(19)
(11)EP 3 361 587 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
25.11.2020 Bulletin 2020/48

(21)Application number: 17155519.6

(22)Date of filing:  10.02.2017
(51)International Patent Classification (IPC): 
H02H 1/00(2006.01)
H02H 7/26(2006.01)
G01R 31/08(2020.01)
H02H 5/10(2006.01)
G01R 31/00(2006.01)
G01R 31/12(2020.01)

(54)

PROTECTION AND FAULT DETECTION FOR HIGH VOLTAGE POWER LINES ON AIRCRAFT

SCHUTZ UND FEHLERERKENNUNG FÜR HOCHSPANNUNGSKABEL IN EINEM FLUGZEUG

PROTECTION ET DÉTECTION DE DÉFAUT POUR DES CÂBLES DE DISTRIBUTION HAUTE TENSION DANS UN AVION


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(43)Date of publication of application:
15.08.2018 Bulletin 2018/33

(73)Proprietors:
  • Airbus Operations GmbH
    21129 Hamburg (DE)
  • Airbus Defence and Space GmbH
    82024 Taufkirchen (DE)

(72)Inventors:
  • Schult, Jens
    21129 Hamburg (DE)
  • Wangemann, Jörg
    39118 Magdeburg (DE)


(56)References cited: : 
EP-A1- 1 564 492
WO-A1-2015/144199
EP-A2- 0 506 319
US-A1- 2005 134 837
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    Field of the invention



    [0001] The invention relates to a high voltage conductor for transmitting high voltage, a propulsion system for an aircraft with such a high voltage conductor, and to an aircraft comprising such a propulsion system.

    Technical Background



    [0002] Typically, commercial aircraft such as business jets or passenger aircraft are driven by turbines or engines which require some kind of combustible fuel. In recent times, efforts have been made to provide electrically powered engines and to use such engines in aircraft.

    [0003] However, in future aircraft generations, electrical propulsion may play a major role. In order to transmit the required amount of electrical power, voltage levels far beyond today's voltage levels may be required. For this purpose, specific conductors or wires may be required.

    [0004] DE 10 2011 105 880 A1 and US 9,162,770 B2 generally describe an electric drive device for an aircraft with a battery for storing electrical energy and an electric motor for driving a propeller.

    [0005] EP 1564492 A1 describes system for detecting spark in an igniter for a gas turbine engine is provided. An igniter generates a plasma, or spark, somewhat similar to an automotive spark plug. In the invention, an inductive pick-up is positioned adjacent the igniter, to detect current pulses in the igniter, to thereby infer the presence of spark. A detection system detects the spark, and informs the pilot of the aircraft of the detected spark.

    [0006] EP 0506319 A2 which is regarded as closest prior art, describes an arc detection method and apparatus which are provided for an electric circuit having an electrified conductor (46) connecting a voltage source (26) to a load (30). The arc detector includes a field sensor (62) sensing an electromagnetic field established about the conductor by the occurrence of an electrical arc in the electric circuit, and generating a field responsive signal in response thereto.

    [0007] US 2005 0134837 A1 describes a cable, system and method for detecting partial discharges or arcing in wiring or cables via fiber optics are provided. The cable for detecting partial discharges includes a conductor for carrying electrical signals; at least one fluorescent optical fiber for detecting light generated by a partial discharge; and a first transparent layer surrounding the conductor for supporting the at least one fluorescent optical fiber generally parallel to the conductor.

    [0008] WO 2015 144199 A1 describes a method for detecting an electrical current longitudinal variation in a power transmission system comprising a power cable. Electric losses and their location along the cable length can be detected. Current variation in a grounded metallic layer of a power cable is measured from Faraday rotation of polarised light travelling in a single-mode optical fibre wound in a radially external position with respect to the grounded metallic layer.

    Summary of the invention



    [0009] It may be an object of the invention to provide early detection of degradation in high voltage conductors, in particular for high voltage conductors used in a propulsion system of an aircraft.

    [0010] This object is solved by the subject matter of the independent claims. Further developments of the invention can be derived from the dependent claims and from the following description.

    [0011] According to an aspect of the invention, a high voltage conductor for transmitting high voltage is provided. The high voltage conductor comprises at least one power wire, a fault detection unit, and a monitoring unit. The power wire is configured for energy transmission. The fault detection unit is configured for detecting an electromagnetic field emanated by the power wire. The monitoring unit is configured for detection of degradation in an isolation of the high voltage conductor. Furthermore, the monitoring unit is connected to a first end of the fault detection unit and to a second end of to the fault detection unit and is configured to receive an electrical signal induced in the fault detection unit, which electrical signal is induced as a result of a degradation of the isolation of the high voltage conductor. The monitoring unit is configured to generate a periodically repeating signal and to supply this periodically repeating signal to the first end and to receive the periodically repeating signal at the second end and to compare the supplied periodically repeating signal with the received periodically repeating signal, and to generate an alarm signal if the received periodically repeating signal does not match the supplied periodically repeating signal.

    [0012] The high voltage conductor described herein proposes a protection and fault detection system for high voltage supply lines on aircraft enabling to introduce far higher voltage levels and, therefore, enabling transmission and usage of high power levels required for electrical propulsion. For example, the voltage levels used for electrical propulsion may be 1.000 Volt or even higher, for example up to several kilovolts.

    [0013] It has been recognized that electrical arcing and sparking may influence and/or may result in constraints relating to the installation of power lines for a propulsion system in aircraft. The high voltage conductor and the propulsion system described herein propose using an isolation condition monitoring system which may detect failures or degradation of the isolation of the high voltage conductor at an early stage. The degradation may be detected even if no fault current exists. Therefore, fault currents into metallic and other conductive structural elements of the aircraft may be avoided.

    [0014] For example, the power wire is an electrically conducting wire comprising a conductive core surrounded by an isolating mantle. The conductive core may be a lengthy metallic element made of, for example, copper, aluminum, titan, or an alloy comprising one or more of these materials or other materials suitable for being used for transmitting electrical energy in aircraft. The isolating mantle may be made of plastics, for example, and may be arranged to electrically insulate the conductive core from its surroundings.

    [0015] The fault detection unit may also be referred to as an electromagnetic antenna which is particularly embedded inside the high voltage conductor and close to the power wire, so that electromagnetic fields emanating from the power wire induce an electric signal into the fault detection unit, which electric signal can be detected by the monitoring unit and which electric signal may be indicative of a degradation of the isolation of the high voltage conductor.

    [0016] It is noted that an electric signal may be induced into the fault detection unit even if the isolation of the high voltage conductor is in a proper condition. However, the monitoring unit may be configured such that it recognizes and distinguishes if the isolation of the high voltage conductor is degraded based on a characteristic of the electric signal, wherein the characteristic of the electric signal may especially comprise an amplitude or a voltage, a current, and/or a signal pattern of the electric signal.

    [0017] According to an embodiment of the invention, the fault detection unit comprises an electrically conductive detector extending in a longitudinal direction of the high voltage conductor.

    [0018] The electrically conductive detector may particularly be the electromagnetic antenna. In one embodiment, the electrically conductive detector is a metallic element, for example, a wire.

    [0019] According to a further embodiment of the invention, the high voltage conductor comprises an electrical shielding surrounding the power wire and the fault detection unit.

    [0020] The electrical shielding may be a mesh wire circumferentially surrounding the power wire and the fault detection unit. The electrical shielding is arranged to conduct a possibly occurring fault current to a predetermined connection point. For example, the electrical shielding may be connected to ground.

    [0021] According to a further embodiment of the invention, the monitoring unit is connected to the electrical shielding and is configured to detect a fault current flowing through the electrical shielding as a result of a degradation of the isolation of the high voltage conductor.

    [0022] In other words, the monitoring unit is configured to control or observe the electrical shielding and to identify electrical current or an electric potential being applied to the electrical shielding. In case an electrical current or an electric potential is detected at the electrical shielding, it may be concluded that the isolation of the high voltage conductor is degraded or at least partially in an improper condition which allows for a fault current to flow from the power wire to the electrical shielding.

    [0023] According to a further embodiment of the invention, the monitoring unit is configured to receive and store at least one signal pattern characteristic for an electrical signal on the fault detection unit as a result of an electric discharge of the power wire, wherein the monitoring unit is further configured to compare an electrical signal received from the fault detection unit with the least one signal pattern.

    [0024] For example, typical signal patterns resulting from degraded isolations may be captured and may be provided to the monitoring unit, so that similar or identical signal patterns received from the fault detection unit may be identified by comparing the received signal patterns with the known signal patterns as to identify degradation of the isolation. For the purpose of receiving and storing the known signal patterns, the monitoring unit may comprise a memory. The memory may particularly be a persistent memory.

    [0025] According to a further embodiment of the invention, the monitoring unit is configured to generate an alarm signal if the received electrical signal matches at least one signal pattern of the at least one stored signal pattern.

    [0026] The alarm signal may be output by the monitoring unit and may the transmitted via a signaling line to a display or to another means for displaying information to a human operator. The alarm signal may comprise information about the signal pattern received from the fault detection unit and may also comprise additional information about the degradation of the isolation, in particular, if the latter information can be derived from a known signal pattern existing in the memory of the monitoring unit.

    [0027] According to the invention, the monitoring unit is connected to a first end of the fault detection unit and to a second end of the fault detection unit.

    [0028] In other words, the monitoring unit is connected to both ends of the fault detection unit, so that signals received at both ends can be compared to each other. This comparison of signals received at both ends of the fault detection unit may contribute to determining a position of the degraded isolation.

    [0029] According to the invention, the monitoring unit is configured to generate a periodically repeating signal and to supply this periodically repeating signal to the first end and to receive the periodically repeating signal at the second end and to compare the supplied periodically repeating signal with the received periodically repeating signal, and to generate an alarm signal if the received periodically repeating signal does not match the supplied periodically repeating signal.

    [0030] In this embodiment, the fault detection unit is used to transmit the periodically repeating signal from one end to the other. By comparing the output signal with the input signal, the transmission characteristics of the fault detection unit may be determined and conclusions may be drawn from the transmission characteristics to the condition of the high voltage conductor. For example, a mechanical damage to the high voltage conductor may also damage the fault detection unit and may, thus, have an impact on the transmission characteristics.

    [0031] It is noted that the monitoring unit may also receive and store typical transmission characteristics for several different types of mechanical damage to the high voltage conductor, so that the type of damage may be identified based on the transmission characteristics of the fault detection unit.

    [0032] According to a further embodiment of the invention, the fault detection unit further comprises an optically conductive detector. The optically conductive detector is connected to the monitoring unit and is configured to receive optical signals resulting from arcing caused by a degradation of the isolation of the high voltage conductor and the optically conductive detector is further configured to transmit the received optical signals to the monitoring unit.

    [0033] In other words, the monitoring unit is configured to receive electrical signal and optical signals and to analyze these signals in order to determine a condition of the fault detection unit and, hence, the condition or state of the high voltage conductor, in particular the condition or state of an isolation of the high voltage conductor.

    [0034] It is noted that the optically conductive detector may also be connected to the monitoring unit at both ends of the fault detection unit, such that the information provided with reference to the electrically conductive detector apply in a similar manner to the optically conductive detector.

    [0035] According to a further embodiment of the invention, the high voltage conductor further comprises an isolation material surrounding at least the power wire and the fault detection unit such that the power wire and the fault detection unit are spaced apart from each other.

    [0036] The isolation material is positioned inside the electrical shielding of the high voltage conductor. The power wire and the fault detection unit, i.e., the electrically conductive detector and the optically conductive detector, are embedded within the isolation material and extend in a longitudinal direction of the high voltage conductor. The isolation material may be provided to ensure a high voltage insulation of the high voltage conductor. The isolation material may be provided in addition to an isolating layer of the power wire. However, the power wire may not comprise an isolating layer, such that the power wire is only a conductive core which is embedded within the isolation material.

    [0037] According to a further embodiment of the invention, the isolation material is made of an optically translucent material.

    [0038] Thus, arcing or sparking emanating from the power wire cause an optical signal which is fed into the optically conductive detector through the optically translucent isolation material. Typically, arcing and/or sparking occur in case of degraded isolation. Hence, degradation of the isolation of the high voltage conductor can be recognized at an early stage.

    [0039] According to a further embodiment of the invention, the high voltage conductor further comprises an outer protective coating surrounding the power wire and the fault detection unit.

    [0040] In particular, the outer protective coating encloses the electrical shielding and all other components of the high voltage conductor. In particular, the outer protective coating is adapted to protect the high voltage conductor from mechanical damage.

    [0041] It is noted that degradation of the isolation of the high voltage conductor may result from an external impact (mechanical damage, for example) or from component aging. Anyway, the fault detection unit and the monitoring unit of the high voltage conductor described herein are configured to detect undesired operation and behavior of the high voltage conductor at an early stage when the degradation of the isolation begins.

    [0042] According to a further aspect of the invention, a propulsion system for an aircraft is provided. The propulsion system comprises an electrically driven engine, an energy source, and a high voltage conductor as described above and hereinafter. The energy source is configured to provide electrical energy to the electrically driven engine. The high voltage conductor is connected to the energy source and to the electrically driven engine so as to provide the engine with electrical energy.

    [0043] It is noted, that the energy source may comprise multiple and/or different energy providing units such as, for example, a generator or batteries. However, the propulsion system may comprise several energy sources as to meet redundancy requirements. Furthermore, the propulsion system may comprise multiple engines in order to provide a required propulsion force.

    [0044] According to an embodiment of the invention, the monitoring unit is configured to generate a warning signal and/or a maintenance signal if the monitoring unit detects a degradation of the isolation of the high voltage conductor and to provide these signals to an operator.

    [0045] Thus, an operator is informed that maintenance of a high voltage conductor or at least a more detailed verification of the condition of the high voltage conductor may be required.

    [0046] According to a further aspect of the invention, an aircraft is provided, comprising a propulsion system as described above and hereinafter.

    Brief description of the drawings



    [0047] The present invention will hereinafter be described in conjunction with the following drawing figures, wherein like numerals denote like elements, and wherein:
    Fig. 1
    illustrates a schematic view of a conventional electric conductor;
    Fig. 2
    illustrates a schematic view of a high voltage conductor according to an exemplary embodiment of the invention;
    Fig. 3
    illustrates a schematic view of a high voltage conductor according to another exemplary embodiment of the invention;
    Fig. 4
    illustrates a schematic view of a propulsion system according to another exemplary embodiment of the invention;
    Fig. 5
    illustrates a schematic view of an aircraft according to an exemplary embodiment of the invention.

    Detailed description of exemplary embodiments



    [0048] The following detailed description is merely exemplary in nature and is not intended to limit the invention or the application and uses of the invention. Furthermore, there is no intention to be bound by any theory presented in the preceding background or the following detailed description.

    [0049] The representations and illustrations in the drawings are schematic and not to scale. Like numerals denote like elements.

    [0050] A greater understanding of the high voltage conductor and the propulsion system as well as the aircraft described above may be obtained through a review of the illustrations accompanying this application together with a review of the detailed description that follows.

    [0051] The invention may enable the operation of very high voltage cables or conductors due to a permanent supervision and protection system. This system may allow the very early detection of degradation in the isolation barrier of the cable (high voltage conductor). Therefore, a flight can be completed and pre-emptive maintenance can be applied once a very early degradation of the isolation barrier has been detected. The invention provides proper means to detect an arc fault and enables suitable actions as switching off the power system. For example, the monitoring unit may be configured to open one or more switches to disconnect the faulty high voltage conductor from energy supply.

    [0052] The invention relates to a high voltage conductor (also referred to as cable) surrounded by isolating material. On the outside of such a cable, a metallic overbraid or shield is applied. Inside the isolating material, there will be corona detection system embedded. Corona occurs as a function of voltage and pressure. The higher the voltage and/or the lower the atmospheric pressure (up to a maximum well above 15.240 m (50.000ft) FL), the higher the corona effect will be. Corona is not considered an isolation failure but may lead over extended periods to a breakdown of the isolation capability. Corona occurs first in voids or cracks of the isolator. Therefore, the existence of corona may be utilized as an early indication of a change in isolation capability or isolation degradation.

    [0053] Generally, this detection may base on one or both following two principles:

    a) Optical detection



    [0054] Corona occurs along with optical phenomena. If the isolating material is translucent, an optical fiber can pick up any effects along the cable. If the design was such that the isolator does not show any corona effects in healthy condition, any light effect will be picked up in the cable.

    b) Electromagnetic detection



    [0055] Today, in test chambers the electromagnetic footprint of a corona discharge can be precisely determined. This technology is used for verification of a corona proof design on high voltage operated flight equipment. If the pick up antenna (the electrically conductive detector of the fault detection unit) would be embedded inside the conductor, a change in the electromagnetically footprint can be detected, and the existence of corona can be determined.

    [0056] Additionally, the metallic overbraid (e.g., mesh wire) along the cable will allow for a constant fault current supervision between the electrical conductor (power wire) and the metallic shell. This may prevent release of electrical energy in case of a sudden breakdown of the isolation capability where the corona detection will not pick up any slow degradation (e.g. external mechanical damage).

    [0057] The combination of an inflight corona detection system with a permanent isolation supervision system will allow to operate and install very high voltage power lines in the restrictions of an aircraft envelope. The detection of very early changes in the isolator enables to complete the flight safely and to perform repair and maintenance before a propulsion system was lost or before any external damage occurred.

    [0058] As an option, an isolated core signal wire or optical fiber can be used to detect break of the power wire. A health signal may be continuously transmitted through the core signal wire from one to the other terminal and back. In case the power wire breaks, it is assumed that the signal wire will break as well, i.e. the health signal transmission is disturbed, which can be detected by an appropriate signal processing circuit of the monitoring unit. The signal wire (the fault detection unit) can be also used to determine the voltage drop through the power wire, for example to detect an overload condition.

    [0059] Fig. 1 shows a schematic representation of a conventional electric conductor. It is noted that similar numerals are used in Fig. 1 and in the Figs. 2 to 5 when referring to the components of the conductor.

    [0060] The high voltage conductor 100 comprises a first power wire 140 and a second power wire 150. Each of the power wires comprises an electrically conductive core and optionally an isolating layer 142, 152. The power wires 140, 150 are embedded within an isolation material 130. The optional isolating layers 142, 152 and the isolation material 130 provide electrical insulation of the power wires. Furthermore, the high voltage conductor 100 comprises an electrical shielding 120 which surrounds the isolation material 130 together with the power wires 140, 150. The electrical shielding 120 may be a mesh wire extending along the entire length of the high voltage conductor 100. The electrical shielding 120 is arranged to protect the surroundings of the high voltage conductor from fault currents resulting from a degraded isolation material 130 or any other faults. For this purpose, the electrical shielding 120 may be connected to ground. Outside of the electrical shielding 120, an outer protective coating 110 is provided to protect the high voltage conductor 100 from mechanical damage.

    [0061] It is noted, that the high voltage conductor 100 may comprise additional layers or that one or more of the presented layers are functionally and/or structurally separated into more than one sub-layers. For example, the electrical shielding 120 may comprise two sub-layers which are made of different materials or which are differently structured. A similar consideration does apply to the outer protective coating 110, for example.

    [0062] Fig. 2 illustrates a high voltage conductor 100 similar to that one illustrated in Fig. 1. However, the high voltage conductor 100 illustrated in Fig. 2 further comprises a fault detection unit 160 which is also embedded into the isolation material 130 and which extends substantially parallel to the power wires 140, 150 in the longitudinal direction of the high voltage conductor 100. As can be seen in Fig. 2, the fault detection unit 160 is spaced apart from each one of the power wires.

    [0063] The fault detection unit 160 may be an electrically conductive wire or any other element into which an electric current can be induced by electromagnetic fields. The power wires 140, 150 emanate electromagnetic fields if they conduct an electric current. These electromagnetic fields may vary if the isolating layers 142, 152 and/or the isolation material 130 experience degradation as a result of mechanical damage or aging. Hence, the electric current induced into the fault detection unit 160 also varies if the electromagnetic fields vary. Therefore, conclusions about degradation of the isolating components may be drawn as a result or based on the electric signal transmitted by the fault detection unit. It is noted, that the electromagnetic fields emanated by the power wires 140, 150 may vary in an alternating or irregular manner (temporal peaks of the intensity, for example) or may also be influenced such that the intensity changes permanently.

    [0064] Fig. 3 illustrates the high voltage conductor 100 of Fig. 2, wherein additionally a monitoring unit 170 is schematically shown. Furthermore, the high voltage conductor 100 comprises an optically conductive detector 164 in addition to the electrically conductive detector 162. The optically conductive detector 164 extends substantially parallel to the electrically conductive detector 162 and the power wires, of which only one is shown.

    [0065] The isolation material 130 is made of an optically translucent material, such that optical signals resulting from arcing and/or sparking between the power wire 140 and the electrical shielding 120 or between two power wires cause an optical signal be introduced into the optically conductive detector 164.

    [0066] The monitoring unit 170 is connected to the electrically conductive detector 162 and to the optically conductive detector 164. As can be seen in Fig. 3, the monitoring unit 170 is connected to both ends of the detectors 162, 164. These connections are illustrated on the right by continuous lines and on the left by dashed lines. Thus, electrical and optical signals transmitted by the fault detection unit to both ends of the high voltage conductor can be detected by the monitoring unit 170. For detection and processing of the electrical and optical signals transmitted by the detectors 162, 164, the principles depicted above may apply. For the sake of brevity, these details are not repeated here and reference is made to the respective sections above.

    [0067] It is noted that the electrically conductive detector 162 and the optically conductive detector 164 of the fault detection unit 160 may not be used for transmission of energy in the high voltage conductor, but exclusively for transmitting signals facilitated for detection of degradation of the isolation (isolation material 130 and isolating layers 142, 152) of the high voltage conductor 100.

    [0068] Fig. 4 illustrates a propulsion system 200 for an aircraft, wherein the propulsion system comprises a first energy source 205 and a second energy source 206, a high voltage conductor 100 illustrated in the foregoing drawings, and an engine 210. The energy source 205 may be a generator and the energy source 206 may be a battery comprising one or more battery modules. The engine 210 is an electrically driven motor assigned and connected to a propeller for generating a propulsion force for driving an aircraft.

    [0069] As can be seen in this illustration, the energy sources are connected to the engine by a high voltage conductor 100, wherein each one of the energy sources can be disconnected from the high voltage conductor by a switch. Typically, an energy source is disconnected from the high voltage conductor and, consequently, from the engine, in case only one of the energy sources is needed (for example, if the generator 205 works appropriately, the battery 206 may not be needed) or in case one of the energy sources fails. The reverse also applies: in case additional electrical power is needed, both energy sources may be connected to the high voltage conductor 100.

    [0070] Fig. 4 additionally illustrates the monitoring unit 170 comprising several functional modules. The monitoring unit 170 comprises a control monitoring modules 172, a flight warning modules 174, and a maintenance modules 176. These functional modules of the monitoring unit are configured to verify and indicate the status and condition of the high voltage conductor 100, in particular of the isolation of the high voltage conductor. The functional modules may generate and output an alarm signal if the signals received from the fault detection unit 160 exceed a predetermined threshold of a signal characteristic or parameter like signal amplitude and/or signal pattern or if the signals received from the fault detection unit 160 are similar or identical to known signal patterns.

    [0071] Fig. 5 illustrates an aircraft 300 comprising a propulsion system 200. The energy sources 205, 206 may be arranged within the fuselage or the wings of the aircraft and the engine as well as the propeller (not shown) may particularly be arranged at the wings of the aircraft. The high voltage conductor 100 interconnects the energy sources with the engine or engines as to provide the electric power for driving the engines. The high voltage conductor may have a length of few meters up to several tens of meters or even hundreds of meters. The monitoring unit 170 is arranged such that it can verify the condition of the high voltage conductor and that generated alarm signals are provided to an operator. For example, a warning lamp may light up as to indicate an undesired condition of the high voltage conductor. This warning lamp may be arranged in the cockpit of the aircraft or somewhere else where it is noticed by a crew member or an operator. Alternatively or additionally, the alarm signal may be transmitted to a ground control station, where initial maintenance steps of the aircraft can be initiated.

    [0072] While at least one exemplary embodiment has been presented in the foregoing detailed description of the invention, it should be appreciated that a vast number of variations exist. It should also be appreciated that the exemplary embodiment or exemplary embodiments are only examples, and are not intended to limit the scope, applicability, or configuration of the invention in any way. Rather, the foregoing detailed description will provide those skilled in the art with a convenient road map for implementing an exemplary embodiment of the invention. It being understood that various changes may be made in the function and arrangement of elements described in an exemplary embodiment without departing from the scope of the invention as set forth in the appended claims.

    [0073] Additionally, it is noted that "comprising" or "including" does not exclude any other elements or steps and "a" or "an" does not exclude a multitude or plurality. It is further noted that features or steps which are described with reference to one of the above exemplary embodiments may also be used in combination with other features or steps of other exemplary embodiments described above. Reference signs in the claims are not to be construed as a limitation.

    List of reference signs



    [0074] 
    100
    high voltage conductor
    110
    outer protective coating
    120
    electrical shielding
    130
    isolation material
    140
    first power wire
    142
    isolating layer
    150
    second power wire
    152
    isolating layer
    160
    fault detection unit
    162
    electrically conductive detector
    164
    optically conductive detector
    170
    monitoring unit
    172
    control monitoring module
    174
    flight warning module
    176
    maintenance module
    200
    propulsion system
    205
    first energy source
    206
    second energy source
    210
    engine
    300
    aircraft



    Claims

    1. A high voltage conductor (100) for transmitting high voltage, comprising:

    a power wire (140) configured for energy transmission;

    a fault detection unit (160) configured for detecting an electromagnetic field emanated by the power wire;

    a monitoring unit (170) configured for detection of degradation in an isolation of the high voltage conductor;

    wherein the monitoring unit is connected to the fault detection unit and is configured to receive an electrical signal induced in the fault detection unit, which electrical signal is induced as a result of a degradation of the isolation of the high voltage conductor,

    characterized in that the monitoring unit (70) is connected to a first end of the fault detection (160) unit and to a second end of the fault detection unit (160),

    wherein the monitoring unit (160) is configured to generate a periodically repeating signal and to supply this periodically repeating signal to the first end and to receive the periodically repeating signal at the second end and to compare the supplied periodically repeating signal with the received periodically repeating signal, and to generate an alarm signal if the received periodically repeating signal does not match the supplied periodically repeating signal.


     
    2. The high voltage conductor (100) of claim 1,
    wherein the fault detection unit comprises an electrically conductive detector (162) extending in a longitudinal direction of the high voltage conductor.
     
    3. The high voltage conductor (100) of claim 1 or 2, further comprising:
    an electrical shielding (120) surrounding the power wire and the fault detection unit.
     
    4. The high voltage conductor (100) of claim 3,
    wherein the monitoring unit is connected to the electrical shielding and is configured to detect a fault current flowing through the electrical shielding as a result of a degradation of the isolation of the high voltage conductor.
     
    5. The high voltage conductor (100) of any one of the preceding claims,
    wherein the monitoring unit is configured to receive and store at least one signal pattern characteristic for an electrical signal on the fault detection unit as a result of an electric discharge of the power wire;
    wherein the monitoring unit is configured to compare an electrical signal received from the fault detection unit with the least one signal pattern.
     
    6. The high voltage conductor (100) of claim 5,
    wherein the monitoring unit is configured to generate the alarm signal if the received electrical signal matches at least one signal pattern of the at least one stored signal pattern.
     
    7. The high voltage conductor (100) of any one of the preceding claims,
    wherein the fault detection unit further comprises an optically conductive detector (164);
    wherein the optically conductive detector is connected to the monitoring unit; wherein the optically conductive detector is configured to receive optical signals resulting from arcing caused by a degradation of the isolation of the high voltage conductor and wherein the optically conductive detector is configured to transmit the received optical signals to the monitoring unit.
     
    8. The high voltage conductor (100) of any one of the preceding claims, further comprising:
    an isolation material (130) surrounding at least the power wire and the fault detection unit such that the power wire and the fault detection unit are spaced apart from each other.
     
    9. The high voltage conductor (100) of claim 8,
    wherein the isolation material is made of an optically translucent material.
     
    10. The high voltage conductor (100) of any one of the preceding claims, further comprising:
    an outer protective coating (110) surrounding the power wire and the fault detection unit.
     
    11. A propulsion system (200) for an aircraft (300), the propulsion system comprising:

    an electrically driven engine (210);

    an energy source (205, 206), configured to provide electrical energy to the electrically driven engine;

    a high voltage conductor (100) according to any one of the preceding claims;

    wherein the high voltage conductor is connected to the energy source and to the electrically driven engine so as to provide the engine with electrical energy.


     
    12. The propulsion system (200) of claim 11,
    wherein the monitoring unit is configured to generate a warning signal and/or a maintenance signal if the monitoring unit detects a degradation of the isolation of the high voltage conductor and to provide these signals to an operator.
     
    13. An aircraft (300) comprising a propulsion system (200) according to claim 11 or 12.
     


    Ansprüche

    1. Hochspannungsleiter (100) zur Übertragung von Hochspannung, umfassend:

    einen Stromleiter (140), der für die Energieübertragung konfiguriert ist;

    eine Fehlererkennungseinheit (160), die zum Erkennen eines elektromagnetischen Feldes konfiguriert ist, das von der Stromleitung ausgeht;

    eine Überwachungseinheit (170), die zur Erfassung einer Verschlechterung in einer Isolation des Hochspannungsleiters konfiguriert ist;

    wobei die Überwachungseinheit mit der Fehlererfassungseinheit verbunden ist und konfiguriert ist, um ein in der Fehlererfassungseinheit induziertes elektrisches Signal zu empfangen, wobei das elektrische Signal als Ergebnis einer Verschlechterung der Isolation des Hochspannungsleiters induziert wird,

    dadurch gekennzeichnet, dass die Überwachungseinheit (70) mit einem ersten Ende der Fehlererkennungseinheit (160) und mit einem zweiten Ende der Fehlererkennungseinheit (160) verbunden ist,
    wobei die Überwachungseinheit (160) eingerichtet ist, um ein periodisch sich wiederholendes Signal zu erzeugen und dieses periodisch sich wiederholende Signal an das erste Ende zu liefern und um das periodisch sich wiederholende Signal am zweiten Ende zu empfangen und das gelieferte periodisch sich wiederholende Signal mit dem empfangenen periodisch sich wiederholenden Signal zu vergleichen und um ein Alarmsignal zu erzeugen, wenn das empfangene periodisch sich wiederholende Signal nicht mit dem empfangenen periodisch sich wiederholenden Signal übereinstimmt.
     
    2. Hochspannungsleiter (100) nach Anspruch 1,
    wobei die Fehlererkennungseinheit einen elektrisch leitenden Detektor (162) aufweist, der sich in einer Längsrichtung des Hochspannungsleiters erstreckt.
     
    3. Hochspannungsleiter (100) nach Anspruch 1 oder 2, weiter umfassend:
    eine elektrische Abschirmung (120), die den Leistungsdraht und die Fehlererkennungseinheit umgibt.
     
    4. Hochspannungsleiter (100) nach Anspruch 3,
    wobei die Überwachungseinheit mit der elektrischen Abschirmung verbunden und so konfiguriert ist, dass sie einen Fehlerstrom erkennt, der durch die elektrische Abschirmung als Folge einer Verschlechterung der Isolation des Hochspannungsleiters fließt.
     
    5. Hochspannungsleiter (100) nach einem der vorstehenden Ansprüche,
    wobei die Überwachungseinheit so konfiguriert ist, dass sie mindestens ein Signalmuster empfängt und speichert, das für ein elektrisches Signal auf der Fehlererkennungseinheit als Ergebnis einer elektrischen Entladung des Leistungsdrahts charakteristisch ist;
    wobei die Überwachungseinheit so konfiguriert ist, dass sie ein von der Fehlererkennungseinheit empfangenes elektrisches Signal mit dem mindestens einen Signalmuster vergleicht.
     
    6. Hochspannungsleiter (100) nach Anspruch 5,
    wobei die Überwachungseinheit so konfiguriert ist, dass sie das Alarmsignal erzeugt, wenn das empfangene elektrische Signal mit mindestens einem Signalmuster des mindestens einen gespeicherten Signalmusters übereinstimmt.
     
    7. Hochspannungsleiter (100) nach einem der vorstehenden Ansprüche,
    wobei die Fehlererkennungseinheit ferner einen optisch leitenden Detektor (164) umfasst;
    wobei der optisch leitende Detektor mit der Überwachungseinheit verbunden ist;
    wobei der optisch leitende Detektor so konfiguriert ist, dass er optische Signale empfängt, die aus einem Lichtbogen resultieren, der durch eine Verschlechterung der Isolation des Hochspannungsleiters verursacht wird, und wobei der optisch leitende Detektor so konfiguriert ist, dass er die empfangenen optischen Signale an die Überwachungseinheit überträgt.
     
    8. Hochspannungsleiter (100) nach einem der vorstehenden Ansprüche, ferner umfassend:
    ein Isolationsmaterial (130), das zumindest den Starkstromdraht und die Fehlererfassungseinheit umgibt, so dass der Starkstromdraht und die Fehlererfassungseinheit voneinander beabstandet sind.
     
    9. Hochspannungsleiter (100) nach Anspruch 8,
    wobei das Isolationsmaterial aus einem optisch durchscheinenden Material hergestellt ist.
     
    10. Hochspannungsleiter (100) nach einem der vorstehenden Ansprüche, weiter umfassend:
    einen äußeren Schutzüberzug (110), der den Starkstromleiter und die Fehlererkennungseinheit umgibt.
     
    11. Ein Antriebssystem (200) für ein Flugzeug (300), wobei das Antriebssystem umfasst:

    einen elektrisch angetriebenen Motor (210);

    eine Energiequelle (205, 206), die so konfiguriert ist, dass sie den elektrisch angetriebenen Motor mit elektrischer Energie versorgt;

    einen Hochspannungsleiter (100) nach einem der vorstehenden Ansprüche;

    wobei der Hochspannungsleiter mit der Energiequelle und mit dem elektrisch angetriebenen Motor verbunden ist, um den Motor mit elektrischer Energie zu versorgen.


     
    12. Antriebssystem (200) nach Anspruch 11,
    wobei die Überwachungseinheit so konfiguriert ist, dass sie ein Warnsignal und/oder ein Wartungssignal erzeugt, wenn die Überwachungseinheit eine Verschlechterung der Isolierung des Hochspannungsleiters feststellt, und dass sie diese Signale einem Bediener zur Verfügung stellt.
     
    13. Flugzeug (300),
    mit einem Antriebssystem (200) nach Anspruch 11 oder 12.
     


    Revendications

    1. Un conducteur haute tension (100) pour la transmission de la haute tension, comprenant :

    un fil d'alimentation (140) configuré pour la transmission d'énergie ;

    une unité de détection de défaut (160) configurée pour détecter un champ électromagnétique émanant du fil d'alimentation ;

    une unité de surveillance (170) configurée pour la détection de la dégradation dans une isolation du conducteur à haute tension ;

    dans lequel l'unité de surveillance est connectée à l'unité de détection de défaut et est configurée pour recevoir un signal électrique induit dans l'unité de détection de défaut, lequel signal électrique est induit à la suite d'une dégradation de l'isolation du conducteur haute tension,

    caractérisé en ce que l'unité de surveillance (70) est connectée à une primeur extrémité de l'unité de détection des défauts (160) et à une deuxième extrémité de l'unité de détection des défauts (160),

    dans lequel l'unité de surveillance (160) est configurée pour générer un signal se répétant périodiquement et pour fournir ce signal se répétant périodiquement à la primeur extrémité et pour recevoir le signal se répétant périodiquement à la seconde extrémité et pour comparer le signal fourni se répétant périodiquement avec le signal reçu se répétant périodiquement, et pour générer un signal d'alarme si le signal reçu se répétant périodiquement ne correspond pas au signal fourni se répétant périodiquement.


     
    2. Le conducteur haute tension (100) de la revendication 1,
    dans lequel l'unité de détection de défauts comprend un détecteur électriquement conducteur (162) s'étendant dans une direction longitudinale du conducteur à haute tension.
     
    3. Le conducteur haute tension (100) des revendications 1 ou 2, comprenant en outre :
    un blindage électrique (120) entourant le fil d'alimentation et l'unité de détection de défauts.
     
    4. Le conducteur haute tension (100) de la revendication 3,
    dans lequel l'unité de surveillance est connectée au blindage électrique et est configurée pour détecter un courant de défaut circulant à travers le blindage électrique à la suite d'une dégradation de l'isolation du conducteur haute tension.
     
    5. Le conducteur haute tension (100) de l'une des revendications précédentes,
    dans lequel l'unité de surveillance est configurée pour recevoir et stocker au moins un motif de signal caractéristique d'un signal électrique sur l'unité de détection des défauts à la suite d'une décharge électrique du fil d'alimentation ;
    dans lequel l'unité de surveillance est configurée pour comparer un signal électrique reçu de l'unité de détection de défauts avec au moins un motif de signal.
     
    6. Le conducteur haute tension (100) de la revendication 5,
    dans lequel l'unité de surveillance est configurée pour générer le signal d'alarme si le signal électrique reçu correspond à au moins un modèle de signal du au moins un modèle de signal stocké.
     
    7. Le conducteur haute tension (100) de l'une des revendications précédentes,
    dans lequel l'unité de détection des défauts comprend en outre un détecteur optiquement conducteur (164) ;
    dans lequel le détecteur optiquement conducteur est connecté à l'unité de surveillance; dans lequel le détecteur optiquement conducteur est configuré pour recevoir des signaux optiques résultant d'un arc électrique causé par une dégradation de l'isolation du conducteur à haute tension et dans lequel le détecteur optiquement conducteur est configuré pour transmettre les signaux optiques reçus à l'unité de surveillance.
     
    8. Le conducteur haute tension (100) de l'une quelconque des revendications précédentes, comprenant en outre :
    un matériau d'isolation (130) entourant au moins le fil d'alimentation et l'unité de détection des défauts de telle sorte que le fil d'alimentation et l'unité de détection des défauts soient espacés l'un de l'autre.
     
    9. Le conducteur haute tension (100) de la revendication 8,
    dans lequel le matériau d'isolation est constitué d'un matériau optiquement translucide.
     
    10. Le conducteur haute tension (100) de l'une quelconque des revendications précédentes, comprenant en outre :
    un revêtement protecteur extérieur (110) entourant le fil d'alimentation et l'unité de détection de défaut.
     
    11. Un système de propulsion (200) pour un avion (300), le système de propulsion comprenant :

    un moteur à entraînement électrique (210) ;

    une source d'énergie (205, 206), configurée pour fournir de l'énergie électrique au moteur électrique ;

    un conducteur à haute tension (100) selon l'une des revendications précédentes ;

    dans lequel le conducteur haute tension est connecté à la source d'énergie et au moteur électrique afin de fournir de l'énergie électrique au moteur.


     
    12. Le système de propulsion (200) selon la revendication 11,
    dans lequel l'unité de surveillance est configurée pour générer un signal d'avertissement et/ou un signal de maintenance si l'unité de surveillance détecte une dégradation de l'isolation du conducteur haute tension et pour fournir ces signaux à un opérateur.
     
    13. Un avion (300),
    comprenant un système de propulsion (200) selon la revendication 11 ou 12.
     




    Drawing














    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description