage is closed, the fluid medium is forced to pass through the gap between the rotating rotating shaft and the guiding sleeve head and /or the damping passage provided on the rotating shaft.

    [0010] Further, the portion of the rotating rotating shaft located in the cavity includes a threaded section provided with an external thread and a first rotating shaft section, and both are on the same axis, after the one-way valve passage is closed, the fluid medium is forced to pass through from the gap between the first rotating shaft section and the guiding sleeve and / or the damping passage provided on the rotating shaft section.

    [0011] Further, the damping passage includes at least two oil grooves, and the at least two oil grooves are respectively disposed on the side wall along the axial direction of the rotation rotating shaft.

    [0012] After the one-way valve passage is closed, the fluid medium is forced to pass through each of the oil grooves first, and then through one part of the oil groove, or, the damping passage is one and the cross-sectional area is gradually changed, after the one-way valve passage is closed, the fluid medium is forced to passes through the part of cross-sectional area having a large cross-sectional area and then passes through the part of the cross-sectional area having a small cross-sectional area.

    [0013] Further, the lengths of the at least two oil grooves are not equal, and the cross-sectional area of the oil groove having a longer length is smaller than the cross-sectional area of the oil groove having a shorter length , after the one-way valve is closed, the fluid medium is forced to pass through each of the oil groove first , and then pass the longer oil groove.

    [0014] Further, at least one rotation stopping portion is provided in the cavity of the shell, and when the guiding sleeve rotates with the rotation axis to a preset angle, the rotation of the guiding sleeve is limited by this rotation stopping portion.

    [0015] Further, a fixing sleeve is fixedly installed in the cavity of the shell, and the guiding sleeve and the fixing sleeve are mated with each other inside and outside.The guiding structure comprises a plurality of first convex portions arranged at intervals around an inner wall of the fixing sleeve, the outer walls of the guiding sleeve are circumferentially disposed with a plurality of second convex portions at intervals respectively, the first convex portion and the second convex portion are engaged or disengaged; the rotation stopping portion is provided on the fixing sleeve, when the guiding sleeve rotates to a preset angle with the rotation rotating shaft, the rotation stopping portion is abutted with the second convex portion of the guiding sleeve to limit the rotation of the guiding sleeve.

    [0016] Further, an end of the guiding head is arranged at intervals with a plurality of oil gaps or oil hole passing axially through the annular groove.

    [0017] Further, the first rotating shaft section and the threaded section are integrally formed or coaxially fixed.

    [0018] Further, one end of the shell is closed, and the other end is provided with an axial opening communicating with the cavity, another end of the shell is fixedly connected with the end cap for sealing the axial opening , the rotating shaft further comprises a second rotating shaft section, the thread section is located in between the second rotating shaft section and the first rotating shaft section, the free end of the rotating shaft section extends out of the shell through the end cap for connection to the pivoting member and the fixed seat.

    [0019] Further, a seal ring is disposed between the second rotating shaft portion of the rotating rotating shaft and the cavity of the shell.

    [0020] Compared with the prior art, the present invention has the following beneficial effects:

    1. In the invention, the shell, the rotating rotating shaft and the guiding sleeveare designed so that when the pivoting member is closed, the pivoting member rapidly falls off firstly and then falls off slowly, and the fall off rapidly makes the guiding sleeve rotate without damping with the rotating rotating shaft to drive the pivoting member to descend rapidly. The fall off slowly makes the guiding sleeve move axially with the rotation of the rotating rotating shaft and the fluid medium is forced to pass through one or more of the gap between the rotating rotating shaft and the guiding sleeve, the gap between the guiding sleeve and the shell and the damping passage provided on the rotating rotating shaft. So that the pivoting member is driven to slowly descend. Therefore, the invention can shorten the closing time of the pivoting member as a whole, meet the user's requirement of use, solve the problem that the lighter weight toilet lid does not fall easily, and avoid the collision with the fixed seat when the pivoting member is closed.

    2, The invention can make more effective use of the space and utilizes the relationship of the engagement and disengagement of the guiding sleeve and the guiding structure to apply the entire travel of the guiding sleeve to the landing stage of the pivoting member, so that the effective travel of the guiding sleeve is longer , the work distance is longer, the force becomes smaller, making the entire slow down process easier to control.

    3. In the present invention, the damping passage is preferably designed so that the present invention can further promote the pivoting member descends rapidly firstly and then descends slowly when the pivoting member is at the slow falling stage to further shorten the closing time of the pivoting member.

    4, the present invention also has a larger pivot opening angle, work quietly, can withstand greater weight toilet lid and so on.



    [0021] The present invention will be further described in detail below with reference to the accompanying drawings and embodiments. However, a damper according to the present invention is not limited to the the embodiment

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0022] 

    Figure 1 is a schematic exploded view of the present invention;

    Figure 2 is a schematic structural view of the guiding sleeve of the present invention;

    Figure 3 is a schematic structural view of the fixing sleeve of the present invention;

    Figure 4 is a schematic structural view of the guiding sleeve and the fixing sleeve in a disengaged state of the present invention;

    Figure 5-1 is a right side view of the present invention when the toilet lid is closed;

    Figure 5-2 is a schematic cross-sectional view of the present invention when the toilet lid is closed;

    Figure 6-1 is a schematic diagram (right view) of the present invention when the toilet lid is turned upward to a predetermined angle;

    Figure 6-2 is a schematic diagram (cross-sectional view) of the present invention when the toilet lid is turned upward to a predetermined angle;

    Figure 7-1 is a right side view of the present invention when the toilet lid is opened to a predetermined angle;

    Figure 7-2 is a schematic sectional view of the present invention when the toilet lid is opened to a predetermined angle;

    Figure 8-1 is a schematic diagram (right view) of the present invention when the toilet lid continues to be turned upwards;

    Figure 8-2 is a schematic diagram (cross-sectional view) of the present invention when the toilet lid is in the process of continuing to be pulled upward;

    Figure 9-1 is a right side view of the present invention when the toilet lid is fully open;

    Figure 9-2 is a schematic sectional view of the present invention when the toilet lid is fully opened;

    Figure 10-1 is a schematic diagram (right view) of the present invention during the downward turning of the toilet lid to the predetermined angle;

    Figure 10-2 is a schematic diagram (cross-sectional view) of the present invention during the downward turning of the toilet lid to the predetermined angle;

    Figure 11-1 is the first schematic view (right view) of the present invention during the state that the toilet lid continues to be turned downwards;

    Figure 11-2 is the first schematic view (cross-sectional view) of the present invention in the state that the toilet lid continues to be turned downwards;

    Figure 12-1 is the second schematic diagram II (right view) of the present invention in a state in which the toilet lid continues to be turned downwards;

    Figure 12-2 is the second schematic diagram (cross-sectional view) of the present invention during the further downward turning of the toilet lid.


    detailed description



    [0023] In the embodiment, as shown in FIG. 1 to FIG. 4, the damper of the present invention is used for pivotally connecting a pivoting member to a fixed seat. In this embodiment, the pivoting member is specifically a toilet lid, and the fixed seat is specifically a toilet seat. The damping of the present invention including:

    A shell 1 for attaching to a toilet seat, the shell 1 has a cavity containing viscous fluid medium, the fluid medium is specifically damping oil;

    A rotating shaft 5 for connection to the toilet lid, which is rotatably inserted into the cavity of the shell 1, the portion of the rotating shaft 5 which is located in the cavity is provided with an external thread;

    A guiding sleeve 3, which is provided with an internal thread, the guiding sleeve 3 can be axially reciprocatingly attached to the cavity of the shell 1, and the internal thread is screwed with the external thread of the rotating shaft 5; A guiding structure for guiding the axial movement of the guiding sleeve 3 is also provided in the cavity of the shell 1. The guiding sleeve 3 is engaged or disengaged with the guiding structure by axial movement and when the two are disengaged, the guiding sleeve 3 can be rotated with the rotating shaft 5;

    The guiding sleeve 3 is provided with a one-way valve passage. The two sides of the one-way valve passage are respectively a first chamber 11 and a second chamber 12 formed by separating the cavity of the shell 1 along the axial direction of the rotating shaft 5. When the guiding sleeve 3 is moved axially to transit from been engaged to been disengaged with the guiding structure , the one-way valve passage is opened to allow passage of the fluid medium.The one-way valve passage is closed when the guiding sleeve 3 is moved axially from the disengagement to the engagement with the guiding structure, and the fluid medium is forced to pass through from any or more of the gap between the rotating shaft 5 and the guiding sleeve 3, the gap between the guiding sleeve 3 and the shell 1 and the damping passage provided on the shaft 5 .That is, when there is a gap between the rotating shaft 5 and the guiding sleeve, the gap can be used for the fluid medium to pass through. When the gap between the guiding sleeve 3 and the shell 1 is provided, the gap can be used for passing the fluid medium. When the rotating shaft 5 is provided with a damping passage, the fluid medium can pass through the damping passage. The fluid medium passes through the corresponding gap and the damping passage when all three situations exist. When there are any two situations, for example, when there is a gap between the rotating shaft 5 and the guiding sleeve and the rotating shaft 5 is provided with a damping passage, the fluid medium passes through the corresponding gap and the damping passage, or when there is a gap between the rotating shaft 5 and the guiding sleeve and there is a gap between the guiding sleeve 3 and the shell 1, the fluid medium pass through both gaps, or when there is a gap between the guiding sleeve 3 and the shell 1, and the rotation shaft 5 is provided with a damping passage, the fluid medium passes through the corresponding gap and the damping passage.



    [0024] In this embodiment, the guiding sleeve 3 includes, in the axial direction thereof, a guiding sleeve head 32 and a guiding sleeve body 31 provided with the internal thread. The guiding sleeve head 32 is provided with the one-way valve passage. The one-way valve passage includes an annular groove 321 provided on the outer periphery of the guiding sleeve head 32, and a one-way valve ring 2 in the annular groove 321 and axially movable in the annular groove 321.

    [0025] The outer periphery of the valve ring 2 is flexibly and sealingly matched with the inner wall of the cavity of the shell 1 so that there is no gap for the fluid medium to pass through the gap between the guiding sleeve 3 and the shell 1. Therefore ,when the one-way valve passage is closed, the fluid medium is forced to pass through from the gap between the rotating shaft 5 and the guiding sleeve 3 and the damping passage provided by the rotating shaft 5. When the one-way valve ring 2 is in contact with the wall of the out end of the annular groove 321, the one-way valve passage is opened. To prevent that when the one-way valve passage is opened, the one-way valve ring 2 is in contact with the other groove wall of the annular groove 321 to cause the one-way valve passage to close unexpectedly, and the one-way valve ring 2 may be provided with a isolating portion 21 (the annular groove 321 also can be provided with an isolating portion), the isolating portion 21 isolates the one-way valve ring 2 and the other groove wall of the annular groove 321 to keep them in a non-contact state. To prevent the one-way valve ring 2 from rotating relative to the guiding sleeve head 32, a limiting portion 323 can be disposed in the annular groove 321 and a corresponding engaging portion 22 can be disposed on the one-way valve ring 2. A plurality of oil hole 322 axially extending through the annular groove 321 are disposed at an outer periphery of the end of the guiding sleeve 32.

    [0026] In this embodiment, the portion of the rotating rotating shaft 5 located in the cavity includes a threaded section 52 provided with an external thread and a first rotating shaft section 51,
    Both are coaxially fixed, and the first rotating shaft section 51 is provided with the damping passage. The damping passage is two oil grooves 511, 512 specifically provided on the side of the first rotating shaft section 51, the two oil grooves 511, 512 are strip structure respectively arranged along the first rotating shaft section 51 in the axial direction, and the two oil groove 511, 512 are not equal in length, the cross-sectional area of the longer oil groove 512 is smaller than the cross-sectional area of the shorter oil groove 511, after the one-way valve passage is closed, the fluid medium is forced to flow from each oil groove through,then it passes through the longer oil groove 512 .

    [0027] In this embodiment, at least one rotation stopping portion 42 is further disposed in the cavity of the shell 1, and when the guiding sleeve 3 rotates with the rotation rotating shaft 5 to a predetermined angle, the rotation of the guiding sleeve 3 is restricted by the rotation stopping portion 42.

    [0028] In this embodiment, the guiding structure is a plurality of first convex portions 41, and the outer wall of the guiding sleeve 3 is correspondingly provided with a plurality of second convex portions 311, the first convex portion 41 and the second convex portion 311 are engaged with or disengaged from each other.

    [0029] In this embodiment, a fixing sleeve 4 is fixedly mounted in a cavity of the shell 1, the guiding sleeve 3 and the fixing sleeve 4 are in an internal-external mating relationship. The plurality of first convex portions 41 are circumferentially disposed on the inner wall of the fixing sleeve 4. Each of the plurality of second convex portions 311 is a rib, and is disposed around the outer wall of the guiding sleeve 3(Specifically, the second convex portions 311 is provided on the outer wall of the guiding sleeve main body 31 of the guiding sleeve 3). The rotation stopping portion 42 is disposed on the fixing sleeve 4. When the guiding sleeve 3 rotates with the rotation axis 5 to a predetermined angle, the rotation stopping portion 42 abuts against the second convex portion 311 of the guiding sleeve 3 to restrict the rotation of the guiding sleeve 3. The rotation stopping portions 42 are specifically two, and the two rotation stopping portions 42 are disposed on the end surface of one end of the fixing sleeve 4 and close to the one-way valve ring 2.

    [0030] In this embodiment, one end of the shell 1 is closed, the other end of the shell 1 is provided with an axial opening communicating with the cavity, an end cap 8 for sealing the axial opening is fixedly connected at the other end of the shell 1. The rotating shaft 5 further includes a hollow second shaft section 53 . The threaded section 52 is located between the second shaft section 53 and the first shaft section 51. The free end of the second shaft section 53 extends out of the shell through the end cap 8 for connecting to the toilet lid; a sealing ring 6 is arranged between the second shaft section 53 and the cavity of the shell 1.

    [0031] In the present embodiment, an annular boss 531 is provided on the outer periphery of the root portion of the second shaft section 53, and the other end of the fixing sleeve 4 is provided with an inner flange abutting against the inner end surface of the annular boss 531 , so as to achieve to axially limit fixing sleeve 4. In order to avoid the rotation of the fixing sleeve 4 relative to the shell 1, a slot may be arranged on the outer periphery of the fixing sleeve 4, and correspondingly, a convexity is arranged on the inner wall of the cavity of the shell 1. The sealing ring is sleeved on the outer circumference of the annular boss 531 of the second shaft section 53. The second shaft section 53 is also sleeved with a washer 7, and the washer 7 abuts against between the outer end surface of the annular boss 531 and the inner end surface of the end cap 8. The remaining portion of the second shaft section 53 includes a cylindrical section 532 and a flat section 533. The cylindrical section 532 is located between the annular boss 531 and the flat section 533. The cylindrical section 532 is provided with a circular and axially penetrating through-hole fitting with the end cap 8, so that the rotating shaft 5 can rotate relative to the end cap 8 freely.

    [0032] When the toilet lid is closed, the state of the present invention is shown in FIG. 5-1 and FIG. 5-2. At this time, the guiding sleeve 3 and the fixing sleeve 4 are engaged with each other, the one-way valve ring 2 is in close contact with the groove wall of the outer end of the annular groove 321 of the guiding sleeve 3 so that the one-way valve passage is in a closed state .

    [0033] When the toilet lid is turned upwards, the rotating shaft 5 rotates clockwise with the toilet lid as shown in FIG. 6-1. The arrow in the figure indicates the rotating direction of the rotating shaft 5. Because the second convex portion 311 of the guiding sleeve 3 and the first convex portion 41 of the fixing sleeve 4 are engaged with each other and the guiding sleeve 3 is screwed with the rotating shaft 5, the guiding sleeve 3 gradually moves in the direction of disengagement of the second convex portion 311 from the first convex portion 41 of the fixing sleeve 4 (ie, the direction indicated by the straight-line arrow in FIG. 6-2) along with the rotation of the rotating shaft 5. In addition, with the axial movement of the guiding sleeve 3, the damping oil in the first chamber 11 is squeezed and a reaction force is formed on the one-way valve ring 2 so that the one-way valve ring 2 moves to the direction of the second chamber 12 ,so that the one-way valve ring 2 is gradually released from the outer groove wall of the annular groove 321 of the guiding sleeve 3 ,which forms a large gap between the one-way valve ring 2 and the annular groove 321 so that the damping oil in the first chamber 11 passes through the oil gap 322 of the guiding sleeve head 32 , the gap between the one-way valve ring 2 and the annular groove 321 to flow to the second chamber 12, as shown in FIG. 6-2, the curved arrows in the figure indicate the flow direction of the damping oil. A small portion of the damping oil in the first chamber 11 flows to the second chamber 12 through the oil groove having a smaller cross-sectional area on the first shaft section 51. During this process, the flow of damping oil is smoother, resulting in less opening resistance of the toilet lid.

    [0034] When the toilet lid is opened to a predetermined angle (70 °), the second convex portion 311 of the guiding sleeve 3 and the first convex portion 41 of the fixing sleeve 4 are completely disengaged, as shown in FIG. 7-1 and 7-2. At this moment, the guiding sleeve 3 no longer moves axially, and the guiding sleeve 3 can rotate with the rotating shaft 5; the damping oil is not exchanged between the first chamber 11 and the second chamber 12, and the rotating shaft 5 can rotate freely. When the toilet lid continues to flip upward, as shown in FIG. 8-1 and 8-2, the rotating shaft 5 continues to rotate clockwise with the toilet lid, and the rotating shaft 5 rotates freely, and drives the guiding sleeve 3 to rotate together. When the toilet lid is turned up to the position (120 °), the state of the present invention is shown in FIG. 9-1 and 9-2. At this time, the second convex portion 311 of the guiding sleeve 3 and the first convex portion 41 of the fixing sleeve 4 is still completely disengaged from the state, and the two second convex portion 311 of the guiding sleeve 3 respectively abuts against one side of the two rotation stopping portion 42.

    [0035] When the toilet lid is turned downwards, the rotating shaft 5 rotates counterclockwise, as shown in FIG. 10-1. The arrow in the figure indicates the rotation direction of the rotating shaft 5. In this process, the guiding sleeve 3 rotates with the rotating shaft 5 without damping as shown in FIG. 10-2, so that the toilet lid can be quickly lowered. When the toilet lid is turned downward to the 70 ° position, the two second convex portion 311 of the guiding sleeve 3 abut against the other side of the two rotation stopping portions 42 to restrict the guiding sleeve 3 from continuing to rotate with the rotating shaft 5. Due to the guiding sleeve 3 is screwed with the threaded portion 52 of the rotating shaft 5 ,and at the same time, the second convex portion 311 of the guiding sleeve 3 are not aligned with each of the first convex portion 41 of the fixing sleeve 4 ,so that when the rotating shaft 5 continues to rotate , the guiding sleeve 3 is driven to move axially in the direction of engaging the second convex portion 311 with the first convex portion 41 of the fixing sleeve 4 as shown in FIG. 11-1 and FIG. 11-2. The straight line arrow in the figure indicates the direction of movement of the guiding sleeve 3, so that the toilet lid into the slow fall stage. With the axial movement of the guiding sleeve 3, the outer end groove wall of the annular groove 321 gradually sticks to the one-way valve ring 2 to close the one-way valve passage, and the damping oil in the second chamber 12 passes through the two oil grooves 511,512 on the first shaft section 51 , and the gap between the rotating shaft 5 and the guiding sleeve 3 to flow to the first chamber 11, as shown in Figure 11-2, the curved arrow in the figure indicates the flow direction of the damping oil, this is pre-stage process of the slow down phase of the toilet lid, the speed of slow down is faster.

    [0036] As the toilet lid continues to flip down, the rotating shaft 5 continues to rotate, the guiding sleeve 3 continues to move axially toward the direction shown by the straight arrow in FIG. 11-2, the one-way valve passage remains closed, and the damping oil in the second chamber 12 pass through the oil groove 512 having a small cross-sectional area on the first shaft section 51, and the gap between the shaft 5 and the guiding sleeve 3 to flow to the first chamber 11, as shown in Figure 12-1, Figure 12-2, the straight line arrow in the figure indicates the flow direction of the damping oil, this is the later process of the slow-down stage of the toilet lid, and the slow-down speed is slower.

    [0037] In other embodiments, the one-way valve passage is closed when the guiding sleeve is moved axially from the disengagement to engagement with the guiding structure and the fluid medium is forced to pass through the gap between the rotating shaft and the guiding sleeve.

    [0038] In other embodiments, the one-way valve passage is closed when the guiding sleeve is moved axially from the disengagement to engagement with the guiding structure and the fluid medium is forced to pass through the gap between the shell and the guiding sleeve .

    [0039] In other embodiments, the one-way valve passage is closed as the guiding sleeve is moved axially from the disengagement to engagement with the guiding structure, the fluid medium is forced pass through the gap between the rotating shaft and the guiding sleeve , and the gap between the guiding sleeve and the shell.

    [0040] In other embodiments, the one-way valve passage is closed as the guiding sleeve is moved axially from the disengagement to engagement with the guiding structure, the fluid medium is forced to pass through the gap between the shaft and the guiding sleeve , and the damping passage provided on the rotating shaft .

    [0041] In other embodiments, the one-way valve passage is closed as the guiding sleeve is moved axially from the disengagement to engagement with the guiding structure, the fluid medium is forced to pass through the gap between the shell and the guiding sleeve , and the damping passage provided on the rotating shaft .

    [0042] In other embodiments, the one-way valve passage is closed as the guiding sleeve is moved axially from the disengagement to engagement with the guiding structure, the fluid medium is forced to pass through the gap between the rotating shaft and the guiding sleeve , the gap between the guiding sleeve and the shell, and the damping passage provided on the rotating shaft.

    [0043] In other embodiments, the damping passage is one and the cross-sectional area is gradually changed. After the one-way valve passage is closed, the fluid medium is forced to pass through the portion having a large cross-sectional area and then passes through the portion having a small cross-sectional area .

    [0044] In other embodiments, a plurality of oil holes axially passing through the annular groove are arranged at intervals on the end of the guide sleeve

    [0045] In other embodiments, the end of the guiding sleeve is provided with the oil gap or the oil hole, and when the one-way valve passage is opened,the damping oil of the first chamber passes through the gap between the guiding sleeve and the shell and the gap between the one-way valve ring and the annular groove to flow to the second chamber.

    [0046] In other embodiments, the shaft of the present invention is attached to the toilet seat and the shell is attached to the toilet lid.

    [0047] In other embodiments, the damper of the present invention is applied to other equipment, for example to a piano, for allowing the piano cover to open quickly and close slowly.

    [0048] The above embodiments are merely used to further illustrate a damper according to the present invention. However, the present invention is not limited to the embodiments.

    [0049] The scope of the invention is defined by the appended claims.

    Industrial practicability



    [0050] By designing the clutch structure of the rotating shaft and the guiding sleeve , the invention can quickly fall firstly and then slowly fall when the pivoting member is closed, and can greatly shorten the closing time of the pivoting member as a whole to meet the user's requirement of use.


    Claims

    1. A damper for pivotally connecting a pivoting member to a fixed seat, comprising:

    a shell (1) for attachment to one of the pivoting member and the fixed seat, the shell (1) has a cavity containing viscous fluid medium; a rotating shaft (5) for connection to the other of the pivoting member and the fixed seat, rotatably inserted into the cavity of the shell (1), the portion of the rotating shaft (5) located in the cavity is provided with external threads (52);

    a guiding sleeve (3), which is provided with an internal thread, the guiding sleeve (3) can move reciprocating axially in the cavity, and the internal thread and the external thread of the rotating shaft (5) are able to be screwed together;

    characterized in that the cavity of the shell (1) is also provided with a guiding structure (4) for guiding the axial movement of the guiding sleeve (3), the guiding sleeve (3) is engaged or disengaged with the guiding structure through the axial movement, and when the two are disengaged, the guiding sleeve (3) can rotate with the rotating shaft (5);

    wherein the guiding sleeve (3) is provided with a one-way valve passage, wherein when the guiding sleeve (3) is axially moved so as to change from engagement to disengagement with the guiding structure, the one-way valve passage is opened for passage of the fluid medium;

    and wherein when the one-way valve passage is closed, the fluid medium is forced to pass through one or more of a gap between the rotating shaft (5) and the guiding sleeve (3), a gap between the guiding sleeve (3) and the shell (1), and a damping passage provided on the rotating shaft (5).


     
    2. The damper according to claim 1, wherein the guiding sleeve (3) comprises, in the axial direction thereof, a guiding sleeve head (32) and the guiding sleeve body provided with the internal thread, and the guiding sleeve head (32) is provided with the one-way valve passage.
     
    3. The damper according to claim 2, wherein the one-way valve passage includes an annular groove (321) provided in the outer periphery of the guiding sleeve head (32) and a one-way valve ring (2) formed in the annular groove (321) and axially movable in the annular groove (321), the outer periphery of the one-way valve ring (2) and the inner wall of the cavity of the shell (1) is in a flexible and sealed fit; after the one-way valve passage is closed, the fluid medium is forced to pass through the gap between the rotating shaft (5) and the guiding sleeve head (32) and/or the damping passage provided on the rotating shaft (5).
     
    4. The damper according to any one of claims 1 to 3, wherein the portion of the rotating shaft (5) located in the cavity includes a threaded section (52) provided with an external thread and a first rotating shaft section (51), both of which are located on the same axis, after one-way valve passage is closed, the fluid medium is forced from the gap between the first rotating shaft section (51) and the guiding sleeve (3) and/or the damping passage provided on the first rotating shaft section (51).
     
    5. The damper according to claim 4, wherein the damping passage comprises at least two oil grooves (511, 512), the at least two oil grooves (511, 512) are respectively arranged on the side wall of the rotating shaft (5) in the axial direction of the rotating shaft (5), and after the one-way valve passage is closed, the fluid medium is forced to pass through each of the oil groove first and then passes through a part of the oil groove; or the damping passage is one, and the cross-sectional area changes gradually, after the one-way valve passage is closed, the fluid medium is forced to pass firstly through the section of large cross-sectional area and then through the section of small cross-sectional area.
     
    6. The damper according to claim 5, wherein the length of the at least two oil grooves (511, 512) is not equal, and the cross-sectional area of the long oil groove is smaller than the cross-sectional area of the short oil groove, after the one-way valve passage is closed, the fluid medium is forced to pass through each oil groove firstly, then pass through the longest oil groove.
     
    7. The damper according to claim 1, wherein at least one rotation stopping portion (42) is further arranged in the cavity of the shell (1), and the rotation of the guiding sleeve (3) is restricted by the rotation stopping portion (42) when the guiding sleeve (3) rotates to a predetermined angle with the rotation shaft.
     
    8. The damper according to claim 7, wherein a fixing sleeve (4) is fixedly arranged in a cavity of the shell (1), the guiding sleeve (3) and the fixing sleeve (4) are in an internal-external mating relationship, the guiding structure comprises a plurality of first convex portions (41) arranged at intervals around an inner wall of the fixing sleeve (4), the outer walls of the guiding sleeve (3) are circumferentially disposed with a plurality of second convex portions (311) at intervals respectively, the first convex portions (41) and the second convex portions (311) are engaged or disengaged; the rotation stopping portion (42) is provided on the fixing sleeve (4), and when the guiding sleeve (3) rotates to a predetermined angle with the rotation shaft, the stopping portion (42) is abutted against the second convex portions (311) of the guiding sleeve (3) to limit the rotation of the guiding sleeve (3).
     
    9. The damper according to claim 3, wherein a plurality of oil gaps or oil holes axially penetrating the annular groove (321) are arranged at the ends of the guiding sleeve heads (32) at intervals.
     
    10. The damper according to claim 4, wherein one end of the shell (1) is closed, the other end of the shell (1) is provided with an axial opening communicating with the cavity, a end cap (8) for sealing the axial opening is fixedly connected at the other end of the shell (1), the rotating shaft (5) further comprises a second shaft section, the threaded section (52) is located between the second shaft section and the first shaft section, the free end of the second shaft section extends out of the shell (1) through the end cap (8) for connection to the other of the pivoting member and the fixing seat.
     
    11. A damping method of slowly dropping a pivoting member, using a damper according to any one or more of claims 1 to 10,

    wherein the guiding sleeve (3) is furthermore provided with a one-way valve ring (2), the one-way valve ring (2) divides the cavity into a first chamber (11) and a second chamber (12); and

    wherein the pivoting member is a toilet lid; said method

    comprising the following steps:

    when the toilet lid is turned upwards, the guiding sleeve (3) and the guiding structure are engaged with each other, the guiding sleeve (3) is screwed with the rotating shaft (5), the rotation of the rotating shaft (5) and the axial movement of the guiding sleeve (3) cause the one-way valve ring (2) to leave the closed position, resulting a gap becoming large gradually;

    when the toilet lid is opened to a preset angle, the guiding sleeve (3) is engaged from the guiding structure, the guiding sleeve (3) is no longer axially moved and the gap between the first chamber (11) and the second chamber (12) is maintained;

    when the toilet lid is dropped, the guiding sleeve (3) is disengaged from the guiding structure until the toilet lid is lowered to a preset angle, and the gap between the first chamber (11) and the second chamber (12) is maintained;

    when the toilet lid is lowered to a predetermined angle, the guiding sleeve (3) engages with the guiding structure, the guiding sleeve (3) is screwed to the rotating shaft (5), the rotating shaft (5) rotates, and the guiding sleeve (3) moves axially to leave the one-way ring away from the open position, the gap between the first chamber (11) and the second chamber (12) become small gradually.


     
    12. The damping method according to claim 11, wherein said guiding structure is a fixing sleeve (4), and it is fixed in the shell (1).
     
    13. The damping method according to claim 11, wherein it is suitable for toilet lid to drop slowly.
     


    Ansprüche

    1. Eine Dämpfeinrichtung zum schwenkbaren Verbinden eines Schwenkglieds mit einem befestigten Sitz, die folgendes ausweist:

    eine Ummantelung (1) zum Anbringen an eines von dem Schwenkglied und dem befestigten Sitz, wobei die Ummantelung (1) einen Hohlraum hat, der ein viskoses Strömungsmittelmedium enthält; eine Drehwelle (5) zur Verbindung mit dem anderen von dem Schwenkglied und dem befestigten Sitz, die drehbar in den Hohlraum der Ummantelung (1) eingesetzt ist, wobei der Teil der Drehwelle (5), der in dem Hohlraum angeordnet ist, mit Außengewinden (52) versehen ist;

    eine Führungshülse (3), welche mit einem Innengewinde versehen ist, wobei die Führungshülse (3) sich in dem Hohlraum axial hin und her bewegen kann, und das Innengewinde und das Außengewinde der Drehwelle (5) sind fähig, zusammengeschraubt zu werden;

    dadurch gekennzeichnet, dass der Hohlraum der Ummantelung (1) auch mit einer Führungsstruktur (4) zum Führen der axialen Bewegung der Führungshülse (3) versehen ist, die Führungshülse (3) ist mit der Führungsstruktur in Eingriff oder nicht in Eingriff, und zwar durch die axiale Bewegung, und wenn die zwei nicht in Eingriff sind, kann die Führungshülse (3) sich mit der Drehwelle (5) drehen; wobei die Führungshülse (3) mit einem Ein-Weg-Ventildurchlass versehen ist, wobei, wenn die Führungshülse (3) axial bewegt wird, um vom Eingriff in den Nicht-Ineingriff mit der Führungsstruktur zu wechseln, wird der Ein-Weg-Ventildurchlass für den Durchlass des Strömungsmittelmediums geöffnet; und wobei, wenn der Ein-Weg-Ventildurchlass geschlossen ist, wird das Strömungsmittelmedium gezwungen, durch einen oder mehreren von einem Spalt zwischen der Drehwelle (5) und der Führungshülse (3), einem Spalt zwischen der Führungshülse (3) und der Ummantelung (1) und einem an der Drehwelle (5) vorgesehenen Dämpfungsdurchlass durchzugehen.


     
    2. Die Dämpfeinrichtung nach Anspruch 1, wobei die Führungshülse (3), in der axialen Richtung davon, einen Führungshülsenkopf (32) und den mit dem Innengewinde versehenen Führungshülsenkörper aufweist, und der Führungshülsenkopf (32) mit dem Ein-Weg-Ventildurchlass versehen ist.
     
    3. Die Dämpfeinrichtung nach Anspruch 2, wobei der Ein-Weg-Ventildurchlass eine Ringnut (321), die in dem Außenumfang des Führungshülsenkopfes (32) vorgesehen ist, und einen Ein-Weg-Ventilring (2), der in der Ringnut (321) gebildet ist und axial bewegbar in der Ringnut (321) ist, aufweist, der Außenumfang des Ein-Weg-Ventilrings (2) und die Innenwand des Hohlraums der Ummantelung (2) sind in einer flexiblen und abgedichteten Passung; nachdem der Ein-Weg-Ventildurchlass geschlossen ist, wird das Strömungsmittelmedium gezwungen, durch den Spalt zwischen der Drehwelle (5) und dem Führungshülsenkopf (32) und/oder durch den an der Drehwelle (5) vorgesehenen Dämpfungsdurchlass durchzugehen.
     
    4. Die Dämpfeinrichtung nach einem der Ansprüche 1 bis 3, wobei der Teil der Drehwelle (5), der in dem Hohlraum angeordnet ist, einen mit einem Außengewinde versehenen Gewinde-Abschnitt (52) und einen ersten Drehwellenabschnitt (51) aufweist, wobei beide auf derselben Achse angeordnet sind, nachdem der Ein-Weg-Ventildurchlass geschlossen ist, wird das Strömungsmittelmedium von dem Spalt zwischen dem ersten Drehwellenabschnitt (51) und der Führungshülse (3) und/oder dem an dem ersten Drehwellenabschnitt (51) vorgesehenen Dämpfungsdurchlass gezwungen.
     
    5. Die Dämpfeinrichtung nach Anspruch 4, wobei der Dämpfungsdurchlass wenigstens zwei Ölnuten (511, 512) aufweist, wobei die wenigstens zwei Ölnuten (511, 512) jeweils an der Seitenwand der Drehwelle (5) in der axialen Richtung der Drehwelle (5) angeordnet sind, und nachdem der Ein-Weg-Ventildurchlass geschlossen ist, wird das Strömungsmittelmedium gezwungen, zuerst durch jede der Ölnuten durchzugehen und geht dann durch ein Teil der Ölnut durch; oder der Dämpfungsdurchlass ist einer und die Querschnittsfläche ändert sich allmählich, nachdem der Ein-Weg-Ventildurchlass geschlossen ist, ist das Strömungsmittelmedium gezwungen, zuerst durch den Abschnitt mit großer Querschnittsfläche und dann durch den Abschnitt mit kleiner Querschnittsfläche durchzugehen.
     
    6. Die Dämpfeinrichtung nach Anspruch 5, wobei die Länge der wenigstens zwei Ölnuten (511, 512) nicht gleich ist und die Querschnittsfläche der langen Ölnut kleiner ist als die Querschnittsfläche der kurzen Ölnut, nachdem der Ein-Weg-Ventildurchlass geschlossen ist, ist das Strömungsmittelmedium gezwungen, als erstes durch jede Ölnut durchzugehen und dann durch die längste Ölnut durchzugehen.
     
    7. Die Dämpfeinrichtung nach Anspruch 1, wobei wenigstens ein Drehstoppteil (42) ferner in dem Hohlraum der Ummantelung (1) angeordnet ist und die Drehung der Führungshülse (3) durch den Drehstoppteil (42) eingeschränkt ist, wenn sich die Führungshülse (3) zu einem vorbestimmten Winkel mit der Drehwelle dreht.
     
    8. Die Dämpfeinrichtung nach Anspruch 7, wobei eine Befestigungshülse (4) fest in einem Hohlraum der Ummantelung (1) angeordnet ist, die Führungshülse (3) und die Befestigungshülse (4) in einer Innen-Außen-Pass-Beziehung sind, die Führungsstruktur eine Vielzahl von ersten konvexen Teilen (41) aufweist, die in Intervallen um eine Innenwand der Befestigungshülse (4) angeordnet sind, die Außenwände der Führungshülse (3) umfangsmäßig mit einer Vielzahl von zweiten konvexen Teilen (311) jeweils in Intervallen angeordnet sind, die ersten konvexen Teile (41) und die zweiten konvexen Teile (311) sind in Eingriff oder nicht in Eingriff; der Drehstoppteil (42) ist an der Befestigungshülse (4) vorgesehen, und wenn sich die Führungshülse (3) zu einen vorbestimmten Winkel mit der Drehwelle dreht, liegt der Stoppteil (42) an den zweiten konvexen Teilen (311) der Führungshülse (3) an, um die Drehung der Führungshülse (3) zu begrenzen,
     
    9. Die Dämpfeinrichtung nach Anspruch 3, wobei eine Vielzahl von Ölspalten oder Öllöchern, welche die Ringnut (321) axial durchdringen, in Intervallen an den Enden der Führungshülsenköpfe (32) angeordnet sind.
     
    10. Die Dämpfeinrichtung nach Anspruch 4, wobei ein Ende der Ummantelung (1) ist geschlossen ist, das andere Ende der Ummantelung (1) mit einer axialen Öffnung versehen ist, die mit dem Hohlraum in Verbindung steht, eine Endkappe (8) zum Abdichten der axialen Öffnung an dem anderen Ende der Ummantelung (1) fest verbunden ist, die Drehwelle (5) ferner einen zweiten Wellenabschnitt aufweist, der Gewinde-Abschnitt (52) zwischen dem zweiten Wellenabschnitt und dem ersten Wellenabschnitt angeordnet ist, das freie Ende des zweiten Wellenabschnitts sich aus der Ummantelung (1) durch die Endkappe (8) zur Verbindung mit dem anderen von dem Schwenkglied und dem befestigten Sitz erstreckt.
     
    11. Ein Dämpfungsverfahren zum langsamen Absenken eines Schwenkglieds, unter Verwendung einer Dämpfungseinrichtung nach einem oder mehreren der Ansprüche 1 bis 10, wobei die Führungshülse (3) ferner mit einem Ein-Weg-Ventilring (2) versehen, der Ein-Weg-Ventilring (2) den Hohlraum in eine erste Kammer (11) und eine zweite Kammer (12) unterteilt; und wobei das Schwenkglied ein Toilettendeckel ist; wobei das Verfahren die folgenden Schritte aufweist:

    wenn der Toilettendeckel nach oben gedreht wird, werden die Führungshülse (3) und die Führungsstruktur miteinander in Eingriff gebracht, die Führungshülse (3) wird mit der Drehwelle (5) verschraubt, die Drehung der Drehwelle (5) und die axiale Bewegung der Führungshülse (3) verursachen, dass der Ein-Weg-Ventilring (2) die geschlossene Position verlässt, was zu einem allmählich groß werdenden Spalt führt;

    wenn der Toilettendeckel zu einem voreingestellten Winkel geöffnet wird, wird die Führungshülse (3) von der Führungsstruktur ein Eingriff gebracht, die Führungshülse (3) wird nicht länger axial bewegt und der Spalt zwischen der ersten Kammer (11) und der zweiten Kammer (12) wird aufrechterhalten;

    wenn der Toilettendeckel fallen gelassen wird, wird die Führungshülse (3) von der Führungsstruktur außer Eingriff gebracht, bis der Toilettendeckel auf einen voreingestellten Winkel abgesenkt wird und der Spalt zwischen der ersten Kammer (11) und der zweiten Kammer (12) wird aufrechterhalten;

    wenn der Toilettendeckel zu einem vorbestimmten Winkel abgesenkt wird, kommt die Führungshülse (3) mit der Führungsstruktur in Eingriff, die Führungshülse (3) wird mit der Drehwelle (5) verschraubt, die Drehwelle (5) dreht sich und die Führungshülse (3) bewegt sich axial, um den Ein-Weg-Ring von der offenen Position weg zu verlassen, der Spalt zwischen der ersten Kammer (11) und der zweiten Kammer (12) wird allmählich klein.


     
    12. Das Dämpfungsverfahren nach Anspruch 11, wobei die Führungsstruktur eine Befestigungshülse (4) ist und sie in der Ummantelung (1) befestigt ist.
     
    13. Das Dämpfungsverfahren nach Anspruch 11, wobei es geeignet ist, dass der Toilettendeckel langsam fällt.
     


    Revendications

    1. Amortisseur pour relier de manière pivotante un organe pivotant à un siège fixe, comprenant :

    une coque (1) à attacher à l'un de l'organe pivotant et du siège fixe, la coque (1) a une cavité contenant un milieu fluide visqueux ; une tige rotative (5) à relier à l'autre de l'organe pivotant et du siège fixe, insérée à rotation dans la cavité de la coque (1), la partie de la tige rotative (5) située dans la cavité est pourvue de filets externes (52) ; un manchon de guidage (3) qui est pourvu d'un filet interne, le manchon de guidage (3) peut décrire un mouvement alternatif axialement dans la cavité, et le filet interne et le filet externe de la tige rotative (5) sont aptes à être vissés ensemble ;

    caractérisé en ce que la cavité de la coque (1) est également pourvue d'une structure de guidage (4) pour guider le mouvement axial du manchon de guidage (3), le manchon de guidage (3) sont en prise avec la structure de guidage ou hors de prise par le mouvement axial, et quand les deux sont hors de prise, le manchon de guidage (3) peut tourner avec la tige rotative (5) ;

    dans lequel le manchon de guidage (3) est pourvu d'un passage de vanne unidirectionnelle,

    dans lequel quand le manchon de guidage (3) est déplacé axialement de manière à passer d'en prise avec la structure de guidage à hors de prise, le passage de vanne unidirectionnelle est ouvert pour le passage du milieu fluide ;

    et dans lequel quand le passage de vanne unidirectionnelle est fermé, le milieu fluide est forcé à traverser un ou plus parmi un espace entre la tige rotative (5) et le manchon de guidage (3), un espace entre le manchon de guidage (3) et la coque (1) et un passage d'amortissement prévu sur la tige rotative (5).


     
    2. Amortisseur selon la revendication 1, dans lequel le manchon de guidage (3) comprend, dans sa direction axiale, une tête de manchon de guidage (32) et le corps de manchon de guidage pourvu du filet interne, et la tête de manchon de guidage (32) est pourvue du passage de vanne unidirectionnelle.
     
    3. Amortisseur selon la revendication 2, dans lequel le passage de vanne unidirectionnelle inclut une rainure annulaire (321) prévue dans la périphérie extérieure de la tête de manchon de guidage (32) et une bague de vanne unidirectionnelle (2) formée dans la rainure annulaire (321) et mobile axialement dans la rainure annulaire (321), la périphérie extérieure de la bague de vanne unidirectionnelle (2) et la paroi intérieure de la cavité de la coque (1) sont ajustées de manière flexible et étanche ; une fois que le passage de vanne unidirectionnelle est fermé, le milieu fluide est forcé à traverser l'espace entre la tige rotative (5) et la tête de manchon de guidage (32) et/ou le passage d'amortissement prévu sur la tige rotative (5).
     
    4. Amortisseur selon l'une quelconque des revendications 1 à 3, dans lequel la partie de la tige rotative (5) située dans la cavité inclut une section filetée (52) pourvue d'un filet externe et une première section de tige rotative (51), qui sont situées toutes les deux sur le même axe, une fois que le passage de vanne unidirectionnelle est fermé, le milieu fluide est forcé depuis l'espace entre la première section de tige rotative (51) et le manchon de guidage (3) et/ou le passage d'amortissement prévu sur la première section de tige rotative (5).
     
    5. Amortisseur selon la revendication 4, dans lequel le passage d'amortissement comprend au moins deux rainures de graissage (511, 512), les au moins deux rainures de graissage (511, 512) sont disposées respectivement sur la paroi latérale de la tige rotative (5) dans la direction axiale de la tige rotative (5), et une fois que le passage de vanne unidirectionnelle est fermé, le milieu fluide est forcé à traverser chaque rainure de graissage en premier et ensuite traverse une partie de la rainure de graissage ; ou le passage d'amortissement est unique, et la superficie de section transversale change progressivement, une fois que le passage de vanne unidirectionnelle est fermé, le milieu fluide est forcé à traverser en premier la section de grande superficie de section transversale et ensuite la section à petite superficie de section transversale.
     
    6. Amortisseur selon la revendication 5, dans lequel la longueur des au moins deux rainures de graissage (511, 512) n'est pas égale, et la superficie de section transversale de la rainure de graissage longue est plus petite que la superficie de section transversale de la rainure de graissage courte, une fois que le passage de vanne unidirectionnelle est fermé, le milieu fluide est forcé à traverser chaque rainure de graissage en premier, puis à traverser la rainure de graissage la plus longue.
     
    7. Amortisseur selon la revendication 1, dans lequel au moins une partie d'arrêt de rotation (42) est en outre disposée dans la cavité de la coque (1), et la rotation du manchon de guidage (3) est restreinte par la partie d'arrêt de rotation (42) quand le manchon de guidage (3) tourne jusqu'à un angle prédéterminé avec la tige rotative.
     
    8. Amortisseur selon la revendication 7, dans lequel un manchon de fixation (4) est disposé de manière fixe dans une cavité de la coque (1), le manchon de guidage (3) et le manchon de fixation (4) sont dans une relation d'accouplement interne-externe, la structure de guidage comprend une pluralité de premières parties convexes (41) disposées à des intervalles autour d'une paroi intérieure du manchon de fixation (4), les parois extérieures du manchon de guidage (3) sont agencées respectivement circonférentiellement avec une pluralité de deuxièmes parties convexes (311) à des intervalles, les premières parties convexes (41) et les deuxièmes parties convexes (311) sont en prise ou hors de prise ; la partie d'arrêt (42) est prévue sur le manchon de fixation (4), et quand le manchon de guidage (3) tourne jusqu'à un angle prédéterminé avec la tige rotative, la partie d'arrêt de rotation (42) bute contre les deuxièmes parties convexes (311) du manchon de guidage (3) pour limiter la rotation du manchon de guidage (3).
     
    9. Amortisseur selon la revendication 3, dans lequel une pluralité d'espaces de graissage ou de trous de graissage pénétrant axialement dans la rainure annulaire (321) sont disposés aux extrémités des têtes de manchon de guidage (32) à des intervalles.
     
    10. Amortisseur selon la revendication 4, dans lequel une extrémité de la coque (1) est fermée, l'autre extrémité de la coque (1) est pourvue d'une ouverture axiale communiquant avec la cavité, un couvercle d'extrémité pour rendre l'ouverture axiale étanche est relié de manière fixe à l'autre extrémité de la coque (1), la tige rotative (5) comprend en outre une deuxième section de tige, la section filetée (52) est située entre la deuxième section de tige et la première section de tige, l'extrémité libre de la deuxième section de tige s'étend hors de la coque (1) à travers le couvercle d'extrémité (8) pour une liaison avec l'autre de l'organe pivotant et du siège de fixation.
     
    11. Procédé d'amortissement de descente lente d'un organe pivotant, utilisant un amortisseur selon l'une au moins des revendications 1 à 10,

    dans lequel le manchon de guidage (3) est en outre pourvu d'une bague de vanne unidirectionnelle (2), la bague de vanne unidirectionnelle (2) partage la cavité en une première chambre (11) et une deuxième chambre (12) ; et

    dans lequel l'organe pivotant est un couvercle de toilettes ; ledit procédé comprenant les étapes suivantes :

    quand le couvercle de toilettes est tourné vers le haut, le manchon de guidage (3) et la structure de guidage sont en prise l'un avec l'autre, le manchon de guidage (3) est vissé avec la tige rotative (5), la rotation de la tige rotative (5) et le mouvement axial du manchon de guidage (3) font quitter la position fermée à la bague de vanne unidirectionnelle (2), ce qui a pour résultat une augmentation progressive d'un espace ;

    quand le couvercle de toilettes est ouvert à un angle préréglé, le manchon de guidage (3) est en prise depuis la structure de guidage, le manchon de guidage (3) n'est plus déplacé axialement et l'espace entre la première chambre (11) et la deuxième chambre (12) est maintenu ;

    quand le couvercle de toilettes descend, le manchon de guidage (3) est hors de prise de la structure de guidage jusqu'à ce que le couvercle de toilettes soit abaissé à un angle préréglé, et l'espace entre la première chambre (11) et la deuxième chambre (12) est maintenu ;

    quand le couvercle de toilettes est abaissé à un angle prédéterminé, le manchon de guidage (3) vient en prise avec la structure de guidage, le manchon de guidage (3) est vissé à la tige rotative (5), la tige rotative (5) tourne, et le manchon de guidage (3) se déplace axialement pour laisser la bague de vanne unidirectionnelle (2) éloignée de la position ouverte, l'espace entre la première chambre (11) et la deuxième chambre (12) diminue progressivement.


     
    12. Procédé d'amortissement selon la revendication 11, dans lequel ladite structure de guidage est un manchon de fixation (4), et elle est fixée dans la coque (1).
     
    13. Procédé d'amortissement selon la revendication 11, dans lequel il convient pour la descente lente d'un couvercle de toilettes.
     




    Drawing























    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description