(19)
(11)EP 3 366 792 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
27.07.2022 Bulletin 2022/30

(21)Application number: 18155275.3

(22)Date of filing:  07.12.2011
(51)International Patent Classification (IPC): 
C22B 11/00(2006.01)
C22B 3/22(2006.01)
C22B 3/42(2006.01)
C22B 3/12(2006.01)
C22B 3/24(2006.01)
B01D 11/00(2006.01)
(52)Cooperative Patent Classification (CPC):
C22B 3/12; C22B 3/42; B01D 11/0257; C22B 11/04; Y02P 10/20

(54)

CO-CURRENT AND COUNTER CURRENT RESIN-IN-LEACH IN GOLD LEACHING PROCESSES

GLEICHSTROM- UND GEGENSTROM-VERFAHREN ZUR LAUGUNG EINES HARZES IN EINER LAUGE IN GOLD

RÉSINE EN LIXIVIATION À CO-COURANT ET À CONTRE-COURANT DANS DES PROCÉDÉS DE LIXIVIATION D'OR


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 07.12.2010 US 420596 P

(43)Date of publication of application:
29.08.2018 Bulletin 2018/35

(62)Application number of the earlier application in accordance with Art. 76 EPC:
11846831.3 / 2649211

(73)Proprietor: Barrick Gold Corporation
Toronto, ON M5J 2S1 (CA)

(72)Inventors:
  • CHOI, Yeonuk
    Oakville, Ontario L6M 4A4 (CA)
  • CHEFAI, Samir
    Milton, Ontario L9T 6K7 (CA)

(74)Representative: Hannke, Christian 
Hannke Bittner & Partner Patent- und Rechtsanwälte mbB
Prüfeninger Straße 1 93049 Regensburg
Prüfeninger Straße 1 93049 Regensburg (DE)


(56)References cited: : 
US-A- 5 147 618
US-A1- 2005 066 774
US-A- 5 785 736
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    CROSS REFERENCE TO RELATED APPLICATION



    [0001] The present application claims the benefits of U.S. Provisional Application Serial No. 61/420,596, filed December 7, 2010, entitled "Use of Co-Current and Counter Current Resin In Leach to Improve Gold Recovery in Thiosulfate Leaching".

    FIELD



    [0002] The disclosure relates generally to hydrometallurgical processes for recovering gold and/or silver and particularly to hydrometallurgical processes for recovering gold.

    BACKGROUND



    [0003] Referring to Figure 1, a conventional gold recovery process is depicted.

    [0004] A refractory or double refractory sulfidic gold and/or silver-containing material 100 is subjected to pressure oxidation, such as in an autoclave, in step 104 to form an oxidized output slurry 108, that includes a gold and/or silver-containing residue.

    [0005] The oxidized output slurry 108 is hot cured in optional step 112 to convert basic iron sulfate and free sulfuric acid to dissolved ferric sulfate and form a hot cured slurry 116.

    [0006] In step 120, the hot cured slurry 116 is optionally subjected to liquid/solid separation, such as by a counter current decantation circuit, to form a washed slurry 124.

    [0007] The washed slurry 124 is subjected to neutralization in step 128, typically by a weaker base such as alkali or alkaline earth metal oxides and carbonates, to neutralize most of the acid and acid equivalents in the washed slurry 124 and form neutralized slurry 132.

    [0008] The neutralized slurry 132 is preconditioned in step 136 by contact with sparged air and a strong base, particularly lime, to form a preconditioned slurry 140 having a pH of about pH 8 or higher. In step 144, the preconditioned slurry 140 is subjected to a gold and/or silver resin-in-leach process in the presence of a gold and/or silver lixiviant, such as thiosulfate, to load onto the resin the gold and/or silver in the residue. The loaded resin can be stripped and the stripped gold and/or silver recovered as a gold and/or silver product 148.

    [0009] Figure 2 depicts a conventional counter-current resin-in-leach (or resin-in-pulp) circuit 200 of the type used in step 144. The circuit 200 includes a plurality of first, second, third, ... nth tanks 208a-n. The fresh resin 204, which is typically a strong-base anion exchange resin, is first contacted with the slurry 140 containing the lowest amount of dissolved gold, providing a driving force to promote the leaching of gold from the residue and adsorption of the dissolved gold. The gold and/or silver loaded resin 212 is removed from the first tank 208a, and barren tailings 216 are removed from the nth tank 208n.

    [0010] Although this process can be effective in recovering gold and/or silver, gold and/or silver recoveries can be problematic. Use of the resin-in-leach or resin-in-pulp method is generally limited to those gold and/or silver-bearing ores or concentrates requiring mild thiosulfate leaching conditions, since strong thiosulfate leach conditions can result in competitive adsorption on the resin by polythionate anions (e.g., tetrathionate and trithionate) produced during leaching. By way of example, tetrathionate and trithionate concentrations of 420 and 350 mg/L, respectively, have been found to reduce gold loading onto a Purolite A500C resin by an order of magnitude; that is, from 26 to 2 kg Au/t resin from a solution containing 0.3 mg/L Au. A typical concentration of tetrathionate and other higher polythionates in a thiosulfate leach solution ranges from about 50 to about 200 mg/L and of trithionate ranges from about 275 to about 375 mg/L.

    [0011] To counter this problem, sulfite has been added to pregnant thiosulfate leach solutions in an oxygen-free atmosphere (e.g., using a nitrogen purge) to counteract the detrimental effect of polythionate concentration. Although effective, this approach can add additional expense to the process.

    [0012] Different conventional leaching processes are known from prior art. A process for recovering gold from refractory carbonaceous ores by pressure oxidation, thiosulfate leaching, and resin-in-pulp adsorption is shown in US 5 785 736 A. Otherwise, a process for recovery of gold from refractory gold ores by sulphurous acid leaching is described in US 5 147 618 A. Furthermore, US 2005/066774 A1 shows a process for mutual separation of platinum group metals from a raw material by solvent extraction.

    SUMMARY



    [0013] These and other needs are addressed by the various aspects, embodiments, and configurations of the present disclosure and as claimed in independent method claim 1 and independent system claim 7. The present disclosure is directed generally to gold and/or silver leaching using a resin-in-leach circuit.

    [0014] The method could include the step of:
    leaching, by thiosulfate, a gold and/or silver-containing material in a resin-in-leach circuit, the circuit comprising a co-current portion where the gold and/or silver-containing material and a gold and/or silver-collecting resin flow co-currently and a counter-current portion where the gold and/or silver-containing material and gold and/or silver-collecting resin flow counter-currently.

    [0015] Further, the method could include the step of:
    thiosulfate leaching, by a resin-in-leach circuit, a gold-containing material, the circuit comprising a co-current portion where the gold-containing material and an ion exchange resin flow co-currently and a counter-current portion where the gold and/or silver-containing material and ion exchange resin flow counter-currently. The solutions used to strip gold from the gold-loaded resin and to convert tetrathionate and other higher polythionates to trithionate are commonly different and the operations are done in separate steps.

    [0016] The system could include:

    a first set of tanks configured to flow co-currently an ion exchange resin, thiosulfate, and a gold and/or silver-containing material, the first set of tanks comprising a first input for a first inputted ion exchange resin and a first output for a first gold and/or silver-loaded resin; and

    a second set of tanks for receiving the thiosulfate and gold and/or silver-containing material from the first set of tanks and being configured to flow counter-currently a second inputted ion exchange resin on the one hand and the thiosulfate and gold and/or silver-containing material on the other. The second set of tanks includes a second input for a second inputted resin and a second output for a second gold and/or silver loaded resin. The first and second inputted ion exchange resins are different from one another, and the first and second gold and/or silver-loaded resins are different from one another. In one configuration, the second gold and/or silver-loaded resin is introduced into the first input as part of the first inputted ion exchange resin.



    [0017] The co-current and counter-current portions can have many configurations. In one configuration, the co-current and counter-current portions do not share a common resin-in-leach tank. Typically, the gold and/or silver-containing material flows first through the co-current portion and second through the counter-current portion. Most (or all) of the gold and/or silver-loaded resin in the co-current portion is removed from the co-current portion and most (or all) of a gold and/or silver-loaded resin in the counter-current portion is removed from the counter-current portion. In one configuration, the co-current and counter-current portions share a common vessel. Stated another way, most (or all) of the gold and/or silver-loaded resin in the co-current portion and most (or all) of the gold and/or silver-loaded resin in the counter-current portion are removed from a common tank.

    [0018] Commonly, a first resin concentration in a part of the co-current portion is greater than a second resin concentration in a part (or all) of the counter-current portion. An average and median resin concentration in the co-current portion is typically greater than a respective average and median resin concentration in the counter-current portion. Stated another way, a maximum resin concentration in the co-current portion exceeds a maximum resin concentration in the counter-current portion, and a minimum resin concentration in the co-current portion exceeds a minimum resin concentration in the counter-current portion.

    [0019] However in other applications, a first resin concentration in a part of the co-current portion is less than a second resin concentration in a part (or all) of the counter-current portion. An average and median resin concentration in the co-current portion can be less than a respective average and median resin concentration in the counter-current portion. Stated another way, a maximum resin concentration in the co-current portion does not exceed a maximum resin concentration in the counter-current portion, and a minimum resin concentration in the co-current portion does not exceed a minimum resin concentration in the counter-current portion. By way of example, a first resin concentration in a first tank of the co-current portion is lower than the resin concentrations in one or more other tanks in the counter-current portion.

    [0020] In many leach circuits, the thiosulfate is substantially or completely free of ammonia.

    [0021] In one configuration, most (or all) of polythionate- and gold and/or silver-loaded resin from the counter-current portion is treated to convert most of the higher polythionates to trithionate using a first solution but most (or all) of the gold and/or silver remains loaded on the resin to form a treated gold and/or silver-loaded resin. In one application, pentathionate and/or other higher polythionates sorbed on the resin are treated with sulfite, which converts tetrathionate, pentathionate and other higher polythionates into trithionate and thiosulfate. High levels of sorbed tetrathionate and other higher polythionates on the gold and/or silver-loaded resin can increase significantly tetrathionate and other higher polythionate levels in the co-current portion. Trithionate is not as strongly sorbed onto the resin as pentathionate and tetrathionate and, compared to higher polythionates, is significantly less likely to precipitate gold and/or silver from solution and inhibit gold and/or silver adsorption on the resin. The treated gold and/or silver-loaded resin is introduced into the first input of the co-current portion. The treated gold and/or silver-loaded resin is loaded with more gold and/or silver in the co-current portion to form further gold and/or silver-loaded resin, and the further gold and/or silver-loaded resin is removed from the co-current portion and subjected to gold and/or silver stripping using a second (stripping) solution to remove most (or all) of the gold and/or silver from the further gold and/or silver-loaded resin and form a gold and/or silver-stripped resin. The gold and/or silver-stripped resin can be regenerated and reintroduced into the counter-current portion. This configuration is typically employed where the adsorbed level of tetrathionate and other higher polythionates on the treated gold and/or silver-loaded resin from the counter-current portion is relatively high. For example, the configuration would be appropriate when the adsorbed polythionates are predominantly in the form of tetrathionate and other higher polythionates.

    [0022] In one configuration, the gold and/or silver-loaded resin from the counter-current portion is introduced from the second output directly into the first input of the co-current portion without intermediate treatment to remove tetrathionate and other higher polythionates from the resin. This configuration is employed when the levels of adsorbed tetrathionate and other higher polythionates are relatively low. For example, the configuration would be appropriate when the adsorbed polythionates are predominantly in the form of trithionate.

    [0023] In one configuration, the gold and/or silver-loaded resins from the counter-current and co-current portions are subjected to separate the resin treatment (for higher polythionate conversion) and/or gold and/or silver-stripping stages.

    [0024] In one configuration, the gold and/or silver-loaded resins from the counter-current and co-current portions are subjected to common treatment and/or gold and/or silver-stripping stages.

    [0025] All, some, or none of the stripped resin can be regenerated for reuse in either or both of the co-current and counter-current portions.

    [0026] The present disclosure can provide a number of advantages depending on the particular configuration. The circuit can promote fast gold and/or silver adsorption kinetics from the slurry at the front end of the circuit and prevent gold and/or silver loss by preg robbing and other gold and/or silver-recovery-reducing mechanisms. By adding resin in a co-current flow to the first tank, there commonly are no interfering compounds, which reduce resin loading, from subsequent leach tanks being transferred to the tanks at the beginning of the circuit. The resin added to the first tank is normally retained in the second tank until the concentration builds up. Allowing the resin concentration to build in the second tank can substantially minimize the effects of changes in the composition of gold and/or silver-containing material. The circuit can recover gold and/or silver effectively from gold and/or silver-bearing ores or concentrates requiring not only mild but also strong thiosulfate leaching conditions. In addition, the detrimental effects of polythionate anions (e.g., tetrathionate and other higher polythionates with tetrathionate being more detrimental) on gold and/or silver recovery can be largely negated by the circuit.

    [0027] These and other advantages will be apparent from the disclosure of the aspects, embodiments, and configurations contained herein.

    [0028] The phrases "at least one", "one or more", and "and/or" are open-ended expressions that are both conjunctive and disjunctive in operation. For example, each of the expressions "at least one of A, B and C", "at least one of A, B, or C", "one or more of A, B, and C", "one or more of A, B, or C" and "A, B, and/or C" means A alone, B alone, C alone, A and B together, A and C together, B and C together, or A, B and C together. When each one of A, B, and C in the above expressions refers to an element, such as X, Y, and Z, or class of elements, such as X1-Xn, Y1-Ym, and Z1-Zo, the phrase is intended to refer to a single element selected from X, Y, and Z, a combination of elements selected from the same class (e.g., X1 and X2) as well as a combination of elements selected from two or more classes (e.g., Y1 and Zo).

    [0029] The term "a" or "an" entity refers to one or more of that entity. As such, the terms "a" (or "an"), "one or more" and "at least one" can be used interchangeably herein. It is also to be noted that the terms "comprising", "including", and "having" can be used interchangeably.

    [0030] The term "higher polythionate" refers to a compound comprising Sn(SO3)2]2-, where n ≥ 4. "Higher polythionates" therefore includes tetrathionate, pentathionate, hexathionate, and so on.

    [0031] The term "ion exchange resin" or "ion-exchange polymer" is an insoluble matrix (or support structure) normally in the form of small (0.25-2 mm diameter) beads fabricated from an organic polymer substrate, such as crosslinked polystyrene or polystyrene-divinyl benzene copolymers. The material has a highly developed structure of pores or functional groups (such as amines and esters on the surface), which easily trap and release ions. The adsorption of ions takes place only with simultaneous releasing of other ions; thus the process is called ion exchange. Functional groups can be basic (anion exchangers) or acidic (cation exchangers), with strong- and weak-base resins being preferred.

    [0032] A claim incorporating the term "means" shall cover all structures, materials, or acts set forth herein, and all of the equivalents thereof. Further, the structures, materials or acts and the equivalents thereof shall include all those described in the summary of the invention, brief description of the drawings, detailed description, abstract, and claims themselves.

    [0033] A "polythionate" is a salt or ester of a polythionic acid.

    [0034] The phrase "preg robbing carbon" refers to a carbonaceous material that preferentially absorbs, permanently or temporarily, gold and gold-thio complexes and silver and silver-thio complexes.

    [0035] The preceding is a simplified summary of the disclosure to provide an understanding of some aspects of the disclosure. This summary is neither an extensive nor exhaustive overview of the disclosure and its various aspects, embodiments, and configurations. It is intended neither to identify key or critical elements of the disclosure nor to delineate the scope of the disclosure but to present selected concepts of the disclosure in a simplified form as an introduction to the more detailed description presented below. As will be appreciated, other aspects, embodiments, and configurations of the disclosure are possible utilizing, alone or in combination, one or more of the features set forth above or described in detail below.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0036] The accompanying drawings are incorporated into and form a part of the specification to illustrate several examples of the present disclosure. These drawings, together with the description, explain the principles of the disclosure. The drawings simply illustrate preferred and alternative examples of how the disclosure can be made and used and are not to be construed as limiting the disclosure to only the illustrated and described examples. Further features and advantages will become apparent from the following, more detailed, description of the various aspects, embodiments, and configurations of the disclosure, as illustrated by the drawings referenced below.

    Figure 1 is a process flow chart according to the prior art;

    Figure 2 is a resin-in-leach circuit according to the prior art;

    Figure 3 is a resin-in-leach circuit according to an embodiment;

    Figure 4 is a plot of gold recovery (percent) (vertical axis) against residence time (hours) (horizontal axis);

    Figure 5 is a plot of gold extraction (percent) (vertical axis) against operating time (hours) (horizontal axis);

    Figure 6 is a plot of gold loaded on resin (kg/t) (vertical axis) against operating time (hours) (horizontal axis) and a plot of tetrathionate loaded on resin (kg/t) against operation time (hours) and;

    Figure 7 is a plot of gold loaded on resin (kg/t) (vertical axis) against operating time (days) and a plot of tetrathionate loaded on resin (kg/t) against operation time (days).


    DETAILED DESCRIPTION



    [0037] Figure 4 depicts phenomena that can occur when performing thiosulfate gold and/or silver leaching with and without an ion exchange resin. First, the majority of gold is commonly leached from the gold-containing material quickly. Second when the gold-containing material is substantially free of preg-robbing components, the gold is commonly leached from the material quickly and almost completely. Leaching kinetics do not appear to be affected by the presence or absence of an ion exchange resin. Third when the gold-containing material contains a preg robbing component, the leaching kinetics are commonly slower, and the initial leaching kinetics and overall gold recovery are improved when the resin is present. Finally when the gold-containing material contains a preg robbing component and the resin is not present during leaching, the initial leaching kinetics are commonly high but the gold recovery commonly decreases over time. The decrease in recovery is most likely due to the adsorption of the gold thiosulfate complex by the preg-robbing material. As shown in Figure 4, fast adsorption of gold in solution can prevent subsequent losses in recovery by preg-robbing.

    [0038] Feed to gold recovery circuits can exhibit great variability which can also adversely affect gold recovery. In addition to the effect of preg robbing shown above, gold concentration, and the presence of other metals, which can complex with thiosulfate and be adsorbed by the resin, can also affect leaching kinetics and recoveries.

    [0039] Thiosulfate is partially oxidized under the conditions required for gold leaching and its oxidation products can compete with gold and/or silver thiosulfate complexes for functional group sites. The oxidation products include trithionate (S3O6), tetrathionate (S4O6), pentathionate (S5O6), other higher polythionates, and sulfate (SO42-), and these oxidation products can be adsorbed by the resin. The relative affinities for various compounds adsorbed by strong base anion exchange resins are:
    Gold > Mercury > Pentathionate > Tetrathionate > Copper > Trithionate.

    [0040] Typical concentrations of polythionates in the slurry 140 range from about 0.1 to about 5 g/L and even more typically from about 0.5 to about 2 g/L.

    [0041] With reference to the conventional circuit 200 of Figure 2 as the resin 204 is transferred towards the slurry feed end of the circuit 200, the gold level on the resin 204 increases, however the level of other components, particularly trithionate, tetrathionate and/or other higher polythionates, which, as noted, have an affinity for the resin, will also increase. By the time the resin 204 reaches the first tank 208a, which is where the majority of the gold (and/or silver) thiosulfate complex is typically formed (or the majority of gold (and/or silver) is dissolved), the resin 204 may not have adequate adsorption capacity to adsorb the gold (and/or silver), thereby lowering gold recoveries. To minimize substantially the effects of changes in feed characteristics on gold recovery, it appears, based on the results shown in Figure 4, to be advantageous to operate a thiosulfate resin-in-leach operation employing a high concentration of resin during the earliest stages of gold leaching. This can ensure that there is an abundance of adsorption or functional sites on the resin to adsorb the gold (and/or silver) prior to preg robbing or the occurrence of other species competing with gold (and/or silver) thiosulfate complex for resin functional groups.

    [0042] An embodiment of a resin-in-leach circuit according to the present disclosure is shown in Figure 3.

    [0043] Figure 3 depicts a resin-in-leach 300 (or resin-in-pulp) circuit 300, which includes a plurality of first, second, third, ... mth tanks 208a-m. The first, second, third, ... mth tanks 208a-m are typically air-agitated (e.g., Pachuca-type) vessels to maintain resin and slurry well mixed and provide air-lift for resin-slurry transfer into and out of the tanks. Static sieve bend screens (DSM type) are used to separate the resin from the slurry 140. Fresh resin 204 (and/or partially gold and/or silver loaded resin 204 from one or more of tanks 208c-m and/or stripped and/or regenerated resin from a first output 340), which is a strong-base anion exchange resins and more typically Purolite A500C, is contacted, via a first input 330 with the slurry 140 in the first tank 208a containing the highest amount of gold (and/or silver) (among the first, second, third, .. . mth tanks) and with the slurry 140 in the final tank 208m containing the lowest amount of gold (and/or silver) (among the first, second, third, . . . mth tanks). The resin 204 added to the first tank 208a moves co-current with the slurry 140, and gold (and/or silver) loaded resin 312, typically containing most of the gold (and/or silver) in the leached gold (and/or silver)-containing material is removed, via a first output 340, from the second tank 208b (hereinafter "the co-current portion of the circuit"). The resin 204 added, via a second input 350, to the final tank 208m moves counter-current to the slurry 140 and gold (and/or silver) loaded resin 316 is removed, via an output 360, from the third tank 208c (hereinafter "the counter-current portion of the circuit"). Barren tailings 320 are removed from the nth tank 208n, and gold and/or silver- and interferent-loaded resin 316 are removed from second output 380. In various configurations, the resin 204 added to the second input 350 may be gold and/or silver- and/or treated, and/or regenerated resin from the first and/or second outputs 340 and 380 and/or fresh resin.

    [0044] As will be appreciated, it is not necessary to have only two tanks with resin flowing co-currently. Any number of tanks can be used. For example, it is possible to have only one tank or more than two tanks with an appropriate resin concentration. Multiple tanks are commonly employed to minimize short circuiting of the slurry.

    [0045] The slurry 140, in one application, has a solids content ranging from about 30 to about 50 vol.%. In the first tank 208a, the slurry 140 is contacted with a gold (and/or silver) lixiviant, which is preferably an alkaline earth, alkali metal, or ammonium thiosulfate, dilution water, and optionally copper (typically as copper sulfate). In one application, the slurry 140 is contacted with sufficient thiosulfate to yield a thiosulfate concentration in the slurry 140 ranging from about 0.005 to about 2 molar. Preferably, copper, when present, is added to the feed slurry at a concentration ranging from about 10 to about 100 ppm, more preferably from about 25 to about 100 ppm, and more preferably of about 50 ppm. Copper addition may not be required when a sufficient level of copper from the gold (and/or silver)-containing material leaches into the slurry. Although the exact mechanism of how copper improves the leaching is not well understood, copper is believed to accelerate thiosulfate leaching kinetics. Preferably, there is little, or no, ammonia in the system. The leaching conditions can vary. Preferably, the temperature of leaching ranges from about 40°C to 80°C, more preferably from about 40 to about 60°C, with the more preferred target being about 50°C. Higher temperatures may result in excessive resin degradation. Preferably, pH in the leaching is maintained at about pH 7.5 to pH 10, more preferably from about pH 7.5 to about pH 9, with a more preferred target of about pH 8.0. Preferably, the oxidation-reduction-potential ("ORP") (with respect to the Ag/AgCI reference electrode) in leaching is in the range of about - 100 mV to +50 mV, though this may vary depending on the type of ores being leached. Commonly, the slurry residence ranges from about 1 to about 5 hours/tank and more commonly from about 3 to about 4 hours/tank. The total slurry residence time for the circuit typically ranges from about 10 to about 25 hours.

    [0046] The resin contacted with the slurry in the first tank is typically added at a rate of from about 1 to about 3 L/hr. The resin is typically allowed to build up in the second and third tanks 208b-c to a concentration ranging from about 10 to about 25 g/L and more typically from about 12.5 to about 17.5 g/L of slurry.

    [0047] The first and second tanks 208a-b are typically highly oxygenated while the third ... mth tanks 208c-m (in which the resin flows counter-currently) are typically poorly oxygenated. In one application, the first and second tanks 208a-b commonly have a dissolved molecular oxygen content of at least about 5 ppm and more commonly ranging from about 6 to about 10 ppm while the third ... mth tanks 208c-m have a dissolved molecular oxygen content of less than about 5 ppm and more commonly ranging from about 1 to about 4 ppm.

    [0048] In one configuration, gold (and/or silver)-loaded resin from the second and third tanks 208b and c is stripped of gold and/or silver with suitable stripping agents, including, for example, halide salts (e.g., sodium chloride, a perchlorate, and the like), polythionate, a nitrate, a thiocyanate, a thiourea, a mixture of sulfite and ammonia, thiosulfate, and mixtures thereof. The gold (and/or silver)-containing stripping agent may be processed by any suitable gold (and/or silver) recovery technique, such as electrowinning or precipitation, to extract the dissolved or stripped gold (and/or silver) and form the gold (and/or silver) product. Elution is normally conducted at a pH ranging from about pH 7 to pH 9 to eliminate substantially osmotic shock on the resin.

    [0049] In one process configuration, gold (and/or silver)-loaded resin removed from the third tank 208c is treated in unit operation 370 with a sulfite solution to remove most, if not all of, deleterious polythionates (particularly penta and tetrathionate) and the treated gold (and/or silver)-loaded resin 360 is added to the first tank 208a as a partially gold (and/or silver) loaded resin. Other sulfur and sulfoxy agents may be used to remove deleterious polythionates from the gold (and/or silver) and inferent-loaded resin to increase gold (and/or silver) loading without transferring penta- and tetra-thionate interferents. For example, a polysulfide other than a bisulfide, a bisulfide, a sulfide other than a bisulfide and a polysulfide, and mixtures thereof may be used to convert tetrathionate, pentathionate and other higher polythionates into thiosulfate. To avoid precipitation of gold (and/or silver) sulfide, however, the conditions should be carefully controlled to maximize thiosulfate formation while substantially minimizing gold (and/or silver) sulfide precipitation. The sulfite, sulfur, or sulfoxy agent converts tetrathionate, pentathionate and other higher polythionates to trithionates while leaving the gold (and/or silver) adsorbed on the resin. The treated gold and/or silver resin is removed from the first output 340, stripped of gold and/or silver in unit operation 390, and re-inputted at the second input 350.

    [0050] It is to be understood that any number of tanks may, respectively, be in the co-current and counter-current portions of the circuit

    [0051] Although typical resin concentrations are provided herein, it is to be understood that resin concentrations will vary depending upon the amount of gold (and/or silver) leached in the feed material.

    [0052] The circuit 300 can promote fast gold adsorption kinetics from the slurry at the front end of the circuit and prevent gold loss by preg robbing or other mechanism which reduce gold (and/or silver) recovery. As noted, the circuit operates by adding resin and slurry to the first tank and transferring both co-currently to the second tank, where the resin is removed and the gold (and/or silver) recovered. By adding resin in a co-current flow to the first tank, there are no interfering compounds from subsequent leach tanks being transferred to the tanks at the beginning of the circuit. The resin added to the first tank is retained in the second tank until the concentration builds up. Allowing the resin concentration to build to the second tank can substantially minimize the effects of changes in the ore type. Although two tanks are shown in the co-current portion in the Figures, it is to be understood that any number of tanks may be employed. For example, a single tank would be sufficient, if short circuiting of the slurry can be avoided.

    [0053] It is to be understood that the current process is not limited to the reduction of gold (and/or silver) recovery due simply to the presence of a preg-robbing carbonaceous material. While not wishing to be bound by any theory, there appear to be several mechanisms at work in a standard resin-in-leach or resin-in-pulp circuit in reducing gold (and/or silver) recovery. It is often not possible to define which mechanism(s) is contributing individually or collectively to gold (and/or silver) loss. The mixed flow process disclosed herein is designed to reduce the influence of tetrathionate, pentathionate, and other higher polythionate loading on the resin, on lowering gold (and/or silver) recovery, as well as on other preg robbing components, such as carbonaceous material, silica, and/or iron oxide.

    EXPERIMENTAL



    [0054] The following examples are provided to illustrate certain aspects, embodiments, and configurations of the disclosure and are not to be construed as limitations on the disclosure, as set forth in the appended claims. All parts and percentages are by weight unless otherwise specified.

    [0055] Figure 5 shows the gold recovery from a conventional counter current operation (such as that shown in Figure 2) that was operated in steady state for a period of 150 hours. The overall gold recovery as determined by the percent of the gold remaining in the tails, decreased as the operating time increased. The gold recovery dropped from 44% to 27.4% or 16.8% in tank 1, and from 84% to 66.8% or 17.2% in tank 8. It is clear that the loss of gold recovery in tank 1 was not compensated for as the slurry passed through the subsequent tanks.

    [0056] Figure 6 shows the relationship between tetrathionate adsorbed by the resin and gold recovery. An analysis of the resin removed from the first tank of the counter current operation shows that as the amount of tetrathionate adsorbed to the resin increased as the amount of gold adsorbed decreased, suggesting that adsorption on the resin of non targeted compounds can reduce the recovery of gold. As the resin moves from the back end of the circuit to the front end of the circuit there is an opportunity for these compounds to be carried to the front of the circuit.

    [0057] In one configuration, six resin-in-leach tanks were used in the circuit 300. Each tank has a preferred individual residence time of about 3 - 4 hours each for a total preferred leaching residence time of about 10 - 24 hours. The total number of tanks may be altered depending on the leaching kinetics.

    [0058] The first and second tanks 208a-b operate with the resin co-current with the movement of the gold bearing slurry. The feed slurry includes about 48% solids, has a flow rate of about 985 lb/hour or 0.201 mt solid/hour, and a dissolved gold concentration of about 2.5 g/mt. Other additives to the first tank include resin at a typical concentration of about 3.37 ml/L, dilution water at a typical rate of about 28 g/hr, calcium thiosulfate at a typical rate of about 5.2 g/hr, and copper sulfate at a typical rate of about 0.6 g/hr. The first and second co-current tanks have a dissolved molecular oxygen level of amount 7-8 ppm while the four counter-current tanks have a dissolved molecular oxygen level of about 2-3 ppm. The resin concentration in the first tank is about 3.37 ml/L and in the second tank about 15 ml/L. Typically, the resin concentration is maintained at about 15ml/L by removing the resin from the second tank 208b at approximately the same rate it is added to the first tank 208a. Highly loaded resin is withdrawn from the second tank at a rate of about 1.5 L/hr and contains about 705.51 g/mt gold.

    [0059] The third through sixth tanks operate with about 5mL/L resin moving counter-current to the movement of the gold-bearing slurry.

    [0060] The highest level of gold loading typically occurs in the second tank.

    [0061] The third through sixth tanks operate to scavenge the remaining gold in the gold bearing slurry.

    [0062] Figure 7 demonstrates resin transfer in a co-current (tanks 1 and 2) and counter current (tanks 3 through 6) portions of the circuit. The co-current portion can create conditions in which gold recovery does not decrease over time. As can be seen from the graph, the tetrathionate level in tank 1, where the majority of the gold is leached and adsorbed by the resin, is significantly lower than that observed in the third tank, which is the terminus of the counter-current resin transfer.

    [0063] A number of variations and modifications of the disclosure can be used. It would be possible to provide for some features of the disclosure without providing others.

    [0064] The present disclosure, in various aspects, embodiments, and configurations, includes components, methods, processes, systems and/or apparatus substantially as depicted and described herein, including various aspects, embodiments, configurations, subcombinations, and subsets thereof. Those of skill in the art will understand how to make and use the various aspects, aspects, embodiments, and configurations, after understanding the present disclosure. The present disclosure, in various aspects, embodiments, and configurations, includes providing devices and processes in the absence of items not depicted and/or described herein or in various aspects, embodiments, and configurations hereof, including in the absence of such items as may have been used in previous devices or processes, e.g., for improving performance, achieving ease and\or reducing cost of implementation.

    [0065] The foregoing discussion of the disclosure has been presented for purposes of illustration and description. The foregoing is not intended to limit the disclosure to the form or forms disclosed herein. In the foregoing Detailed Description for example, various features of the disclosure are grouped together in one or more, aspects, embodiments, and configurations for the purpose of streamlining the disclosure. The features of the aspects, embodiments, and configurations of the disclosure may be combined in alternate aspects, embodiments, and configurations other than those discussed above. This method of disclosure is not to be interpreted as reflecting an intention that the claimed disclosure requires more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive aspects lie in less than all features of a single foregoing disclosed aspects, embodiments, and configurations. Thus, the following claims are hereby incorporated into this Detailed Description, with each claim standing on its own as a separate preferred embodiment of the disclosure.

    [0066] Moreover, though the description of the disclosure has included description of one or more aspects, embodiments, or configurations and certain variations and modifications, other variations, combinations, and modifications are within the scope of the disclosure, e.g., as may be within the skill and knowledge of those in the art, after understanding the present disclosure. It is intended to obtain rights which include alternative aspects, embodiments, and configurations to the extent permitted, including alternate, interchangeable and/or equivalent structures, functions, ranges or steps to those claimed, whether or not such alternate, interchangeable and/or equivalent structures, functions, ranges or steps are disclosed herein, and without intending to publicly dedicate any patentable subject matter.


    Claims

    1. A method, comprising: leaching, by thiosulfate, a gold and/or silver-containing material in an ion-exchange resin-in-leach circuit (300), the circuit (300) comprising a co-current portion, wherein the co-current portion comprises at least a first tank (208a) and a second tank (208b) and the counter-current portion comprises at least a third tank (208c) and a fourth tank (208m), wherein the gold and/or silver-containing material flows first through the co-current portion and second through the counter-current portion,
    wherein the leaching step comprises the sub-steps of:

    receiving, in the first tank (208a) via a first input (330), a first ion exchange resin (204), a thiosulfate leach solution, and the gold- and/or silver-containing material;

    receiving, in the second tank (208b), a first mixed slurry (140) from the first tank (208a);

    receiving, in the third tank (208c), a second mixed slurry (140) from the second tank (208b) and a second ion exchange resin (204);

    receiving, in the fourth tank (208m) via a second input (350), a third mixed slurry (140) and the second ion exchange resin (204);

    removing the second ion exchange resin (204) and barren tailings (320) from the fourth tank (208m);

    introducing a first gold- and/or silver-loaded resin (312) from a first output (340) of the second tank (208b) into a precious metal stripping unit (390) to strip gold and/or silver therefrom and thereafter introduce the first gold- and/or silver-loaded resin (312) into the fourth tank (208m) via the second input (350); and

    introducing a second gold- and/or silver-loaded resin (316) from a second output (380) of the third tank (208c) into the first input (330) of the first tank (208a),

    wherein the counter-current portion is configured so that the second ion exchange resin (204) flows through successive tanks at least from the fourth tank (208m) to the third tank (208c), and the third mixed slurry (140) flows through successive tanks at least from the third tank (208c) to the fourth tank (208m), and

    wherein the first and second ion exchange resins (204) are strong base anion exchange resins and wherein the resin has an affinity for other components, wherein the other components comprise trithionates, tetrathionates and other higher polythionates, and sulfates, and

    wherein an affinity of the first and second ion exchange resins (204) for gold is greater than an affinity of the first and second ion exchange resins (204) for mercury, wherein the affinity of the first and second ion exchange resins (204) for mercury is greater than an affinity of the first and second ion exchange resins (204) for pentathionate, wherein the affinity of the first and second ion exchange resins (204) for pentathionate is greater than an affinity of the first and second ion exchange resins (204) for tetrathionate, wherein the affinity of the first and second ion exchange resins (204) for tetrathionate is greater than an affinity of the first and second ion exchange resins (204) for copper, and the affinity of the first and second ion exchange resins (204) for copper is greater than an affinity of the first and second ion exchange resins (204) for trithionate.


     
    2. The method of claim 1, wherein the co-current and counter-current portions do not share a common resin-in-leach tank.
     
    3. The method of claim 1, wherein most or all of a gold and/or silver-loaded resin (204) in the co-current portion is removed from a tank in the co-current portion and most or all of a gold and/or silver-loaded resin in the counter-current portion is removed from the counter-current portion.
     
    4. The method of claim 1, wherein the polythionates are tetrathionate and other higher polythionates, wherein higher polythionate- and gold-loaded resin (316) from the counter-current portion is treated to remove most or all of the higher polythionate but most or all of the gold remains loaded on the resin to form a treated gold-loaded resin (360) and wherein the treated gold-loaded ion-exchange resin (360) is introduced into the co-current portion.
     
    5. The method of claim 4, wherein the treated gold-loaded (360) resin is loaded with more gold in the co-current portion to form further gold-loaded resin (312), wherein the further gold-loaded resin (312) is removed from the co-current portion and subjected to stripping to remove most or all of the gold from the further gold-loaded resin (312) and form a gold and/or silver stripped ion-exchange resin, and wherein the gold and/or silver stripped resin is reintroduced into the countercurrent portion.
     
    6. The method of clam 1, wherein the polythionates are predominantly trithionates, wherein the polythionate- and gold- and/or silver-loaded resin (312) is introduced into the countercurrent portion to form a further loaded gold- and/or silver-loaded resin (316), and wherein the further loaded gold- and/or silver-loaded resin (316), after removal from the counter-current portion, is contacted with a stripping solution to remove at least most of the gold and/or silver from the further loaded gold- and/or silver-loaded resin (316), to form a stripped resin, wherein the stripped resin is introduced into the co-current portion.
     
    7. A system for co-current and counter-current thiosulfate leaching of gold and/or silver, comprising a first and second ion exchange resin (204), a thiosulfate leach solution, a gold- and/or silver-containing material, a plurality of m tanks (208a-m), and a precious metal stripping unit (390),

    wherein the plurality of m tanks (208a-m) consists of a co-current portion and a countercurrent portion, the co-current portion comprising at least a first tank (208a) and a second tank (208b), wherein each tank in the co-current portion is configured to flow co-currently, and the counter-current portion comprising at least a third tank (208c) and a fourth tank (208m), wherein each tank in the counter-current portion is configured to flow counter-currently,

    wherein the first tank (208a) is configured to receive, via a first input (330), the first ion exchange resin (204), the thiosulfate leach solution, and the gold- and/or silver-containing material and to remove a first mixed slurry (140) therefrom,

    wherein the second tank (208b) is configured to receive the first mixed slurry (140) from the first tank (208a), and to remove a first gold- and/or silver-loaded resin (312) and a second mixed slurry (140) therefrom,

    wherein the precious metal stripping unit (390) is configured to receive the first gold- and/or silver-loaded resin (312) from the second tank (208b) and strip gold and/or silver from the first gold- and/or silver-loaded resin (312),

    wherein the third tank (208c) is configured to receive the second mixed slurry (140) from the second tank (208b) and the second ion exchange resin (204), and to remove a second gold- and/or silver-loaded resin (316) and a third mixed slurry (140) therefrom,

    wherein the fourth tank (208m) is configured to receive, via a second input (350), the third mixed slurry (140) and the second ion exchange resin (204), and to remove the second ion exchange resin (204) and barren tailings (320) therefrom,

    wherein the precious metal stripping unit (390) is connected to the fourth tank (208m) via the second input (350) to introduce the stripped gold- and/or silver-loaded resin from the precious metal stripping unit (390) into the fourth tank (208m),

    wherein the third tank (208c), via a second output (380), is connected to the first tank (208a), via the first input (330), to introduce the second gold and/or silver-loaded resin (316) from the third tank (208c) into the first tank (208a),

    wherein the second tank (208b), via a first output (340), is connected to the fourth tank (208m), via the second input (350), to introduce the first gold- and/or silver-loaded resin (312) from the second tank (208b) into the fourth tank (208m),

    wherein, the counter-current portion is configured so that the second ion exchange resin (204) flows through successive tanks at least from the fourth tank (208m) to the third tank (208c), and the third mixed slurry (140) flows through successive tanks at least from the third tank (208c) to the fourth tank (208m),

    wherein the first and second ion exchange resins (204) are strong base anion exchange resins and wherein the resin has an affinity for other components, wherein the other components comprise trithionates, tetrathionates and other higher polythionates,

    wherein an affinity of the first and second ion exchange resins (204) for gold is greater than an affinity of the first and second ion exchange resins (204) for mercury, wherein the affinity of the first and second ion exchange resins (204) for mercury is greater than an affinity of the first and second ion exchange resins (204) for pentathionate, wherein the affinity of the first and second ion exchange resins (204) for pentathionate is greater than an affinity of the first and second ion exchange resins (204) for tetrathionate, wherein the affinity of the first and second ion exchange resins (204) for tetrathionate is greater than an affinity of the first and second ion exchange resins (204) for copper, and the affinity of the first and second ion exchange resins (204) for copper is greater than an affinity of the first and second ion exchange resins (204) for trithionate.


     
    8. The system of claim 7, wherein the first and second ion exchange resins (204) are different from one another, and the first and second gold- and/or silver-loaded resins (312, 316) are different from one another, wherein the first ion exchange resin (204) comprises at least a part of the second gold- and/or silver-loaded resin (204), and wherein the co-current portion and the counter-current portion do not share a common resin-in-leach tank, and wherein the gold- and/or silver-containing material flows first through the co-current portion and then through the counter-current portion.
     
    9. The system of claim 7, wherein most or all of the gold- and/or silver-loaded resin (312) in the co-current portion is removed from the co-current portion and most or all of the gold- and/or silver-loaded resin (316) in the counter-current portion is removed from the counter-current portion.
     
    10. The system of claim 7, wherein the gold and/or silver is gold, wherein the thiosulfate is substantially free of ammonia, wherein a leach solution in the counter-current portion comprises dissolved gold, thiosulfate, and polythionates, wherein the resin adsorbs, from the leach solution, higher polythionates and gold, and wherein the gold- and/or silver-containing material comprises a preg-robbing material, wherein the higher polythionate- and gold-loaded resin (316) from the countercurrent portion is treated to convert most of the higher polythionates sorbed on the gold-loaded resin to trithionate using a first solution but at least most of the gold remains loaded on the resin to form a treated gold-loaded resin, wherein the first solution comprises sulfite, which converts tetrathionate, pentathionate and other higher polythionates into trithionate and thiosulfate, wherein the treated gold-loaded resin (360) is loaded with more gold in the co-current portion to form further gold-loaded resin (312), wherein the further gold-loaded resin (312) is removed from the co-current portion and subjected to stripping to remove at least most of the gold from the further gold-loaded resin (312) and form a gold-stripped resin (204), wherein the gold-stripped resin (204) is regenerated and reintroduced into the counter-current portion, wherein the levels of adsorbed tetrathionate and other higher polythionates are relatively low, wherein the adsorbed polythionates are predominantly in the form of trithionate, wherein the gold-loaded resin (316) from the counter-current portion is introduced directly into the first tank (208a) without intermediate treatment to remove tetrathionate and other higher polythionates from the resin, and wherein the treated gold-loaded resin (316) is introduced into the co-current portion.
     
    11. The system of claim 7, wherein the gold- and/or silver-loaded resins (312, 316) from the counter-current portion and the co-current portion are subjected to one of:

    (i) separate resin treatment to convert higher polythionates sorbed on the loaded resin to trithionate and thiosulfate and/or gold- and/or silver-stripping stages to desorb gold and/or silver from the loaded resins

    (ii) common resin treatment to convert higher polythionates sorbed on the loaded resin to trithionate and thiosulfate conversion and/or gold- and/or silver-stripping stages to desorb gold and/or silver from the loaded resins, and

    wherein a first resin concentration in a part of the co-current portion is less than a second resin concentration in a part of the counter-current portion.
     
    12. The system of claim 7, wherein the thiosulfate is substantially free of ammonia, wherein a leach solution in the counter-current portion comprises dissolved gold and/or silver, thiosulfate, and polythionates, wherein the resin adsorbs, from the leach solution, higher polythionates and gold and/or silver, and wherein the gold- and/or silver-containing material comprises a preg-robbing material, wherein the gold- and/or silver-loaded resin (316) is removed from the third tank (208c) and is treated with a sulfite solution to remove at least most of the higher polythionates, and the treated gold- and/or silver-loaded resin (360) is introduced into the first tank (208a) as a partially gold- and/or silver-loaded resin, wherein the pentathionate and tetrathionate are interferents, wherein the sulfite, a sulfur and/or a sulfoxy agent converts the tetrathionate, pentathionate and other higher polythionates to trithonates while leaving the gold and/or silver on the gold and/or silver- -loaded resin to increase gold and/or silver loading without transferring pentathionate and tetrathionate interferents, wherein a polysulfide selected from the group consisting essentially of a polysulfide other than a bisulfide, a sulfide other than a bisulfide and a polysulfide, and mixtures thereof converts tetrathionate, pentathionate and other higher polythionates sorbed on the loaded resin into thiosulfate, and wherein the treated gold and/or silver resin (312) is removed from the co-current portion, stripped of gold and/or silver, and re-inputted into the counter-current portion.
     
    13. The system of claim 7, further comprising:

    a sulfite treatment unit (370), configured to receive at least a portion of the second gold- and/or silver-loaded resin (316) from the third tank (208c) and treat the at least a portion of the second gold- and/or silver-loaded resin (316) with a sulfite solution to remove most of the polythionates from the at least a portion of the second gold- and/or silver-loaded resin (316) to form a treated gold and/or silver-loaded resin (360),

    wherein the sulfite treatment unit (370) is connected to the first tank (208a) via the first input (330) to introduce the treated gold and/or silver-loaded resin (360) from the sulfite treatment unit (370) into the first tank (208a).


     


    Ansprüche

    1. Verfahren, umfassend: Auslaugen eines gold- und/oder silberhaltigen Materials mittels Thiosulfat in einem lonenaustauscher-Harz-in-Lauge-Kreislauf (300), wobei der Kreislauf (300) einen Gleichstromteil umfasst, wobei der Gleichstromteil mindestens einen ersten Tank (208a) und einen zweiten Tank (208b) umfasst und der Gegenstromteil mindestens einen dritten Tank (208c) und einen vierten Tank (208m) umfasst, wobei das gold- und/oder silberhaltige Material zuerst durch den Gleichstromteil und dann durch den Gegenstromteil fließt,
    wobei der Schritt des Auslaugens die folgenden Teilschritte umfasst:

    Aufnehmen eines ersten lonenaustauschharzes (204), einer Thiosulfat-Auslaugungslösung und des gold- und/oder silberhaltigen Materials in dem ersten Tank (208a) über einen ersten Eingang (330);

    Aufnehmen einer ersten gemischten Schlämme (140) aus dem ersten Tank (208a) in dem zweiten Tank (208b);

    Aufnehmen einer zweiten gemischten Schlämme (140) aus dem zweiten Tank (208b) und eines zweiten lonenaustauschharzes (204) in dem dritten Tank (208c);

    Aufnehmen einer dritten gemischten Schlämme (140) und des zweiten lonenaustauschharzes (204) in den vierten Tank (208m) über einen zweiten Eingang (350);

    Entfernen des zweiten lonenaustauschharzes (204) und des unbrauchbaren Bergematerials (320) aus dem vierten Tank (208m);

    Einleiten eines ersten mit Gold und/oder Silber beladenen Harzes (312) aus einem ersten Ausgang (340) des zweiten Tanks (208b) in eine Edelmetall-Strippeinheit (390), um Gold und/oder Silber daraus abzustreifen, und anschließendes Einleiten des ersten mit Gold und/oder Silber beladenen Harzes (312) in den vierten Tank (208m) über den zweiten Eingang (350); und

    Einführen eines zweiten gold- und/oder silberbeladenen Harzes (316) von einem zweiten Ausgang (380) des dritten Tanks (208c) in den ersten Eingang (330) des ersten Tanks (208a),

    wobei der Gegenstromteil so konfiguriert ist, dass das zweite lonenaustauschharz (204) durch aufeinanderfolgende Tanks zumindest von dem vierten Tank (208m) zu dem dritten Tank (208c) fließt und die dritte gemischte Schlämme (140) durch aufeinanderfolgende Tanks zumindest von dem dritten Tank (208c) zu dem vierten Tank (208m) fließt, und

    wobei die ersten und zweiten lonenaustauschharze (204) stark basische Anionenaustauschharze sind und wobei das Harz eine Affinität für andere Komponenten aufweist, wobei die anderen Komponenten Trithionate, Tetrathionate und andere höhere Polythionate und Sulfate umfassen, und

    wobei eine Affinität des ersten und zweiten lonenaustauschharzes (204) für Gold größer ist als eine Affinität des ersten und zweiten lonenaustauschharzes (204) für Quecksilber, wobei die Affinität des ersten und zweiten lonenaustauschharzes (204) für Quecksilber größer ist als eine Affinität des ersten und zweiten lonenaustauschharzes (204) für Pentathionat, wobei die Affinität der ersten und zweiten lonenaustauschharze (204) für Pentathionat größer ist als eine Affinität der ersten und zweiten lonenaustauschharze (204) für Tetrathionat, wobei die Affinität der ersten und zweiten lonenaustauschharze (204) für Tetrathionat größer ist als eine Affinität der ersten und zweiten lonenaustauschharze (204) für Kupfer, und die Affinität der ersten und

    zweiten lonenaustauschharze (204) für Kupfer größer ist als eine Affinität der ersten und zweiten lonenaustauschharze (204) für Trithionat.


     
    2. Verfahren nach Anspruch 1, wobei die Gleichstrom- und Gegenstromteile keinen gemeinsamen Harz-in-Laugen-Tank teilen.
     
    3. Verfahren nach Anspruch 1, wobei das meiste oder das gesamte gold- und/oder silberbeladene Harz (204) im Gleichstromteil aus einem Tank im Gleichstromteil entfernt wird und das meiste oder das gesamte gold- und/oder silberbeladene Harz im Gegenstromteil aus dem Gegenstromteil entfernt wird.
     
    4. Verfahren nach Anspruch 1, wobei die Polythionate Tetrathionat und andere höhere Polythionate sind, wobei mit höherem Polythionat und Gold beladenes Harz (316) aus dem Gegenstromteil behandelt wird, um das meiste oder das gesamte höhere Polythionat zu entfernen, aber das meiste oder das gesamte Gold auf dem Harz beladen bleibt, um ein behandeltes goldbeladenes Harz (360) zu bilden, und wobei das behandelte goldbeladene lonenaustauscherharz (360) in den Gleichstromteil eingeführt wird.
     
    5. Verfahren nach Anspruch 4, wobei das behandelte goldbeladene (360) Harz mit mehr Gold im Gleichstromteil beladen wird, um ein weiteres goldbeladenes Harz (312) zu bilden, wobei das weitere goldbeladene Harz (312) aus dem Gleichstromteil entfernt und einem Strippen unterzogen wird, um das meiste oder das gesamte Gold von dem weiteren goldbeladenen Harz (312) zu entfernen und ein gold- und/oder silbergestripptes lonenaustauschharz zu bilden, und wobei das gold- und/oder silbergestrippte Harz wieder in den Gegenstromteil eingeführt wird.
     
    6. Verfahren nach Anspruch 1, wobei es sich bei den Polythionaten überwiegend um Trithionate handelt, wobei das polythionat- und gold- und/oder silberbeladene Harz (312) in den Gegenstromteil eingeführt wird, um ein weiteres beladenes gold- und/oder silberbeladenes Harz (316) zu bilden, und wobei das weitere beladene gold- und/oder silberbeladene Harz (316), nach der Entfernung aus dem Gegenstromteil mit einer Stripplösung in Kontakt gebracht wird, um zumindest den größten Teil des Goldes und/oder Silbers von dem weiter beladenen gold- und/oder silberbeladenen Harz (316) zu entfernen, um ein gestripptes Harz zu bilden, wobei das gestrippte Harz in den Gleichstromteil eingeführt wird.
     
    7. System zum Gleichstrom- und Gegenstrom-Thiosulfat-Auslaugen von Gold und/oder Silber, umfassend ein erstes und ein zweites lonenaustauschharz (204), eine Thiosulfat-Auslauglösung, ein gold- und/oder silberhaltiges Material, eine Vielzahl von m Tanks (208a-m) und eine Edelmetall-Strippeinheit (390),

    wobei die Vielzahl von m Tanks (208a-m) aus einem Gleichstromteil und einem Gegenstromteil besteht, wobei der Gleichstromteil mindestens einen ersten Tank (208a) und einen zweiten Tank (208b) umfasst, wobei jeder Tank in dem Gleichstromteil so konfiguriert ist, dass er im Gleichstrom fließt, und der Gegenstromteil mindestens einen dritten Tank (208c) und einen vierten Tank (208m) umfasst, wobei jeder Tank in dem Gegenstromteil so konfiguriert ist, dass er im Gegenstrom fließt,

    wobei der erste Tank (208a) so konfiguriert ist, dass er über einen ersten Eingang (330) das erste lonenaustauschharz (204), die Thiosulfatauslaugungslösung und das gold- und/oder silberhaltige Material aufnimmt und daraus eine erste gemischte Schlämme (140) entfernt,

    wobei der zweite Tank (208b) so konfiguriert ist, dass er die erste gemischte Schlämme (140) aus dem ersten Tank (208a) aufnimmt und ein erstes gold- und/oder silberbeladenes Harz (312) und eine zweite gemischte Schlämme (140) daraus entfernt,

    wobei die Edelmetall-Strippeinheit (390) so konfiguriert ist, dass sie das erste gold- und/oder silberbeladene Harz (312) aus dem zweiten Tank (208b) aufnimmt und Gold und/oder Silber von dem ersten gold- und/oder silberbeladenen Harz (312) strippt, wobei der dritte Tank (208c) so konfiguriert ist, dass er die zweite gemischte Schlämme (140) aus dem zweiten Tank (208b) und das zweite lonenaustauschharz (204) aufnimmt und ein zweites gold- und/oder silberbeladenes Harz (316) und eine dritte gemischte Schlämme (140) daraus entfernt,

    wobei der vierte Tank (208m) so konfiguriert ist, dass er über einen zweiten Eingang (350) die dritte gemischte Schlämme (140) und das zweite lonenaustauschharz (204) aufnimmt und das zweite lonenaustauschharz (204) und unbrauchbares Bergematerial (320) daraus entfernt,

    wobei die Edelmetall-Strippeinheit (390) über den zweiten Eingang (350) mit dem vierten Tank (208m) verbunden ist, um das abgestreifte gold- und/oder silberbeladene Harz von der Edelmetall-Strippeinheit (390) in den vierten Tank (208m) einzuleiten,

    wobei der dritte Tank (208c) über einen zweiten Ausgang (380) mit dem ersten Tank (208a) über den ersten Eingang (330) verbunden ist, um das zweite gold- und/oder silberbeladene Harz (316) aus dem dritten Tank (208c) in den ersten Tank (208a) einzuleiten,

    wobei der zweite Tank (208b) über einen ersten Ausgang (340) mit dem vierten Tank (208m) über den zweiten Eingang (350) verbunden ist, um das erste gold- und/oder silberbeladene Harz (312) aus dem zweiten Tank (208b) in den vierten Tank (208m) einzuleiten,

    wobei der Gegenstromteil so konfiguriert ist, dass das zweite lonenaustauschharz (204) durch aufeinanderfolgende Tanks zumindest von dem vierten Tank (208m) zu dem dritten Tank (208c) fließt und die dritte gemischte Schlämme (140) durch aufeinanderfolgende Tanks zumindest von dem dritten Tank (208c) zu dem vierten Tank (208m) fließt,

    wobei die ersten und zweiten lonenaustauschharze (204) stark basische Anionenaustauschharze sind und wobei das Harz eine Affinität für andere Komponenten aufweist, wobei die anderen Komponenten Trithionate, Tetrathionate und andere höhere Polythionate umfassen,

    wobei eine Affinität der ersten und zweiten lonenaustauschharze (204) für Gold größer ist als eine Affinität der ersten und zweiten lonenaustauschharze (204) für Quecksilber, wobei die Affinität der ersten und zweiten lonenaustauschharze (204) für Quecksilber größer ist als eine Affinität der ersten und zweiten lonenaustauschharze (204) für Pentathionat, wobei die Affinität der ersten und zweiten lonenaustauschharze (204) für Pentathionat größer ist als eine Affinität der ersten und zweiten lonenaustauschharze (204) für Tetrathionat, wobei die Affinität der ersten und zweiten lonenaustauschharze (204) für Tetrathionat größer ist als eine Affinität der ersten und zweiten lonenaustauschharze (204) für Kupfer, und die Affinität der ersten und zweiten lonenaustauschharze (204) für Kupfer größer ist als eine Affinität der ersten und zweiten lonenaustauschharze (204) für Trithionat.


     
    8. System nach Anspruch 7, wobei das erste und das zweite lonenaustauschharz (204) voneinander verschieden sind und das erste und das zweite gold- und/oder silberbeladene Harz (312, 316) voneinander verschieden sind, wobei das erste lonenaustauschharz (204) mindestens einen Teil des zweiten gold- und/oder silberbeladenen Harzes (204) umfasst, und wobei der Gleichstromteil und der Gegenstromteil keinen gemeinsamen Harz-in-Lauge-Tank teilen, und wobei das gold- und/oder silberhaltige Material zuerst durch den Gleichstromteil und dann durch den Gegenstromteil fließt.
     
    9. System nach Anspruch 7, wobei das meiste oder das gesamte gold- und/oder silberbeladene Harz (312) im Gleichstromteil aus dem Gleichstromteil entfernt wird und das meiste oder das gesamte gold- und/oder silberbeladene Harz (316) im Gegenstromteil aus dem Gegenstromteil entfernt wird.
     
    10. System nach Anspruch 7, wobei es sich bei dem Gold und/oder Silber um Gold handelt, wobei das Thiosulfat im Wesentlichen frei von Ammoniak ist, wobei eine Auslaugungslösung im Gegenstromteil gelöstes Gold, Thiosulfat und Polythionate umfasst, wobei das Harz aus der Auslaugungslösung höhere Polythionate und Gold adsorbiert und wobei das gold- und/oder silberhaltige Material ein preg-robbing Material umfasst, wobei das mit höheren Polythionaten und Gold beladene Harz (316) aus dem Gegenstromteil behandelt wird, um den größten Teil der an das goldbeladene Harz sorbierten höheren Polythionate unter Verwendung einer ersten Lösung in Trithionat umzuwandeln, wobei jedoch zumindest der größte Teil des Goldes an dem Harz beladen bleibt, um ein behandeltes goldbeladenes Harz zu bilden, wobei die erste Lösung Sulfit umfasst, das Tetrathionat, Pentathionat und andere höhere Polythionate in Trithionat und Thiosulfat umwandelt, wobei das behandelte goldbeladene Harz (360) mit mehr Gold im Gleichstromteil beladen wird, um ein weiteres goldbeladenes Harz (312) zu bilden, wobei das weitere goldbeladene Harz (312) aus dem Gleichstromteil entfernt und einem Strippen unterzogen wird, um zumindest das meiste Gold aus dem weiteren goldbeladenen Harz (312) zu entfernen und ein goldgestripptes Harz (204) zu bilden, wobei das goldgestrippte Harz (204) regeneriert und wieder in den Gegenstromteil eingeführt wird, wobei der Gehalt an adsorbiertem Tetrathionat und anderen höheren Polythionaten relativ gering ist, wobei die adsorbierten Polythionate überwiegend in Form von Trithionat vorliegen, wobei das goldbeladene Harz (316) aus dem Gegenstromteil direkt in den ersten Tank (208a) ohne Zwischenbehandlung zur Entfernung von Tetrathionat und anderen höheren Polythionaten aus dem Harz eingeführt wird, und wobei das behandelte goldbeladene Harz (316) in den Gleichstromteil eingeführt wird.
     
    11. System nach Anspruch 7, wobei die gold- und/oder silberbeladenen Harze (312, 316) aus dem Gegenstromteil und dem Gleichstromteil einer der folgenden Behandlungen unterzogen werden:

    (i) getrennte Harzbehandlung zur Umwandlung höherer Polythionate, die an das beladene Harz sorbiert sind, in Trithionat und Thiosulfat und/oder Gold- und/oder Silber-Stripping-Stufen zur Desorption von Gold und/oder Silber von den beladenen Harzen

    (ii) gemeinsame Harzbehandlung zur Umwandlung höherer Polythionate, die auf dem beladenen Harz sorbiert sind, in Trithionat- und Thiosulfat-Umwandlungs- und/oder Gold- und/oder Silber-Stripping-Stufen zur Desorption von Gold und/oder Silber aus den beladenen Harzen, und

    wobei eine erste Harzkonzentration in einem Teil des Gleichstromteils geringer ist als eine zweite Harzkonzentration in einem Teil des Gegenstromteils.
     
    12. System nach Anspruch 7, wobei das Thiosulfat im Wesentlichen frei von Ammoniak ist, wobei eine Auslauglösung im Gegenstromteil gelöstes Gold und/oder Silber, Thiosulfat und Polythionate umfasst, wobei das Harz aus der Auslauglösung höhere Polythionate und Gold und/oder Silber adsorbiert, und wobei das gold- und/oder silberhaltige Material ein preg-robbing Material umfasst, wobei das mit Gold und/oder Silber beladene Harz (316) aus dem dritten Tank (208c) entnommen und mit einer Sulfitlösung behandelt wird, um zumindest den größten Teil der höheren Polythionate zu entfernen, und das behandelte, mit Gold und/oder Silber beladene Harz (360) in den ersten Tank (208a) als teilweise mit Gold und/oder Silber beladenes Harz eingeführt wird, wobei das Pentathionat und das Tetrathionat Störstoffe sind, wobei das Sulfit, ein Schwefel und/oder ein Sulfoxy-Agens das Tetrathionat, Pentathionat und andere höhere Polythionate in Trithonate umwandelt, während das Gold und/oder Silber auf dem gold- und/oder silberbeladenen Harz verbleibt, um die Gold- und/oder Silberbeladung zu erhöhen, ohne Pentathionat- und Tetrathionat-Interferenten zu übertragen, wobei ein Polysulfid, ausgewählt aus der Gruppe, die im Wesentlichen aus einem Polysulfid, das kein Bisulfid ist, besteht, einem anderen Sulfid als einem Bisulfid und einem Polysulfid und Mischungen davon besteht, Tetrathionat, Pentathionat und andere höhere Polythionate, die an dem beladenen Harz sorbiert sind, in Thiosulfat umwandelt, und wobei das behandelte Gold- und/oder Silberharz (312) aus dem Gleichstromteil entfernt, von Gold und/oder Silber befreit und wieder in den Gegenstromteil eingebracht wird.
     
    13. System nach Anspruch 7, ferner umfassend

    eine Sulfitbehandlungseinheit (370), die so konfiguriert ist, dass sie mindestens einen Teil des zweiten gold- und/oder silberbeladenen Harzes (316) aus dem dritten Tank (208c) aufnimmt und den mindestens einen Teil des zweiten gold- und/oder silberbeladenen Harzes (316) mit einer Sulfitlösung behandelt, um den größten Teil der Polythionate aus dem mindestens einen Teil des zweiten gold- und/oder silberbeladenen Harzes (316) zu entfernen und ein behandeltes gold- und/oder silberbeladenes Harz (360) zu bilden,

    wobei die Sulfitbehandlungseinheit (370) mit dem ersten Tank (208a) über den ersten Eingang (330) verbunden ist, um das behandelte gold- und/oder silberbeladene Harz (360) von der Sulfitbehandlungseinheit (370) in den ersten Tank (208a) einzuleiten.


     


    Revendications

    1. Procédé, comprenant : lixivier, par thiosulfate, une matière contenant de l'or et/ou de l'argent dans un circuit de résine échangeuse d'ions en lixiviation (300), le circuit (300) comprenant une partie à co-courant, la partie à co-courant comprenant au moins une première cuve (208a) et une deuxième cuve (208b) et la partie à contre-courant comprenant au moins une troisième cuve (208c) et une quatrième cuve (208m), la matière contenant de l'or et/ou de l'argent s'écoulant d'abord à travers la partie à co-courant et ensuite à travers la partie à contre-courant,
    dans lequel l'étape de lixiviation comprend les sous-étapes consistant à :

    recevoir, dans la première cuve (208a) par l'intermédiaire d'une première entrée (330), une première résine échangeuse d'ions (204), une solution de lixiviation par thiosulfate, et la matière contenant de l'or et/ou de l'argent ;

    recevoir, dans la deuxième cuve (208b), une première bouillie mélangée (140) provenant de la première cuve (208a) ;

    recevoir, dans la troisième cuve (208c), une deuxième bouillie mélangée (140) provenant de la deuxième cuve (208b) et une seconde résine échangeuse d'ions (204) ;

    recevoir, dans la quatrième cuve (208m) par l'intermédiaire d'une seconde entrée (350), une troisième bouillie mélangée (140) et la seconde résine échangeuse d'ions (204) ;

    retirer la seconde résine échangeuse d'ions (204) et des résidus stériles (320) à partir de la quatrième cuve (208m) ;

    introduire une première résine chargée d'or et/ou d'argent (312) à partir d'une première sortie (340) de la deuxième cuve (208b) dans une unité de strippage de métaux précieux (390) pour en retirer par strippage l'or et/ou l'argent et introduire ensuite la première résine chargée d'or et/ou d'argent (312) dans la quatrième cuve (208m) par l'intermédiaire de la seconde entrée (350) ; et

    introduire une seconde résine chargée d'or et/ou d'argent (316) à partir d'une seconde sortie (380) de la troisième cuve (208c) dans la première entrée (330) de la première cuve (208a),

    dans lequel la partie à contre-courant est configurée de telle sorte que la seconde résine échangeuse d'ions (204) s'écoule à travers des cuves successives au moins de la quatrième cuve (208m) à la troisième cuve (208c), et la troisième bouillie mélangée (140) s'écoule à travers des cuves successives au moins de la troisième cuve (208c) à la quatrième cuve (208m), et

    dans lequel les première et seconde résines échangeuses d'ions (204) sont des résines échangeuses d'anions de base forte et dans lequel la résine a une affinité pour d'autres composants, les autres composants comprenant les trithionates, les tétrathionates et autres polythionates supérieurs, et les sulfates, et

    dans lequel une affinité des première et seconde résines échangeuses d'ions (204) pour l'or est supérieure à une affinité des première et seconde résines échangeuses d'ions (204) pour le mercure, dans lequel l'affinité des première et seconde résines échangeuses d'ions (204) pour le mercure est supérieure à une affinité des première et seconde résines échangeuses d'ions (204) pour le pentathionate, dans lequel l'affinité des première et seconde résines échangeuses d'ions (204) pour le pentathionate est supérieure à une affinité des première et seconde résines échangeuses d'ions (204) pour le tétrathionate, dans lequel l'affinité des première et

    seconde résines échangeuses d'ions (204) pour le tétrathionate est supérieure à une affinité des première et seconde résines échangeuses d'ions (204) pour le cuivre, et

    l'affinité des première et seconde résines échangeuses d'ions (204) pour le cuivre est supérieure à une affinité des première et seconde résines échangeuses d'ions (204) pour le trithionate.


     
    2. Procédé selon la revendication 1, dans lequel les parties à co-courant et à contre-courant ne partagent pas de cuve commune de résine en lixiviation.
     
    3. Procédé selon la revendication 1, dans lequel la plupart ou la totalité d'une résine chargée d'or et/ou d'argent (204) dans la partie à co-courant est retirée d'une cuve dans la partie à co-courant et la plupart ou la totalité d'une résine chargée d'or et/ou d'argent dans la partie à contre-courant est retirée de la partie à contre-courant.
     
    4. Procédé selon la revendication 1, dans lequel les polythionates sont le tétrathionate et autres polythionates supérieurs, dans lequel la résine chargée de polythionate supérieur et d'or (316) provenant de la partie à contre-courant est traitée pour retirer la plupart ou la totalité du polythionate supérieur mais la plupart ou la totalité de l'or reste chargée sur la résine pour former une résine chargée d'or traitée (360) et dans lequel la résine échangeuse d'ions chargée d'or traitée (360) est introduite dans la partie à co-courant.
     
    5. Procédé selon la revendication 4, dans lequel la résine chargée d'or traitée (360) est chargée avec davantage d'or dans la partie à co-courant pour former de la résine davantage chargée d'or (312), dans lequel la résine davantage chargée d'or (312) est retirée de la partie à co-courant et soumise à un strippage pour retirer la plupart ou la totalité de l'or à partir de la résine davantage chargée d'or (312) et former une résine échangeuse d'ions dont on a retiré par strippage l'or et/ou l'argent, et dans lequel la résine dont on a retiré par strippage l'or et/ou l'argent est réintroduite dans la partie àe contre-courant.
     
    6. Procédé selon la revendication 1, dans lequel les polythionates sont principalement des trithionates, dans lequel la résine chargée de polythionate et d'or et/ou d'argent (312) est introduite dans la partie à contre-courant pour former une résine chargée d'or et/ou d'argent davantage chargée (316), et dans lequel la résine chargée d'or et/ou d'argent davantage chargée (316), après retrait à partir de la partie à contre-courant, est mise en contact avec une solution de strippage pour retirer au moins la plupart de l'or et/ou de l'argent à partir de la résine chargée d'or et/ou d'argent davantage chargée (316), pour former une résine ayant subi le strippage, la résine ayant subi le strippage étant introduite dans la partie à co-courant.
     
    7. Système de lixiviation d'or et/ou d'argent par thiosulfate à co-courant et à contre-courant, comprenant une première et une seconde résine échangeuse d'ions (204), une solution de lixiviation par thiosulfate, une matière contenant de l'or et/ou de l'argent, une pluralité de m cuves (208a-m), et une unité de strippage de métaux précieux (390),

    dans lequel la pluralité de m cuves (208a-m) consiste en une partie à co-courant et une partie à contre-courant, la partie à co-courant comprenant au moins une première cuve (208a) et une deuxième cuve (208b), chaque cuve dans la partie à co-courant étant configurée pour un écoulement à co-courant, et la partie à contre-courant comprenant au moins une troisième cuve (208c) et une quatrième cuve (208m), chaque cuve dans la partie à contre-courant étant configurée pour un écoulement à contre-courant,

    dans lequel la première cuve (208a) est configurée pour recevoir, par l'intermédiaire d'une première entrée (330), la première résine échangeuse d'ions (204), la solution de lixiviation par thiosulfate, et la matière contenant de l'or et/ou de l'argent et pour retirer une première bouillie mélangée (140) à partir de celle-ci,

    dans lequel la deuxième cuve (208b) est configurée pour recevoir la première bouillie mélangée (140) à partir de la première cuve (208a), et pour retirer une première résine chargée d'or et/ou d'argent (312) et une deuxième bouillie mélangée (140) à partir de celle-ci,

    dans lequel l'unité de strippage de métaux précieux (390) est configurée pour recevoir la première résine chargée d'or et/ou d'argent (312) à partir de la deuxième cuve (208b) et effectuer un strippage d'or et/ou d'argent à partir de la première résine chargée d'or et/ou d'argent (312),

    dans lequel la troisième cuve (208c) est configurée pour recevoir la deuxième bouillie mélangée (140) à partir de la deuxième cuve (208b) et la seconde résine échangeuse d'ions (204), et pour retirer une seconde résine chargée d'or et/ou d'argent (316) et une troisième bouillie mélangée (140) à partir de celle-ci,

    dans lequel la quatrième cuve (208m) est configurée pour recevoir, par l'intermédiaire d'une seconde entrée (350), la troisième bouillie mélangée (140) et la seconde résine échangeuse d'ions (204), et pour retirer la seconde résine échangeuse d'ions (204) et des résidus stériles (320) à partir de celle-ci,

    dans lequel l'unité de strippage de métaux précieux (390) est reliée à la quatrième cuve (208m) par l'intermédiaire de la seconde entrée (350) pour introduire la résine chargée d'or et/ou d'argent ayant subi le strippage provenant de l'unité de strippage de métaux précieux (390) dans la quatrième cuve (208m),

    dans lequel la troisième cuve (208c), par l'intermédiaire d'une seconde sortie (380), est reliée à la première cuve (208a), par l'intermédiaire de la première entrée (330), pour introduire la seconde résine chargée d'or et/ou d'argent (316) de la troisième cuve (208c) dans la première cuve (208a),

    dans lequel la deuxième cuve (208b), par l'intermédiaire d'une première sortie (340), est reliée à la quatrième cuve (208m), par l'intermédiaire de la seconde entrée (350), pour introduire la première résine chargée d'or et/ou d'argent (312) de la deuxième cuve (208b) dans la quatrième cuve (208m),

    dans lequel la partie à contre-courant est configurée de telle sorte que la seconde résine échangeuse d'ions (204) s'écoule à travers des cuves successives au moins de la quatrième cuve (208m) à la troisième cuve (208c), et la troisième bouillie mélangée (140) s'écoule à travers des cuves successives au moins de la troisième cuve (208c) à la quatrième cuve (208m),

    dans lequel les première et seconde résines échangeuses d'ions (204) sont des résines échangeuses d'anions de base forte et dans lequel la résine a une affinité pour d'autres composants, les autres composants comprenant les trithionates, les tétrathionates et autres polythionates supérieurs,

    dans lequel une affinité des première et seconde résines échangeuses d'ions (204) pour l'or est supérieure à une affinité des première et seconde résines échangeuses d'ions (204) pour le mercure, dans lequel l'affinité des première et seconde résines échangeuses d'ions (204) pour le mercure est supérieure à une affinité des première et seconde résines échangeuses d'ions (204) pour le pentathionate, dans lequel l'affinité des première et seconde résines échangeuses d'ions (204) pour le pentathionate est supérieure à une affinité des première et seconde résines échangeuses d'ions (204) pour le tétrathionate, dans lequel l'affinité des première et seconde résines échangeuses d'ions (204) pour le tétrathionate est supérieure à une affinité des première et seconde résines échangeuses d'ions (204) pour le cuivre, et l'affinité des première et seconde résines échangeuses d'ions (204) pour le cuivre est supérieure à une affinité des première et seconde résines échangeuses d'ions (204) pour le trithionate.


     
    8. Système selon la revendication 7, dans lequel les première et seconde résines échangeuses d'ions (204) sont différentes l'une de l'autre, et les première et seconde résines chargées d'or et/ou d'argent (312, 316) sont différentes l'une de l'autre, dans lequel la première résine échangeuse d'ions (204) comprend au moins une partie de la seconde résine chargée d'or et/ou d'argent (204), et dans lequel la partie à co-courant et la partie à contre-courant ne partagent pas une cuve commune de résine en lixiviation, et dans lequel la matière contenant de l'or et/ou de l'argent s'écoule d'abord à travers la partie à co-courant et ensuite à travers la partie à contre-courant.
     
    9. Système selon la revendication 7, dans lequel la plupart ou la totalité de la résine chargée d'or et/ou d'argent (312) dans la partie à co-courant est retirée de la partie à co-courant et la plupart ou la totalité de la résine chargée d'or et/ou d'argent (316) dans la partie à contre-courant est retirée de la partie à contre-courant.
     
    10. Système selon la revendication 7, dans lequel l'or et/ou l'argent est de l'or, dans lequel le thiosulfate est sensiblement exempt d'ammoniaque, dans lequel une solution de lixiviation dans la partie à contre-courant comprend de l'or dissous, du thiosulfate et des polythionates, dans lequel la résine adsorbe, à partir de la solution de lixiviation, les polythionates supérieurs et l'or, et dans lequel la matière contenant de l'or et/ou de l'argent comprend une matière de « preg-robbing », dans lequel la résine chargée de polythionates supérieurs et d'or (316) provenant de la partie à contre-courant est traitée pour convertir la plupart des polythionates supérieurs sorbés sur la résine chargée d'or en trithionate à l'aide d'une première solution mais au moins la plupart de l'or reste chargée sur la résine pour former une résine chargée d'or traitée, dans lequel la première solution comprend du sulfite, lequel convertit le tétrathionate, le pentathionate et autres polythionates supérieurs en trithionate et thiosulfate, dans lequel la résine chargée d'or traitée (360) est chargée par davantage d'or dans la partie à co-courant pour former une résine davantage chargée d'or (312), dans lequel la résine davantage chargée d'or (312) est retirée de la partie à co-courant et soumise à un strippage pour retirer au moins la plupart de l'or à partir de la résine davantage chargée d'or (312) et former une résine dont on a retiré l'or par strippage (204), dans lequel la résine dont on a retiré l'or par strippage (204) est régénérée et réintroduite dans la partie à contre-courant, dans lequel les niveaux de tétrathionate et autres polythionates supérieurs adsorbés sont relativement faibles, dans lequel les polythionates adsorbés sont principalement sous la forme de trithionate, dans lequel la résine chargée d'or (316) provenant de la partie à contre-courant est introduite directement dans la première cuve (208a) sans traitement intermédiaire pour retirer le tétrathionate et autres polythionates supérieurs à partir de la résine, et dans lequel la résine chargée d'or traitée (316) est introduite dans la partie à co-courant.
     
    11. Système selon la revendication 7, dans lequel les résines chargées d'or et/ou d'argent (312, 316) provenant de la partie à contre-courant et de la partie à co-courant sont soumises à l'un parmi :

    (i) un traitement de résine séparé pour convertir les polythionates supérieurs sorbés sur la résine chargée en stades de trithionate et thiosulfate et/ou de strippage d'or et/ou d'argent pour désorber l'or et/ou l'argent à partir des résines chargées

    (ii) un traitement de résine commun pour convertir les polythionates supérieurs sorbés sur la résine chargée en stades de conversion de trithionate et thiosulfate et/ou de strippage d'or et/ou d'argent pour désorber l'or et/ou l'argent à partir des résines chargées, et

    dans lequel une première concentration de résine dans une partie de la partie à co-courant est inférieure à une seconde concentration de résine dans une partie de la partie à contre-courant.
     
    12. Système selon la revendication 7, dans lequel le thiosulfate est sensiblement exempt d'ammoniaque, dans lequel une solution de lixiviation dans la partie à contre-courant comprend de l'or et/ou de l'argent dissous, du thiosulfate et des polythionates, dans lequel la résine adsorbe, à partir de la solution de lixiviation, les polythionates supérieurs et l'or et/ou l'argent, et dans lequel la matière contenant de l'or et/ou de l'argent comprend une matière de « preg-robbing », dans lequel la résine chargée d'or et/ou d'argent (316) est retirée de la troisième cuve (208c) et est traitée par une solution de sulfite pour retirer au moins la plupart des polythionates supérieurs, et la résine chargée d'or et/ou d'argent traitée (360) est introduite dans la première cuve (208a) en tant que résine partiellement chargée d'or et/ou d'argent, dans lequel le pentathionate et le tétrathionate sont des interférents, dans lequel le sulfite, un soufre et/ou un agent sulfoxy convertit/convertissent le tétrathionate, le pentathionate et autres polythionates supérieurs en trithonates tout en laissant l'or et/ou l'argent sur la résine chargée d'or et/ou d'argent pour augmenter la charge d'or et/ou d'argent sans transférer les interférents pentathionate et tétrathionate, dans lequel un polysulfure choisi dans le groupe consistant essentiellement en un polysulfure autre qu'un bisulfure, un sulfure autre qu'un bisulfure et un polysulfure, et les mélanges de ceux-ci convertit le tétrathionate, le pentathionate et autres polythionates supérieurs sorbés sur la résine chargée en du thiosulfate, et dans lequel la résine d'or et/ou d'argent traitée (312) est retirée de la partie à co-courant, subit un strippage d'or et/ou d'argent et est réintroduite dans la partie à contre-courant.
     
    13. Système selon la revendication 7, comprenant en outre :

    une unité de traitement par sulfite (370), configurée pour recevoir au moins une partie de la seconde résine chargée d'or et/ou d'argent (316) provenant de la troisième cuve (208c) et traiter ladite au moins une partie de la seconde résine chargée d'or et/ou d'argent (316) par une solution de sulfite pour retirer la plupart des polythionates à partir de ladite au moins une partie de la seconde résine chargée d'or et/ou d'argent (316) pour former une résine chargée d'or et/ou d'argent traitée (360),

    dans lequel l'unité de traitement par sulfite (370) est reliée à la première cuve (208a) par l'intermédiaire de la première entrée (330) pour introduire la résine chargée d'or et/ou d'argent traitée (360) de l'unité de traitement par sulfite (370) dans la première cuve (208a).


     




    Drawing


























    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description