(19)
(11)EP 3 361 481 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
26.01.2022 Bulletin 2022/04

(21)Application number: 17155617.8

(22)Date of filing:  10.02.2017
(51)International Patent Classification (IPC): 
H01B 19/04(2006.01)
B33Y 80/00(2015.01)
B29C 64/106(2017.01)
H01B 17/28(2006.01)
(52)Cooperative Patent Classification (CPC):
B33Y 80/00; B29C 64/118; B29C 64/106; H01B 17/28; H01B 19/04

(54)

PRODUCING POWER BUSHING CONDENSER CORE BY ADDITIVE MANUFACTURING

HERSTELLUNG EINES KAPAZITIVEN DURCHFÜHRUNGSISOLATORS DURCH GENERATIVE FERTIGUNG

PRODUCTION D'UN NOYAU DE CONDENSATEUR DE TRAVERSÉE DE PUISSANCE PAR FABRICATION ADDITIVE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(43)Date of publication of application:
15.08.2018 Bulletin 2018/33

(73)Proprietor: Hitachi Energy Switzerland AG
5400 Baden (CH)

(72)Inventors:
  • MARTINI, Harald
    415 48 Göteborg (SE)
  • SCHIESSLING, Joachim
    749 42 Enköping (SE)
  • LAVESSON, Nils
    722 10 Västerås (SE)
  • FORSSEN, Cecilia
    724 60 Västerås (SE)
  • FALEKE, Håkan
    724 61 Västerås (SE)
  • VIERTEL, Julia
    725 91 Västerås (SE)
  • MATYSIAK, Lukasz
    30-716 Krakow (PL)
  • CZYZEWSKI, Jan
    30-376 Krakow (PL)
  • HEDLUND, Roger
    771 92 Ludvika (SE)
  • ROCKS, Jens
    8807 Freienbach (CH)

(74)Representative: Valea AB 
Box 7086
103 87 Stockholm
103 87 Stockholm (SE)


(56)References cited: : 
WO-A1-2014/090677
WO-A1-2017/021429
CN-A- 104 916 378
US-B1- 6 519 500
WO-A1-2016/187365
CN-A- 104 103 385
JP-A- 2016 033 861
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    TECHNICAL FIELD



    [0001] The present disclosure relates to a method for producing an electric power device comprising an insulator. In particular, the present disclosure relates to a method for producing a condenser core of an electrical power bushing.

    BACKGROUND



    [0002] A wide range of additive manufacturing (also called 3D printing) technologies are commercially available, enabling the production of customized components layer by layer in different materials (e.g. metal, ceramic, plastic and composites). In recent years the production speed (volume/h) and size of building chamber have increased significantly. For example, a new fast Fused Deposition Modelling (FDM) machine using a standard thermoplastic resin is more cost effective.

    [0003] There is a general trend to replace epoxy insulation in high-voltage (HV) insulation. One example is injection moulding of a thermoplastic material. However, injection moulding is difficult for thicker insulators.

    [0004] There are many HV apparatuses with epoxy based (impregnated) insulation that have conductive parts, e.g. power bushings. Several process steps are needed like winding, drying, vacuum impregnation and curing of liquid epoxy resin to form void-free solid insulation bodies. An alternative manufacturing process for dry bushings uses winding polymer film. The polymer film cost/kg is higher than the resin cost, making the process less cost effective. A bushing is a hollow electrical insulator through which a conductor may pass. Bushings are used where high voltage lines must pass through a wall or other surface, on switchgear, transformers, circuit breakers and other high voltage equipment. A bushing is e.g. used for passing a high voltage line from an oil-filled transformer, whereby the bushing is an oil-to-air bushing with a part in oil in the transformer and a part in air outside of the transformer.

    [0005] Other bushings are air-to-air bushings e.g. passing high voltage lines through a wall.

    [0006] JP 2016 033861 A discloses a capacitor bushing comprising: a porcelain tube formed with shade parts along the axial direction, a central conductor installed inside the porcelain tube and a capacitor core in which the outer circumference of the central conductor is concentrically disposed with a plurality of equalizer electrodes and insulation resin layers.

    [0007] CN 104 916 378 A discloses a device and method for manufacturing a dielectric constant gradient insulator based on 3D printing. The device comprises a 3D printing device used for printing of the dielectric constant function gradient insulator, see abstract. The dielectric constant function gradient insulator is then subjected to a heat curing temperature of 150°C over a time of 15h or more and to atmospheric pressure.

    [0008] The condenser core of a power bushing comprises an electrically insulating material having electrically conducting sheets therein to handle the electrical field formed by the HV conductor passing thorough the condenser core.

    SUMMARY



    [0009] Components made by additive manufacturing (3D printing) are generally rather porous, making them unsuitable for use as HV insulation, unless the voids are filled (impregnated) by an electrically insulating fluid, e.g. a liquid such as an oil, or epoxy which is then cured to form a solid.

    [0010] It has now been found that suitable medium voltage (MV), e.g. above 1 kV, or high voltage (HV), e.g. above 72.5 kV, insulators, e.g. in the form of a condenser core, in a power bushing can be obtained without the need for impregnation with insulating fluid, by using additive manufacturing in combination with a subsequent consolidation step at elevated temperature and pressure. At the elevated temperature, the electrically insulating material softens, allowing the elevated pressure to consolidate the 3D printed insulator (e.g. condenser core), removing any gas-filled (typically air-filled) cavities formed in the insulator during the additive manufacturing, reducing the risk of breakdown of the insulating material or partial discharges. According to an aspect of the present invention, there is provided a method for producing an electrical power device comprising an insulator according to claim 1.

    [0011] The method also comprises subjecting the insulator to elevated temperature and pressure during a predetermined time period to consolidate the insulator.

    [0012] According to an aspect of the invention, the insulator is in the form of a condenser core. Such a condenser core is produced in accordance with an embodiment of the inventive method, for producing a condenser core of an electrical power device, e.g. a medium or high voltage power bushing. The method comprises, by means of an additive manufacturing technique, applying an inner concentric layer of the condenser core, of a polymeric insulating material around and along a longitudinal through hole of the device. The method also comprises applying a first of a plurality of concentric intermediate layers of an electrically conducting material, on top of the inner layer, around and along the longitudinal through hole. The method also comprises, by means of the additive manufacturing technique, applying an outer concentric layer of the condenser core, of the polymeric insulating material, on top of a second of the plurality of concentric intermediate layers, around and along the longitudinal through hole. The method also comprises subjecting the condenser core to elevated temperature and pressure during a predetermined time period to consolidate the condenser core.

    [0013] According to another aspect of the present invention as defined in claim 12, there is provided a condenser core produced by an embodiment of the method of the present disclosure.

    [0014] According to another aspect of the present invention, there is provided a high-voltage power bushing comprising an embodiment of the condenser core of the present disclosure.

    [0015] According to another aspect of the present invention, there is provided a transformer arrangement comprising a transformer tank encasing a transformer and being filled with an electrically insulating liquid. The transformer arrangement also comprises an embodiment of the bushing of the present disclosure arranged through a wall of the transformer tank.

    [0016] It is to be noted that any feature of any of the aspects may be applied to any other aspect, wherever appropriate. Likewise, any advantage of any of the aspects may apply to any of the other aspects. Other objectives, features and advantages of the enclosed embodiments will be apparent from the following detailed disclosure, from the attached dependent claims as well as from the drawings.

    [0017] Generally, all terms used in the claims are to be interpreted according to their ordinary meaning in the technical field, unless explicitly defined otherwise herein. All references to "a/an/the element, apparatus, component, means, step, etc." are to be interpreted openly as referring to at least one instance of the element, apparatus, component, means, step, etc., unless explicitly stated otherwise. The steps of any method disclosed herein do not have to be performed in the exact order disclosed, unless explicitly stated. The use of "first", "second" etc. for different features/components of the present disclosure are only intended to distinguish the features/components from other similar features/components and not to impart any order or hierarchy to the features/components. Even though some embodiments have been summarized above, the claimed subject matter is defined in the attached claims 1-14.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0018] Embodiments will be described, by way of example, with reference to the accompanying drawings, in which:

    Fig 1 is a side view in section of an embodiment of a transformer arrangement comprising a HV bushing, in accordance with the present invention.

    Fig 2 is a side view in longitudinal section of an embodiment of a HV bushing, in accordance with the present invention.

    Fig 3 is a side view in longitudinal section of an embodiment of a consolidation chamber, in accordance with the present invention.


    DETAILED DESCRIPTION



    [0019] Embodiments will now be described more fully hereinafter with reference to the accompanying drawings, in which certain embodiments are shown. However, other embodiments in many different forms are possible within the scope of the present disclosure. Rather, the following embodiments are provided by way of example so that this disclosure will be thorough and complete, and will fully convey the scope of the disclosure to those skilled in the art. Like numbers refer to like elements throughout the description.

    [0020] The insulator is herein exemplified as a condenser core, which is preferred in some embodiments of the present invention. However, the inventive method may also be used for producing other types of electrical insulators, typically for MV or (especially) HV power devices. Examples of other HV and (especially) MV applications of embodiments of the present invention include any of bushing, support insulator, bushing plate, embedded pole or monoblock insulator, e.g. for Gas Insulated Substation (GIS) or Air Insulated Substation (AIS) applications.

    [0021] The electrical power device may e.g. be a bushing, an instrument transformer or a cable termination, preferably a bushing e.g. a HV bushing which is used as an example herein. The bushing of the present invention may be used for a transformer, e.g. a HV power transformer, as exemplified herein, but the inventive bushing may alternatively be used for other electrical devices, especially gas- or liquid-filled (e.g. oil) electrical devices, such as electrical motors or switches.

    [0022] The polymeric insulating material is herein exemplified as a thermoplastic material, which is preferred in some embodiments e.g. when using FDM, but in other embodiments, e.g. depending on the additive manufacturing technique used, other polymeric materials such as elastomeric or curable polymeric insulating materials may be used.

    [0023] Figure 1 is a schematic illustration of a transformer arrangement 1 where a bushing 2, having a longitudinal through hole surrounded by a condenser core and an outer shell, is used for conducting an electrical current (I, U) in a conductor 6 through a wall of the transformer tank 4 to the transformer 3. The transformer tank 4 is (at least partly) filled with an electrically insulating, e.g. dielectric, fluid 5, whereby the bushing extends from the insulating fluid 5 to the ambient fluid (typically air) outside of the tank 4. The transformer may be an oil-filled transformer, e.g. filled with mineral oil or an ester-based oil. The transformer may be a high-voltage power transformer, e.g. having a rating or operating voltage of at least 50 kV, e.g. within the range of 50-200 kV, whereby a high-voltage current is passed from the transformer 3 through the bushing 2 via the conductor 6 passing through the through hole of the bushing. The bushing 2 may thus have an inner oil-immersed part at a lower/bottom end of the bushing inside the transformer tank 4, and an outer part in air at an upper/top end of the bushing outside of the transformer tank. The bushing 2 may be at least partly fluid-filled, typically by the insulating fluid 5, but in accordance with the present invention the condenser core is consolidated and does not need to be impregnated with the insulating fluid. The bushing, by means of its associated conductor 6, may conduct current from e.g. a winding of the transformer 3, through the wall of the transformer tank 4 and to e.g. an air-borne line of a power distribution network, the bushing 2 insulating the current from the wall and any other external structures.

    [0024] Figure 2 illustrates the multi-layer structure of the condenser core of the bushing 2. The condenser core may be regarded as composed by multiple concentrically positioned cylindrical layers with substantially circular cross-sections, adhered to each other and positioned one outside the other such that a plurality of insulating layers 21, applied by means of an additive manufacturing technique, are formed with conducting intermediate layers 22 there between. Any number of alternating insulating layers 21 and conducting layers 22 may be used, depending on the requirements of the bushing 2. In the example of figure 2, a relatively small number of layers 21 and 22 are shown, an inner layer 21a of the thermoplastic insulating material, a first intermediate layer 22a of the electrically conducting material, on top of the inner layer 21a, a middle layer 21b of the thermoplastic insulating material on top of the first intermediate layer 22a, a second intermediate layer 22b of the electrically conducting material on top of the middle layer 21b, and an outer layer 21c of the thermoplastic insulating material on top of the second intermediate layer 22b.

    [0025] The alternating layers 21 and 22 are typically adhered to each other during the production process. The layers 21 of the thermoplastic insulating material are applied, e.g. on top of a conducting intermediate layer 22, by means of an additive manufacturing technique, e.g. FDM which is preferred due to ability to produce large 3D printed objects in relatively short time. The electrically conducting intermediate layers 22 may also be applied, typically at room temperature, using an additive manufacturing technique, plasma deposition, physical or chemical vapour deposition, or by printing, e.g. ink-jet printing, or painting, e.g. with a brush, on the layer of the thermoplastic insulating material on top of which it is applied.

    [0026] The layers 21 and 22 are formed around and along a central through hole 23 of the bushing 2, through which through hole 23 the conductor 6 may pass. The through hole 23 may be formed by a central pipe of an electrically insulating or conducting material, on to which the inner layer 21a of the thermoplastic insulating material may be applied using additive manufacturing. If the central pipe is of a conducting material, e.g. copper or aluminium, the central pipe may form part of the conductor 6.

    [0027] An outer casing or shell 24, e.g. of an electrically insulating ceramic, may form an outer surface of the bushing 2 outside of the condenser core.

    [0028] The operating voltage of the device 2 may be HV of at least 30 or 50 kV, e.g. within a range of 35-400 kV, such as 35-170 kV for e.g. a bushing or 140-400 kV for e.g. a cable termination, which implies that the condenser core is configured for an operating voltage of the bushing of at least 30 kV, e.g. within a range of 35-400 kV such as 35-170 kV or 140-400 kV. The use of HV put some strain on the condenser core which has to be configured to handle the relatively strong electrical field and high temperatures.

    [0029] The polymeric (e.g. thermoplastic) insulating material has a melting point Tm or glass transition temperature Tg above the operating temperature of the bushing, but below the temperature used to apply the polymeric material by means of the additive manufacturing technique. The operating temperature of the bushing may e.g. be at least 100°C, e.g. at least 120°C, in which case the polymeric (e.g. thermoplastic) material may have a Tm or a Tg of at least 120°C. The additive manufacturing technique may comprise applying the polymeric, e.g. thermoplastic, insulating material at a temperature of at least 150°C or at least 200°C, e.g. at least 250°C, in which case the polymeric material may have a Tm or Tg of less than 250°C, e.g. less than 200°C or less than 150°C. Alternatively, the polymeric material may have a Tg which is lower than the temperatures at which the polymeric material has to be handled, e.g. of less than -40°C.

    [0030] The conducting material of the intermediate layers 22 may be applied in any suitable way, e.g. in a liquid form at room temperature, or by any other way of coating, e.g. ink-jet printing or 3D printing, plasma deposition, physical or chemical vapour deposition, spray coating or painting, e.g. with a brush, or by applying/adhering a conducting foil with adhesive or directly on the insulating material if sticky, on any layer 21 of the polymeric insulating material. The conducting material may e.g. be or comprise silver, aluminium, graphene and/or carbon black in a lacquer which is liquid at room temperature before being applied in the condenser core.

    [0031] The dimensions of the condenser core depend on the application and the size of the bushing 2. The condenser core of the present invention may be especially suitable for small to medium sized HV bushings, since larger condenser cores may not easily be produced by additive manufacturing or consolidated. The condenser core may e.g. have a longitudinal length of at least 0,5 or 1 m, or of at most e.g. 6 m, e.g. within a range of 0,5-3 m. The condenser core may have a cross-sectional diameter within the range of 7-30 cm e.g. 10-30 cm, depending on the diameter of the through hole 23 and the combined annular wall thickness of the layers 21 and 22 of the condenser core. In some embodiments, the condenser core has a wall thickness, as measured from an inner surface of the inner layer 22a to an outer surface of the outer layer 22c, within a range of 2-10 cm.

    [0032] Figure 3 schematically shows an embodiment of the bushing 2, or condenser core thereof, inside a consolidation chamber 30 configured for consolidating the condenser core after it having been formed by applying the layers 21 and 22. The consolidation chamber may be substantially cylindrical, e.g. having a substantially circular cross-section, and large enough to be able to enclose the condenser core. The consolidation chamber is configured to apply an elevated temperature T and an elevated pressure p within the chamber 30 to consolidate the condenser core. The elevated temperature is preferably within the range of above Tg and below Tm of the polymeric material, and the elevated pressure may e.g. be within the range of 1,0-10 bar. The consolidation chamber 30 may e.g. be configured for isostatic pressing. By means of the elevated T and P, cavities and air bubbles may be removed from the condenser core, reducing the risk of flash-overs and improving the insulation properties of the condenser core without the need for impregnation with e.g. oil or epoxy for HV applications.

    [0033] The present disclosure has mainly been described above with reference to a few embodiments. However, as is readily appreciated by a person skilled in the art, other embodiments than the ones disclosed above are equally possible within the scope of the present disclosure, as defined by the appended claims.


    Claims

    1. A method for producing an electrical power device (2) comprising an insulator, the method comprising:

    by means of additive manufacturing, applying a polymeric insulating material in the device (2), to form the insulator in said device; and

    in a subsequent consolidation step, subjecting the insulator to elevated temperature and pressure during a predetermined time period to consolidate the insulator, characterized in forming the insulator in the form of a condenser core of the electrical power device (2), wherein the method further comprises:

    by means of the additive manufacturing, applying an inner concentric layer (21a) of the condenser core, of the polymeric insulating material around and along a longitudinal through hole (23) of the device;

    applying a first (22a) of a plurality of concentric intermediate layers (22) of an electrically conducting material, on top of the inner layer (21a), around and along the longitudinal through hole; and

    by means of the additive manufacturing, applying an outer concentric layer (21c) of the condenser core, of the polymeric insulating material, on top of a second (22b) of the plurality of concentric intermediate layers (22), around and along the longitudinal through hole.


     
    2. The method of claim 1, wherein the electrically conducting intermediate layers (22) are applied by coating, preferably ink-jet printing or 3D printing, plasma deposition, physical or chemical vapour deposition, spray coating or painting, preferably with a brush, or by adhering a conducting foil, on any layer (21) of the polymeric insulating material.
     
    3. The method of any claim 1-2, wherein the condenser core is configured for an operating voltage of the device (2) of at least 30 kV, preferably within a range of 35-400 kV, 35-170 kV or 140-400 kV.
     
    4. The method of any claim 1-3, further comprising arranging the condenser core in a high-voltage bushing (2), an instrument transformer or a cable termination.
     
    5. The method of claim 4, further comprising arranging the bushing (2) through a wall of a transformer tank (4).
     
    6. The method of any claim 1-3, wherein the electric power device is a bushing (2), an instrument transformer or a cable termination.
     
    7. The method of claim 1, wherein the method comprises forming the insulator in the form of a medium voltage insulator, preferably a bushing, support insulator, bushing plate, embedded pole or monoblock insulator.
     
    8. The method of any preceding claim, wherein the additive manufacturing comprises Fused Deposition Modelling, FDM.
     
    9. The method of any preceding claim, wherein the polymeric insulating material is a thermoplastic material.
     
    10. The method of any preceding claim, wherein the additive manufacturing comprises applying the polymeric insulating material at a temperature of at least 150°C, preferably at least 200°C.
     
    11. The method of any preceding claim, wherein the polymeric insulating material has a glass transition temperature, Tg, of at least 120°C or less than 40°C.
     
    12. A condenser core produced as the insulator of the method of any preceding claim.
     
    13. A high-voltage power bushing (2) comprising the condenser core of claim 12.
     
    14. A transformer arrangement (1) comprising a transformer tank (4) encasing a transformer (3) and being filled with an electrically insulating liquid (5), and the bushing (2) of claim 13 arranged through a wall of the transformer tank.
     


    Ansprüche

    1. Verfahren zur Produktion einer elektrischen Leistungsvorrichtung (2), die einen Isolator umfasst, wobei das Verfahren umfasst:

    Aufbringen eines polymeren Isoliermaterials in die Vorrichtung (2) mittels generativer Fertigung, um den Isolator in der Vorrichtung zu bilden; und

    Aussetzen des Isolators erhöhter Temperatur und erhöhtem Druck während eines vorbestimmten Zeitraums in einem nachfolgenden Konsolidierungsschritt, um den Isolator zu konsolidieren, dadurch gekennzeichnet, dass der Isolator in Form eines Kondensatorkerns der elektrischen Leistungsvorrichtung (2) gebildet wird, wobei das Verfahren des Weiteren umfasst:

    Aufbringen einer inneren konzentrischen Schicht (21a) des Kondensatorkerns mittels der generativen Fertigung aus dem polymeren Isoliermaterial um ein längsgerichtetes Durchgangsloch (23) der Vorrichtung herum und daran entlang;

    Aufbringen einer ersten (22a) von einer Vielzahl konzentrischer Zwischenschichten (22) eines elektrisch leitfähigen Materials auf die Innenschicht (21a) um das längsgerichtete Durchgangsloch herum und daran entlang; und

    Aufbringen einer äußeren konzentrischen Schicht (21c) des Kondensatorkerns mittels der generativen Fertigung aus dem polymeren Isoliermaterial auf die zweite (22b) der Vielzahl konzentrischer Zwischenschichten (22) um das längsgerichtete Durchgangsloch herum und daran entlang.


     
    2. Verfahren nach Anspruch 1, wobei die elektrisch leitfähigen Zwischenschichten (22) durch Beschichten, vorzugsweise Tintenstrahldruck oder 3D-Druck, Plasmaabscheidung, physikalische oder chemische Gasphasenabscheidung, Sprühbeschichten oder Bemalen, vorzugsweise mit einem Pinsel, oder durch Anhaften einer leitfähigen Folie auf eine beliebige Schicht (21) des polymeren Isoliermaterials aufgebracht werden.
     
    3. Verfahren nach einem der Ansprüche 1 bis 2, wobei der Kondensatorkern für eine Betriebsspannung der Vorrichtung (2) von mindestens 30 kV, vorzugsweise in einem Bereich von 35 bis 400 kV, 35 bis 170 kV oder 140 bis 400 kV ausgelegt ist.
     
    4. Verfahren nach einem der Ansprüche 1 bis 3, des Weiteren umfassend Anordnen des Kondensatorkerns in einer Hochspannungsdurchführung (2), einem Instrumententransformator oder einem Kabelabschluss.
     
    5. Verfahren nach Anspruch 4, des Weiteren umfassend Anordnen der Durchführung (2) durch eine Wand eines Transformatorkessels (4) hindurch.
     
    6. Verfahren nach einem der Ansprüche 1 bis 3, wobei die elektrische Leistungsvorrichtung eine Durchführung (2), ein Instrumententransformator oder ein Kabelabschluss ist.
     
    7. Verfahren nach Anspruch 1, wobei das Verfahren Bilden des Isolators in Form eines Mittelspannungsisolators umfasst, vorzugsweise einer Durchführung, eines Stützisolators, einer Durchführungsplatte, eines eingebetteten Pol- oder Monoblockisolators.
     
    8. Verfahren nach einem der vorhergehenden Ansprüche, wobei die generative Fertigung Fused Deposition Modelling (Schmelzschichtung; FDM) umfasst.
     
    9. Verfahren nach einem der vorhergehenden Ansprüche, wobei das polymere Isoliermaterial ein thermoplastisches Material ist.
     
    10. Verfahren nach einem der vorhergehenden Ansprüche, wobei die generative Fertigung Aufbringen des polymeren Isoliermaterials bei einer Temperatur von mindestens 150 °C, vorzugsweise mindestens 200 °C umfasst.
     
    11. Verfahren nach einem der vorhergehenden Ansprüche, wobei das polymere Isoliermaterial eine Glasübergangstemperatur, Tg, von mindestens 120 °C oder weniger als 40 °C aufweist.
     
    12. Kondensatorkern, der als Isolator des Verfahrens nach einem der vorhergehenden Ansprüche produziert worden ist.
     
    13. Hochspannungsleistungsdurchführung (2), umfassend den Kondensatorkern nach Anspruch 12.
     
    14. Transformatoranordnung (1), umfassend einen Transformatorkessel (4), der einen Transformator (3) umschließt und mit einer elektrisch isolierenden Flüssigkeit (5) gefüllt ist, und wobei die Durchführung (2) nach Anspruch 13 durch eine Wand des Transformatorkessels hindurch angeordnet ist.
     


    Revendications

    1. Procédé de production d'un dispositif électrique (2) comprenant un isolateur, le procédé comprenant :

    au moyen d'une fabrication additive, l'application d'un matériau isolant polymère dans le dispositif (2), pour former l'isolateur dans ledit dispositif ; et

    dans une étape de consolidation ultérieure, la soumission de l'isolateur à une température et une pression élevées pendant un laps de temps prédéterminé pour consolider l'isolateur, caractérisé par la formation de l'isolateur sous la forme d'un noyau de condensateur du dispositif électrique (2), le procédé comprenant en outre :

    au moyen de la fabrication additive, l'application d'une couche concentrique intérieure (21a) du noyau de condensateur, du matériau isolant polymère, autour et le long d'un trou longitudinal débouchant (23) du dispositif ;

    l'application d'une première (22a) d'une pluralité de couches concentriques intermédiaires (22) d'un matériau électriquement conducteur, au-dessus de la couche intérieure (21a), autour et le long du trou longitudinal débouchant ; et

    au moyen de la fabrication additive, l'application d'une couche concentrique extérieure (21c) du noyau de condensateur, du matériau isolant polymère, au-dessus d'une deuxième (22b) de la pluralité de couches concentriques intermédiaires (22), autour et le long du trou longitudinal débouchant.


     
    2. Procédé de la revendication 1, dans lequel les couches électriquement conductrices intermédiaires (22) sont appliquées par dépôt, de préférence impression par jet d'encre ou impression 3D, dépôt par plasma, dépôt physique ou chimique en phase vapeur, pulvérisation ou peinture, de préférence avec un pinceau, ou par adhérence d'une feuille conductrice, sur n'importe quelle couche (21) du matériau isolant polymère.
     
    3. Procédé de l'une quelconque des revendications 1 et 2, dans lequel le noyau de condensateur est configuré pour une tension de fonctionnement du dispositif (2) d'au moins 30 kV, de préférence dans une gamme de 35-400 kV, 35-170 kV ou 140-400 kV.
     
    4. Procédé de l'une quelconque des revendications 1 à 3, comprenant en outre la mise en place du noyau de condensateur dans une traversée haute tension (2), un transformateur de mesure ou une terminaison de câble.
     
    5. Procédé de la revendication 4, comprenant en outre la mise en place de la traversée (2) à travers une paroi d'une cuve de transformateur (4).
     
    6. Procédé de l'une quelconque des revendications 1 à 3, dans lequel le dispositif électrique est une traversée (2), un transformateur de mesure ou une terminaison de câble.
     
    7. Procédé de la revendication 1, le procédé comprenant la formation de l'isolateur sous la forme d'un isolateur moyenne tension, de préférence une traversée, un isolateur de support, une plaque de traversée, un isolateur à pôles intégrés ou monobloc.
     
    8. Procédé d'une quelconque revendication précédente, dans lequel la fabrication additive comprend une modélisation par dépôt de fil en fusion, FDM.
     
    9. Procédé d'une quelconque revendication précédente, dans lequel le matériau isolant polymère est un matériau thermoplastique.
     
    10. Procédé d'une quelconque revendication précédente, dans lequel la fabrication additive comprend l'application du matériau isolant polymère à une température d'au moins 150 °C, de préférence au moins 200 °C.
     
    11. Procédé d'une quelconque revendication précédente, dans lequel le matériau isolant polymère a une température de transition vitreuse, Tg, d'au moins 120 °C ou moins de 40 °C.
     
    12. Noyau de condensateur produit comme l'isolateur du procédé d'une quelconque revendication précédente.
     
    13. Traversée électrique haute tension (2) comprenant le noyau de condensateur de la revendication 12.
     
    14. Agencement de transformateur (1) comprenant une cuve de transformateur (4) renfermant un transformateur (3) et étant remplie avec un liquide électriquement isolant (5), et la traversée (2) de la revendication 13 disposée à travers une paroi de la cuve de transformateur.
     




    Drawing











    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description