(19)
(11)EP 3 371 101 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
17.06.2020 Bulletin 2020/25

(21)Application number: 16784921.5

(22)Date of filing:  24.10.2016
(51)International Patent Classification (IPC): 
C01B 17/78(2006.01)
C01B 17/80(2006.01)
B01D 53/14(2006.01)
C01B 17/79(2006.01)
B01J 19/00(2006.01)
C01B 17/765(2006.01)
(86)International application number:
PCT/EP2016/075492
(87)International publication number:
WO 2017/076673 (11.05.2017 Gazette  2017/19)

(54)

METHOD AND PLANT DESIGN FOR REDUCTION OF START-UP SULFUR OXIDE EMISSIONS IN SULFURIC ACID PRODUCTION

VERFAHREN UND ANLAGENENTWURF ZUR REDUZIERUNG VON SCHWEFELOXIDEMISSIONEN BEI DER INBETRIEBNAHME IN DER SCHWEFELSÄUREPRODUKTION

PROCÉDÉ ET CONCEPTION D'INSTALLATION POUR LA RÉDUCTION DES ÉMISSIONS D'OXYDE DE SOUFRE AU DÉMARRAGE DANS LA PRODUCTION D'ACIDE SULFURIQUE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 06.11.2015 DK 201500697

(43)Date of publication of application:
12.09.2018 Bulletin 2018/37

(73)Proprietor: Haldor Topsøe A/S
2800 Kgs. Lyngby (DK)

(72)Inventors:
  • GRANROTH, Mårten Nils Rickard
    21847 Bunkeflostrand (SE)
  • SØRENSEN, Per Aggerholm
    2800 Kgs. Lyngby (DK)
  • CHRISTENSEN, Kurt, Agerbæk
    3460 Birkerød (DK)

(74)Representative: Haldor Topsøe A/S 
Haldor Topsøes Allé 1
2800 Kgs. Lyngby
2800 Kgs. Lyngby (DK)


(56)References cited: : 
WO-A2-2005/105666
US-A- 4 296 088
  
  • PER A. SØRENSEN ET AL: "New dynamic models for simulation of industrial SO2 oxidation reactors and wet gas sulfuric acid plants", CHEMICAL ENGINEERING JOURNAL, vol. 278, 1 October 2015 (2015-10-01), pages 421-429, XP055332181, CH ISSN: 1385-8947, DOI: 10.1016/j.cej.2014.09.023
  
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description


[0001] The present invention relates to a method and a plant design for reduction of start-up emissions of sulfur oxides, i.e. SO2, SO3 and H2SO4, in sulfuric acid production.

[0002] Sulfuric acid plants can basically produce three types of harmful (and thus regulated) gas emissions: Sulfur dioxide (SO2), sulfur trioxide (SO3) and sulfuric acid (H2SO4). Both SO3 and H2SO4 are emitted as micron- or submicron-sized sulfuric acid mist because SO3 reacts rapidly with water vapor present in the ambient air or in the process gas to produce H2SO4. While essentially all sulfuric acid plants have emission limitations during continuous operation, the regulation requirements during start-up of the plant vary widely. These start-up emissions are gaining still more attention from both regulatory authorities and sulfuric acid producers.

[0003] During plant start-up, the catalyst in the catalytic sulfuric acid converter is in a transition state from colder temperatures towards regular optimum operating conditions. When SO2 is first passed over the catalyst, the SO2 emissions may increase to above 1000 ppm for several minutes until regular temperature profiles are established. Also during start-up, as the sulfuric acid in the absorption towers heats up to normal optimum operating temperatures, the SO3 absorption efficiency is lower, and a persistent acid plume may be seen from the plant stack until the acid temperature is sufficiently high.

[0004] Different strategies known in the art to reduce the SO2 and H2SO4 emissions during start-up include catalyst selection, catalyst purging and pre-heating, simultaneous pre-heating of catalyst beds, sulfuric acid pre-heating, acid aerosol removal and sulfur oxide scrubbing. These strategies are e.g. described or at least mentioned in WO 2012/068336 A1, WO 2005/105666 A1, US 7.820.134 B2, WO 2009/065485 A1, US 2010/0015035 A1, DE 102 49 782, US 2008/0056971 A1, US 5.344.614 B2 and WO 2015/058804 A1.

[0005] Document WO 2005/105666 discloses a process and plant for producing sulfuric acid from gases rich in SO2. The contact gas is produced by combustion of elementary sulfur with oxygen. The contact gas is supplied to the first contact stage containing the catalyst with a temperature of at least 450 °C.

[0006] Document US 4,296,088A discloses heat exchange techniques for the catalytic oxidation of sulfur components to sulfur trioxide. In the process the sulfur components pass through a plurality of serially connected spatially separate zones, each zone being either a catalytic reaction zone or an uncatalyzed heat exchange zone, and there being at least one catalytic zone in indirect contact with the heat exchange medium and one said heat exchange zone.

[0007] Per A. Sorensen et al: "New dynamic models for simulation of industrial SO2 oxidation reactors and wet gas sulfuric acid plants", Chemical Engineering Journal, vol. 278, 1 October 2015 (2015-10-01), pages 421-429 discloses a simulation of plant performance during start-up and shutdown in the process of producing sulfuric acid from sulfur containing gases.

[0008] The increased attention on emissions during start-up of sulfuric acid plants calls for a better understanding of the dynamics of the plants and the phenomena, which control the emissions of SO2 and acid mist. Typically, sulfuric acid plants are designed by setting up steady-state heat and mass balances for the plant, and the equipment and catalyst volumes are sized based on steady-state models of individual unit operations. However, during start-up, shut-down and change of inlet feed, steady-state models may be inadequate for design and prediction of plant performance, and hence transient modelling is required.

[0009] In modern sulfuric acid plants, very low emissions of SO2 and H2SO4 can be achieved during stable operation if the plant is properly designed and maintained. The minimum SO2 emission is determined primarily by the catalytic sulfuric acid converter, and it is affected by the equilibrium of the SO2 oxidation reaction (1), bed inlet temperatures, gas distribution and amounts and activities of the catalysts in the converter beds.

        SO2 + 1/2 O2 <-> SO3 + heat     (1)



[0010] During start-up of a sulfuric acid converter, the catalytic beds are pre-heated with hot air before introduction of the SO2 feed gas. This pre-heating is necessary in order to "ignite" the SO2 oxidation catalyst before SO2 is introduced to the converter. The ignition temperature represents the lowest entering gas temperature for a specified adiabatic operating situation which will sustain a fairly close approach to equilibrium at the outlet. The industrially important vanadium pentoxide (V2O5) catalyst is a "supported liquid phase" (SLP) catalyst, where the active phase is a liquid salt mixture partly filling the pores of a porous support. At the ignition temperature, the salt mixture in the catalyst melts and dissolves part of the vanadium as active vanadium (V) compounds and also allows dissolution and diffusion of the gases (SO2, O2 and SO3) in the liquid. The ignition temperature is typically in the range of 320-380°C depending on the type of catalyst. As the temperature approaches the ignition temperature, SO3 trapped in the catalyst during shut-down may be released, pass through the heat exchangers and generate a bluish-white plume of submicron acid aerosols. After the pre-heating stage, SO2 gas is fed to the converter. Often the pre-heated catalysts will not be at their optimal operating temperatures, which may result in considerable SO2 emissions for a period of time because not all SO2 is converted to SO3. Initially, SO2 is therefore typically fed to the converter at lower concentrations, as compared to design specifications, and then slowly ramped up to full capacity. So the pre-heating with hot air and the subsequent introduction of SO2 gas at a relatively low catalyst temperature together lead to increased emissions of SO2 and SO3 compared to steady-state emissions.

[0011] The dynamic behavior of the catalytic converter is of major importance in these situations. The catalytic oxidation of SO2 to SO3 according to reaction (1) is an exothermal and reversible reaction, which is carried out in fixed adiabatic beds of a sulfuric acid catalyst. Such catalysts are based on vanadium oxides promoted with alkali metal sulfates on an inactive porous silica support. In these supported liquid phase catalysts, the oxidation of SO2 takes place as a homogeneous reaction in a liquid film covering the internal surface of the support material. A special property of these catalysts is their significant absorption capacity for sulfur oxides. The absorption is exothermic and may formally be written as

        SO3 + A <-> A·SO3 + heat     (2)

where A denotes a species in the melt which is able to chemically bind SO3. At operating conditions, the sulfur oxides are bound mainly as the alkali metal pyrosulfates M2S2O7 and M2S3O10 (M = Na, K, Cs), but if the catalyst is blown with hot air for a long time, then up to 10% of the catalyst weight is desorbed as SO2/SO3, leaving the alkali metals behind as sulfates M2SO4. The main purpose of initially heating a sulfuric acid plant with hot air is to bring the catalyst beds above the minimum temperatures required for the oxidation of SO2 to SO3. However, during this heating some SO3 is desorbed from the catalyst due to the SO3 partial pressure resulting from the left-hand side of reaction (2). Part of the SO3 slip from the catalytic converter will be emitted through the stack. This is because the downstream SO3 absorber is not running efficiently during start-up.

[0012] Once the catalytic beds are heated sufficiently, gas containing SO2 and O2 is fed to the catalytic converter. Most of the SO2 will be oxidized to SO3 according to reaction (1) but compared to the steady-state operation, an excessive SO2 slip is experienced during the start-up due to unfavorable temperature profiles in the catalytic beds. This SO2 slip will be emitted through the stack.

[0013] The conventional way of minimizing the SO3 slip during start-up is to purge the converter with hot air during shut-down. This procedure desorbs SO3 from the catalyst and shifts reaction (2) to the left, thus reducing the amount of free SO3 in the catalyst. Although this method reduces the SO3 release in the subsequent start-up situation, a long shut-down time and high energy consumption for air heating is required, which is not economical for the sulfuric acid plant.

[0014] The conventional way of minimizing the SO2 slip during start-up is to use a long air heating period to secure high enough catalyst temperatures for SO2 conversion and a slow ramp-up of SO2 feed. This requires a long start-up time and high energy consumption for air heating, which again is not economical for the sulfuric acid plant.

[0015] The idea underlying the present invention is to use one or more of the final catalytic beds as absorbents for SO2 and SO3 during start-up by using one or more separate purges, either separately or simultaneously, of one or more beds prior to the final bed with hot air during the previous shut-down.

[0016] Thus, the present invention relates to a method for reduction of start-up SO2, SO3 and H2SO4 emissions in sulfuric acid production, in which SO2 is converted to SO3 in n successive catalyst beds, where n is an integer > 1, wherein
  • the final catalytic beds are used as absorbents for SO2 and SO3 during the start-up procedure,
  • wherein one or more of the m beds downstream the first bed are purged, either separately or simultaneously, with hot gas, where m is an integer > 1 and m < n, during the previous shut-down, and
  • one separate purge with hot gas is used on the final bed.


[0017] This means that, instead of using one separate purge on one specific downstream bed, it is possible to purge two or more downstream beds, either separately or simultaneously, and still obtain good results.

[0018] Preferably, the separate purge with hot gas on is used on the bed prior to the final bed, feeding the gas from the purged bed to the final bed.

[0019] Further, the invention relates to a sulfuric acid plant design provided with means for securing reduced start-up emissions of SO2, SO3 and H2SO4, said plant design comprising n successive catalyst beds, where n is an integer > 1, wherein the final catalytic beds are used as absorbents for SO2 and SO3 during the start-up procedure, and wherein said means comprises use of a separate purge with hot gas of bed m, where m is an integer > 1 and m < n, during the previous shut-down.

[0020] This separate purging, which constitutes the crux of the present invention, is illustrated in Fig. 1, which also illustrates the normal operation and the normal shut-down purging. All three situations are illustrated for a plant design comprising four catalyst beds (i.e. n = 4).

[0021] In Fig. 2, the separate purge according to the invention is compared to the straight-through purge of the prior art.

[0022] Normally, SO3 is purged from the catalyst during shut-down by passing hot air to the converter inlet and through all catalyst beds connected in series. The heat is primarily supplied by residual heat accumulated in the front-end of the plant (e.g. sulfur burner, boiler(s), ducting etc.). However, due to the above reaction (2), the SO3 released from the upper beds will accumulate in the final bed. If purging is not long enough, or if the temperatures are too low for reaction (2) to proceed to the left, then the SO3 desorption will cease. As a consequence, the concentration of free SO3 in the final bed is high at the next start-up, which will lead to SO3 emissions as described above.

[0023] In the process and the plant according to the invention, the shut-down procedure is changed. The hot air used for purging the upper catalyst beds is not sent to the final catalyst bed, but rather to an SO3 absorption tower before going to the stack. The final catalyst bed is purged separately with hot air, and as a result, the final bed desorbs SO3 and shifts reaction (2) to the left. During the next start-up, the sulfur-deficient final catalyst bed will act as a sulfur oxide filter and absorb both SO2 and SO3 due to reaction (2) and the reaction

        SO2 + 1/2 O2 + A <-> A·SO3 + heat     (3)

where A is a species in the melt which is able to chemically bind SO3 as mentioned earlier.

[0024] In this way the emissions of SO2 and SO3 are reduced during start-up, and the plant can be started up faster without violating SO2 and SO3 limits for transient operation.

[0025] The rate of reaction (1) is very low for vanadium-based catalysts at temperatures below 370-400°C depending on the specific catalyst type and gas composition. Now it has surprisingly been found that the rate of reaction (3) is high, even at low temperatures, for a sulfur-deficient catalyst which can remove SO2 at temperatures well below 350°C.

[0026] Regarding the catalyst, a preferred catalyst comprises a vanadium(V) compound such as V2O5, sulfur in the form of sulfate, pyrosulfate, tri- or tetrasulfate and alkali metals, such as Li, Na, K, Rb or Cs, on a porous carrier. The porous carrier of the catalyst is preferably silicon dioxide (SiO2) with less than 10 wt%, preferably less than 5 wt%, more preferably less than 2 wt% and most preferably less than 1 wt% of alumina.

[0027] It is preferred that the alkali metal content of the catalyst is 2-25 wt%, more preferably 4-20 wt% and most preferably 8-16 wt%.

[0028] A preferred catalyst contains 1-15 wt%, preferably 2-12 wt% and most preferably 4-10 wt% of a vanadium(V) compound such as V2O5.

[0029] Further it is preferred that the catalyst contains 1-25 wt%, more preferably 2-20 wt% and most preferably 3-18 wt% sulfur in the form of sulfate, pyrosulfate, tri- or tetrasulfate. It is even more preferred that the catalyst contains 4-16 wt% sulfur, especially 4-10 wt% sulfur, in the form of sulfate, pyrosulfate, tri- or tetrasulfate.

[0030] It is preferred that the hot gas is air fed to the final bed at a temperature of 0-650°C, preferably 400-600°C.

[0031] The invention is illustrated further in the following example.

Example



[0032] By using the method and the plant design according to the invention, the emissions of SO2 and SO3 are reduced during start-up, and the plant can be started up faster without violating SO2 and SO3 limits for transient operation. This reduction of emissions is illustrated in Fig. 2.

[0033] The basis of the example is a transient model for dynamic operation of an SO2 converter published by Sørensen et al. (Chemical Engineering Journal 278 (2015), 421-429). The mathematical model is capable of predicting the changes occurring in an SO2 converter due to changes in the operating conditions, because it can predict the dynamic changes in the temperature of the converter and the sulfur content of the catalyst.

[0034] In this example, a 3+1 double absorption plant is purged with 450°C for 8 hours before the air supply is turned off. The plant is subsequently assumed to be shut down for a non-specific period of time and the beds re-heated to temperatures of 550°C, 460°C, 420°C and 380°C, respectively, prior to introduction of the SO2 feed gas.

[0035] The curves in Fig. 2 show the SO2 emission in ppm as a function of the time passed (in hours) for both the straight-through purge and the separate purge embodiment. It appears clearly from the curves that the straight-through purge causes a substantial SO2 emission immediately after introducing the feed gas. Within minutes after the feed gas introduction, the SO2 emission increases to 300 ppm, whereas the separate purge according to the invention leads to a much lower SO2 emission, especially during the first half hour following the feed gas introduction. Only after around 1.5 hours from the feed gas introduction, the two curves approach the same SO2 emission level.


Claims

1. A method for reduction of start-up SO2, SO3 and H2SO4 emissions in sulfuric acid production, in which SO2 is converted to SO3 in n successive catalyst beds, where n is an integer >1, wherein

- the final catalyst beds are used as absorbents for SO2 and SO3 during the start-up procedure,

- one or more of the m beds downstream the first bed are purged, either separately or simultaneously, with hot gas, where m is an integer > 1 and m < n, during the previous shut-down, and

- one separate purge with hot gas is used on the final bed.


 
2. Method according to claim 1, wherein one separate purge with hot gas is used on the bed prior to the final bed, and wherein the gas from the purged bed is fed to the final bed.
 
3. Method according to claim 1, wherein two or more beds downstream the first bed are purged separately with hot gas.
 
4. Method according to claim 1, wherein two or more beds downstream the first bed are purged simultaneously with hot gas.
 
5. Method according to claim 1, where the catalyst comprises a vanadium(V) compound, sulfur in the form of sulfate, pyrosulfate, tri- or tetrasulfate and alkali metals, such as Li, Na, K, Rb or Cs, on a porous carrier.
 
6. Method according to claim 5, wherein the porous carrier of the catalyst is silicon dioxide (SiO2).
 
7. Method according to claim 6, wherein the porous carrier of the catalyst is SiO2 with less than 10 wt%, preferably less than 5 wt%, of alumina.
 
8. Method according to claim 7, wherein the porous carrier of the catalyst is SiO2 with less than 2 wt%, preferably less than 1 wt%, of alumina.
 
9. Method according to any of the claims 5-8, wherein the alkali metal content of the catalyst is 2-25 wt%, preferably 4-20 wt% and most preferably 8-16 wt%.
 
10. Method according to claim 5, wherein the catalyst contains 1-15 wt% of a vanadium(V) compound such as V2O5.
 
11. Method according to claim 10, wherein the catalyst contains 2-12 wt%, preferably 4-10 wt% of a vanadium(V) compound such as V2O5.
 
12. Method according to claim 5, wherein the catalyst contains 1-25 wt% sulfur in the form of sulfate, pyrosulfate, tri- or tetrasulfate.
 
13. Method according to claim 12, wherein the catalyst contains 2-20 wt% sulfur, preferably 3-18 wt% sulfur, in the form of sulfate, pyrosulfate, tri- or tetrasulfate.
 
14. Method according to claim 13, wherein the catalyst contains 4-16 wt% sulfur, preferably 4-10 wt% sulfur, in the form of sulfate, pyrosulfate, tri- or tetrasulfate.
 
15. Method according to claim 1, wherein the hot gas is air fed to the final bed at a temperature of 0-650°C, preferably 400-600°C.
 
16. A sulfuric acid plant design provided with means for securing reduced start-up emissions of SO2, SO3 and H2SO4, said plant design comprising n successive catalyst beds, where n is an integer >1, wherein

- the final catalytic beds are used as absorbents for SO2 and SO3 during the start-up procedure,

- one or more of the m beds downstream the first bed are purged, either separately or simultaneously, with hot gas, where m is an integer > 1 and m < n, during the previous shut-down, and

- one separate purge with hot gas is used on the final bed.


 


Ansprüche

1. Verfahren zur Reduzierung der SO2-, SO3- und H2SO4-Emissionen beim Anfahren in der Schwefelsäureproduktion, wobei SO2 in n aufeinanderfolgenden Katalysatorbetten zu SO3 umgesetzt wird, wobei n eine ganze Zahl > 1 ist, wobei

- die letzten Katalysatorbetten als Absorptionsmittel für SO2 und SO3 während des Anfahrvorgangs verwendet werden,

- eines oder mehrere der m Betten stromabwärts des ersten Bettes, separat oder gleichzeitig, bei der vorhergehenden Abschaltung mit Heißgas gespült werden, wobei m eine ganze Zahl > 1 und m < n ist, und

- eine separate Spülung mit Heißgas bei dem letzten Bett eingesetzt wird.


 
2. Verfahren gemäß Anspruch 1, wobei eine separate Spülung mit Heißgas bei dem Bett vor dem letzten Bett verwendet wird, und wobei das Gas aus dem gespülten Bett dem letzten Bett zugeführt wird.
 
3. Verfahren gemäß Anspruch 1, wobei zwei oder mehr Betten stromabwärts des ersten Bettes separat mit Heißgas gespült werden.
 
4. Verfahren gemäß Anspruch 1, wobei zwei oder mehr Betten stromabwärts des ersten Bettes gleichzeitig mit Heißgas gespült werden.
 
5. Verfahren gemäß Anspruch 1, wobei der Katalysator eine Vanadium(V)-Verbindung, Schwefel in Form von Sulfat, Pyrosulfat, Tri- oder Tetrasulfat und Alkalimetalle, wie Li, Na, K, Rb oder Cs, auf einem porösen Träger umfasst.
 
6. Verfahren gemäß Anspruch 5, wobei der poröse Katalysatorträger Siliciumdioxid (SiO2) ist.
 
7. Verfahren gemäß Anspruch 6, wobei der poröse Katalysatorträger SiO2 mit weniger als 10 Gew.-%, bevorzugt weniger als 5 Gew.-%, Aluminiumoxid ist.
 
8. Verfahren gemäß Anspruch 7, wobei der poröse Katalysatorträger SiO2 mit weniger als 2 Gew.-%, bevorzugt weniger als 1 Gew.-%, Aluminiumoxid ist.
 
9. Verfahren gemäß einem der Ansprüche 5-8, wobei der Alkalimetallgehalt des Katalysators 2 - 25 Gew.-%, bevorzugt 4 - 20 Gew.-% und am meisten bevorzugt 8 - 16 Gew.-%, beträgt.
 
10. Verfahren gemäß Anspruch 5, wobei der Katalysator 1 - 15 Gew.-% einer Vanadium(V)-Verbindung wie V2O5 enthält.
 
11. Verfahren gemäß Anspruch 10, wobei der Katalysator 2 - 12 Gew.-%, bevorzugt 4 - 10 Gew.-%, einer Vanadium(V)-Verbindung wie V2O5 enthält.
 
12. Verfahren gemäß Anspruch 5, wobei der Katalysator 1 - 25 Gew.-% Schwefel in Form von Sulfat, Pyrosulfat, Tri- oder Tetrasulfat enthält.
 
13. Verfahren gemäß Anspruch 12, wobei der Katalysator 2 - 20 Gew.-% Schwefel, bevorzugt 3 - 18 Gew.-%, Schwefel in Form von Sulfat, Pyrosulfat, Tri- oder Tetrasulfat enthält.
 
14. Verfahren gemäß Anspruch 13, wobei der Katalysator 4 - 16 Gew.-% Schwefel, bevorzugt 4 - 10 Gew.-%, Schwefel in Form von Sulfat, Pyrosulfat, Tri- oder Tetrasulfat enthält.
 
15. Verfahren gemäß Anspruch 1, wobei das Heißgas Luft ist, die dem letzten Bett bei einer Temperatur von 0 - 650°C, bevorzugt 400 - 600°C, zugeführt wird.
 
16. Schwefelsäureanlagenkonzeption, die mit Mitteln zur Sicherstellung reduzierter Emissionen von SO2, SO3 und H2SO4 beim Anfahren ausgestattet ist, wobei die Anlagenkonzeption n aufeinanderfolgende Katalysatorbetten umfasst, wobei n eine ganze Zahl > 1 ist, wobei

- die letzten Katalysatorbetten als Absorber für SO2 und SO3 während des Anfahrvorgangs verwendet werden,

- eines oder mehrere der m Betten stromabwärts des ersten Bettes, separat oder gleichzeitig, bei der vorhergehenden Abschaltung mit Heißgas gespült werden, wobei m eine ganze Zahl > 1 und m < n ist, und

- eine separate Spülung mit Heißgas bei dem letzten Bett eingesetzt wird.


 


Revendications

1. Procédé de réduction des émissions de SO2, de SO3 et d'H2SO4 au démarrage dans la production d'acide sulfurique, dans lequel le SO2 est converti en SO3 dans n lits de catalyseur successifs, où n est un nombre entier > 1, dans lequel

- les lits de catalyseur finaux sont utilisés comme absorbants pour le SO2 et le SO3 pendant la procédure de démarrage,

- un ou plusieurs des m lits en aval du premier lit sont purgés, séparément ou simultanément, avec du gaz chaud, où m est un nombre entier > 1 et m < n, lors de l'arrêt précédent, et

- une purge séparée avec du gaz chaud est utilisée sur le lit final.


 
2. Procédé selon la revendication 1, dans lequel une purge séparée avec du gaz chaud est utilisée sur le lit précédant le lit final, et dans lequel le gaz provenant du lit purgé est alimenté au lit final.
 
3. Procédé selon la revendication 1, dans lequel deux lits ou plus en aval du premier lit sont purgés séparément avec du gaz chaud.
 
4. Procédé selon la revendication 1, dans lequel deux lits ou plus en aval du premier lit sont purgés simultanément avec du gaz chaud.
 
5. Procédé selon la revendication 1, dans lequel le catalyseur comprend un composé de vanadium (V), du soufre sous la forme de sulfate, de pyrosulfate, de tri- ou tétrasulfate et des métaux alcalins, tels que le Li, le Na, le K, le Rb ou le Cs, sur un support poreux.
 
6. Procédé selon la revendication 5, dans lequel le support poreux du catalyseur est le dioxyde de silicium (SiO2).
 
7. Procédé selon la revendication 6, dans lequel le support poreux du catalyseur est le SiO2 avec moins de 10 % en poids, de préférence moins de 5 % en poids, d'alumine.
 
8. Procédé selon la revendication 7, dans lequel le support poreux du catalyseur est le SiO2 avec moins de 2 % en poids, de préférence moins de 1 % en poids, d'alumine.
 
9. Procédé selon l'une quelconque des revendications 5 à 8, dans lequel la teneur en métal alcalin du catalyseur est de 2 à 25 % en poids, de préférence de 4 à 20 % en poids et de manière préférée entre toutes de 8 à 16 % en poids.
 
10. Procédé selon la revendication 5, dans lequel le catalyseur contient 1 à 15 % en poids d'un composé de vanadium (V) tel que le V2O5.
 
11. Procédé selon la revendication 10, dans lequel le catalyseur contient 2 à 12 % en poids, de préférence 4 à 10 % en poids d'un composé de vanadium (V) tel que le V2O5.
 
12. Procédé selon la revendication 5, dans lequel le catalyseur contient 1 à 25 % en poids de soufre sous la forme de sulfate, de pyrosulfate, de tri- ou tétrasulfate.
 
13. Procédé selon la revendication 12, dans lequel le catalyseur contient 2 à 20 % en poids de soufre, de préférence 3 à 18 % en poids de soufre, sous la forme de sulfate, de pyrosulfate, de tri- ou tétrasulfate.
 
14. Procédé selon la revendication 13, dans lequel le catalyseur contient 4 à 16 % en poids de soufre, de préférence 4 à 10 % en poids de soufre, sous la forme de sulfate, de pyrosulfate, de tri- ou tétrasulfate.
 
15. Procédé selon la revendication 1, dans lequel le gaz chaud est de l'air alimenté au lit final à une température de 0 à 650 °C, de préférence de 400 à 600 °C.
 
16. Conception d'une usine d'acide sulfurique dotée de moyens pour garantir des émissions de démarrage de SO2, de SO3 et d'H2SO4 réduites, ladite conception d'usine comprenant n lits de catalyseur successifs, où n est un nombre entier > 1, dans laquelle

- les lits catalytiques finaux sont utilisés comme absorbants pour le SO2 et le SO3 pendant la procédure de démarrage,

- un ou plusieurs des m lits en aval du premier lit sont purgés, séparément ou simultanément, avec du gaz chaud, où m est un nombre entier > 1 et m < n, lors de l'arrêt précédent, et

- une purge séparée avec du gaz chaud est utilisée sur le lit final.


 




Drawing











Cited references

REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description




Non-patent literature cited in the description