(19)
(11)EP 3 371 634 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
06.09.2023 Bulletin 2023/36

(21)Application number: 17736343.9

(22)Date of filing:  05.01.2017
(51)International Patent Classification (IPC): 
G02B 27/42(2006.01)
G02B 27/01(2006.01)
G02B 6/00(2006.01)
G02B 27/00(2006.01)
G02B 6/34(2006.01)
(52)Cooperative Patent Classification (CPC):
G02B 6/34; G02B 27/0081; G02B 2027/0174; G02B 2027/0154; G02B 27/0176; G02B 6/00; G02B 27/4272
(86)International application number:
PCT/US2017/012348
(87)International publication number:
WO 2017/120346 (13.07.2017 Gazette  2017/28)

(54)

HEAD-MOUNTED DISPLAY WITH PIVOTING IMAGING LIGHT GUIDE

AM KOPF MONTIERTE ANZEIGE MIT SCHWENKBAREM BILDGEBUNGSLICHTLEITER

VISIOCASQUE AVEC CONDUIT DE LUMIÈRE D'IMAGERIE PIVOTANT


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 06.01.2016 US 201662275560 P

(43)Date of publication of application:
12.09.2018 Bulletin 2018/37

(73)Proprietor: Vuzix Corporation
West Henrietta, New York 14586 (US)

(72)Inventors:
  • SCHULTZ, Robert J.
    Victor, New York 14567 (US)
  • TRAVERS, Paul J.
    Honeoye Falls New York 14472 (US)
  • PORTER, Tyler W.
    Honeoye Falls New York 14472 (US)

(74)Representative: Flügel Preissner Schober Seidel 
Patentanwälte PartG mbB Nymphenburger Straße 20
80335 München
80335 München (DE)


(56)References cited: : 
WO-A1-2016/112130
US-A1- 2010 046 070
US-A1- 2012 062 998
US-A1- 2014 300 966
US-A2- 2015 309 263
JP-A- 2008 022 358
US-A1- 2011 096 401
US-A1- 2013 051 730
US-A1- 2015 138 714
  
  • DEWEN CHENG ET AL: "Design of an ultra-thin near-eye display with geometrical waveguide and freeform optics", OPTICS EXPRESS, vol. 22, no. 17, 19 August 2014 (2014-08-19), page 20705, XP055541300, DOI: 10.1364/OE.22.020705
  • LEVOLA T: "Diffractive optics for virtual reality displays", JOURNAL OF THE SOCIETY FOR INFORMATION DISPLAY - SID, SOCIETY FOR INFORMATION DISPLAY, US, vol. 14/5, 1 January 2006 (2006-01-01), pages 467-475, XP008093627, ISSN: 1071-0922
  
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description

TECHNICAL FIELD



[0001] This invention generally relates to electronic displays and more particularly relates to head-mounted (near-eye) displays that use imaging light guides to convey image-bearing light to a viewer.

BACKGROUND OF THE INVENTION



[0002] Head-Mounted Displays (HMDs), which include monocular and binocular near eye displays, are being developed for a range of diverse uses, including military, commercial, industrial, fire-fighting, and entertainment applications. For many of these applications, there is particular value in forming a virtual image that can be visually superimposed over the real-world image that lies in the field of view of the HMD user. Imaging light guides incorporating various types of waveguides relay image-bearing light to a viewer in a narrow space for directing the virtual image to the viewer's pupil and enabling this superposition function.

[0003] In the conventional imaging light guide, collimated angularly related light beams from an image source are coupled into the light guide substrate, generally referred to as a waveguide, by an input optical coupling such as an in-coupling diffraction grating, which can be formed on a surface of the substrate or buried within the substrate. Other types of diffractive optics could be used as input couplings, including diffractive structures formed of alternating materials of variable index such as holographic polymer dispersed liquid crystal (HPDLC) or volume holograms. The diffractive optics could also be formed as surface relief diffraction gratings. The collimated light beams can be directed out of the waveguide by a similar output optical coupling, which can also take the form of a diffractive optic. The collimated angularly related beams ejected from the waveguide overlap at an eye relief distance from the waveguide forming an exit pupil within which a virtual image generated by the image source can be viewed. The area of the exit pupil through which the virtual image can be viewed at the eye relief distance is referred to as an "eye box."

[0004] The output coupling can also be arranged for enlarging the exit pupil. For example, the collimated beams can be enlarged in one dimension by offsetting partially reflected portions of the collimated beams in a direction at which the collimated beams propagate along the output coupling or by ejecting collimated beams of different angles from different positions along the waveguide to more efficiently overlap the collimated beams at the eye relief distance from the waveguide.

[0005] A so-called "turning optic" located along the waveguide between the input coupling and the output coupling, can be used for expanding pupil size in a second dimension. The expansion can be effected by offsetting reflected portions of the collimated beam to enlarge a second dimension of the beams themselves or by directing the collimated beams to different areas of the output coupling so the collimated beams of different angles are ejected from different positions to more efficiently overlap within the eyebox. The turning optic can also take the form of a diffractive optic and, especially when located between the diffraction gratings of the input coupling and output coupling, can also be referred to as an intermediate grating.

[0006] The imaging light guide optics form a virtual image that has the appearance of a real object that is positioned a distance away and within the field of view of the observer. As is well known to those skilled in the imaging arts, the virtual image is synthetically simulated by divergence of light rays provided to the eye from an optical system. This optical effect forms a "virtual image" that is made to appear as if at a given position and distance in the field of view of the observer; there is no corresponding "real" object in the field of view from which the rays actually diverge. So-called "augmented reality" viewing systems typically employ a virtual imaging system to provide superposition of the virtual image onto the real-world scene that is viewed. This capability for forming a virtual image that can be combined with real-world image content in the viewer's field of view distinguishes augmented reality imaging devices from other virtual image devices that do not allow simultaneous view of the real world.

[0007] WO 2016/112130 A1 discloses a head-mounted imaging apparatus including a frame that houses a left-eye and a right-eye imaging apparatus. Each imaging apparatus forms a virtual image to an eye of an observer and includes a projector, a planar waveguide, and an optical coupler. The projector is supported by a temple member of the frame and emits a central projected light beam along a projection axis. The planar waveguide accepts the projected light beam through an input aperture and forms an expanded light beam that is output from an output aperture and directed toward the observer's eye. The optical coupler receives the central projected light beam along a first axis that is at an obtuse angle with respect to the waveguide surface, and the optical coupler redirects the central projected light beam along a second axis that is at an acute angle with respect to the waveguide surface.

[0008] JP 2008 022358 A discloses a display apparatus that can easily be folded when not in use and is conveniently carried. The apparatus comprises a frame, a video image forming projector, a turning shaft having a rotational axis, an image-projection lens, a video projection lens, a mirror and a half mirror. In the case of folding the eyeglass display apparatus when not in use, first a video image forming projector is backwardly slid to be moved to a backward position. In this case, a temple of the frame moves to a backward position. The video image forming projector is turned counter-clockwise around a turning shaft. Since the video image forming projector moves to the backward position by the slide of the video image forming projector, the video image forming projector and the temple can be folded without mechanical interference between the video image forming projector and a video projection lens.

[0009] US 2011/0096401A1 discloses a display device and, more specifically, a diffractive optics method that uses a plurality of diffractive elements for expanding the exit pupil of a display for viewing. The display device includes a frame, a projector, an imaging light guide, a waveguide, an in-coupling optic and an out-coupling optic.

[0010]  LEVOLA T: "Diffractive optics for virtual reality displays", JOURNAL OF THE SOCIETY FOR INFORMATION DISPLAY- SID, SOCIETY FOR INFORMATION DISPLAY, US, vol. 14/5, 1 January 2006 (2006-01-01), pages 467-475, XP008093627, ISSN: 1 071-0922 describes an intermediate grating design.Successfully forming a virtual image at an intended position for a viewer requires that the optical apparatus satisfy various geometrical and positional requirements. These requirements often constrain design and usability factors such as viewer position and placement of the optical system relative to the eye of the viewer. The optical system, for example, may not be able to position the virtual image at precisely the position in which it would be most useful for a particular viewer or purpose due to anatomical variations between viewers. The viewer may want to have the virtual image content available within the field of view, but may not want image content directly superimposed onto, and partially obscuring, real-world objects in the field of view. Rigid constraints resulting from a number of previous HMD optics designs can make an augmented reality system awkward to use for practical functions.

[0011] Thus, it can be appreciated that there would be practical utility in methods and apparatus that provided some measure of flexibility in placement of optical components used for virtual imaging as well as for relative placement of the virtual image itself.

SUMMARY OF THE INVENTION



[0012] It is an object of the present disclosure to advance the art of image presentation within compact head-mounted (near-eye) displays. Advantageously, embodiments of the present disclosure provide a wearable display with an imaging light guide that offers an enlarged pupil size for presenting high resolution wide field of view (FOV) content to the viewer. In addition, embodiments of the present disclosure also allow the viewer to manually adjust the relative position of the virtual image content without removing the wearable display and without interrupting visibility of the virtual content display.

[0013] These and other aspects, objects, features and advantages of the present invention will be more clearly understood and appreciated from a review of the following detailed description of the preferred embodiments and appended claims, and by reference to the accompanying drawings.

[0014] According to an aspect of the present disclosure, there is provided a wearable display apparatus including a frame that supports the display apparatus against a viewer's head. A projector fitted within the frame generates angularly related beams of image-bearing light projected along a path. An imaging light guide is coupled to a forward section of the frame in the path of the image-bearing light beams. The imaging light guide includes (a) a waveguide having a substrate formed from a transparent optical material, (b) an in-coupling diffractive optic formed on the waveguide and disposed to direct the image-bearing light beams into the waveguide, (c) a turning optic formed on the waveguide and disposed to expand the respective image-bearing light beams from the in-coupling diffractive optic in a first dimension and to direct the expanded image-bearing light beams toward an out-coupling diffractive optic. The out-coupling diffractive optic is also formed on the waveguide and disposed to expand the respective image-bearing light beams in a second dimension and to form a virtual image within a viewer eyebox. A mount supports the imaging light guide in front of the viewer and provides a vertical hinge for horizontal angular adjustment of the waveguide with respect to the projector.

BRIEF DESCRIPTION OF THE DRAWING FIGURES



[0015] While the specification concludes with claims particularly pointing out and distinctly claiming the subject matter of the present invention, it is believed that the invention will be better understood from the following description when taken in conjunction with the accompanying drawings.

FIG. 1 is a schematic diagram showing a simplified cross-sectional view of one possible configuration of a monocular type imaging light guide arranged as a diffractive beam expander.

FIG. 2 is a perspective view showing an imaging light guide arranged as a diffractive beam expander with a turning grating.

FIG. 3A is a cross-sectional schematic view showing how the light that forms the virtual image is provided as collimated light beams to the eye.

FIG. 3B is a cross-sectional schematic view showing viewer focus for a real object in the field of view.

FIG. 4A is a top view schematic showing how an imaging light guide forms a virtual image.

FIG. 4B is a top view schematic that shows how the angle of incidence of the image-bearing light affects the apparent position of the virtual image.

FIG. 4C is a top view schematic that shows the relative shift of virtual image VI with incidence changed in the other direction from that of FIG. 4B.

FIG. 5 is a top view schematic showing how the relative shift in virtual image position can be effected with the projector in fixed position and the imaging light guide alternately moved to change the incident angle.

FIG. 6A is a side view schematic that shows how an imaging light guide forms a virtual image with the projector at a normal angle of incidence.

FIG. 6B is a side view schematic that shows how an imaging light guide forms a virtual image with the projected light at an oblique angle of incidence.

FIG. 7 is a perspective view that shows a portion of an adjustable imaging apparatus that supports the imaging light guide in movable configuration.

FIG. 8 is a perspective view that shows the waveguide moved to a different angular position.


DETAILED DESCRIPTION OF THE INVENTION



[0016] The present description is directed in particular to elements forming part of, or cooperating more directly with, apparatus in accordance with the invention. It is to be understood that elements not specifically shown or described may take various forms well known to those skilled in the art.

[0017] Where they are used herein, the terms "first", "second", and so on, do not necessarily denote any ordinal, sequential, or priority relation, but are simply used to more clearly distinguish one element or set of elements from another, unless specified otherwise. The terms "top" and "bottom" do not necessarily designate spatial position but provide relative information about a structure, such as to distinguish opposing surfaces of a planar (flat) waveguide.

[0018] In the context of the present disclosure, the terms "viewer", "operator", "observer", and "user" are considered to be equivalent and refer to the person who wears the HMD viewing device.

[0019] As used herein, the term "energizable" relates to a device or set of components that perform an indicated function upon receiving power and, optionally, upon receiving an enabling signal.

[0020] The term "actuable" has its conventional meaning, relating to a device or component that is capable of effecting an action in response to a stimulus, such as in response to an electrical signal, for example.

[0021] The term "set", as used herein, refers to a non-empty set, as the concept of a collection of elements or members of a set is widely understood in elementary mathematics. The term "subset", unless otherwise explicitly stated, is used herein to refer to a non-empty proper subset, that is, to a subset of the larger set, having one or more members. For a set S, a subset may comprise the complete set S. A "proper subset" of set S, however, is strictly contained in set S and excludes at least one member of set S.

[0022] In the context of the present disclosure, the term "oblique" means at an angle that is not an integer multiple of 90 degrees. Two lines, linear structures, or planes, for example, are considered to be oblique with respect to each other if they diverge from or converge toward each other at an angle that is at least about 5 degrees or more away from parallel, or at least about 5 degrees or more away from orthogonal.

[0023] In the context of the present disclosure, the terms" wavelength band" and "wavelength range" are equivalent and have their standard connotation as used by those skilled in the art of color imaging and refer to a range of light wavelengths that are used to form one or more colors in polychromatic images. Different wavelength bands are directed through different color channels, such as to provide red, green, and blue primary colors in conventional color imaging applications.

[0024] As an alternative to real image projection, an optical system can produce a virtual image display. In contrast to methods for forming a real image, a virtual image is not formed on a display surface. That is, if a display surface were positioned at the perceived location of a virtual image, no image would be formed on that surface. A virtual image display has a number of inherent advantages for an augmented reality display. For example, the apparent size of a virtual image is not limited by the size or location of a display surface. Additionally, the source object for a virtual image may be small; a magnifying glass, as a simple example, provides a virtual image of its object. In comparison with systems that project a real image, a more realistic viewing experience can be provided by forming a virtual image that appears to be some distance away. Providing a virtual image also obviates any need to compensate for screen artifacts, as may be necessary when projecting a real image.

[0025] In the context of the present disclosure, the term "coupled" is intended to indicate a physical association, connection, relation, or linking, between two or more components, such that the disposition of one component affects the spatial disposition of a component to which it is coupled. For mechanical coupling, two components need not be in direct contact, but can be linked through one or more intermediary components. A component for optical coupling allows light energy to be input to, or output from, an optical apparatus. The terms "beam expander" and "pupil expander" are considered to be synonymous, used interchangeably herein.

[0026] FIG. 1 is a schematic diagram that shows a simplified cross-sectional view of one conventional configuration of a light guide 10 arranged as a monocular type light diffractive beam expander or exit pupil expander comprising an input coupling optic such as an in-coupling diffractive optic IDO, and an output coupling optic, such as an out-coupling diffractive optic ODO arranged on a transparent and planar waveguide 22 having a substrate S. In this example, in-coupling diffractive optic IDO is shown as a reflective type diffraction grating; however, in-coupling diffractive optic IDO could alternately be a transmissive diffraction grating, volume hologram or other holographic diffraction element, or other type of optical component that provides diffraction for the incoming, image-bearing light, arranged on a lower surface 12 of the waveguide substrate S, where the in-coming light wave WI first interacts with the waveguide substrate S.

[0027] When used as a part of a virtual display system, in-coupling diffractive optic IDO couples each of a plurality of angularly related in-coming image-bearing light beams WI from an imager, via suitable front end optics (not shown), into the substrate S the waveguide 22. The input light beams WI are diffracted by in-coupling diffractive optic IDO. For example, first order diffracted light propagates as an angularly related set of beams WG along the substrate S, moving toward the right in the FIG. 1 system, toward out-coupling diffractive optic ODO. Between gratings or other types of diffractive optics, light is channeled or directed along the waveguide 22 by Total Internal Reflection (TIR). Out-coupling diffractive optic ODO contributes to beam expansion via multiple diffractive encounters with the propagating light beams WG along its length, i.e., along the x-axis in the view of FIG. 1, and directs the diffracted light from each encounter outwards towards the intended location of an observer's eye.

[0028] The perspective view of FIG. 2 shows an imaging light guide 20 arranged as a known beam expander that provides beam expansion along x- and y-axes using an intermediate turning grating TG to redirect the light output (first diffracted mode) from in-coupling diffractive optic IDO to out-coupling diffractive optic ODO. In the FIG. 2 device, in-coupling diffractive optic IDO containing periodic rulings with a period d diffracts angularly related incoming input optical beams WI into the waveguide 22 as a set of angularly related beams WG, propagating by total internal reflection in an initial direction towards the intermediate turning grating TG. Intermediate grating TG is termed a "turning grating" because of its function in the optical path, redirecting the beams WG from within the waveguide 22 according to its grating vector in a direction towards the out-coupling diffractive optic ODO, thereby accounting for a difference in angle between the grating vectors of the in-coupling diffraction optic IDO and the out-coupling diffraction optic ODO. Intermediate grating TG, which has angular orientation of diffraction elements and a spacing geometry determined by spacing period d, not only redirects the internally reflected beams WG but also contributes to beam expansion via multiple diffractive encounters with the light beams WG along the initial direction of propagation, i.e., along the y-axis in the view of FIG. 2. The out-coupling diffractive optic ODO contributes to an orthogonal beam expansion via multiple diffractive encounters with the light beams WG along the redirected direction of propagation, i.e., along the x-axis in the view of FIG. 2.

[0029] The grating vectors, generally designated k and shown with subscripts where they are specific to light within a color channel, extend parallel to the plane of the waveguide surface and are in the direction of the periodicity of the in-coupling and out-coupling diffractive optics IDO and ODO, respectively.

[0030] In considering a light guide design used for imaging it should be noted that image-bearing light traveling within a waveguide is effectively encoded by the in-coupling optics, whether the in-coupling mechanism uses gratings, holograms, prisms, mirrors, or some other mechanism. Any reflection, refraction, and/or diffraction of light that takes place at the input must be correspondingly decoded by the output in order to re-form the virtual image that is presented to the viewer.

[0031] A turning grating TG, placed at an intermediate position between the input and output couplings, such as the in-coupling and out-coupling diffractive optics IDO and ODO, is typically chosen to minimize any changes on the encoded light. As such, the pitch of the turning grating preferably matches the pitch of the in-coupling and out-coupling diffractive optics IDO and ODO. In addition, the virtual image can be preserved by orienting the turning grating at around 60 degrees to in-coupling and out-coupling diffractive optics IDO and ODO in such away that the encoded ray bundles are turned by one of the 1st reflection orders of the turning grating TG. The diffractive effects of the turning grating TG are most pronounced on the vector component of the incoming rays that are parallel to the grating vector of the turning grating. Turning gratings so arranged redirect ray bundles within the guide substrate while minimizing any changes to the encoded angular information of the virtual information of the virtual image. The resultant virtual image in such a designed system is not rotated. If such a system did introduce any rotation to the virtual image, the rotational effects could be non-uniformly distributed across different field angles and wavelengths of light, thus causing unwanted distortions or chromatic aberrations in the resultant virtual image.

[0032] The use of turning grating TG as envisioned for certain embodiments described herein preserves an inherent geometrical accuracy to the design of the light guide 20 so that the input beam and output beam are symmetrically oriented with respect to each other. With proper grating TG spacing and orientation, grating vectors k direct the light from the in-coupling diffractive optic IDO to the out-coupling diffractive optic ODO. It should be noted that the image that is formed for the imaging light guide viewer is a virtual image, focused at infinity or at least well in front of the light guide 20, but with the relative orientation of output image content to input image content preserved. A change in the rotation about the z axis or angular orientation of incoming light beams WI with respect to the x-y plane can cause a corresponding symmetric change in rotation or angular orientation of outgoing light from out-coupling diffractive optic ODO. From the aspect of image orientation, turning grating TG is intended to function as a type of optical relay, providing expansion along one axis of the image that is input through the in-coupling diffractive optic IDO and redirected to out-coupling diffractive optic ODO. Turning grating TG is typically a slanted or square grating or, alternately, can be a blazed grating. Reflective surfaces can alternately be used for turning the light toward the out-coupling diffractive optic ODO.

[0033] Beam expansion in two different dimensions is provided when using the arrangement of FIG. 2. Turning grating TG expands the diffracted beam from in-coupling diffractive optic IDO in the y direction as shown. Out-coupling diffractive optic ODO further expands the diffracted beam in the x direction, orthogonal to the y direction as shown.

[0034] The known imaging light guide 20 that is shown in FIG. 2 has been used in a number of existing head-mounted device (HMD) designs for providing image content to a viewer. This type of beam expander is particularly well-suited to augmented reality applications in which image content can be superimposed on a real-world view as seen through the transparent imaging light guide.

[0035] Augmented Reality (AR) applications combine virtual image and real-world image content from the field of view (FOV) and often superimpose virtual image content onto the FOV. The generated virtual image is formed by the optical system. In the case of imaging light guide 20 (FIG. 2), light that forms the virtual image is provided as collimated light to the eye, as shown in the cross-sectional schematic view of FIG. 3A. The eye accepts this light as if focusing on an object that is at a considerable distance away. For a field of view (FOV) with objects farther than about 5 meters (5 m), as shown in FIG. 3B, the focus condition of the normal eye is generally close enough to infinity focus so that focus disparity is not readily perceptible to the viewer.

[0036] In order for an understanding of apparatus and methods of the present disclosure, it is instructive to consider how the displayed virtual image is formed. FIG. 4A shows how imaging light guide 10 forms a virtual image with collimated light beams propagating along the waveguide 22. A projector 40, which can be fitted within a frame or mount that holds imaging light guide 10 as shown subsequently, directs image-bearing light beams into the waveguide 22 through in-coupling diffractive optic IDO. The light is conveyed through waveguide substrate S to out-coupling diffractive optic ODO to form a virtual image that is seen by the eye of the viewer. The virtual image VI appears to be in the field of view, directly ahead of the viewer.

[0037] FIG. 4B shows, from a top view, how the angle of incidence of a central beam among the image bearing beams emitted from the projector 40 and incident upon the waveguide 22 affects the apparent position of the virtual image VI. With an angular shift in the angle of incidence upon the waveguide 22, imaging light guide 10 mirrors the angular change and forms virtual image VI at a shifted position, exaggerated in FIG. 4B for the sake of description. FIG. 4C shows the relative shift of virtual image VI with incidence changed in the other direction. In FIGS. 4B and 4C, the relative change for the angular position of projector 40 is shown.

[0038] FIG. 5 shows the relative shift in virtual image VI position with projector 40 in fixed position and the waveguide 22 pivoted about a vertical axis to change the incidence angle. Again, the change in relative angle causes a corresponding shift in virtual image VI position.

[0039] This mirrored change in virtual image VI position can also be effected in the vertical direction. FIGS. 6A and 6B show side views with the central beam from projector 40 oriented at both normal incidence and oblique incidence to the waveguide 22. With the projector 40 fixed, the waveguide 22 is pivoted about a horizontal axis for relatively tilting the waveguide 22 out of vertical.

[0040] An embodiment of the present disclosure allows the rotation of the waveguide 22 using a hinged arrangement, thereby shifting the horizontal position of the generated virtual image.

[0041] FIG. 7 shows an adjustable imaging apparatus 70 that supports waveguide 22 in movable configuration. A hinge 88 allows the waveguide 22 to be pivoted about a vertical axis in a horizontal plane, without moving the projector 40 in projector portion 68 of the frame, as shown in FIG. 8. Projector 40 is in fixed position; only the waveguide 22 moves. The view to the virtual image not only moves with the waveguide 22, but the virtual image moves within the waveguide 22 allowing for better positioning of the virtual image in the user's line of sight.

[0042] Embodiments described herein use diffractive optics for in-coupling and out-coupling functions and used conventional planar waveguides. It must be noted that input and output coupling can use mechanisms other than diffraction, such as reflection, for example, for directing angularly encoded beams into and out from the waveguide and providing the desired beam expansion. One or both the in-coupling and out-coupling optics can be prisms, for example. The in-coupling or out-coupling optics can be a mirror, or multiple mirrors, within the plane of the waveguide. Mirrors can be partially reflective and can be arranged in parallel to each other.

[0043] The invention has been described in detail with particular reference to presently preferred embodiments, but it will be understood that variations and modifications can be effected within the scope of the invention as defined by the claims. The presently disclosed embodiments are therefore considered in all respects to be illustrative and not restrictive. The scope of the invention is indicated by the appended claims, and all changes that come within the meaning and range of equivalents thereof are intended to be embraced therein.


Claims

1. A monocular wearable display apparatus, comprising:

a frame operable to support the display apparatus against a viewer's head, the frame having a forward section;

a projector (40) fitted within the frame in a fixed position, the projector operable to generate image-bearing light beams;

a mount;

an imaging light guide (20) in a path of the image-bearing light beams;

wherein the imaging light guide (20) comprises:

a waveguide (22) having a substrate (S) formed from a transparent optical material;

an in-coupling optic configured to direct image-bearing light beams into the waveguide (22); and

an out-coupling optic configured to expand the respective image-bearing light beams in a lateral dimension and to form a virtual image within a viewer eyebox;

wherein the mount includes a hinge (88) operable to provide angular adjustment of the waveguide (22) with respect to the projector (40);

characterised in that the mount is attached to the forward section of the frame and supports the imaging light guide in front of the viewer;

wherein the mount is configured to adjust a position of the waveguide (22) in at least one of a horizontal plane and a vertical plane, thereby repositioning the virtual image within a line of sight of the viewer without repositioning the projector (40).


 
2. The apparatus of claim 1, wherein the image light guide further comprises an intermediate turning optic configured to direct at least a portion of the image-bearing light beams from the in-coupling optic to the out-coupling optic;

wherein the in-coupling optic comprises periodic rulings with a period (d);

wherein the intermediate turning optic is configured to account for a difference in angle between grating vectors of the in-coupling optic and the out-coupling optic; and

wherein the intermediate turning optic comprises diffraction elements with an angular orientation and a spacing geometry that are a function of the period of the periodic rulings of the in-coupling optic.


 
3. The apparatus of claim 1 or 2, wherein the hinge (88) has a horizontal axis for angularly adjusting the waveguide (22) with respect to the projector (40) into and out of a vertical plane.
 
4. The apparatus of claim 1 or 2, wherein one or both the in-coupling and the out-coupling optics are at least one of a diffractive optic and a prism.
 
5. The apparatus of claim 1 or 2, wherein the in-coupling optic comprises a mirror within the plane of the waveguide (22).
 
6. The apparatus of claim 1 or 2, wherein the in-coupling optic is comprised of multiple at least partially reflective mirrors arranged within the plane of the waveguide (22).
 
7. The apparatus of claim 1 or 2, wherein the out-coupling optic is comprised of multiple at least partially reflective mirrors arranged within the plane of the waveguide (22).
 
8. The apparatus of claim 2, wherein the intermediate turning optic is configured to contribute to pupil expansion via multiple diffractive encounters of at least a portion of the image bearing light beams along a first direction of propagation.
 
9. The apparatus of claim 8, wherein the out-coupling optic is configured to contribute orthogonal pupil expansion via multiple diffractive encounters of at least a portion of the image bearing light beams along a second direction of propagation, the first direction of propagation being orthogonal to the second direction of propagation.
 
10. The apparatus of claim 2, wherein the intermediate turning optic comprises a pitch that matches a pitch of the in-coupling optic and a pitch of the out-coupling optic.
 
11. The apparatus of claim 2, wherein the intermediate turning optic comprises a turning grating that is orientated at around 60 degrees to the first diffracted light output of the in-coupling optic along a first direction of propagation.
 
12. The apparatus of claim 1 or 2, wherein the hinge (88) has a vertical axis for angularly adjusting the waveguide (22) with respect to the projector (40) into and out of a horizontal plane.
 
13. The apparatus of claim 1 or 2, wherein the projector is arranged along a temple of the viewer.
 


Ansprüche

1. Eine monokulare, tragbare Anzeigevorrichtung, umfassend:

einen Rahmen, der dazu dient, die Anzeigevorrichtung gegen den Kopf eines Betrachters zu stützen, wobei der Rahmen einen vorderen Abschnitt aufweist;

einen Projektor (40), der innerhalb des Rahmens in einer festen Position angebracht ist, wobei der Projektor betreibbar ist, um bildtragende Lichtstrahlen zu erzeugen;

einen Halter;

einen Abbildungslichtleiter (20) in einem Pfad der bildtragenden Lichtstrahlen;

wobei der Abbildungslichtleiter (20) umfasst:

einen Wellenleiter (22) mit einem Substrat (S), das aus einem transparenten optischen Material besteht;

eine Einkoppeloptik, die so ausgestaltet ist, dass sie bildtragende Lichtstrahlen in den Wellenleiter (22) lenkt; und

eine Auskoppeloptik, die so ausgestaltet ist, dass sie die jeweiligen bildtragenden Lichtstrahlen in einer seitlichen Dimension aufweitet und ein virtuelles Bild im Auge des Betrachters erzeugt;

wobei die Halterung ein Scharnier (88) enthält, das so betätigt werden kann, dass es eine Winkeleinstellung des Wellenleiters (22) in Bezug auf den Projektor (40) ermöglicht;

dadurch gekennzeichnet, dass die Halterung am vorderen Abschnitt des Rahmens befestigt ist und den Abbildungslichtleiter vor dem Betrachter trägt;

wobei die Halterung so ausgestaltet ist, dass sie eine Position des Wellenleiters (22) in mindestens einer von einer horizontalen Ebene und einer vertikalen Ebene einstellt, wodurch das virtuelle Bild innerhalb einer Sichtlinie des Betrachters neu positioniert wird, ohne dass der Projektor (40) neu positioniert werden muss.


 
2. Vorrichtung nach Anspruch 1, wobei der Abbildungslichtleiter ferner eine Zwischen-Drehoptik umfasst, die so ausgestaltet ist, dass sie mindestens einen Teil der bildtragenden Lichtstrahlen von der Einkoppeloptik zur Auskoppeloptik lenkt;

wobei die Einkoppeloptik periodische Anordnungen mit einer Periode (d) aufweist;

wobei die Zwischen-Drehoptik so ausgestaltet ist, dass sie eine Winkeldifferenz zwischen Gittervektoren der Einkoppeloptik und der Auskoppeloptik berücksichtigt; und

wobei die Zwischen-Drehoptik Beugungselemente mit einer Winkelausrichtung und einer Abstandsgeometrie umfasst, die eine Funktion der Periode der periodischen Anordnungen der Einkoppeloptik sind.


 
3. Vorrichtung nach Anspruch 1 oder 2, wobei das Scharnier (88) eine horizontale Achse aufweist, um den Wellenleiter (22) in Bezug auf den Projektor (40) in eine vertikale Ebene hinein und aus dieser heraus winklig zu verstellen.
 
4. Vorrichtung nach Anspruch 1 oder 2, wobei eine oder beide der Einkoppeloptik und der Auskoppeloptik mindestens eine einer diffraktiven Optik oder eines Prisma sind.
 
5. Vorrichtung nach Anspruch 1 oder 2, wobei die Einkoppeloptik einen Spiegel in der Ebene des Wellenleiters (22) umfasst.
 
6. Vorrichtung nach Anspruch 1 oder 2, wobei die Einkoppeloptik aus mehreren, zumindest teilweise reflektierenden Spiegeln besteht, die in der Ebene des Wellenleiters (22) angeordnet sind.
 
7. Vorrichtung nach Anspruch 1 oder 2, wobei die Auskoppeloptik aus mehreren, zumindest teilweise reflektierenden Spiegeln besteht, die in der Ebene des Wellenleiters (22) angeordnet sind.
 
8. Vorrichtung nach Anspruch 2, wobei die Zwischen-Drehoptik so ausgestaltet ist, dass sie zur orthogonalen Pupillenerweiterung durch mehrfaches beugendes Aufeinandertreffen von mindestens einem Teil der bildtragenden Lichtstrahlen entlang einer ersten Ausbreitungsrichtung beiträgt.
 
9. Vorrichtung nach Anspruch 8, wobei die Auskoppeloptik so ausgestaltet ist, dass sie zu einer orthogonalen Pupillenerweiterung durch mehrfaches beugendes Zusammentreffen mindestens eines Teils der bildtragenden Lichtstrahlen entlang einer zweiten Ausbreitungsrichtung beiträgt, wobei die erste Ausbreitungsrichtung orthogonal zur zweiten Ausbreitungsrichtung ist.
 
10. Vorrichtung nach Anspruch 2, wobei die Zwischen-Drehoptik eine Teilung aufweist, die mit der Teilung der Einkoppeloptik und der Teilung der Auskoppeloptik übereinstimmt.
 
11. Vorrichtung nach Anspruch 2, wobei die Zwischen-Drehoptik ein Drehgitter umfasst, das in einer ersten Ausbreitungsrichtung um etwa 60 Grad zum ersten gebeugten Lichtausgang der Einkoppeloptik ausgerichtet ist.
 
12. Vorrichtung nach Anspruch 1 oder 2, wobei das Scharnier (88) eine vertikale Achse aufweist, um den Wellenleiter (22) in Bezug auf den Projektor (40) in eine horizontale Ebene hinein und aus dieser heraus winklig zu verstellen.
 
13. Vorrichtung nach Anspruch 1 oder 2, wobei der Projektor entlang eines Bügels des Betrachters angeordnet ist.
 


Revendications

1. Un appareil d'affichage portable monoculaire, comprenant:

un cadre permettant de soutenir l'appareil d'affichage contre la tête d'un spectateur, le cadre ayant une section avant;

un projecteur (40) monté à l'intérieur du cadre dans une position fixe, le projecteur pouvant générer des faisceaux lumineux porteurs d'images;

une monture;

un guide de lumière d'imagerie (20) sur le trajet des faisceaux lumineux porteurs d'images;

dans lequel le guide de lumière d'imagerie (20) comprend:

un guide d'ondes (22) ayant un substrat (S) formé d'un matériau optique transparent;

une optique de couplage configurée pour diriger les faisceaux lumineux porteurs d'images dans le guide d'ondes (22); et

une optique de découplage configurée pour étendre les faisceaux lumineux porteurs d'images respectifs dans une dimension latérale et pour former une image virtuelle dans la boîte oculaire de l'observateur;

dans lequel la monture comprend une charnière (88) permettant un réglage angulaire du guide d'ondes (22) par rapport au projecteur (40);

caractérisé par le fait que la monture est fixée à la partie avant du cadre et supporte le guide de lumière d'imagerie devant l'observateur;

dans lequel la monture est configurée pour ajuster la position du guide d'ondes (22) sur au moins un plan horizontal et un plan vertical, repositionnant ainsi l'image virtuelle dans la ligne de mire du spectateur sans repositionner le projecteur (40).


 
2. L'appareil selon la revendication 1, dans lequel le guide de lumière d'imagerie comprend en outre une optique de rotation intermédiaire configurée pour diriger au moins une partie des faisceaux lumineux porteurs d'images de l'optique de couplage vers l'optique de découplage;

dans lequel l'optique de couplage comprend des arrêts périodiques avec une période (d);

dans lequel l'optique de rotation intermédiaire est configurée pour tenir compte d'une différence d'angle entre les vecteurs de réseau de l'optique de couplage et de l'optique de découplage; et

l'optique de rotation intermédiaire comprend des éléments de diffraction dont l'orientation angulaire et la géométrie d'espacement sont fonction de la période des arrêts périodiques de l'optique de couplage.


 
3. L'appareil selon la revendication 1 ou 2, dans lequel la charnière (88) a un axe horizontal pour ajuster angulairement le guide d'ondes (22) par rapport au projecteur (40) dans et hors d'un plan vertical.
 
4. L'appareil selon la revendication 1 ou 2, dans lequel l'optique de couplage et l'optique de découplage sont au moins l'une des optiques diffractives et l'une des optiques prismatiques.
 
5. L'appareil selon la revendication 1 ou 2, dans lequel l'optique de couplage comprend un miroir dans le plan du guide d'ondes (22).
 
6. L'appareil selon la revendication 1 ou 2, dans lequel l'optique de couplage est constituée de multiples miroirs au moins partiellement réfléchissants disposés dans le plan du guide d'ondes (22).
 
7. L'appareil selon la revendication 1 ou 2, dans lequel l'optique de découplage est constituée de multiples miroirs au moins partiellement réfléchissants disposés dans le plan du guide d'ondes (22).
 
8. L'appareil selon la revendication 2, dans lequel l'optique de rotation intermédiaire est configurée pour contribuer à l'expansion de la pupille par de multiples rencontres diffractives d'au moins une partie des faisceaux lumineux porteurs d'image le long d'une première direction de propagation.
 
9. L'appareil selon la revendication 8, dans lequel l'optique de découplage est configurée pour contribuer à l'expansion orthogonale de la pupille par de multiples rencontres diffractives d'au moins une partie des faisceaux lumineux porteurs d'image le long d'une seconde direction de propagation, la première direction de propagation étant orthogonale à la seconde direction de propagation.
 
10. L'appareil selon la revendication 2, dans lequel l'optique de rotation intermédiaire comprend un pas qui correspond à un pas de l'optique de couplage et à un pas de l'optique de découplage.
 
11. L'appareil selon la revendication 2, dans lequel l'optique de rotation intermédiaire comprend un réseau de virage orienté à environ 60 degrés par rapport à la première sortie de lumière diffractée de l'optique de couplage le long d'une première direction de propagation.
 
12. L'appareil selon la revendication 1 ou 2, dans lequel la charnière (88) a un axe vertical pour ajuster angulairement le guide d'ondes (22) par rapport au projecteur (40) dans et hors d'un plan horizontal.
 
13. L'appareil selon la revendication 1 ou 2, dans lequel le projecteur est disposé le long d'un temple du spectateur.
 




Drawing



































Cited references

REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description




Non-patent literature cited in the description