(19)
(11)EP 3 363 262 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
04.12.2019 Bulletin 2019/49

(21)Application number: 16801563.4

(22)Date of filing:  13.10.2016
(51)Int. Cl.: 
H05B 6/06  (2006.01)
H05B 6/12  (2006.01)
(86)International application number:
PCT/IB2016/056121
(87)International publication number:
WO 2017/064636 (20.04.2017 Gazette  2017/16)

(54)

METHOD FOR CONTROLLING A HEAT SOURCE BELONGING TO A COOKING APPARATUS AND COOKING APPARATUS CONFIGURED TO CARRY OUT SAID METHOD

VERFAHREN ZUR STEUERUNG EINER WÄRMEQUELLE EINER KOCHVORRICHTUNG UND KOCHVORRICHTUNG ZUR DURCHFÜHRUNG DES VERFAHRENS

PROCÉDÉ PERMETTANT DE COMMANDER UNE SOURCE DE CHALEUR APPARTENANT À UN APPAREIL DE CUISSON ET APPAREIL DE CUISSON CONFIGURÉ DE SORTE À METTRE EN OEUVRE LEDIT PROCÉDÉ


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 14.10.2015 IT UB20154671

(43)Date of publication of application:
22.08.2018 Bulletin 2018/34

(73)Proprietor: Condini, Alessandro
38123 Trento (IT)

(72)Inventors:
  • CONDINI, Alessandro
    38123 Trento (IT)
  • KALUDEROVIC, Jasmina
    38050 Tenna (TN) (IT)

(74)Representative: Marchioro, Paolo 
Studio Bonini S.r.l. Corso Fogazzaro, 8
36100 Vicenza
36100 Vicenza (IT)


(56)References cited: : 
DE-U- 7 315 318
US-A- 5 227 610
JP-A- 2009 211 984
US-A1- 2009 010 302
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description


    [0001] The invention relates to a method for controlling the intensity of heat delivered by at least one heat source belonging to a cooking apparatus provided with a hob.

    [0002] The invention also relates to a cooking apparatus configured to carry out the above method of controlling a heat source.

    [0003] Cooking apparatuses are known, provided with one or more heat sources arranged underneath a hob, usually made of glass-ceramic material.

    [0004] As regards the heat sources currently used in cooking apparatuses, they comprise gas burners, electric heaters or induction coils.

    [0005] On the other hand, as regards the expression "hob", it should be noted that, hereinafter, it will be used to denote the portion of the kitchen top, or also known as kitchen worktop, used for cooking food. Clearly, "kitchen top" means the entire horizontal space defined in a kitchen.

    [0006] US 2009/010302 A1 discloses a method for controlling the intensity of the heat delivered by at least one heat source belonging to a cooking apparatus provided with a hob, said heat source being arranged underneath a circumscribed cooking area of said hob.

    [0007] It is also known that the glass-ceramic material of which the above hobs are made is characterized by high resistance to high temperatures, up to maximum values which are around 7-800 °C.

    [0008] Moreover, these materials are able to effectively withstand the so-called "thermal stresses", also known as "thermal shocks". These last expressions mean, in general, a state of internal stress of a material caused by thermal variations that, if sudden, may cause fragile items to break up.

    [0009] However, it is known that although glass-ceramic materials are high-performance materials, they also have a non-negligible cost and in addition are not adapted to be produced in large sheets.

    [0010] This means that it is unthinkable to make the entire worktop of a kitchen made of glass-ceramic material. In fact, the current solutions provide for making only the hob with these glass-ceramic materials and instead making the rest of the worktop of a kitchen with synthetic, ceramic or stone materials. Disadvantageously, the current approach just described has the drawback of creating a discontinuity between the hob itself and the remaining areas belonging to the kitchen top.

    [0011] Such a drawback may be solved by using stone or ceramic materials, rather than glass-ceramic, also for making the hob.

    [0012] In fact, the use of ceramic or stone materials as hob would allow obtaining both an aesthetic advantage and a functional advantage.

    [0013] In particular, from an aesthetic point of view, the worktop of a kitchen with such a solution would not exhibit the above discontinuity between the hob area and the other areas used as simple support spaces. In other words, the worktop of the kitchen with the solution proposed would be seamless and for this reason highly appreciated by lovers of minimalist design.

    [0014] As regards the functional advantage, it would exist in that, when the heat sources are disabled, the hob may be in turn used as support and work space and thus increase the usability of the kitchen itself and would allow, moreover, greater ease of hygiene and cleaning.

    [0015] Nevertheless, the main drawback in using hobs made of ceramic or stone materials is their limited resistance to the above "thermal stresses" or "thermal shocks".

    [0016] However, this drawback is partially overcome by preferring induction coils as heat sources rather than the above gas burners or electric heaters. In fact, during cooking, induction coils allow keeping the temperature of the hob not higher than 70-100 °C with full saucepans and up to 200-250 °C with empty saucepans. In other words, the use of induction coils as heat sources allows reducing the operating temperatures and thereby also limiting thermal shocks. Still, disadvantageously, combining induction coils as heat sources with a hob made of stone or ceramic material is still not enough to cancel entirely the adverse effects due to the above thermal shocks. In fact, ceramic or stone materials are bad thermal conductors and have a worse thermal expansion compared to glass-ceramic materials, i.e. heat spreads with more difficulty therein, and thus more slowly and furthermore they tend to warp more. In addition, the heating of a saucepan using an induction coil causes a rapid rise in the temperature of the hob at a circumscribed area that lies immediately below the saucepan itself and of course immediately above the induction coil itself. Incidentally, for simplicity and clarity of description, in the present context, such a circumscribed area will be referred to hereinafter by the term "cooking area".

    [0017] Therefore, since the heat from the cooking area on the hob underneath the saucepan slowly spreads to the bordering areas and at the same time the temperature at such a cooking area increases at a certain rate up to full operation, resulting in an expansion of the material, induced voltages may occur in the transition areas between the cooking area itself and the external areas. In particular, the latter are directly proportional to the change in temperature occurring between the cooking area and the neighbouring areas. The same induced voltages change over time and are the highest at the beginning of the saucepan heating phase to then decrease gradually as the transition area extends horizontally. Disadvantageously, these voltages can cause breakage of the hob along said transition areas, preventing the heat transfer in vertical direction due to the reduced thickness of the hob.

    [0018] The present invention aims to overcome all of the above drawbacks.

    [0019] In particular, the object of the invention is to provide a method for controlling the intensity of heat delivered by one heat source belonging to a cooking apparatus able to prevent or at least minimize the occurrence of local induced voltages on the hob.

    [0020] Therefore, the object of the invention is to provide a method of controlling such a heat intensity in order to prevent local breakage due to the above induced voltages.

    [0021] The object of the invention is also to provide a method of controlling such a heat intensity which still allows maintaining a proper cooking speed of the dishes.

    [0022] Said objects are achieved by the control method according to claim 1. In particular, the control method of the invention is characterized by calculating the variation over time in the difference between the temperatures detected in a first point and in a second point of the hob, and reducing the heat intensity delivered by the heat source if such variation exceeds a predetermined maximum threshold Δ2Tmax. Further features of the control method of the invention are described in the dependent claims.

    [0023] The cooking apparatus configured to carry out the control method steps according to any one of the preceding claims, according to claim 7, is also part of the invention.

    [0024] Further features of the cooking apparatus of the invention are described in the claims depending on claim 7.

    [0025] The above objects, along with the advantages that will be mentioned hereinafter, will appear clearly from the description of some preferred embodiment variants of the invention which are made by way of non-limiting example with reference to the accompanying drawings, in which:
    • fig. 1 schematically shows the top view of the cooking apparatus of the invention;
    • fig. 2 schematically shows a lateral view of the cooking apparatus of the invention;
    • fig. 3 shows a graph representing the change in temperature at two distinct points of the hob of the cooking apparatus in figs. 1 and 2;
    • fig. 4 shows the flow chart of a first preferred embodiment of the control method of the invention;
    • fig. 5 shows the flow chart of a second preferred embodiment of the control method of the invention;
    • fig. 6 shows an exemplary graph related to the temperature trends at a first point and at a second point of the hob in figs. 1 and 2.


    [0026] The method of the invention, in general, aims to control the intensity of heat delivered by at least one heat source 2 belonging to a cooking apparatus 1 provided with a hob 3, where the heat source 2 is arranged underneath a circumscribed area 4, referred to as cooking area 4, of hob 3 itself, as is schematically shown in figs. 1 and 2.

    [0027] The method of the invention, as noted above, involves calculating the change in the difference between the temperatures detected at a first point P1 and at a second point P2 of hob 3 over time and involves reducing the intensity of heat delivered by the heat source 2 if the above calculated change exceeds a predetermined maximum threshold.

    [0028] In other words, as shown schematically in the graph in fig. 3, the method of the invention involves checking the inclination of the junction straight line R between the temperature change over time at said first point P1, indicated with arrow A, and the temperature change over time at the second point P2, indicated with arrow B. Then, moreover, the method involves comparing the rate of change of temperatures at both said points P1 and P2. In fact, if such an inclination and therefore such a rate of change exceeds a certain predetermined maximum value, in the transition area 5, interposed between said two points P1 and P2 in hob 3, the above induced voltages may occur which may result in the breakage of the material at the same transition area 5. In other words, these breakages could occur if the rate at which the temperature changes at the first point P1 is too high compared to the temperature change, in the same time interval, which occurs at the second point P2.

    [0029] To this end, the method involves keeping said inclination below a certain predetermined value by reducing or zeroing the intensity of heat delivered by the heat source 2.

    [0030] Clearly, the method of the invention is more effective in preventing the occurrence of such induced voltages in the transition areas 5 when the first point P1 is selected within the above cooking area 4 and the second point P2 is selected outside such cooking area 4.

    [0031] It is possible, however, that according to alternative embodiments of the invention, the above two points are defined in hob 3 in positions other than those mentioned above, or it is possible more than two points of hob 3 are taken into account in order to carry out the above calculation and comparison. As will be noted hereinafter, such a calculation and any reduction in the intensity of heat delivered by the heat source 2 are carried out, preferably but not necessarily, cyclically at predetermined and fixed time intervals Δt.

    [0032] As regards a first preferred embodiment of the method of the invention, whose flow chart is shown in fig. 4, the above calculation step involves detecting the temperature value T1 at the first point P1 at a first time instant t1 and detecting the temperature value T2 at the same first point P1 at a second time instant t2. It is also contemplated to detect the temperature value T3 at the second point P2 at the same first time instant t1 and to detect the temperature value T4 again at the second point P2 at said time instant t2.

    [0033] When the above four temperature values T1, T2, T3 and T4 have been detected, the method of the invention according to the first preferred embodiment provides for calculating the difference ΔT1 between temperature T2 and temperature T1 and to calculate difference ΔT2 between temperature T4 and said temperature T3.

    [0034] In other words, both of said two differences ΔT1 and ΔT2 represent the speed at which the temperature changes at point P1 and at point P2, respectively, in said time interval clearly defined as Δt = t2-t1.

    [0035] Finally, the method involves calculating the difference Δ2T between said two differences ΔT2 and ΔT1 in order to define an index directly proportional to said inclination of the junction straight line R.

    [0036] As mentioned above, the method then involves comparing such an index with a predetermined maximum threshold value Δ2Tmax and if such an index exceeds such a maximum threshold Δ2Tmax, the method reduces the intensity of heat delivered by the heat source 2.

    [0037] If, instead, such an index Δ2T is lower than the predetermined maximum threshold value Δ2Tmax, the control method of the invention provides for keeping the intensity of heat delivered by the heat source 2 unchanged so as to bring the temperature at the first of the two points P1 to full operation. Also, if the index Δ2T is lower than the maximum threshold Δ2Tmax and such a heat intensity delivered during the previous cycle has been reduced, the method of the invention provides for re-establishing the ideal heat intensity to bring the temperature selected by the user as quickly as possible to speed at the above point P1.

    [0038] In the most likely situation, for the reasons set out above, in which the heat sources 2 comprise induction coils 21, the method of the invention will clearly check the electrical power supplied to the same coils 21 in order to control the intensity of heat supplied by the latter and transmitted to a saucepan placed on the top.

    [0039] A second preferred embodiment of the method of the invention, whose flow chart is shown in fig. 5, alternatively provides, once such four temperature values T1, T2, T3 and T4 have been detected, for calculating difference ΔT1 between temperature T3 and temperature T1 and for calculating difference ΔT2 between temperature T4 and temperature T2. Both these values represent the change in temperature that occurs at each of the two points P1 and P2 in two distinct instants of time t1 and t2.

    [0040] Once values ΔT2 and ΔT1 have been obtained, the method provides for calculating their difference Δ2T = ΔT2 - ΔT1. Also in this case, although the sequence of operations described above is different than that of the first embodiment of the invention, the result is the same, i.e. also in this case index Δ2T identified represents the inclination of said junction straight line R. Therefore, also in this case, the sequence of operations described for this second preferred embodiment implements the basic principle of the method of the invention. In particular, Δ2T for both preferred embodiments discussed represents the variation over time of the difference between the temperatures detected at a first point P1 and at a second point P2 of hob 3.

    [0041] Clearly, the method of the invention, also for the above preferred embodiment, provides for reducing the intensity of the heat delivered by the heat source 2 if difference Δ2T exceeds the above maximum predetermined threshold Δ2Tmax. In order to make the results obtained from the two embodiments of the method of the invention discussed so far uniform, preferably but not necessarily, difference Δ2T is in both cases calculated as the absolute value between difference ΔT2 and difference ΔT1.

    [0042] An operating example of the method of the invention is shown in the graph in fig. 6, in which the abscissa shows the time and the ordinate shows the temperature values of point P1 and point P2, respectively.

    [0043] As can be seen from the graph, in the time intervals in which value Δ2T is below the maximum predetermined threshold Δ2Tmax, such as for example in Δt4 and Δt5, the method of the invention provides for keeping the electrical power supplied to the induction coils 21 constant so that temperature at point P1 continue to increase regularly up to full operation.

    [0044] At the instants when, instead, such a value Δ2T is higher than the maximum threshold value Δ2Tmax, such as in Δt2 and Δt6, the electrical power supplied to the same induction coils 21 is reduced and therefore the temperature at point P1 in the time interval immediately following (Δt3 and Δt7) tends to remain constant at the same value reached up to that moment, so as to prevent the onset of the above induced voltages.

    [0045] Of course, as said above, when Δ2T is within the predetermined parameters, the method of the invention provides for supplying an adequate electric power to the induction coils 21 in order to achieve the temperature value selected by the user at point P1 as quickly as possible.

    [0046] Another advantage obtained by the method of the invention, in particular because it performs the comparison, over time, of temperature values at two different points P1 and P2 of hob 3 is to prevent the onset of induced voltages in transitional areas 5 between the above two points P1 and P2 without at the same time setting a maximum limit on the absolute temperature value which can be reached in one of the two above points P1 and P2.

    [0047] As mentioned above, the cooking apparatus 1 is also part of the invention, provided with a hob 3 and a heat source 2 arranged underneath a circumscribed area of hob 3, defined as cooking area 4, as shown schematically in figs. 1 and 2.

    [0048] Preferably, the heat source 2 is an induction coil 21.

    [0049] It is not excluded that, according to different embodiments of the invention, the cooking apparatus 1 includes more than one heat source 2.

    [0050] Moreover, it is not excluded that according to alternative embodiments, the heat source(s) 2 may be of a different nature than the induction coil 21, such as a gas burner or an electrical resistance.

    [0051] As for hob 3, it is preferably but not necessarily made of stone material or ceramic material.

    [0052] It is not excluded, however, that a different material of known type may be selected for producing such a hob 3.

    [0053] According to the invention, such a cooking apparatus 1 comprises an electronic control unit 6 configured to implement the steps of the above control method as described above.

    [0054] In particular, the preferred embodiment of the invention provides for the electronic control unit 6 to include a first temperature sensor 61 arranged underneath hob 3 within the cooking area 4. In this way, the first temperature sensor 61 is able to detect the temperature of hob 3 at the cooking area 4 on which a saucepan is placed and is heated by the induction coil 21.

    [0055] Moreover, the electronic control unit 6 also includes a second temperature sensor 62 arranged underneath hob 3 at an area external to such a cooking area 4. In this case, the second temperature sensor 62 is able to detect the temperature of hob 3 in a point external to such cooking area 4 heated by diffusion of the heat generated at the same cooking area 4.

    [0056] Finally, the electronic control unit 6 is provided with an electronic control unit 63 operatively associated with the first and second temperature sensor 61 and 62 and with the same heat source 2. Such an electronic control unit 63 is configured to perform the above steps of the method just described.

    [0057] Finally, the preferred embodiment of the cooking apparatus 1 of the invention also comprises light radiation emission means 7 arranged above hob 3 and adapted to project a beam of light at said cooking area 4. According to this preferred embodiment, the electronic control unit 6 is operatively associated with said light radiation emission means 7 and is configured to activate the latter when the heat source 2 is active. In this way, the light radiation emission means 7 illuminate the cooking area 4 when the heat source 2, arranged underneath, can generate heat and heat a saucepan. Therefore, the presence of such light radiation emission means 7 advantageously allows a user to know when a heat source 2 is on or off, which would otherwise be understood visually in presence of hobs made of ceramic or stone materials, as they are not transparent like glass ceramics.

    [0058] According to the preferred embodiment of the cooking apparatus 1 of the invention, said light radiation emission means 7 are configured to project the edge of the cooking area 4, preferably circular or elliptical in shape, on hob 3.

    [0059] It is not excluded, however, that according to alternative embodiments of the invention, such light radiation emission means 7 are configured to project the edges of the cooking area 4 with geometric shapes other than circular or elliptical.

    [0060] Moreover, according to different embodiments of the cooking apparatus 1 of the invention, it is not excluded that such light radiation emission means 7 are configured to project solid geometric shapes, and not just their edges, on hob 3.

    [0061] As regards again the preferred embodiment of the invention, the electronic control unit 6 is configured to control the intensity variation of the light radiation emitted by the light radiation emission means 7 in direct proportion to the variation in the heat intensity delivered by the heat source 2.

    [0062] In other words, in the case of heat sources 2 comprising induction coils 21, the higher the electrical power supplied to said coils 21 and the more intense the light radiations projected on said hob 3. Alternatively, it may be contemplated to vary the color of said light radiations rather than their intensity, provided that such change is implemented at the variation in the heat intensity delivered by the heat source 2. Moreover, according to a different embodiment, it may be contemplated to vary both the intensity and the color of such light radiation emitted by the light radiation emission means 7.

    [0063] Moreover, according to the preferred embodiment of the invention, such light radiation emission means 7 are configured to project on said hob 3, outside the cooking area 4, the controls available to the user and the temperature data of the saucepan and of the cooking area 4 and the electrical power supplied to the induction coil 21.

    [0064] Preferably, the light radiation emission means 7 include a light projector 71.

    [0065] It is not excluded that, according to a different embodiment of the invention, the cooking apparatus 1 comprises the above light radiation emission means 7 without, however, being configured to perform the steps of the control method of the invention, described above.

    [0066] Based on the above, therefore, the control method and the cooking apparatus of the invention achieve all the intended objects.

    [0067] In particular, the object of providing a method for controlling the intensity of heat delivered by one heat source belonging to a cooking apparatus so as to prevent or at least minimize the occurrence of local induced voltages on the hob is achieved.

    [0068] Also the object of providing a method of controlling such a heat intensity in order to prevent local breakage due to the above induced voltages is achieved. Finally, it is an object of the invention to provide a method of controlling such a heat intensity which still allows maintaining a proper cooking speed of the dishes.


    Claims

    1. Method for controlling the intensity of heat delivered by at least one heat source (2) belonging to a cooking apparatus (1) provided with a hob (3), said heat source (2) being arranged underneath a circumscribed cooking area (4) of said hob (3), said method being characterized in that it provides for the following steps:

    - calculating the variation over time in the difference between the temperatures detected in a first point (P1) and in a second point (P2) of said hob (3); and

    - reducing said heat intensity delivered by said heat source (2) if such variation exceeds a predetermined maximum threshold Δ2Tmax.


     
    2. Method according to claim 1, characterized in that said first point (P1) is defined within said cooking area (4) and said second point (P2) is defined outside said cooking area (4).
     
    3. Method according to any one of the preceding claims, characterized in that said calculation step includes:

    - detecting the temperature value T1 at said first point (P1) at a first time instant (t1) and detecting the temperature value T2 at said first point (P1) at a second time instant (t2);

    - detecting the temperature value T3 at said second point (P2) at said first time instant (t1) and detecting the temperature value T4 at said second point (P2) at said second time instant (t2);

    - calculating difference ΔT1 between said temperature T2 and said temperature T1;

    - calculating difference ΔT2 between said temperature T4 and said temperature T3;

    - calculating difference Δ2T between said difference ΔT2 and said difference ΔT1;

    and in that said step of reducing said heat intensity is carried out if said difference Δ2T exceeds said maximum predetermined threshold Δ2Tmax.
     
    4. Method according to any one of claims 1 or 2, characterized in that said calculation step includes:

    - detecting the temperature value T1 at said first point (P1) at a first time instant (t1) and detecting the temperature value T2 at said first point (P1) at a second time instant (t2);

    - detecting the temperature value T3 at said second point (P2) at said first time instant (t1) and the temperature value T4 at said second point (P2) at said second time instant (t2);

    - calculating difference between said temperature T3 and said temperature T1;

    - calculating difference ΔT2 between said temperature T4 and said temperature T2;

    - calculating difference Δ2T between said difference ΔT2 and said difference ΔT1;

    and in that said step of reducing said heat intensity is carried out if said difference Δ2T exceeds said maximum predetermined threshold Δ2Tmax.
     
    5. Method according to any one of claims 3 or 4, characterized in that the time interval Δt between said time instants t1 and t2 takes a predefined and fixed value.
     
    6. Method according to any one of claims 3 to 5, characterized in that said difference Δ2T is calculated as the absolute value between said difference ΔT2 and said difference ΔT1.
     
    7. Cooking apparatus (1) provided with a hob (3) and at least one heat source (2) arranged underneath a circumscribed cooking area (4) of said hob (3), characterized in that it comprises an electronic control unit (6) configured to implement the steps of the control method according to any one of the preceding claims.
     
    8. Cooking apparatus (1) according to claim 7, characterized in that said electronic control unit (6) comprises:

    - at least a first temperature sensor (61) arranged underneath said hob (3) within said cooking area (4);

    - at least a second temperature sensor (62) arranged underneath said hob (3) outside said cooking area (4);

    - an electronic control unit (63) operatively associated with said first and second temperature sensors (61, 62) and with said heat source (2), said electronic control unit (63) being configured to perform the steps of the control method according to any one of claims 1 to 6.


     
    9. Cooking apparatus (1) according to any one of claims 7 or 8, characterized in that said at least one heat source (2) is an induction coil (21).
     
    10. Cooking apparatus (1) according to any one of claims 7 to 9, characterized in that said hob (3) is made of stone material or ceramic material.
     
    11. Cooking apparatus (1) according to any of claims 7 to 10, characterized in that it comprises light radiation emission means (7) arranged above said hob (3) and adapted to project a beam of light on said cooking area (4), said electronic control unit (6) being operatively associated with said light radiation emission means (7) and being configured to activate said light radiation emission means (7) when said heat source (2) is active.
     
    12. Cooking apparatus (1) according to claim 11, characterized in that said electronic control unit (6) is configured to vary the intensity and/or color of the light radiation (7) emitted by said light radiation emission means (7) in direct proportion to the variation in the heat intensity supplied by at least one heat source (2).
     


    Ansprüche

    1. Verfahren zur Steuerung der durch wenigstens eine zu einer Kochvorrichtung (1) mit einem Kochfeld (3) gehörenden Wärmequelle (2) gelieferten Wärmeintensität, wobei die besagte Wärmequelle (2) unterhalb eines umgrenzten Kochbereichs (4) des besagten Kochfelds (3) angeordnet ist, wobei das besagte Verfahren dadurch gekennzeichnet ist, dass es folgende Schritte umfasst:

    - Berechnung der mit der Zeit eintretenden Änderung in der Differenz zwischen den in einem ersten Punkt (P1) und in einem zweiten Punkt (P2) des besagten Kochfelds (3) erfassten Temperaturen und

    - Reduzierung der besagten, durch die besagte Wärmequelle (2) gelieferten Wärmeintensität, wenn die Änderung eine vorbestimmte Höchstschwelle Δ2Tmax übersteigt.


     
    2. Verfahren nach Patentanspruch 1, dadurch gekennzeichnet, dass der besagte erste Punkt (P1) innerhalb des besagten Kochbereichs (4) definiert ist und der besagte zweite Punkt (P2) außerhalb des besagten Kochbereichs (4) definiert ist.
     
    3. Verfahren nach einem jeden der vorstehenden Patentansprüche, dadurch gekennzeichnet, dass der besagte Berechnungsschritt Folgendes umfasst:

    - Erfassung des Temperaturwerts T1 an dem besagten ersten Punkt (P1) zu einem ersten Zeitpunkt (t1) und Erfassung des Temperaturwerts T2 an dem besagten ersten Punkt (P1) zu einem zweiten Zeitpunkt (t2);

    - Erfassung des Temperaturwerts T3 an dem besagten zweiten Punkt (P2) zu dem besagten ersten Zeitpunkt (t1) und Erfassung des Temperaturwerts T4 an dem besagten zweiten Punkt (P2) zu dem besagten zweiten Zeitpunkt (t2);

    - Berechnung der Differenz ΔT1 zwischen der besagten Temperatur T2 und der besagten Temperatur T1;

    - Berechnung der Differenz ΔT2 zwischen der besagten Temperatur T4 und der besagten Temperatur T3;

    - Berechnung der Differenz Δ2T zwischen der besagten Differenz ΔT2 und der besagten Differenz ΔT1;

    und dadurch, dass der besagte Schritt der Reduzierung der besagten Wärmeintensität ausgeführt wird, wenn die besagte Differenz Δ2T die besagte, vorbestimmte Höchstschwelle Δ2Tmax übersteigt.
     
    4. Verfahren nach einem jeden der Patentansprüche 1 oder 2, dadurch gekennzeichnet, dass der besagte Berechnungsschritt Folgendes umfasst:

    - Erfassung des Temperaturwerts T1 an dem besagten ersten Punkt (P1) zu einem ersten Zeitpunkt (t1) und Erfassung des Temperaturwerts T2 an dem besagten ersten Punkt (P1) zu einem zweiten Zeitpunkt (t2);

    - Erfassung des Temperaturwerts T3 an dem besagten zweiten Punkt (P2) zu dem besagten ersten Zeitpunkt (t1) und des Temperaturwerts T4 an dem besagten zweiten Punkt (P2) zu dem besagten zweiten Zeitpunkt (t2);

    - Berechnung der Differenz ΔT1 zwischen der besagten Temperatur T3 und der besagten Temperatur T1;

    - Berechnung der Differenz ΔT2 zwischen der besagten Temperatur T4 und der besagten Temperatur T2;

    - Berechnung der Differenz Δ2T zwischen der besagten Differenz ΔT2 und der besagten Differenz ΔT1;

    und dadurch, dass der besagte Schritt der Reduzierung der besagten Wärmeintensität ausgeführt wird, wenn die besagte Differenz Δ2T die besagte, vorbestimmte Höchstschwelle Δ2Tmax übersteigt.
     
    5. Verfahren nach einem jeden der Patentansprüche 3 oder 4, dadurch gekennzeichnet, dass das Zeitintervall Δt zwischen den besagten Zeitpunkten t1 und t2 einen vorbestimmten, festen Wert annimmt.
     
    6. Verfahren nach einem jeden der Patentansprüche 3 oder 5, dadurch gekennzeichnet, dass die besagte Differenz Δ2T als absoluter Wert zwischen der besagten Differenz ΔT2 und der besagten Differenz ΔT1 berechnet wird.
     
    7. Kochvorrichtung (1) mit einem Kochfeld (3) und wenigstens einer Wärmequelle (2), die unterhalb eines umgrenzten Kochbereichs (4) des besagten Kochfelds (3) angeordnet ist, dadurch gekennzeichnet, dass sie ein elektronisches Steuergerät (6) umfasst, das dazu konfiguriert ist, die Schritte des Steuerungsverfahrens nach einem jeden der vorstehenden Patentansprüche zu implementieren.
     
    8. Kochvorrichtung (1) nach Patentanspruch 7, dadurch gekennzeichnet, dass das besagte elektronische Steuergerät (6) Folgendes umfasst:

    - wenigstens einen ersten Temperatursensor (61), der unterhalb des besagten Kochfelds (3) innerhalb des besagten Kochbereichs (4) angeordnet ist;

    - wenigstens einen zweiten Temperatursensor (62), der unterhalb des besagten Kochfelds (3) außerhalb des besagten Kochbereichs (4) angeordnet ist;

    - ein elektronisches Steuergerät (63), das operativ mit dem besagten ersten und mit dem besagten zweiten Temperatursensor (61, 62) sowie mit der besagten Wärmequelle (2) verbunden ist, wobei das besagte elektronische Steuergerät (63) dazu konfiguriert ist, die Schritte des Steuerungsverfahrens nach einem jeden der Patentansprüche von 1 bis 6 durchzuführen.


     
    9. Kochvorrichtung (1) nach einem jeden der Patentansprüche 7 oder 8, dadurch gekennzeichnet, dass die besagte wenigstens eine Wärmequelle (2) eine Induktionsspule (21) ist.
     
    10. Kochvorrichtung (1) nach einem jeden der Patentansprüche von 7 bis 9, dadurch gekennzeichnet, dass das besagte Kochfeld (3) aus Steinmaterial oder aus Keramikmaterial gefertigt ist.
     
    11. Kochvorrichtung (1) nach einem jedem der Patentansprüche von 7 bis 10, dadurch gekennzeichnet, dass sie Lichtstrahlen-Emissionsmittel (7) umfasst, die oberhalb des besagten Kochfelds (3) angeordnet sind und geeignet sind, einen Lichtstrahl auf den besagten Kochbereich (4) zu projizieren, wobei das besagte elektronische Steuergerät (6) operativ mit den besagten Lichtstrahlen-Emissionsmitteln (7) verbunden ist und dazu konfiguriert ist, die besagten Lichtstrahlen-Emissionsmittel (7) zu aktivieren, wenn die besagte Wärmequelle (2) aktiv ist.
     
    12. Kochvorrichtung (1) nach Patentanspruch 11, dadurch gekennzeichnet, dass das besagte elektronische Steuergerät (6) dazu konfiguriert ist, die Intensität und/oder die Farbe der durch die besagten Lichtstrahlen-Emissionsmittel (7) abgegebenen Lichtstrahlen (7) direkt proportional zu der Veränderung der durch wenigstens eine Wärmequelle (2) gelieferten Wärmeintensität zu variieren.
     


    Revendications

    1. Méthode pour le contrôle de l'intensité de chaleur produite par au moins une source de chaleur (2) appartenant à un appareil de cuisson (1) pourvu d'une plaque de cuisson (3), ladite source de chaleur (2) étant disposée au-dessous d'une zone de cuisson circonscrite (4) de ladite plaque de cuisson (3), ladite méthode étant caractérisée en ce qu'elle prévoit les phases suivantes:

    - le calcul de la variation dans le temps de la différence entre les températures détectées dans un premier point (P1) et dans un deuxième point (P2) de ladite plaque de cuisson (3) et

    - la réduction de ladite intensité de chaleur produite par ladite source de chaleur (2) si ladite variation est supérieure à un seuil maximum préétabli Δ2Tmax.


     
    2. Méthode selon la revendication 1, caractérisé en ce que ledit premier point (P1) est défini à l'intérieur de ladite zone de cuisson (4) et ledit deuxième point (P2) est défini à l'extérieur de ladite zone de cuisson (4).
     
    3. Méthode selon l'une quelconque des revendications précédentes, caractérisée en ce que ladite phase de calcul comprend:

    - la détection de la valeur de température T1 dans ledit premier point (P1) dans un premier instant de temps (t1) et la détection de la valeur de température T2 dans ledit premier point (P1) dans un deuxième instant de temps (t2);

    - la détection de la valeur de température T3 dans ledit deuxième point (P2) dans ledit premier instant de temps (t1) et la détection de la valeur de température T4 dans ledit deuxième point (P2) dans ledit deuxième instant de temps (t2);

    - le calcul de la différence ΔT1 entre ladite température T2 et ladite température T1;

    - le calcul de la différence ΔT2 entre ladite température T4 et ladite température T3;

    - le calcul de la différence Δ2T entre ladite différence ΔT2 et ladite différence ΔT1;

    et en ce que ladite phase de réduction de ladite intensité de chaleur est effectuée au cas où ladite différence Δ2T serait supérieure audit seuil maximum préétabli Δ2Tmax.
     
    4. Méthode selon l'une quelconque des revendications 1 ou 2, caractérisée en ce que ladite phase de calcul prévoit:

    - la détection de la valeur de température T1 dans ledit premier point (P1) dans un premier instant de temps (t1) et la détection de la valeur de température T2 dans ledit premier point (P1) dans un deuxième instant de temps (t2);

    - la détection de la valeur de température T3 dans ledit deuxième point (P2) dans ledit premier instant de temps (t1) et la valeur de température T4 dans ledit deuxième point (P2) dans ledit deuxième instant de temps (t2);

    - le calcul de la différence ΔT1 entre ladite température T3 et ladite température T1;

    - le calcul de la différence ΔT2 entre ladite température T4 et ladite température T2;

    - le calcul de la différence Δ2T entre ladite différence ΔT2 et ladite différence ΔT1;

    et en ce que ladite phase de réduction de ladite intensité de chaleur est effectuée au cas où ladite différence Δ2T serait supérieure audit seuil maximum préétabli Δ2Tmax.
     
    5. Méthode selon l'une quelconque des revendications 3 ou 4, caractérisée en ce que l'intervalle de temps Δt entre lesdits instants de temps t1 et t2 prend une valeur prédéfinie et fixe.
     
    6. Méthode selon l'une quelconque des revendications de 3 à 5, caractérisée en ce que ladite différence Δ2T est calculée comme une valeur absolue entre ladite différence ΔT2 et ladite différence ΔT1.
     
    7. Appareil de cuisson (1) pourvu d'une plaque de cuisson (3) et au moins une source de chaleur (2) disposée au-dessous d'une zone de cuisson circonscrite (4) de ladite plaque de cuisson (3), caractérisé en ce qu'il comprend un groupe électronique de contrôle (6) configuré pour réaliser les phases de la méthode de contrôle selon l'une quelconque des revendications précédentes.
     
    8. Appareil de cuisson (1) selon la revendication 7, caractérisé en ce que ledit groupe électronique de contrôle (6) comprend:

    - au moins un premier capteur de température (61) disposé au-dessous de ladite plaque de cuisson (3) à l'intérieur de ladite zone de cuisson (4);

    - au moins un deuxième capteur de température (62) disposé au-dessous de ladite plaque de cuisson (3) à l'extérieur de ladite zone de cuisson (4);

    - un groupe électronique de contrôle (63) opérationnellement associé audit premier et audit deuxième capteurs de température (61, 62) et à ladite source de chaleur (2), ledit groupe électronique de contrôle (63) étant configuré pour exécuter les phases de la méthode de contrôle selon l'une quelconque des revendications de 1 à 6.


     
    9. Appareil de cuisson (1) selon l'une quelconque des revendications 7 ou 8, caractérisé en ce que ladite au moins une source de chaleur (2) est une bobine d'induction (21).
     
    10. Appareil de cuisson (1) selon l'une quelconque des revendications de 7 à 9, caractérisé en ce que ladite plaque de cuisson (3) est réalisée en un matériau de pierre ou en matériau céramique.
     
    11. Appareil de cuisson (1) selon l'une quelconque des revendications de 7 à 10, caractérisé en ce qu'il comprend des moyens d'émissions de radiations lumineuses (7) disposés au-dessus de ladite plaque de cuisson (3) et aptes à projeter un faisceau de lumière sur ladite zone de cuisson (4), ledit groupe électronique de contrôle (6) étant opérationnellement associé auxdits moyens d'émission de radiations lumineuses (7) et étant configuré pour actionner lesdits moyens d'émission de radiations lumineuses (7) quand ladite source de chaleur (2) est active.
     
    12. Appareil de cuisson (1) selon la revendication 11, caractérisé en ce que ledit groupe électronique de contrôle (6) est configuré pour varier l'intensité et/ou la couleur des radiations lumineuses (7) émises par lesdits moyens d'émission de radiations lumineuses (7) de manière directement proportionnelle à la variation de l'intensité de chaleur fournie par au moins une source de chaleur (2).
     




    Drawing


















    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description