(19)
(11)EP 3 372 932 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
09.11.2022 Bulletin 2022/45

(21)Application number: 16861272.9

(22)Date of filing:  17.06.2016
(51)International Patent Classification (IPC): 
F25D 29/00(2006.01)
(52)Cooperative Patent Classification (CPC):
F25D 29/00; F25B 2400/073; F25B 2500/12; F25B 2700/2117; F25D 2700/14; F25D 2700/12
(86)International application number:
PCT/CN2016/086167
(87)International publication number:
WO 2017/076002 (11.05.2017 Gazette  2017/19)

(54)

REFRIGERATOR ADOPTING LINEAR COMPRESSOR AND CONTROL METHOD THEREOF

KÜHLSCHRANK MIT LINEARKOMPRESSOR UND VERFAHREN ZUR STEUERUNG DESSELBEN

RÉFRIGÉRATEUR UTILISANT UN COMPRESSEUR LINÉAIRE ET SON PROCÉDÉ DE COMMANDE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 05.11.2015 CN 201510751457

(43)Date of publication of application:
12.09.2018 Bulletin 2018/37

(73)Proprietor: Qingdao Haier Joint Stock Co., Ltd
Qingdao, Shandong 266101 (CN)

(72)Inventors:
  • JI, Lisheng
    Qingdao Shandong 266101 (CN)
  • LIU, Jianru
    Qindao Shandong 266101 (CN)
  • ZHU, Xiaobing
    Qindao Shandong 266101 (CN)
  • QI, Feifei
    Qindao Shandong 266101 (CN)
  • ZHANG, Shufeng
    Qindao Shandong 266101 (CN)
  • ZHAO, Caiyun
    Qindao Shandong 266101 (CN)

(74)Representative: Lavoix 
Bayerstraße 83
80335 München
80335 München (DE)


(56)References cited: : 
WO-A1-2015/101884
CN-A- 1 215 145
CN-A- 105 258 449
KR-A- 20140 144 020
WO-A1-2015/101885
CN-A- 103 080 676
JP-A- H10 185 395
US-A1- 2013 167 565
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    TECHNICAL FIELD



    [0001] The present invention relates to the technical field of refrigerator noise reduction, and in particular to a refrigerator adopting a linear compressor and a control method thereof.

    BACKGROUND



    [0002] Linear compressors are more and more widely applied in refrigerator manufacture industries owing to their advantages of small volume, self-lubrication and high precision.

    [0003] Refrigerators rely on linear compressors to work to compress the coolant to make cooling, during which the linear compressors will generate operation noise, especially when the refrigerator has a heavy heating load. For example, at the initial power-up period of the refrigerator, a large amount of high-temperature goods are placed in the refrigerator compartments or the door of the refrigerator has been opened for a long time, the operation noise of the linear compressor is especially obvious.

    [0004] The linear compressor having loud operation noise when the refrigerator has a heavy heating load is decided by the operation property of the linear compressor. When the refrigerator has a heavy heating load, the temperature of the evaporator in the cooling loop of the linear compressor will be relatively high, and the inlet and outlet pressures of the linear compressor are also relatively high. As the inlet and outlet pressures of the linear compressor are proportional to the entire vibration frequency of the linear compressor, with the increase of the heating load of the refrigerator, the vibration frequency when the linear compressor operates will also be relatively high, easy to resonate with the refrigerator body and will generate relatively loud noise.

    [0005] Especially, the linear compressor has the feature of self-lubrication and does not need to connect the lubrication oil loop. In order to expand the volume of the freezing compartment at the lower portion of the refrigerator as much as possible, usually, the linear compressor is provided at the back of the refrigeration compartment at the top of the refrigerator, and the top of the refrigerator is closer to the ear when a user stands nearby. When the linear compressor operates, the noise is especially obvious, and a refrigerator adopting a linear compressor and a control method thereof are needed urgently to reduce the refrigerator noise.

    [0006] Document WO 2015/101884 discloses a method for controlling a freezing phase in a refrigeration appliance of the single-control combined type.

    [0007] Document US 2013/167565 discloses a method for controlling an operation of a refrigerator, wherein different operation modes are selected according to whether a refrigerator door is opened and closed, and according to an inner temperature and an ambient noise.

    SUMMARY



    [0008] An object of the present invention is to provide a control method of a refrigerator adopting a linear compressor according to claim 1.

    [0009] A refrigerator adopting a linear compressor according to claim 6 is also provided.

    [0010] Preferred embodiments of the invention are the subject matter of the dependent claims, whose content is to be understood as forming an integral part of the present description.

    [0011] Compared to the prior art, the technical effects of the present invention are as follows: by means of the refrigerator adopting a linear compressor and the control method thereof in the present invention, when there is a heavy heating load, the air door of the evaporator and/or the blower is closed so that the heat exchange rate of the evaporator decreases, the temperature of the evaporator decreases rapidly, and the inlet and outlet pressures of the linear compressor also decrease accordingly. Finally, the entire vibration frequency of the linear compressor decreases, and is not easy to resonate with the refrigerator body, achieving the advantage of low operation noise.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0012] 

    Fig. 1 is a flowchart of a control method of a refrigerator adopting a linear compressor in embodiment 1;

    Fig. 2 is a block diagram of a refrigerator adopting a linear compressor in embodiment 1;

    Fig. 3 is a flowchart of a control method of a refrigerator adopting a linear compressor in embodiment 2; and

    Fig. 4 is a block diagram of a refrigerator adopting linear compressor in embodiment 2.


    DETAILED DESCRIPTION



    [0013] Hereinafter, the present invention will be described in detail in combination with the particular embodiments shown in the accompanying drawings. However, these embodiments do not limit the present invention, and the structure, method or function modifications made by those skilled in the art according to these embodiments are all contained in the protection scope of the present invention.

    [0014] The same or similar components in various embodiments employ the same reference numerals.

    Embodiment 1



    [0015] A single-system refrigerator merely has one cooling loop. The refrigerator compartments (refrigeration compartment and freezing compartment) share one evaporator. The air inside the refrigerator compartments is forced to pass through the evaporator using a blower and return to the refrigerator compartments after being cooled to form a forced circulation of the cool air in the refrigerator compartments.

    [0016] Referring to Fig. 1, for a single-system air-cooled refrigerator, the present invention discloses a control method of a refrigerator adopting a linear compressor, comprising: monitoring the temperature of an evaporator of the refrigerator; and if the current temperature of the refrigerator evaporator is greater than or equal to a first preset temperature threshold, then invoking the noise reduction mode to actively reduce the heat exchange amount between the evaporator and the refrigerator compartments, and further, in the noise reduction mode, reducing the heat exchange amount between the evaporator and the refrigerator compartments by closing the blower of the refrigerator and/or the air doors of the compartments.

    [0017] It should be understood that when the blower and/or the air doors of the compartments are closed, the forced convection between the air in the refrigerator compartments and the evaporator is blocked, the cooling amount loss of the evaporator will become small, the temperature can decrease rapidly, the inlet and outlet pressures of the linear compressor will decrease, and the operation noise will decrease.

    [0018] When the current temperature of the refrigerator evaporator is less than or equal to a second preset temperature threshold, a cooling mode will be invoked to resume the normal heat exchange between the evaporator and the refrigerator compartments, and further, in the cooling mode, the blower and the air door are controlled to operate according to the temperature in the refrigerator compartments and the ambient temperature.

    [0019] In particular, the temperature in the refrigerator compartments can be used for controlling the turning-on or turning-off of the blower and the opening and closing of the air doors of the compartments. The ambient temperature can be divided into a plurality of consecutive intervals. The operating rotation speed of the blower is set corresponding to each temperature interval. For example, when the ambient temperature is 10-20 degrees, the operating rotation speed of the blower is 500 revolutions per minute; when the ambient temperature is 20-30 degrees, the operating rotation speed of the blower is 700 revolutions per minute; and when the current temperature of the refrigerator evaporator is less than or equal to a second preset temperature threshold, the blower and the air doors of the compartments operate according to corresponding operation parameters.

    [0020] The first preset temperature threshold is higher than the second preset temperature threshold. In particular, the vibration spectrum when the refrigerator operates is scanned and the temperature of the evaporator when the refrigerator resonates is recorded. This temperature is the first preset temperature threshold. The second preset temperature threshold is slightly smaller than the first preset temperature threshold, for preventing the refrigerator switching frequently between the noise reduction mode and the cooling mode.

    [0021] Furthermore, the method further includes: in the noise reduction mode, controlling the operation of the linear compressor according to the temperature in the refrigerator compartments and the ambient temperature. In particular, the temperature in the refrigerator compartments can be used for controlling the turning-on or turning-off of the linear compressor. The ambient temperature can be divided into a plurality of consecutive intervals. The operating parameters of the linear compressor are set corresponding to each interval. For example, when the ambient temperature is 10-20 degrees, the input frequency of the linear compressor is 100W; when the ambient temperature is 20-30 degrees, the input frequency of the linear compressor is 120W. When the current temperature of the refrigerator evaporator is greater than or equal to a first preset temperature, the linear compressor operates according to corresponding operation parameters.

    [0022] In the conventional control logic of the air-cooled refrigerator, the operation state of the linear compressor and the operation states of the blower and the air doors of the compartments are correlated. It should be understood that if the travel of the linear compressor (the travel is proportional to the input frequency) gradually declines along with the closing of the blower and/or the air doors of the compartments in the noise reduction mode, then the declination trend of the temperature of the evaporator slows down. Thus, the linear compressor is controlled to operate according to the temperature in the refrigerator compartments and the ambient temperature so as to ensure that the evaporator temperature can decrease rapidly.

    [0023] Referring to Fig. 2, the present invention also discloses a refrigerator adopting a linear compressor, comprising: an evaporator temperature sensor 200 configured for monitoring the temperature of an evaporator of the refrigerator; a computer board 100 configured for controlling the operation mode of the refrigerator; a temperature sensor inside the refrigerator compartment 300 configured for collecting the temperature in the refrigeration compartment; and a temperature sensor outside the refrigerator compartment 400 configured for collecting an ambient temperature.

    [0024] If the current temperature of the refrigerator evaporator is greater than or equal to a first preset temperature threshold, then the noise reduction mode will be invoked to actively reduce the heat exchange amount between the evaporator and the refrigerator compartments; and further, in the noise reduction mode, the heat exchange amount between the evaporator and the refrigerator compartments is reduced by closing the blower of the refrigerator and/or the air doors of the compartments.

    [0025] It should be understood that when the blower and/or the air doors of the compartments are closed, the forced convection between the air in the refrigerator compartments and the evaporator is blocked, the cooling amount loss of the evaporator will become small, the temperature can decrease rapidly, the inlet and outlet pressures of the linear compressor will decrease, and the operation noise will decrease.

    [0026] When the current temperature of the refrigerator evaporator is less than or equal to a second preset temperature threshold, a cooling mode will be invoked to resume the normal heat exchange between the evaporator and the refrigerator compartments; and further, in the cooling mode, the blower and the air door are controlled to operate according to the temperature in the refrigerator compartments and the ambient temperature.

    [0027] In particular, the temperature in the refrigerator compartments can be used for controlling the turning-on or turning-off of the blower and the opening and closing of the air doors of the compartments. The ambient temperature can be divided into a plurality of consecutive intervals. The operating rotation speed of the blower is set corresponding to each temperature interval. For example, when the ambient temperature is 10-20 degrees, the operating rotation speed of the blower is 500 revolutions per minute; when the ambient temperature is 20-30 degrees, the operating rotation speed of the blower is 700 revolutions per minute; and when the current temperature of the refrigerator evaporator is less than or equal to a second preset temperature, the blower and the air doors of the compartments operate according to corresponding operation parameters.

    [0028] The first preset temperature threshold is higher than the second preset temperature threshold. In particular, the vibration spectrum when the refrigerator operates is scanned and the temperature of the evaporator when the refrigerator resonates is recorded. This temperature is the first preset temperature threshold. The second preset temperature threshold is slightly smaller than the first preset temperature threshold, for preventing the refrigerator switching frequently between the noise reduction mode and the cooling mode.

    [0029] In the noise reduction mode, the operation of the linear compressor is controlled according to the temperature in the refrigerator compartments and the ambient temperature. The temperature in the refrigerator compartments are used for controlling the turning-on or turning-off of the linear compressor. The ambient temperature can be divided into a plurality of consecutive intervals. The operating parameters of the linear compressor are set corresponding to each interval. For example, when the ambient temperature is 10-20 degrees, the input frequency of the linear compressor is 100W; when the ambient temperature is 20-30 degrees, the input frequency of the linear compressor is 120W. When the current temperature of the refrigerator evaporator is greater than or equal to a first preset temperature, the linear compressor operates according to corresponding operation parameters.

    [0030] In the conventional control logic of the air-cooled refrigerator, the operation state of the linear compressor and the operation states of the blower and the air doors of the compartments are correlated. It should be understood that if the travel of the linear compressor (the travel is proportional to the input frequency) gradually declines along with the closing of the blower and/or the air doors of the compartments in the noise reduction mode, then the declination trend of the temperature of the evaporator slows down. Thus, the linear compressor is controlled to operate according to the temperature in the refrigerator compartments and the ambient temperature so as to ensure that the evaporator temperature can decrease rapidly.

    [0031] When there is a heavy heating load, the air door of the evaporator and/or the blower is closed so that the heat exchange rate of the evaporator decreases, the temperature of the evaporator decreases rapidly, and the inlet and outlet pressures of the linear compressor also decrease accordingly. Finally, the entire vibration frequency of the linear compressor decreases, and is not easy to resonate with the refrigerator body, achieving the advantage of low operation noise.

    Embodiment 2



    [0032] A multi-system refrigerator has a refrigeration compartment cooling loop and a freezing compartment cooling loop. The refrigeration compartment and the freezing compartment respectively have a corresponding evaporator and blower. When the coolant passes through the refrigeration loop, the refrigeration compartment blower is adopted to force the air in the refrigeration compartment to pass through the refrigeration evaporator and return to the refrigeration compartment after being cooled to form a forced circulation of the cool air in the refrigeration compartment. Accordingly, when the coolant passes through the freezing loop, the freezing compartment blower is adopted to force the air in the freezing compartment to pass through the freezing evaporator and return to the freezing compartment after being cooled to form a forced circulation of the cool air in the freezing compartment.

    [0033] Referring to Fig. 3, for a multi-system air-cooled refrigerator, the present invention discloses a control method of a refrigerator adopting a linear compressor, comprising: monitoring temperatures of a refrigeration evaporator and of a freezing evaporator of the refrigerator; if the current temperature of the refrigerator refrigeration evaporator is greater than or equal to a first preset refrigeration temperature threshold, then invoking the refrigeration noise reduction mode to actively reduce the heat exchange amount between the refrigeration evaporator and the refrigeration compartment; and further, in the refrigeration noise reduction mode, reducing the heat exchange amount between the refrigeration evaporator and the refrigeration compartment by closing a blower of the refrigeration compartment and/or an air door of the refrigeration compartment.

    [0034] The method also comprises: if the current temperature of the refrigerator freezing evaporator is greater than or equal to a first preset freezing temperature threshold, then invoking the freezing noise reduction mode to actively reduce the heat exchange amount between the freezing evaporator and the freezing compartment; and further, in the freezing noise reduction mode, reducing the heat exchange amount between the freezing evaporator and the freezing compartment by closing a blower of the freezing compartment and/or an air door of the freezing compartment.

    [0035] It should be understood that when the blower of the refrigeration compartment and/or the air door of the refrigeration compartment is closed, the forced convection of the air in the refrigeration compartment and the refrigeration evaporator is blocked, the cooling amount loss of the refrigeration evaporator will become small, the temperature can decrease rapidly, the inlet and outlet pressures of the linear compressor when the coolant passes through the refrigeration loop will decrease, and the operation noise will decrease; and when the blower of the freezing compartment and/or the air door of the freezing compartment is closed, the forced convection between the air in the freezing compartment and the freezing evaporator is blocked, the cooling amount loss of the freezing evaporator will become small, the temperature can decrease rapidly, the inlet and outlet pressures of the linear compressor when the coolant passes through the freezing loop will decrease, and the operation noise will decrease.

    [0036] When the current temperature of the refrigeration evaporator is less than or equal to a second preset refrigeration temperature threshold, a refrigeration cooling mode will be invoked to resume the normal heat exchange between the refrigeration evaporator and the refrigeration compartment. Further, the blower of the refrigeration compartment and the air door of the refrigeration compartment are controlled to operate according to the temperature in the refrigeration compartment and the ambient temperature in the refrigeration cooling mode.

    [0037] In particular, the temperature in the refrigeration compartment can be used for controlling the turning-on or turning-off of the blower of the refrigeration compartment and the opening and closing of the air door of the refrigeration compartment. The ambient temperature can be divided into a plurality of consecutive intervals. The operating rotation speed of the blower of the refrigeration compartment is set corresponding to each temperature interval. For example, when the ambient temperature is 10-20 degrees, the operating rotation speed of the blower of the refrigeration compartment is 500 revolutions per minute; when the ambient temperature is 20-30 degrees, the operating rotation speed of the blower of the refrigeration compartment is 700 revolutions per minute; and when the current temperature of the refrigeration evaporator is less than or equal to a second preset refrigeration temperature threshold, the blower and the air door of the refrigeration compartment operate according to corresponding operation parameters.

    [0038] When the current temperature of the freezing evaporator is less than or equal to a second preset freezing temperature threshold, a freezing cooling mode will be invoked to resume the normal heat exchange between the freezing evaporator and the freezing compartment. Further, in the freezing cooling mode, the blower of the freezing compartment and the air door of the freezing compartment are controlled to operate according to the temperature in the freezing compartment and the ambient temperature.

    [0039] In particular, the temperature in the freezing compartment can be used for controlling the turning-on or turning-off of the blower of the freezing compartment and the opening and closing of the air door of the freezing compartment. The ambient temperature can be divided into a plurality of consecutive intervals. The operating rotation speed of the blower of the freezing compartment is set corresponding to each temperature interval. For example, when the ambient temperature is 10-20 degrees, the operating rotation speed of the blower of the freezing compartment is 500 revolutions per minute; when the ambient temperature is 20-30 degrees, the operating rotation speed of the blower of the freezing compartment is 700 revolutions per minute; and when the current temperature of the freezing evaporator is less than or equal to a second preset freezing temperature threshold, the blower and the air door of the freezing compartment operate according to corresponding operation parameters.

    [0040] The first preset refrigeration temperature threshold is higher than the second preset refrigeration temperature threshold. The first preset freezing temperature threshold is higher than the second preset freezing temperature threshold. In particular, the vibration spectrum of the refrigerator when the coolant passes through the refrigeration loop and the freezing loop is scanned respectively and the temperatures of the refrigeration evaporator and the freezing evaporator when the refrigerator resonates are recorded respectively. The above temperatures are the first preset refrigeration temperature threshold and the first preset freezing temperature threshold. The second preset refrigeration temperature threshold is slightly smaller than the first preset refrigeration temperature threshold, for preventing the refrigerator switching frequently between the refrigeration noise reduction mode and the refrigeration cooling mode. The second preset freezing temperature threshold is slightly smaller than the first preset freezing temperature threshold, for preventing the refrigerator switching frequently between the freezing noise reduction mode and the freezing cooling mode.

    [0041] Furthermore, the method further includes: in the refrigeration noise reduction mode, controlling the operation of the linear compressor according to the temperature in the refrigeration compartment and the ambient temperature, wherein in particular, when the coolant passes through the refrigeration loop, the temperature in the refrigeration compartment can be used for controlling the turning-on or turning-off of the linear compressor, the ambient temperature can be divided into a plurality of consecutive intervals, and the operating parameters of the linear compressor are set corresponding to each interval. For example, when the ambient temperature is 10-20 degrees, the input frequency of the linear compressor is 100W; when the ambient temperature is 20-30 degrees, the input frequency of the linear compressor is 120W. When the current temperature of the refrigeration evaporator is greater than or equal to a first preset refrigeration temperature threshold, the linear compressor operates according to corresponding operation parameters.

    [0042] The method further includes: in the freezing noise reduction mode, controlling the operation of the linear compressor according to the temperature in the freezing compartment and the ambient temperature, wherein in particular, when the coolant passes through the freezing loop, the temperature in the freezing compartment can be used for controlling the turning-on or turning-off of the linear compressor, the ambient temperature can be divided into a plurality of consecutive intervals, and the operating parameters of the linear compressor are set corresponding to each interval. For example, when the ambient temperature is 10-20 degrees, the input frequency of the linear compressor is 100W; when the ambient temperature is 20-30 degrees, the input frequency of the linear compressor is 120W. When the current temperature of the freezing evaporator is greater than or equal to a first preset freezing temperature threshold, the linear compressor operates according to corresponding operation parameters.

    [0043] In the conventional control logic of the air-cooled refrigerator, the operation state of the linear compressor and the operation states of the blower of the refrigeration compartment, the blower of the freezing machine, the air door of the refrigeration compartment and the air door of the freezing compartment are correlated. It should be understood that if the travel of the linear compressor (the travel is proportional to the input frequency) gradually declines along with the closing of the blower of the refrigeration compartment and the air door of the refrigeration compartment in the refrigeration noise reduction mode. Then the declination trend of the temperature in the refrigeration evaporator slows down. Thus, it is preferred that the linear compressor is controlled to operate according to the temperature in the refrigeration compartment and the ambient temperature in the refrigeration noise reduction mode so as to ensure that the refrigeration evaporator temperature can decrease rapidly. If the travel of the linear compressor (the travel is proportional to the input frequency) gradually declines along with the closing of the blower of the freezing compartment and the air door of the freezing compartment in the freezing noise reduction mode, then the declination trend of the temperature in the freezing evaporator slows down. Thus, it is preferred that the linear compressor is controlled to operate according to the temperature in the freezing compartment and the ambient temperature in the freezing noise reduction mode so as to ensure that the freezing evaporator temperature can decrease rapidly

    [0044] Referring to Fig. 4, the present invention also discloses a refrigerator adopting a linear compressor, comprising: a refrigeration evaporator temperature sensor 201 configured for monitoring the temperature of a refrigeration evaporator of the refrigerator; a freezing evaporator temperature sensor 202 configured for monitoring the temperature of a freezing evaporator of the refrigerator; a computer board 100 configured for controlling the operation mode of the refrigerator; a refrigeration compartment temperature sensor 301 configured for collecting the temperature in the refrigeration compartment; a freezing compartment temperature sensor 302 configured for collecting the temperature in the freezing compartment; and a temperature sensor outside the refrigerator compartment 400 configured for collecting an ambient temperature.

    [0045] If the current temperature of the refrigerator refrigeration evaporator is greater than or equal to a first preset refrigeration temperature threshold, then the refrigeration noise reduction mode is invoked to actively reduce the heat exchange amount between the refrigeration evaporator and the refrigeration compartment. Further, in the refrigeration noise reduction mode, the heat exchange amount between the refrigeration evaporator and the refrigeration compartment is reduced by closing a blower of the refrigeration compartment and/or an air door of the refrigeration compartment.

    [0046] If the current temperature of the refrigerator freezing evaporator is greater than or equal to a first preset freezing temperature threshold, then the freezing noise reduction mode is invoked to actively reduce the heat exchange amount between the freezing evaporator and the freezing compartment. Further, in the freezing noise reduction mode, the heat exchange amount between the freezing evaporator and the freezing compartment is reduced by closing a blower of the freezing compartment and/or an air door of the freezing compartment.

    [0047] It should be understood that when the blower of the refrigeration compartment and/or the air door of the refrigeration compartment is closed, the forced convection of the air in the refrigeration compartment and the refrigeration evaporator is blocked, the cooling amount loss of the refrigeration evaporator will become small, the temperature can decrease rapidly, the inlet and outlet pressures of the linear compressor when the coolant passes through the refrigeration loop will decrease, and the operation noise will decrease. When the blower of the freezing compartment and/or the air door of the freezing compartment is closed, the forced convection between the air in the freezing compartment and the freezing evaporator is blocked, the cooling amount loss of the freezing evaporator will become small, the temperature can decrease rapidly, the inlet and outlet pressures of the linear compressor when the coolant passes through the freezing loop will decrease, and the operation noise will decrease.

    [0048] When the current temperature of the refrigeration evaporator is less than or equal to a second preset refrigeration temperature threshold, a refrigeration cooling mode will be invoked to resume the normal heat exchange between the refrigeration evaporator and the refrigeration compartment. Further, in the refrigeration cooling mode, the blower of the refrigeration compartment and the air door of the refrigeration compartment are controlled to operate according to the temperature in the refrigeration compartment and the ambient temperature.

    [0049] In particular, the temperature in the refrigeration compartment can be used for controlling the turning-on or turning-off of the blower of the refrigeration compartment and the opening and closing of the air door of the refrigeration compartment. The ambient temperature can be divided into a plurality of consecutive intervals. The operating rotation speed of the blower of the refrigeration compartment is set corresponding to each temperature interval. For example, when the ambient temperature is 10-20 degrees, the operating rotation speed of the blower of the refrigeration compartment is 500 revolutions per minute. When the ambient temperature is 20-30 degrees, the operating rotation speed of the blower of the refrigeration compartment is 700 revolutions per minute. When the current temperature of the refrigeration evaporator is less than or equal to a second preset refrigeration temperature threshold, the blower and the air door of the refrigeration compartment operate according to corresponding operation parameters.

    [0050] When the current temperature of the freezing evaporator is less than or equal to a second preset freezing temperature threshold, a freezing cooling mode will be invoked to resume the normal heat exchange between the freezing evaporator and the freezing compartment. Further, in the freezing cooling mode, the blower of the freezing compartment and the air door of the freezing compartment are controlled to operate according to the temperature in the freezing compartment and the ambient temperature.

    [0051] In particular, the temperature in the freezing compartment can be used for controlling the turning-on or turning-off of the blower of the freezing compartment and the opening and closing of the air door of the freezing compartment. The ambient temperature can be divided into a plurality of consecutive intervals. The operating rotation speed of the blower of the freezing compartment is set corresponding to each temperature interval. For example, when the ambient temperature is 10-20 degrees, the operating rotation speed of the blower of the freezing compartment is 500 revolutions per minute; when the ambient temperature is 20-30 degrees, the operating rotation speed of the blower of the freezing compartment is 700 revolutions per minute. When the current temperature of the freezing evaporator is less than or equal to the second preset freezing temperature threshold, the blower and the air door of the freezing compartment operate according to corresponding operation parameters.

    [0052] The first preset refrigeration temperature threshold is higher than the second preset refrigeration temperature threshold. The first preset freezing temperature threshold is higher than the second preset freezing temperature threshold. In particular, the vibration spectrum of the refrigerator when the coolant passes through the refrigeration loop and the freezing loop is scanned respectively and the temperatures of the refrigeration evaporator and the freezing evaporator when the refrigerator resonates are recorded respectively. The above temperatures are the first preset refrigeration temperature threshold and the first preset freezing temperature threshold. The second preset refrigeration temperature threshold is slightly smaller than the first preset refrigeration temperature threshold, for preventing the refrigerator switching frequently between the refrigeration noise reduction mode and the refrigeration cooling mode. The second preset freezing temperature threshold is slightly smaller than the first preset freezing temperature threshold, for preventing the refrigerator switching frequently between the freezing noise reduction mode and the freezing cooling mode.

    [0053] In the refrigeration noise reduction mode, the operation of the linear compressor is controlled according to the temperature in the refrigeration compartment and the ambient temperature. In particular, when the coolant passes through the refrigeration loop, the temperature in the refrigeration compartment can be used for controlling the turning-on or turning-off of the linear compressor. The ambient temperature can be divided into a plurality of consecutive intervals. The operating parameters of the linear compressor are set corresponding to each interval. For example, when the ambient temperature is 10-20 degrees, the input frequency of the linear compressor is 100W. When the ambient temperature is 20-30 degrees, the input frequency of the linear compressor is 120W. When the current temperature of the refrigeration evaporator is greater than or equal to a first preset refrigeration temperature threshold, the linear compressor operates according to corresponding operation parameters.

    [0054] In the freezing noise reduction mode, the operation of the linear compressor is controlled according to the temperature in the freezing compartment and the ambient temperature. In particular, when the coolant passes through the freezing loop, the temperature in the freezing compartment can be used for controlling the turning-on or turning-off of the linear compressor. The ambient temperature can be divided into a plurality of consecutive intervals. The operating parameters of the linear compressor are set corresponding to each interval. For example, when the ambient temperature is 10-20 degrees, the input frequency of the linear compressor is 100W. When the ambient temperature is 20-30 degrees, the input frequency of the linear compressor is 120W. When the current temperature of the freezing evaporator is greater than or equal to a first preset freezing temperature threshold, the linear compressor operates according to corresponding operation parameters.

    [0055] In the conventional control logic of the air-cooled refrigerator, the operation state of the linear compressor and the operation states of the blower of the refrigeration compartment, the blower of the freezing machine, the air door of the refrigeration compartment and the air door of the freezing compartment are correlated. It should be understood that if the travel of the linear compressor (the travel is proportional to the input frequency) gradually declines along with the closing of the blower of the refrigeration compartment and the air door of the refrigeration compartment in the refrigeration noise reduction mode. Then the declination trend of the temperature in the refrigeration evaporator slows down. Thus, it is preferred that the linear compressor is controlled to operate according to the temperature in the refrigeration compartment and the ambient temperature in the refrigeration noise reduction mode so as to ensure that the refrigeration evaporator temperature can decrease rapidly. If the travel of the linear compressor (the travel is proportional to the input frequency) gradually declines along with the closing of the blower of the freezing compartment and the air door of the freezing compartment in the freezing noise reduction mode, then the declination trend of the temperature in the freezing evaporator slows down. Thus, it is preferred that the linear compressor is controlled to operate according to the temperature in the freezing compartment and the ambient temperature in the freezing noise reduction mode so as to ensure that the freezing evaporator temperature can decrease rapidly.

    [0056] When there is a heavy refrigeration compartment heating load, the air door of the refrigeration compartment and/or the blower of the refrigeration compartment are/is closed so that the heat exchange rate of the refrigeration evaporator decreases, the temperature in the refrigeration evaporator decreases rapidly. When there is a heavy freezing compartment heating load, the air door of the freezing compartment and/or the blower of the freezing compartment are/is closed so that the heat exchange rate of the freezing evaporator decreases, and the inlet and outlet pressures of the linear compressor also decrease accordingly. Finally, the entire vibration frequency of the linear compressor decreases, and is not easy to resonate with the refrigerator body, achieving the advantage of low operation noise.

    [0057] At last, it should be noted that the above embodiments are merely used to describe the technical solution of the present invention rather than limiting same. Although the present invention has been described in detail with reference to the above embodiments, those skilled in the art shall understand that they can still modify the technical solution recorded in the above various embodiments or equivalently replace some technical features. The essence of these modifications or replacements of the corresponding technical solutions does not depart from the scope of the technical solution in various embodiments of the present invention.


    Claims

    1. A control method of a refrigerator adopting a linear compressor, comprising:

    monitoring the temperature of an evaporator of the refrigerator; and

    if the current temperature of the evaporator of the refrigerator is greater than or equal to a first preset temperature threshold, then invoking a noise reduction mode to actively reduce the heat exchange amount between the evaporator and a compartment of the refrigerator until the current temperature of the evaporator of the refrigerator is smaller than or equal to a second preset temperature threshold, and invoking a cooling mode to resume the normal heat exchange between the evaporator and the compartment of the refrigerator, wherein the first preset temperature threshold is higher than the second preset temperature threshold; characterized by further comprising:
    in the noise reduction mode, controlling the linear compressor to turn on or turn off according to the temperature in the compartment of the refrigerator, collecting an ambient temperature with a temperature sensor outside the refrigerator compartment, dividing ambient temperature into a plurality of consecutive intervals, setting operation parameters of the linear compressor corresponding to each interval, and operating the linear compressor according to the corresponding operation parameters.


     
    2. The control method of a refrigerator adopting a linear compressor according to claim 1,
    wherein the noise reduction mode comprises:
    closing a blower of the refrigerator and/or an air door of the compartment.
     
    3. The control method of a refrigerator adopting a linear compressor according to claim 1, wherein monitoring the temperature of an evaporator of the refrigerator comprises

    monitoring temperatures of a refrigeration evaporator and of a freezing evaporator of the refrigerator;

    if the current temperature of the refrigeration evaporator of the refrigerator is greater than or equal to a first preset refrigeration temperature threshold, then invoking a refrigeration noise reduction mode to actively reduce the heat exchange amount between the refrigeration evaporator and a refrigeration compartment until the current temperature of the refrigeration evaporator is smaller than or equal to a second preset refrigeration temperature threshold, and invoking a refrigeration cooling mode to resume the normal heat exchange between the refrigeration evaporator and the refrigeration compartment, wherein the first preset refrigeration temperature threshold is higher than the second preset refrigeration temperature threshold; and

    if the current temperature of the freezing evaporator of the refrigerator is greater than or equal to a first preset freezing temperature threshold, then invoking a freezing noise reduction mode to actively reduce the heat exchange amount between the freezing evaporator and a freezing compartment until the current temperature of the freezing evaporator is smaller than or equal to a second preset freezing temperature threshold, and invoking a freezing cooling mode to resume the normal heat exchange between the freezing evaporator and the freezing compartment, wherein the first preset freezing temperature threshold is higher than the second preset freezing temperature threshold.


     
    4. The control method of a refrigerator adopting a linear compressor according to claim 3, wherein the refrigeration noise reduction mode comprises:

    closing a blower of the refrigeration compartment and/or an air door of the refrigeration compartment; and

    the freezing noise reduction mode comprises:
    closing a blower of the freezing compartment and/or an air door of the freezing compartment.


     
    5. The control method of a refrigerator adopting a linear compressor according to claim 3, further comprising:

    in the refrigeration noise reduction mode, controlling the linear compressor to turn on or turn off according to the temperature in the refrigeration compartment, collecting an ambient temperature with a temperature sensor outside the refrigerator compartment, dividing ambient temperature into a plurality of consecutive intervals, setting operation parameters of the linear compressor corresponding to each interval, and operating the linear compressor according to the corresponding operation parameters; and

    in the freezing noise reduction mode, controlling the linear compressor to turn on or turn off according to the temperature in the freezing compartment, collecting an ambient temperature with a temperature sensor outside the refrigerator compartment, dividing ambient temperature into a plurality of consecutive intervals, setting operation parameters of the linear compressor corresponding to each interval, and operating the linear compressor according to the corresponding operation parameters.


     
    6. A refrigerator adopting a linear compressor, comprising:

    an evaporator temperature sensor (200) configured for monitoring the temperature of an evaporator of the refrigerator; and

    a computer board (100) configured for: controlling the operation mode of the refrigerator; if the current temperature of the evaporator of the refrigerator is greater than or equal to a first preset temperature threshold, then invoking a noise reduction mode to actively reduce the heat exchange amount between the evaporator and a compartment of the refrigerator until the current temperature of the evaporator of the refrigerator is smaller than or equal to a second preset temperature threshold, and invoking a cooling mode to resume the normal heat exchange between the evaporator and the compartment of the refrigerator, wherein the first preset temperature threshold is higher than the second preset temperature threshold; characterized by further comprising:

    a temperature sensor (300) inside the refrigerator compartment configured for collecting the temperature in the refrigerator compartment;

    a temperature sensor (400) outside the refrigerator compartment configured for collecting an ambient temperature; and

    in the noise reduction mode, controlling the linear compressor to turn on or turn off according to the temperature in the compartment of the refrigerator, collecting an ambient temperature with the temperature sensor (400) outside the refrigerator compartment, dividing ambient temperature into a plurality of consecutive intervals, setting operation parameters of the linear compressor corresponding to each interval, and operating the linear compressor according to the corresponding operation parameters.


     
    7. The refrigerator adopting a linear compressor according to claim 6, wherein the noise reduction mode comprises:
    closing a blower of the refrigerator and/or an air door of the compartment.
     
    8. The refrigerator adopting a linear compressor according to claim 6, wherein

    the evaporator temperature sensor comprises a refrigeration evaporator temperature sensor (201) configured for monitoring the temperature of a refrigeration evaporator of the refrigerator; and

    a freezing evaporator temperature sensor (202) configured for monitoring the temperature of a freezing evaporator of the refrigerator; if the current temperature of the refrigeration evaporator of the refrigerator is greater than or equal to a first preset refrigeration temperature threshold, then invoking a refrigeration noise reduction mode to actively reduce the heat exchange amount between the refrigeration evaporator and a refrigeration compartment until the current temperature of the refrigeration evaporator is smaller than or equal to a second preset refrigeration temperature threshold, and invoking a refrigeration cooling mode to resume the normal heat exchange between the refrigeration evaporator and the refrigeration compartment, wherein the first preset refrigeration temperature threshold is higher than the second preset refrigeration temperature threshold; and if the current temperature of the freezing evaporator of the refrigerator is greater than or equal to a first preset freezing temperature threshold, then invoking a freezing noise reduction mode to actively reduce the heat exchange amount between the freezing evaporator and a freezing compartment until the current temperature of the freezing evaporator is smaller than or equal to a second preset freezing temperature threshold, and invoking a freezing cooling mode to resume the normal heat exchange between the freezing evaporator and the freezing compartment, wherein the first preset freezing temperature threshold is higher than the second preset freezing temperature threshold.


     
    9. The refrigerator adopting a linear compressor according to claim 8, wherein the refrigeration noise reduction mode comprises:

    closing a blower of the refrigeration compartment and/or an air door of the refrigeration compartment; and

    the freezing noise reduction mode comprises:
    closing a blower of the freezing compartment and/or an air door of the freezing compartment.


     
    10. The refrigerator adopting a linear compressor according to claim 8, further comprising:

    a refrigeration compartment temperature sensor (301) configured for collecting the temperature in the refrigerator compartment;

    a freezing compartment temperature sensor (302) configured for collecting the temperatures in the freezing compartment; and

    in the refrigeration noise reduction mode, controlling the linear compressor to turn on or turn off according to the temperature in the refrigeration compartment, collecting an ambient temperature with a temperature sensor outside the refrigerator compartment, dividing ambient temperature into a plurality of consecutive intervals, setting operation parameters of the linear compressor corresponding to each interval, and operating the linear compressor according to the corresponding
    operation parameters; and

    in the freezing noise reduction mode, controlling the linear compressor to turn on or turn off according to the temperature in the freezing compartment, collecting an ambient temperature with a temperature sensor outside the refrigerator compartment, dividing ambient temperature into a plurality of consecutive intervals, setting operation parameters of the linear compressor corresponding to each interval, and operating the linear compressor according to the corresponding operation parameters.


     


    Ansprüche

    1. Steuerverfahren eines Kühlschranks unter Einsatz eines Linearkompressors, umfassend:

    Überwachen der Temperatur eines Verdampfers des Kühlschranks; und,

    wenn die aktuelle Temperatur des Verdampfers des Kühlschranks größer als oder gleich wie ein erster voreingestellter Temperaturschwellenwert ist, dann Aufrufen eines Geräuschreduzierungsmodus, um die Wärmeaustauschmenge zwischen dem Verdampfer und einem Fach des Kühlschranks aktiv zu reduzieren, bis die aktuelle Temperatur des Verdampfers des Kühlschranks kleiner als oder gleich wie ein zweiter voreingestellter Temperaturschwellenwert ist, und Aufrufen eines Kühlmodus, um den normalen Wärmeaustausch zwischen dem Verdampfer und dem Fach des Kühlschranks wieder aufzunehmen, wobei der erste voreingestellte Temperaturschwellenwert höher ist als der zweite voreingestellte Temperaturschwellenwert ist; dadurch gekennzeichnet, dass es ferner Folgendes umfasst:
    in dem Geräuschreduzierungsmodus, Steuern des Linearkompressors, um ihn gemäß der Temperatur in dem Fach des Kühlschranks ein- oder auszuschalten, Erfassen einer Umgebungstemperatur mit einem Temperatursensor außerhalb des Kühlschranks, Unterteilen der Umgebungstemperatur in eine Vielzahl von aufeinanderfolgenden Intervallen, Einstellen von Betriebsparametern des Linearkompressors entsprechend jedem Intervall und Betreiben des Linearkompressors gemäß den entsprechenden Betriebsparametern.


     
    2. Steuerverfahren eines Kühlschranks unter Einsatz eines Linearkompressors nach Anspruch 1, wobei der Geräuschreduzierungsmodus Folgendes umfasst:
    Schließen eines Gebläses des Kühlschranks und/oder einer Luftklappe des Fachs.
     
    3. Steuerverfahren eines Kühlschranks unter Einsatz eines Linearkompressors nach Anspruch 1, wobei ein Überwachen der Temperatur eines Verdampfers des Kühlschranks Folgendes umfasst

    Überwachen von Temperaturen eines Kühlverdampfers und eines Gefrierverdampfers des Kühlschranks;

    wenn die aktuelle Temperatur des Kühlverdampfers des Kühlschranks größer als oder gleich wie ein erster voreingestellter Kühltemperaturschwellenwert ist, dann Aufrufen eines Kühlgeräuschreduzierungsmodus, um die Wärmeaustauschmenge zwischen dem Kühlverdampfer und einem Kühlfach aktiv zu reduzieren, bis die aktuelle Temperatur des Kühlverdampfers kleiner als oder gleich wie ein zweiter voreingestellter Kühltemperaturschwellenwert ist, und Aufrufen eines Kühlmodus, um den normalen Wärmeaustausch zwischen dem Kühlverdampfer und dem Kühlfach wieder aufzunehmen, wobei der erste voreingestellte Kühltemperaturschwellenwert höher ist als der zweite voreingestellte Kühltemperaturschwellenwert; und,

    wenn die aktuelle Temperatur des Gefrierverdampfers des Kühlschranks größer als oder gleich wie ein erster voreingestellter Gefriertemperaturschwellenwert ist, dann Aufrufen eines Gefriergeräuschreduzierungsmodus, um die Wärmeaustauschmenge zwischen dem Gefrierverdampfer und einem Gefrierfach aktiv zu reduzieren, bis die aktuelle Temperatur des Gefrierverdampfers kleiner als oder gleich wie ein zweiter voreingestellter Gefriertemperaturschwellenwert ist und Aufrufen eines Gefrierkühlmodus, um den normalen Wärmeaustausch zwischen dem Gefrierverdampfer und dem Gefrierfach wieder aufzunehmen, wobei der erste voreingestellte Gefriertemperaturschwellenwert höher ist als der zweite voreingestellte Gefriertemperaturschwellenwert.


     
    4. Steuerverfahren eines Kühlschranks unter Einsatz eines Linearkompressors nach Anspruch 3, wobei der Kühlgeräuschreduzierungsmodus Folgendes umfasst:

    Schließen eines Gebläses des Kühlfachs und/oder einer Luftklappe des Kühlfachs; und

    der Gefriergeräuschunterdrückungsmodus Folgendes umfasst:
    Schließen eines Gebläses des Gefrierfachs und/oder einer Luftklappe des Gefrierfachs.


     
    5. Steuerverfahren eines Kühlschranks durch Einsatz eines Linearkompressors nach Anspruch 3, ferner umfassend:

    in dem Kühlgeräuschreduzierungsmodus, Steuern des Linearkompressors, um ihn gemäß der Temperatur in dem Kühlfach ein- oder auszuschalten, Erfassen einer Umgebungstemperatur mit einem Temperatursensor außerhalb des Kühlschranks, Unterteilen der Umgebungstemperatur in eine Vielzahl von aufeinanderfolgenden Intervallen, Einstellen von Betriebsparametern des Linearkompressors entsprechend jedem Intervall und Betreiben des Linearkompressors gemäß entsprechenden Betriebsparametern; und

    in dem Gefriergeräuschreduzierungsmodus, Steuern des Linearkompressors, um ihn gemäß der Temperatur in dem Gefrierfach ein- oder auszuschalten, Erfassen einer Umgebungstemperatur mit einem Temperatursensor außerhalb des Kühlschranks, Unterteilen der Umgebungstemperatur in eine Vielzahl von aufeinanderfolgenden Intervallen, Einstellen von Betriebsparametern des Linearkompressors entsprechend jedem Intervall und Betreiben des Linearkompressors gemäß den entsprechenden Betriebsparametern.


     
    6. Kühlschrank unter Einsatz eines Linearkompressors, umfassend:

    einen Verdampfertemperatursensor (200), der zum Überwachen der Temperatur eines Verdampfers des Kühlschranks konfiguriert ist; und

    eine Computerplatine (100), die konfiguriert ist für: Steuern des Betriebsmodus des Kühlschranks; wenn die aktuelle Temperatur des Verdampfers des Kühlschranks größer als oder gleich wie ein erster voreingestellter Temperaturschwellenwert ist, dann Aufrufen eines Geräuschreduzierungsmodus, um die Wärmeaustauschmenge zwischen dem Verdampfer und einem Fach des Kühlschranks aktiv zu reduzieren, bis die aktuelle Temperatur des Verdampfers des Kühlschranks kleiner als oder gleich wie ein zweiter voreingestellter Temperaturschwellenwert ist, und Aufrufen eines Kühlmodus, um den normalen Wärmeaustausch zwischen dem Verdampfer und dem Fach des Kühlschranks wieder aufzunehmen, wobei der erste voreingestellte Temperaturschwellenwert höher ist als der zweite voreingestellte Temperaturschwellenwert ist; dadurch gekennzeichnet, dass er ferner Folgendes umfasst:

    einen Temperatursensor (300) im Inneren des Kühlfachs, der zum Erfassen der Temperatur in dem Kühlfach konfiguriert ist;

    einen Temperatursensor (400) außerhalb des Kühlfachs, der zum Erfassen einer Umgebungstemperatur konfiguriert ist; und

    in dem Geräuschreduzierungsmodus, Steuern des Linearkompressors, um ihn gemäß der Temperatur in dem Fach des Kühlschranks ein- oder auszuschalten, Erfassen einer Umgebungstemperatur mit dem Temperatursensor (400) außerhalb des Kühlschranks, Unterteilen der Umgebungstemperatur in eine Vielzahl von aufeinanderfolgenden Intervallen, Einstellen von Betriebsparametern des Linearkompressors entsprechend jedem Intervall und Betreiben des Linearkompressors gemäß den entsprechenden Betriebsparametern.


     
    7. Kühlschrank unter Einsatz eines Linearkompressors nach Anspruch 6, wobei
    der Geräuschunterdrückungsmodus Folgendes umfasst:
    Schließen eines Gebläses des Kühlschranks und/oder einer Luftklappe des Fachs.
     
    8. Kühlschrank unter Einsatz eines Linearkompressors nach Anspruch 6, wobei

    der Verdampfertemperatursensor einen Kühlverdampfertemperatursensor (201) umfasst, der zum Überwachen der Temperatur eines Kühlverdampfers des Kühlschranks konfiguriert ist; und

    einen Gefrierverdampfer-Temperatursensor (202), der zum Überwachen der Temperatur eines Gefrierverdampfers des Kühlschranks konfiguriert ist; wenn die aktuelle Temperatur des Kühlverdampfers des Kühlschranks größer als oder gleich wie ein erster voreingestellter Kühltemperaturschwellenwert ist, dann Aufrufen eines Kühlgeräuschreduzierungsmodus, um die Wärmeaustauschmenge zwischen dem Kühlverdampfer und einem Kühlfach aktiv zu reduzieren, bis die aktuelle Temperatur des Kühlverdampfers kleiner als oder gleich wie ein zweiter voreingestellter Kühltemperaturschwellenwert ist, und Aufrufen eines Kühlmodus, um den normalen Wärmeaustausch zwischen dem Kühlverdampfer und dem Kühlfach wieder aufzunehmen, wobei der erste voreingestellte Kühltemperaturschwellenwert höher ist als der zweite voreingestellte Kühltemperaturschwellenwert; und wenn die aktuelle Temperatur des Gefrierverdampfers des Kühlschranks größer als oder gleich wie ein erster voreingestellter Gefriertemperaturschwellenwert ist, dann Aufrufen eines Gefriergeräuschreduzierungsmodus, um die Wärmeaustauschmenge zwischen dem Gefrierverdampfer und einem Gefrierfach aktiv zu reduzieren, bis die aktuelle Temperatur des Gefrierverdampfers kleiner als oder gleich wie ein zweiter voreingestellter Gefriertemperaturschwellenwert ist und Aufrufen eines Gefrierkühlmodus, um den normalen Wärmeaustausch zwischen dem Gefrierverdampfer und dem Gefrierfach wieder aufzunehmen, wobei der erste voreingestellte Gefriertemperaturschwellenwert höher ist als der zweite voreingestellte Gefriertemperaturschwellenwert.


     
    9. Kühlschrank unter Einsatz eines Linearkompressors nach Anspruch 8, wobei
    der Kühlgeräuschunterdrückungsmodus Folgendes umfasst:

    Schließen eines Gebläses des Kühlfachs und/oder einer Luftklappe des Kühlfachs; und

    der Gefriergeräuschunterdrückungsmodus Folgendes umfasst:
    Schließen eines Gebläses des Gefrierfachs und/oder einer Luftklappe des Gefrierfachs.


     
    10. Kühlschrank unter Einsatz eines Linearkompressors nach Anspruch 8, ferner umfassend

    einen Kühlfachtemperatursensor (301), der zum Erfassen der Temperatur in dem Kühlfach konfiguriert ist;

    einen Gefrierfachtemperatursensor (302), der zum Erfassen der Temperaturen in dem Gefrierfach konfiguriert ist; und

    in dem Kühlgeräuschreduzierungsmodus, Steuern des Linearkompressors, um ihn gemäß der Temperatur in dem Kühlfach ein- oder auszuschalten, Erfassen einer Umgebungstemperatur mit einem Temperatursensor außerhalb des Kühlschranks, Unterteilen der Umgebungstemperatur in eine Vielzahl von aufeinanderfolgenden Intervallen, Einstellen von Betriebsparametern des Linearkompressors entsprechend jedem Intervall und Betreiben des Linearkompressors gemäß den entsprechenden Betriebsparametern; und

    in dem Gefriergeräuschreduzierungsmodus, Steuern des Linearkompressors, um ihn gemäß der Temperatur in dem Gefrierfach ein- oder auszuschalten, Erfassen einer Umgebungstemperatur mit einem Temperatursensor außerhalb des Kühlschranks, Unterteilen der Umgebungstemperatur in eine Vielzahl von aufeinanderfolgenden Intervallen, Einstellen von Betriebsparametern des Linearkompressors entsprechend jedem Intervall und Betreiben des Linearkompressors gemäß den entsprechenden Betriebsparametern.


     


    Revendications

    1. Procédé de commande d'un réfrigérateur adoptant un compresseur linéaire, comprenant :

    la surveillance de la température d'un évaporateur du réfrigérateur ; et

    si la température actuelle de l'évaporateur du réfrigérateur est supérieure ou égale à un premier seuil de température prédéfini, l'appel d'un mode de réduction du bruit pour réduire activement la quantité d'échange de chaleur entre l'évaporateur et un compartiment du réfrigérateur jusqu'à ce que la température actuelle de l'évaporateur du réfrigérateur soit inférieure ou égale à un second seuil de température prédéfini, et l'appel d'un mode de refroidissement pour reprendre l'échange de chaleur normal entre l'évaporateur et le compartiment du réfrigérateur, dans lequel le premier seuil de température prédéfini est supérieur au second seuil de température prédéfini ; caractérisé en ce qu'il comprend en outre :
    dans le mode de réduction du bruit, la commande de mise en marche ou de mise à l'arrêt du compresseur linéaire en fonction de la température dans le compartiment du réfrigérateur, le relevé d'une température ambiante à l'aide d'un capteur de température à l'extérieur du compartiment du réfrigérateur, la division de la température ambiante en une pluralité d'intervalles consécutifs, le réglage des paramètres de fonctionnement du compresseur linéaire correspondant à chaque intervalle, et le fonctionnement du compresseur linéaire en fonction des paramètres de fonctionnement correspondants.


     
    2. Procédé de commande d'un réfrigérateur adoptant un compresseur linéaire selon la revendication 1, dans lequel le mode de réduction du bruit comprend :
    la fermeture d'un ventilateur du réfrigérateur et/ou d'une porte d'aération du compartiment.
     
    3. Procédé de commande d'un réfrigérateur adoptant un compresseur linéaire selon la revendication 1, dans lequel la surveillance de la température d'un évaporateur du réfrigérateur comprend

    la surveillance des températures d'un évaporateur de réfrigération et d'un évaporateur de congélation du réfrigérateur ;

    si la température actuelle de l'évaporateur de réfrigération du réfrigérateur est supérieure ou égale à un premier seuil de température de réfrigération prédéfini, l'appel d'un mode de réduction du bruit de réfrigération pour réduire activement la quantité d'échange de chaleur entre l'évaporateur de réfrigération et un compartiment de réfrigération jusqu'à ce que la température actuelle de l'évaporateur de réfrigération soit inférieure ou égale à un second seuil de température de réfrigération prédéfini, et l'appel d'un mode de refroidissement par réfrigération pour reprendre l'échange de chaleur normal entre l'évaporateur de réfrigération et le compartiment de réfrigération, dans lequel le premier seuil de température de réfrigération prédéfini est supérieur au second seuil de température de réfrigération prédéfini ; et

    si la température actuelle de l'évaporateur de congélation du réfrigérateur est supérieure ou égale à un premier seuil de température de congélation prédéfini, l'appel d'un mode de réduction du bruit de congélation pour réduire activement la quantité d'échange de chaleur entre l'évaporateur de congélation et un compartiment de congélation jusqu'à ce que la température actuelle de l'évaporateur de congélation soit inférieure ou égale à un second seuil de température de congélation prédéfini, et l'appel d'un mode de refroidissement par congélation pour reprendre l'échange de chaleur normal entre l'évaporateur de congélation et le compartiment de congélation, dans lequel le premier seuil de température de congélation prédéfini est supérieur au second seuil de température de congélation prédéfini.


     
    4. Procédé de commande d'un réfrigérateur adoptant un compresseur linéaire selon la revendication 3, dans lequel le mode de réduction du bruit de réfrigération comprend :

    la fermeture d'un ventilateur du compartiment de réfrigération et/ou d'une porte d'aération du compartiment de réfrigération ; et

    le mode de réduction du bruit de congélation comprend :
    la fermeture d'un ventilateur du compartiment de congélation et/ou d'une porte d'aération du compartiment de congélation.


     
    5. Procédé de commande d'un réfrigérateur adoptant un compresseur linéaire selon la revendication 3, comprenant en outre :

    dans le mode de réduction du bruit de réfrigération, la commande de mise en marche ou de mise à l'arrêt du compresseur linéaire en fonction de la température dans le compartiment de réfrigération, le relevé d'une température ambiante à l'aide d'un capteur de température à l'extérieur du compartiment du réfrigérateur, la division de la température ambiante en une pluralité d'intervalles consécutifs, le réglage des paramètres de fonctionnement du compresseur linéaire correspondant à chaque intervalle, et le fonctionnement du compresseur linéaire en fonction des paramètres de fonctionnement correspondants ; et

    dans le mode de réduction du bruit de congélation, la commande de mise en marche ou de mise à l'arrêt du compresseur linéaire en fonction de la température dans le compartiment de congélation, le relevé d'une température ambiante à l'aide d'un capteur de température à l'extérieur du compartiment du réfrigérateur, la division de la température ambiante en une pluralité d'intervalles consécutifs, le réglage des paramètres de fonctionnement du compresseur linéaire correspondant à chaque intervalle, et le fonctionnement du compresseur linéaire en fonction des paramètres de fonctionnement correspondants.


     
    6. Réfrigérateur adoptant un compresseur linéaire, comprenant :

    un capteur de température d'évaporateur (200) conçu pour surveiller la température d'un évaporateur du réfrigérateur ; et

    une carte d'ordinateur (100) conçue pour : commander le mode de fonctionnement du réfrigérateur ; si la température actuelle de l'évaporateur du réfrigérateur est supérieure ou égale à un premier seuil de température prédéfini, appeler un mode de réduction du bruit pour réduire activement la quantité d'échange de chaleur entre l'évaporateur et un compartiment du réfrigérateur jusqu'à ce que la température actuelle de l'évaporateur du réfrigérateur soit inférieure ou égale à un second seuil de température prédéfini, et appeler un mode de refroidissement pour reprendre l'échange de chaleur normal entre l'évaporateur et le compartiment du réfrigérateur, dans lequel le premier seuil de température prédéfini est supérieur au second seuil de température prédéfini ; caractérisé en ce qu'il comprend en outre :

    un capteur de température (300) à l'intérieur du compartiment du réfrigérateur conçu pour relever la température dans le compartiment du réfrigérateur ;

    un capteur de température (400) à l'extérieur du compartiment du réfrigérateur conçu pour relever une température ambiante ; et

    dans le mode de réduction du bruit, la commande de mise en marche ou de mise à l'arrêt du compresseur linéaire en fonction de la température dans le compartiment du réfrigérateur, le relevé d'une température ambiante à l'aide du capteur de température (400) à l'extérieur du compartiment du réfrigérateur, la division de la température ambiante en une pluralité d'intervalles consécutifs, le réglage des paramètres de fonctionnement du compresseur linéaire correspondant à chaque intervalle, et le fonctionnement du compresseur linéaire en fonction des paramètres de fonctionnement correspondants.


     
    7. Réfrigérateur adoptant un compresseur linéaire selon la revendication 6, dans lequel
    le mode de réduction du bruit comprend :
    la fermeture d'un ventilateur du réfrigérateur et/ou d'une porte d'aération du compartiment.
     
    8. Réfrigérateur adoptant un compresseur linéaire selon la revendication 6, dans lequel

    le capteur de température d'évaporateur comprend un capteur de température d'évaporateur de réfrigération (201) conçu pour surveiller la température d'un évaporateur de réfrigération du réfrigérateur ; et

    un capteur de température d'évaporateur de congélation (202) conçu pour surveiller la température d'un évaporateur de congélation du réfrigérateur ; si la température actuelle de l'évaporateur de réfrigération du réfrigérateur est supérieure ou égale à un premier seuil de température de réfrigération prédéfini, appeler un mode de réduction du bruit de réfrigération pour réduire activement la quantité d'échange de chaleur entre l'évaporateur de réfrigération et un compartiment de réfrigération jusqu'à ce que la température actuelle de l'évaporateur de réfrigération soit inférieure ou égale à un second seuil de température de réfrigération prédéfini, et appeler un mode de refroidissement par réfrigération pour reprendre l'échange de chaleur normal entre l'évaporateur de réfrigération et le compartiment de réfrigération, dans lequel le premier seuil de température de réfrigération prédéfini est supérieur au second seuil de température de réfrigération prédéfini ; et si la température actuelle de l'évaporateur de congélation du réfrigérateur est supérieure ou égale à un premier seuil de température de congélation prédéfini, appeler un mode de réduction du bruit de congélation pour réduire activement la quantité d'échange de chaleur entre l'évaporateur de congélation et un compartiment de congélation jusqu'à ce que la température actuelle de l'évaporateur de congélation soit inférieure ou égale à un second seuil de température de congélation prédéfini, et appeler un mode de refroidissement par congélation pour reprendre l'échange de chaleur normal entre l'évaporateur de congélation et le compartiment de congélation, dans lequel le premier seuil de température de congélation prédéfini est supérieur au second seuil de température de congélation prédéfini.


     
    9. Réfrigérateur adoptant un compresseur linéaire selon la revendication 8, dans lequel
    le mode de réduction du bruit de réfrigération comprend :

    la fermeture d'un ventilateur du compartiment de réfrigération et/ou d'une porte d'aération du compartiment de réfrigération ; et

    le mode de réduction du bruit de congélation comprend :
    la fermeture d'un ventilateur du compartiment de congélation et/ou d'une porte d'aération du compartiment de congélation.


     
    10. Réfrigérateur adoptant un compresseur linéaire selon la revendication 8, comprenant en outre :

    un capteur de température du compartiment de réfrigération (301) conçu pour relever la température dans le compartiment du réfrigérateur ;

    un capteur de température du compartiment de congélation (302) conçu pour relever les températures dans le compartiment de congélation ; et

    dans le mode de réduction du bruit de réfrigération, la commande de mise en marche ou de mise à l'arrêt du compresseur linéaire en fonction de la température dans le compartiment de réfrigération, le relevé d'une température ambiante à l'aide d'un capteur de température à l'extérieur du compartiment du réfrigérateur, la division de la température ambiante en une pluralité d'intervalles consécutifs, le réglage des paramètres de fonctionnement du compresseur linéaire correspondant à chaque intervalle, et le fonctionnement du compresseur linéaire en fonction des paramètres de fonctionnement correspondants ; et

    dans le mode de réduction du bruit de congélation, la commande de mise en marche ou de mise à l'arrêt du compresseur linéaire en fonction de la température dans le compartiment de congélation, le relevé d'une température ambiante à l'aide d'un capteur de température à l'extérieur du compartiment du réfrigérateur, la division de la température ambiante en une pluralité d'intervalles consécutifs, le réglage des paramètres de fonctionnement du compresseur linéaire correspondant à chaque intervalle, et le fonctionnement du compresseur linéaire en fonction des paramètres de fonctionnement correspondants.


     




    Drawing

















    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description