(19)
(11)EP 3 374 838 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
05.08.2020 Bulletin 2020/32

(21)Application number: 16864901.0

(22)Date of filing:  09.11.2016
(51)Int. Cl.: 
G05F 1/10  (2006.01)
H02J 3/18  (2006.01)
H02J 3/16  (2006.01)
H02J 3/38  (2006.01)
(86)International application number:
PCT/US2016/061104
(87)International publication number:
WO 2017/083364 (18.05.2017 Gazette  2017/20)

(54)

POWER DISTRIBUTION SYSTEM

STROMÜBERTRAGUNGSSYSTEM

SYSTÈME DE DISTRIBUTION D'ÉNERGIE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 09.11.2015 US 201562252812 P

(43)Date of publication of application:
19.09.2018 Bulletin 2018/38

(73)Proprietor: ABB Schweiz AG
5400 Baden (CH)

(72)Inventors:
  • FENG, Xiaoming
    Morrisville, NC 27560 (US)
  • KANG, Ning
    Morrisville, NC 27560 (US)

(74)Representative: Epping - Hermann - Fischer 
Patentanwaltsgesellschaft mbH Schloßschmidstraße 5
80639 München
80639 München (DE)


(56)References cited: : 
EP-A1- 2 858 201
US-A1- 2009 043 519
US-A1- 2012 249 278
US-A1- 2013 030 598
US-A1- 2015 112 496
US-A1- 2015 311 718
US-A- 5 081 591
US-A1- 2011 084 672
US-A1- 2013 024 032
US-A1- 2014 018 969
US-A1- 2015 153 153
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    BACKGROUND



    [0001] The present application relates generally to Volt-VAR optimization for power distribution systems having advanced metering infrastructure (AMI). Distributed energy resources (DER) such as photovoltaic arrays are becoming prevalent in distribution systems. These DER systems inject power into the distribution system which can cause unfavorable changes, such as a rise in voltage across the feeder lines of the distribution system. Known solutions can be found in the US patent applications: No. US 2013/030598A1 (Milosevic Borka et al) relates to devices and methods for decentralized Volt/Var control, No. US2013/0024032A1 (Vukojevic et al.) relates to a system for enhancing decentralized coordinated Volt/Var control (CVVC), and No. US 2015/0153153A1 (Premm et al.) relates to a method of determining a topology of a grid section of an AC power grid. Existing control proposals suffer from a number of shortcomings, drawbacks and disadvantages. In some instances, traditional controllers for distribution systems with DER systems may require information related to the arrangement of the distribution system which is unknown and cannot be provided by the advanced metering infrastructure. There remains a significant need for the apparatuses, methods, systems and techniques disclosed herein.

    SUMMARY



    [0002] According to the present invention, a power distribution system is provided having the features of independent claim 1. Preferred embodiments of the invention are subject-matter of the dependent claims.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0003] For the purposes of clearly, concisely and exactly describing exemplary embodiments of the present disclosure, the manner and process of making and using the same, and to enable the practice, making and use of the same, reference will now be made to certain exemplary embodiments, including those illustrated in the figures, and specific language will be used to describe the same.

    Fig. 1 is a schematic diagram illustrating an exemplary power distribution system.

    Fig. 2 is a schematic diagram illustrating an exemplary power distribution system.

    Fig. 3 is a flow diagram illustrating an active measurement set creation process.

    Fig. 4 is a graph illustrating a series of calculated feeder voltages.


    DETAILED DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS



    [0004] With reference to Fig. 1 there is illustrated an exemplary power distribution system 100. The illustrated system 100 includes distribution substation 101 structured to receive power from a power source (not pictured), transform the power by stepping up or stepping down the voltage, and distributing the power to the remaining system 100. System 100 further includes feeder power lines 103 and 109 electrically coupled with distribution substation 101.

    [0005] System 100 further includes electromechanical device 105 coupled to line 103. In the illustrated embodiment, device 105 is a voltage regulator having a tap position control setting and structured to maintain a constant voltage level based on the tap position control setting. It shall be appreciated that any or all of the foregoing features of voltage regulator 105 may be present in the other electromechanical devices disclosed herein. Connection point 107 is coupled to line 103 and structured to selectively couple a lateral power line, not pictured, to line 103. Connection point 107 is further structured to disconnect line 103 and the lateral power line in the event of an overvoltage or undervoltage within line 103 or the lateral power line. It shall be appreciated that any or all of the foregoing features of connection point 107 may be present in the other connection points disclosed herein.

    [0006] System 100 further includes connection point 111 coupled to line 109 and structured to selectively couple lateral power line 121 to line 109. Electromechanical device 113 is coupled to line 109. In the illustrated embodiment, device 113 is a switched capacitor bank having an on/off control setting and structured to regulate reactive power within line 109 by selectively charging and discharging a plurality of capacitors. It shall be appreciated that any or all of the foregoing features of switched capacitor bank 113 may be present in the other switched capacitor banks disclosed herein. Connection point 115 is coupled to line 109 and is structured to selectively couple line 109 and lateral power line 129. System 100 further includes voltage regulator 117 coupled to line 109. Lines 103 and 109 are selectively coupled by way of tie switch 119.

    [0007] System 100 further includes load 123 coupled to lateral power line 121 by way of transformer 127 and meter 125. Load 123 is structured to receive power from line 121. In the illustrated embodiment, load 123 is an industrial electricity user. Load 123 may be a residential or commercial electricity user. It shall be appreciated that any or all of the foregoing features of load 123 may be present in the other loads disclosed herein. Transformer 127 is structured to step down or step up the voltage of the power being transferred from line 121 to load 123. It shall be appreciated that any or all of the foregoing features of transformer 127 may be present in the other transformers disclosed herein.

    [0008] Meter 125 is one of a plurality of meters referred to as an advanced metering infrastructure (AMI) as discussed in more detail below. Meter 125 is structured to take electrical measurements and provide the measurements to central electronic control system 179. In certain embodiments, the electrical measurements may be at least one of voltage measurements, current measurements, real power measurements, reactive power measurements, and power factor measurements. Meter 125 may be structured to receive a command to take an electrical measurement or may be structured to take an electrical measurement without receiving a command, such as taking an electrical measurement every minute. It shall be appreciated that any or all of the foregoing features of meter 125 may be present in the other meters disclosed herein.

    [0009] System 100 further includes Load 137 coupled to lateral power line 129 by way of transformer 133 and meter 135. System 100 further includes secondary power line 141 coupled to lateral power line 129 by way of transformer 139. Load 145 is coupled to line 141 by way of meter 143.

    [0010] Load 149 and DER 151 are coupled to line 141 by way of meter 147. DER 151 is structured to provide power to system 100. In certain embodiments, DER 151 includes a DC power source and a smart inverter structured to communicate with central electronic control system 179 and structured to selectively receive power from the DC source, convert the DC power to AC power, and provide power to line 141. It shall be appreciated that any or all of the foregoing features of DER 151 may be present in the other distributed energy resources disclosed herein. Load 155 and DER 157 are coupled to line 141 by way of meter 153.

    [0011] System 100 further includes secondary power line 161 coupled to lateral power line 129 by way of transformer 159. Load 165 is coupled to line 161 by way of meter 163. Load 169 and DER 171 are coupled to line 161 by way of meter 167. Similarly, Load 175 and DER 177 are coupled to line 161 by way of meter 173.

    [0012] Central electronic control system 179 is structured to monitor and regulate electrical characteristics in system 100 by communicating with the meters, the electromechanical devices, and the distributed energy resources of system 100. System 179 includes a communication transceiver, not pictured, coupled to electromechanical devices 105, 113, and 117 by way of communication line 181. Line 181 is further coupled to substation 101 having an electromechanical device structured to adjust feeder voltage. System 179 is further coupled to meters 125, 135, 143, 147, 153, 163, 167, and 173 by way of the communication transceiver and communication line 183. In certain embodiments, at least one of electromechanical devices 105, 113, and 117 and meters 125, 135, 143, 147, 153, 163, 167, and 173 communicate with system 179 by way of a wireless connection. In certain embodiments, system 179 is a plurality of controller devices.

    [0013] System 179 further includes a memory device, not pictured, structured to store data received by the communication transceiver. System 179 further includes a processing unit structured to receive electrical measurements from the communication transceiver, transmit perturbation signals and control signals to the communication transceiver, receive data stored on the memory device, transmit data to the memory device to be stored, and programmed to receive historical electrical measurements generated by the plurality of electronic power meters, determine the sensitivities of system voltages over the change in aggregate real power consumption, aggregate reactive power consumption, aggregate distributed energy resource real power generation, aggregate distributed energy resource reactive power generation, switched capacitor bank reactive power generation and voltage regulator tap position, identify a predictive model based on the determined voltage sensitivities, and transmit at least one command signal to the communication transceiver, each command signal being structured to modify power line characteristics by controlling a setting of one of the electromechanical devices or one setting of the distributed energy resources.

    [0014] It is contemplated that the various aspects, features, processing devices, processes, and operations from the various embodiments may be used in any of the other embodiments unless expressly stated to the contrary. Certain operations illustrated may be implemented by a computer executing a computer program product on a non-transient computer readable storage medium, where the computer program product includes instructions causing the computer to execute one or more of the operations, or to issue commands to other devices to execute one or more operations.

    [0015] In certain embodiments, the processing unit receives historical measurements generated by the meters and electromechanical devices of system 100 by receiving electrical measurements, storing the electrical measurements in the memory device, and requesting the electrical measurements from the memory device. Historical measurements may include switched capacitor bank status, voltage regulator tap positions, total load real and reactive power, and total DER real and reactive power.

    [0016] System 179 is structured to transmit command signals to the electromechanical devices of system 100 and further structured to receive measurements from the meters of system 100. In certain embodiments, system 179 is further structured to transmit command signals to the smart inverters of the distributed energy resources of system 100, the signals structured to control the power factor setting of the smart inverters. The command signals are generated based on a predictive control model, as explained in more detail below.

    [0017] With reference to Fig. 2 there is illustrated an exemplary power distribution system 200 in communication with a power device controller, not pictured, such as system 179 in Fig. 1. System 200 includes a distribution substation 201 coupled to a power line 205. Marker 203 identifies a point on line 205 as described in more detail below. Switched capacitor bank 207 is coupled to line 205. Load 211 and DER 213 are coupled to line 205 by way of meter 209.

    [0018] In certain embodiments, one or more of power flow information of the power distribution system, phasing information of at least one lateral power line or at least one secondary power line relative to the feeder power line, and impedance information of at least one lateral power line or at least one secondary power line relative to the feeder power line is unknown to the power device controller. In order to regulate electrical characteristics of system 200, the power device controller is structured to generate a model of system 200 by creating a sensitivity matrix.

    [0019] Using electrical measurements taken from the meter 209, the voltage across feeder line 203 can be estimated. Meter 209 is structured to determine the real and reactive at marker 203 since the real and reactive power at marker 203 is equal to the aggregate real power and reactive power observed at meter 209 when switched capacitor bank 207 is inactive. The voltage across power line 205 can be estimated using the following equations, where Vi is the voltage across the line,

    is the aggregated real power consumption,

    is the aggregated reactive power consumption,

    is the aggregated DER real power generation,

    is the aggregated DER reactive power generation, Qc is the switched capacitor bank reactive power generation, Tap is the tap position of the voltage regulator, T is the length of interval over which the load is considered stationary, and kT is the kth interval (kT, (k+1)T).









    [0020] An interval is defined based on the various combination of loading levels and DER generation levels to more accurately estimate the sensitivity measures over feeder loading and DER generation. In certainembodiments, the length of the interval is 15 minutes.

    [0021] Since system 200 includes one load 211 and one DER 213, both of which are coupled to line 205 through the same meter 209, only the net real and reactive power electrical measurements are available.





    and

    can be calculated using the electrical measurements from meter 209 and historical data. Specifically, based on the net measured real and reactive power, and historically forecasted DER real power and reactive power, the load real and reactive power can be estimated.

    [0022] In certain embodiments, load 211 and DER 213 may be individually metered. In an individually metered arrangement, rather than observing only the net real and reactive power, the load real power and load reactive power can be observed separately from the DER real power and DER reactive power.

    [0023] With continuing reference to Fig. 1,





    and

    are determined by adding the values for real power consumption, reactive power consumption, DER real power generation, and DER reactive power generation which were measured at each meter in system 100. In certain embodiments, less than all of the meters of system 100 are necessary to determine





    and

    for system 100.

    [0024] With reference to Fig. 3, there is illustrated a process for generating AMI measurements 300. Each AMI measurement 313 is the voltage detected at one meter in the power distribution system. As shown in equation 1 above, voltage is calculated using data indicating the status of each electromechanical device, as well as the aggregate real power consumption 305, aggregate reactive power consumption 307, aggregate DER real power generation 309, and aggregate DER reactive power generation 311 as calculated using the electrical measurements from the meter in the power distribution system.

    [0025] For the purposes of identifying a system model, a subset of the AMI measurements 313, referred to as an active measurement set (AMS), may be sufficient to delineate the boundary of the feeder voltage dispersions. As a power distribution system changes, the AMS subset of AMI measurements may change such that the subset collectively captures the extreme variations on the feeders of the power distribution system. For example, the AMS subset may include the AMI measurement indicating the lowest voltage within the power distribution system as well as the AMI measurement indicating the highest voltage within the power distributions sytem. In certain embodiments, the power device controller may perform analysis daily or weekly to determine whether an AMI measurement should be added to the AMS or whether an AMI measurement of the AMS should be removed from the AMS. In certain embodiments, an initial AMS may contain 20 or more AMI measurements identified by a system administrator. AMS data is stored as historical measurements. In some embodiments, the historical measurements are stored by the controller on the memory device.

    [0026] With continuing reference to Fig. 1, system 179 may be structured to determine portions of the sensitivity matrix indicating sensitivity to variation in reactive power of the switched capacitor banks, and variation in tap position of the voltage regulators of sensitivity matrix by applying controlled perturbation to the power distribution system 100. The perturbation analysis described below is only necessary when there is insufficient historical data to determine sensitivity measures of voltage with respect to Qc and Tap.

    [0027] In certain embodiments, to determine the sensitivity measures of voltage with respect to Qc and Tap, a power device controller is structured to perform perturbation analysis on each electromechanical device in a power distribution system. For example, perturbation analysis may be used to determine the sensitivity measures of voltage with respect to Qc and Tap when there is insufficient historical measurements reflecting electromechanical device control in order to perform reliable regression analysis. With continuing reference to Fig. 2, a power device controller would perform perturbation analysis to determine the sensitivity measures of voltage with respect to Qc for switched capacitor bank 207. Perturbation analysis is performed by taking an AMI measurement using meter 209, changing a control setting such as the on/off status of switched bank capacitor 207, taking a second AMI measurement using 209, and comparing the AMI measurements. The change in voltage observed at meter 209 divided by the change in switched capacitor bank 207 reactive power is the sensitivity of voltage at meter 209 with respect to the control setting change of switched capacitor bank 207. The calculation of the sensitivity of voltage at a point in a power distribution system is shown in the following equation where S is the voltage sensitivity, i is the location of the electrical measurement, j is the electromechanical device observed, Δmi is the change in voltage at point i, and Δcj is the change in switched capacitor bank j.

    For calculating the sensitivity of voltage with respect to voltage regulator tap position, Δcj is replaced by ΔTapj, wherein ΔTapj is the change in the tap position of voltage regulator j. For systems with more than one electromechanical device, perturbation analysis is performed to determine the sensitivity measures of voltage with respect to Qc or Tap value for each electromechanical device.

    [0028] The power device controller for system 200 is programmed to generate perturbation signals during a time interval of low activity on the power distribution system. The power device controller may be structured to apply the controlled perturbation to the power distribution system during time intervals when the distributed energy resources are substantially inactive.

    [0029] Central electronic control system 179 is structured to determine at least a portion of the sensitivity matrix indicating voltage sensitivity to variation in aggregate real power consumption of the feeder power line, variation in aggregate reactive power consumption of the feeder power line, variation in aggregate real power generation of the distributed energy resources, variation in aggregate reactive power generation of the distributed energy resources, variation in switched capacitor bank reactive power generation and variation in voltage regulator tap position by performing a regression analysis upon a set of multiple measurements of voltage, aggregate real power consumption of the feeder power line, aggregate reactive power consumption of the feeder power line, aggregate real power generation of the distributed energy resources, aggregate reactive power generation of the distributed energy resources, and information of the state of the switched capacitor banks and the voltage regulators over a plurality of time intervals. In certain embodiments, system 179 may use regression analysis to determine portions of the sensitivity matrix indicating sensitivity to changes in switched capacitor bank status and voltage regulator tap position.

    [0030] Through regression analysis of the AMS historical measurements, the sensitivity of voltage measurements over the change of







    Qc, Tap may be estimated. It is assumed the calculated sensitivities are time invariant within each interval. These sensitivity calculations as well as the results of the perturbation analysis yield a sensitivity matrix for the given internal.

    [0031] The sensitivity matrix indicates sensitivity of a voltage of the feeder power line to variation in aggregate real power consumption of the feeder power line, variation in aggregate reactive power consumption of the feeder power line, variation in aggregate real power generation of the distributed energy resources, variation in aggregate reactive power generation of the distributed energy resources, variation in reactive power of the switched capacitor banks, and variation in tap position of the voltage regulators.

    [0032] For the linear regression analysis, equations (1)-(4) above are combined to create the following equation for deriving the change in voltage of a feeder line between interval kT and (k+1)T:

    By stacking up a series of equations like (5) from multiple intervals, an overdetermined system can be formed to solve for the sensitivity vector ∇fi. The overdetermined system can be written in the following format:

    Where





    Equation (6) can be solved using least-squares method as shown below or other recursive variations.

    To more accurately estimate the sensitivity measures over feeder loading and DER generation, we can calculate the sensitivity matrix for a sub-period within a day based on the various combinations of loading levels and DER generation levels. For example, a sub-period may be defined as 1:00 p.m. to 3:00 p.m. when DER generation levels are high and loading levels are low, or a sub-period may be defined as 9:00 p.m. to 11:00 p.m. when loading levels and DER generation levels are low. As a result, a sensitivity matrix for each sub-period is yielded.

    [0033] With reference to Fig. 4 there is illustrated graph 400 depicting a change in an AMI measurement over a series of intervals. Graph 400 includes a first voltage level 405 corresponding to a first time interval 401, a second voltage level 407 corresponding to a second time interval 403, and a voltage difference 409 between the first voltage level 405 and second voltage 407.

    [0034] With continuing reference to Fig. 1, system 179 determines a plurality of commands including switching commands for the switched capacitors, tap position commands for the voltage regulators, and power factor commands for the distributed energy resources, using a model predictive controller structured to determine the plurality of control commands based upon a predicted total real power demand of the entire feeder, a predicted total reactive power demand of the entire feeder, a predicted total real power generation of the distributed energy resources, a predicted real power demand uncertainty range, and a sensitivity matrix. System 179 then transmits the switching commands to the switched capacitors, the tap position control signals to the voltage regulators and the power factor control signals to the distributed energy resource devices.

    [0035] In a certain embodiments, the model predictive controller is structured to determine values of the plurality of commands such that a predicted voltage of the feeder power line meets a predetermined criterion. The model predictive controller utilizes a linear relationship between variation of voltage of the feeder power line and variation of aggregated real power consumption of the feeder power line, aggregated reactive power consumption of the feeder power line, aggregated real power generation of the distributed energy resources, aggregated reactive power generation of the distributed energy resources, reactive power of the switched capacitors and tap position of the voltage regulators.


    Claims

    1. A power distribution system (100) comprising:

    a distribution substation (101);

    a feeder power line (103, 109) electrically coupled with the distribution substation (101);

    at least one lateral power line (121, 129) electrically coupled with the feeder power line (103, 109);

    at least one secondary power line (141, 161) electrically coupled with the at least one lateral power line (121, 129);

    at least one switched capacitor bank (113) electrically coupled with at least one of the feeder power line (103, 109), the at least one lateral power line (121, 129), and the at least one secondary power line (141, 161);

    at least one voltage regulator (105) electrically coupled with at least one of the feeder power line (103, 109), the at least one lateral power line (121, 129), and the at least one secondary power line (141, 161);

    at least one load system (123, 127) electrically coupled with the respective feeder power line, lateral power line (121, 129) or secondary power line (141, 161), the at least one load system (123,127,211) including an electronic power meter (125,135) electrically coupled with the respective feeder power line, the lateral power line (121, 129) or the secondary power line (141, 161), and a distributed energy resource (151,157,171,177, 213) electrically coupled with each electronic power meter (147,153,167,173,209); and

    a central electronic control system (179) in operative communication with the at least one switched capacitor bank (113), the at least one voltage regulator (105), and the distributed energy resource (151,157,171,177,213);, wherein

    the central electronic control system (179) is structured to generate a model of the power distribution system by creating a sensitivity matrix, the sensitivity matrix indicating sensitivity of a voltage of the feeder power line (103, 109) over a defined time interval to variation in aggregate real power consumption of the feeder power line (103, 109), variation in aggregate reactive power consumption of the feeder power line (103, 109), variation in aggregate real power generation of the distributed energy resource, variation in aggregate reactive power generation of the distributed energy resource, variation in reactive power of the switched capacitor bank (113), and variation in tap position of the voltage regulator (105), the central electronic control system being further configured to determine a plurality of commands including switching commands for the switched capacitor bank, tap position commands for the voltage regulator (105), and power factor commands for the distributed energy resource, using a model predictive controller structured to determine the plurality of control commands based upon a predicted aggregate real power demand of the feeder power line (103, 109, 121, 129, 141, 161) over the defined time interval, a predicted aggregate reactive power demand of the feeder power line (103, 109, 121, 129, 141, 161) over the defined time interval, a predicted aggregate real power generation of the distributed energy resource over the defined time interval, the sensitivity matrix, and a predicted real power demand uncertainty range over the defined time interval, and the central electronic control system being further configured to transmit the switching commands to the switched capacitor bank, the tap position commands to the at least one voltage regulator (105) and the power factor commands to the distributed energy resource (151,157,171,177,213).


     
    2. The power distribution system of claim 1 wherein the central electronic control system (179) is structured to determine portions of the sensitivity matrix indicating said sensitivity to variation in reactive power of the at least one switched capacitor bank (113), and variation in tap position of the at least one voltage regulator (105) by applying controlled perturbation to the power distribution system (100).
     
    3. The power distribution system of claim 2 wherein the central electronic control system (179) is structured to apply the controlled perturbation to the power distribution system (100) during time intervals when the distributed energy resource (151,157,171,177,213) is inactive.
     
    4. The power distribution system of claim 1 wherein the central electronic control system (179) is structured to determine at least a portion of the sensitivity matrix indicating said sensitivity to variation in aggregate real power consumption of the feeder power line (103, 109), variation in aggregate reactive power consumption of the feeder power line (103, 109), variation in aggregate real power generation of the distributed energy resource (151,157,171,177,213), variation in aggregate reactive power generation of the distributed energy resource (151,157,171,177, 213) by performing a regression analysis upon a set of multiple measurements of voltage, aggregate real power consumption of the feeder power line (103, 109), aggregate reactive power consumption of the feeder power line (103, 109), aggregate real power generation of the distributed energy resource (151,157,171,177,213), aggregate reactive power generation of the distributed energy resource (151,157,171,177, 213), and information of a state of the switched capacitor bank (113) and the voltage regulator over a plurality of time intervals.
     
    5. The power distribution system of claim 4 wherein the plurality of time intervals are selected to include a plurality of combinations of aggregate real power consumption of the feeder power line (103, 109), aggregate reactive power consumption of the feeder power line (103, 109), aggregate real power generation of the distributed energy resource ( 151,157,171,177, 213), and aggregate reactive power generation of the distributed energy resource (151,157,171,177,213).
     
    6. The power distribution system of claim 1 wherein the model predictive controller is structured to determine values of the plurality of commands such that a predicted voltage of the feeder power line (103, 109) meets a predetermined criterion; or
    wherein the model predictive controller is configured to utilize a linear relationship between variation of voltage of the feeder power line (103, 109) and variation of aggregated real power consumption of the feeder power line (103, 109), aggregated reactive power consumption of the feeder power line (103, 109), aggregated real power generation of the distributed energy resource (151,157,171,177, 213), aggregated reactive power generation of the distributed energy resource (151,157,171,177, 213), reactive power of the at least one switched capacitors bank (113) and tap position of the at least one voltage regulator (105); or
    wherein one or more of power flow information of the power distribution system (100), phasing information of the at least one lateral power line (121, 129) and at least one secondary power line (141, 161) relative to the feeder power line (103, 109), and impedance information of the at least one lateral power line (121, 129) and at least one secondary power line (141, 161) is unknown to the central electronic control system (179).
     


    Ansprüche

    1. Stromverteilungssystem (100), umfassend:

    ein Verteilungsumspannwerk (101);

    eine Versorgungsstromleitung (103, 109), die mit dem Verteilungsumspannwerk (101) elektrisch verbunden ist;

    mindestens eine Lateralstromleitung (121, 129), die mit der Versorgungsstromleitung (103, 109) elektrisch verbunden ist;

    mindestens eine Sekundärstromleitung (141, 161), die mit der mindestens einen Lateralstromleitung (121, 129) elektrisch verbunden ist;

    mindestens eine geschaltete Kondensatorbank (113), die mit mindestens einer der Versorgungsstromleitung (103, 109), der mindestens einen Lateralstromleitung (121, 129) und der mindestens einen Sekundärstromleitung (141, 161) elektrisch verbunden ist;

    mindestens einen Spannungsregler (105), der mit mindestens einer der Versorgungsstromleitung (103, 109), der mindestens einen Lateralstromleitung (121, 129) und der mindestens einen Sekundärstromleitung (141, 161) elektrisch verbunden ist;

    mindestens ein Lastsystem (123, 127), das mit der jeweiligen Versorgungsstromleitung, Lateralstromleitung (121, 129) oder Sekundärstromleitung (141, 161) elektrisch verbunden ist, wobei das mindestens eine Lastsystem (123, 127, 211) aufweist: ein elektronisches Strommessgerät (125, 135), das mit der jeweiligen Versorgungsstromleitung, der Lateralstromleitung (121, 129) oder der Sekundärstromleitung (141, 161) elektrisch verbunden ist, und eine verteilte Energieressource (151, 157, 171, 177, 213), die mit jedem elektronischen Strommessgerät (147, 153, 167, 173, 209) elektrisch verbunden ist; und

    ein zentrales elektronisches Steuersystem (179) in einer funktionsfähigen Kommunikation mit der mindestens einen geschalteten Kondensatorbank (113), dem mindestens einen Spannungsregler (105) und der verteilten Energieressource (151, 157, 171, 177, 213);

    wobei

    das zentrale elektronische Steuersystem (179) gestaltet ist zum Erzeugen eines Modells des Stromverteilungssystems, indem eine Empfindlichkeitsmatrix angelegt wird, wobei die Empfindlichkeitsmatrix die Empfindlichkeit einer Spannung der Versorgungsstromleitung (103, 109) über ein definiertes Zeitintervall anzeigt hinsichtlich einer Variation eines gesamten Wirkstromverbrauchs der Versorgungsstromleitung (103, 109), einer Variation eines gesamten Blindstromverbrauchs der Versorgungsstromleitung (103, 109), einer Variation einer gesamten Wirkstromerzeugung der verteilten Energieressource, einer Variation einer gesamten Blindstromerzeugung der verteilten Energieressource, einer Variation eines Blindstroms der geschalteten Kondensatorbank (113), und einer Variation einer Anzapfposition des Spannungsreglers (105),

    wobei das zentrale elektronische Steuersystem außerdem konfiguriert ist zum Ermitteln einer Vielzahl von Befehlen, die enthalten: Schaltbefehle für die geschaltete Kondensatorbank, Anzapfpositionsbefehle für den Spannungsregler (105) und Wirkfaktorbefehle für die verteilte Energieressource, zum Verwenden einer modellvorhersagenden Steuereinheit, die gestaltet ist zum Ermitteln der Vielzahl von Steuerbefehlen aufgrund von einer vorhergesagten gesamten Wirkstromnachfrage der Versorgungsstromleitung (103, 109, 121, 129, 141, 161) über das definierte Zeitintervall, einer vorhergesagten gesamten Blindstromnachfrage der Versorgungsstromleitung (103, 109, 121, 129, 141, 161) über das definierte Zeitintervall, einer vorhergesagten gesamten Wirkstromerzeugung der verteilten Energieressource über das definierte Zeitintervall, der Empfindlichkeitsmatrix und einem vorhergesagten Unsicherheitsbereich der Wirkstromnachfrage über das definierte Zeitintervall, und

    wobei das zentrale elektronische Steuersystem außerdem konfiguriert ist zum Senden der Schaltbefehle an die geschaltete Kondensatorbank, der Anzapfpositionsbefehle an den mindestens einen Spannungsregler (105) und der Wirkfaktorbefehle an die verteilte Energieressource (151, 157, 171, 177, 213).


     
    2. Stromverteilungssystem nach Anspruch 1, wobei das zentrale elektronische Steuersystem (179) gestaltet ist zum Ermitteln von Teilen der Empfindlichkeitsmatrix, welche die Empfindlichkeit anzeigen hinsichtlich einer Variation eines Blindstroms der mindestens einen geschalteten Kondensatorbank (113) und einer Variation der Anzapfposition des mindestens einen Spannungsreglers (105), indem eine gesteuerte Störung an das Stromverteilungssystem (100) angelegt wird.
     
    3. Stromverteilungssystem nach Anspruch 2, wobei das zentrale elektronische Steuersystem (179) gestaltet ist zum Anlegen der gesteuerten Störung an das Stromverteilungssystem (100) während Zeitintervallen, in denen die verteilte Energieressource (151, 157, 171, 177, 213) inaktiv ist.
     
    4. Stromverteilungssystem nach Anspruch 1, wobei das zentrale elektronische Steuersystem (179) gestaltet ist zum Ermitteln mindestens eines Teils der Empfindlichkeitsmatrix, der die Empfindlichkeit anzeigt hinsichtlich einer Variation eines gesamten Wirkstromverbrauchs der Versorgungsstromleitung (103, 109), einer Variation eines gesamten Blindstromverbrauchs der Versorgungsstromleitung (103, 109), einer Variation einer gesamten Wirkstromerzeugung der verteilten Energieressource (151, 157, 171, 177, 213), einer Variation einer gesamten Blindstromerzeugung der verteilten Energieressource (151, 157, 171, 177, 213), indem eine Regressionsanalyse an einer Gruppe von mehreren Spannungsmessungen ausgeführt wird, eines gesamten Wirkstromverbrauchs der Versorgungsstromleitung (103, 109), eines gesamten Blindstromverbrauchs der Versorgungsstromleitung (103, 109), einer gesamten Wirkstromerzeugung der verteilten Energieressource (151, 157, 171, 177, 213), einer gesamten Blindstromerzeugung der verteilten Energieressource (151, 157, 171, 177, 213), und Informationen über einen Zustand der geschalteten Kondensatorbank (113) und des Spannungsreglers über eine Vielzahl von Zeitintervallen.
     
    5. Stromverteilungssystem nach Anspruch 4, wobei die Vielzahl von Zeitintervallen ausgewählt werden, um eine Vielzahl von Kombinationen aufzuweisen aus: einem gesamten Wirkstromverbrauch der Versorgungsstromleitung (103, 109), einem gesamten Blindstromverbrauch der Versorgungsstromleitung (103, 109), einer gesamten Wirkstromerzeugung der verteilten Energieressource (151, 157, 171, 177, 213), und einer gesamten Blindstromerzeugung der verteilten Energieressource (151, 157, 171, 177, 213).
     
    6. Stromverteilungssystem nach Anspruch 1, wobei die modellvorhersagende Steuereinheit gestaltet ist zum
    Ermitteln von Werten der Vielzahl von Befehlen, sodass eine vorhergesagte Spannung der Versorgungsstromleitung (103, 109) ein vorbestimmtes Kriterium erfüllt; oder
    wobei die modellvorhersagende Steuereinheit konfiguriert ist zum Verwenden einer linearen Beziehung zwischen einer Variation einer Spannung der Versorgungsstromleitung (103, 109) und einer Variation eines gesamten Wirkstromverbrauchs der Versorgungsstromleitung (103, 109), eines gesamten Blindstromverbrauchs der Versorgungsstromleitung (103, 109), einer gesamten Wirkstromerzeugung der verteilten Energieressource (151, 157, 171, 177, 213), einer gesamten Blindstromerzeugung der verteilten Energieressource (151, 157, 171, 177, 213), eines Blindstroms der mindestens einen geschalteten Kondensatorbank (113) und einer Anzapfposition des mindestens einen Spannungsreglers (105); oder
    wobei eine oder mehrere von Stromflussinformationen des Stromverteilungssystems (100), Phaseninformationen der mindestens einen Lateralstromleitung (121, 129) und der mindestens einen Sekundärstromleitung (141, 161) in Bezug auf die Versorgungsstromleitung (103, 109), und Impedanzinformationen der mindestens einen Lateralstromleitung (121, 129) und der mindestens einen Sekundärstromleitung (141, 161) dem zentralen elektronischen Steuersystem (179) nicht bekannt sind.
     


    Revendications

    1. Système de distribution d'électricité (100) comprenant :

    un poste de distribution (101) ;

    une ligne électrique d'alimentation (103, 109) électriquement couplée au poste de distribution (101) ;

    au moins une ligne électrique latérale (121, 129) électriquement couplée à la ligne électrique d'alimentation (103, 109) ;

    au moins une ligne électrique secondaire (141, 161) électriquement couplée à l'au moins une ligne électrique latérale (121, 129) ;

    au moins un banc de condensateurs commutés (113) électriquement couplé à au moins une ligne parmi la ligne électrique d'alimentation (103, 109), l'au moins une ligne électrique latérale (121, 129) et l'au moins une ligne électrique secondaire (141, 161) ;

    au moins un régulateur de tension (105) électriquement couplé à au moins une ligne parmi la ligne électrique d'alimentation (103, 109), l'au moins une ligne électrique latérale (121, 129) et l'au moins une ligne électrique secondaire (141, 161) ;

    au moins un système de charge (123, 127) électriquement couplé à la ligne électrique d'alimentation, ligne électrique latérale (121, 129) ou ligne électrique secondaire (141, 161) respective, l'au moins un système de charge (123, 127, 211) comportant un compteur électronique (125, 135) électriquement couplé à la ligne électrique d'alimentation, ligne électrique latérale (121, 129) ou ligne électrique secondaire (141, 161) respective, et une ressource d'énergie distribuée (151, 157, 171, 177, 213) électriquement couplée à chaque compteur électronique (147, 153, 167, 173, 209) ; et

    un système de contrôle électronique central (179) en communication opérationnelle avec l'au moins un banc de condensateurs commutés (113), l'au moins un régulateur de tension (105) et la ressource d'énergie distribuée (151, 157, 171, 177, 213) ;

    dans lequel

    le système de contrôle électronique central (179) est structuré pour générer un modèle du système de distribution d'électricité en créant une matrice de sensibilité, la matrice de sensibilité indiquant la sensibilité d'une tension de la ligne électrique d'alimentation (103, 109) sur un intervalle de temps défini à la variation de puissance réelle totale consommée de la ligne électrique d'alimentation (103, 109), la variation de puissance réactive totale consommée de la ligne électrique d'alimentation (103, 109), la variation de puissance réelle totale produite de la ressource d'énergie distribuée, la variation de puissance réactive totale produite de la ressource d'énergie distribuée, la variation de puissance réactive du banc de condensateurs commutés (113), et la variation de position de la prise du régulateur de tension (105),

    le système de contrôle électronique central étant également configuré pour déterminer une pluralité de commandes comportant des commandes de commutation pour le banc de condensateurs commutés, des commandes de position de prise pour le régulateur de tension (105), et des commandes de facteur de puissance pour la ressource d'énergie distribuée, en utilisant un contrôleur prédictif de modèle structuré pour déterminer la pluralité de commandes de contrôle sur la base d'une demande de puissance réelle cumulée prédite de la ligne électrique d'alimentation (103, 109, 121, 129, 141, 161) sur l'intervalle de temps défini, d'une demande de puissance réactive cumulée prédite de la ligne électrique d'alimentation (103, 109, 121, 129, 141, 161) sur l'intervalle de temps défini, d'une puissance réelle totale produite prédite de la ressource d'énergie distribuée sur l'intervalle de temps défini, de la matrice de sensibilité, et d'une gamme d'incertitude de demande de puissance réelle prédite sur l'intervalle de temps défini, et

    le système de contrôle électronique central étant également configuré pour transmettre les commandes de commutation au banc de condensateurs commutés, les commandes de position de prise à l'au moins un régulateur de tension (105) et les commandes de facteur de puissance à la ressource d'énergie distribuée (151, 157, 171, 177, 213).


     
    2. Système de distribution d'électricité de la revendication 1 dans lequel le système de contrôle électronique central (179) est structuré pour déterminer des parties de la matrice de sensibilité indiquant ladite sensibilité à la variation de puissance réactive de l'au moins un banc de condensateurs commutés (113) et la variation de position de la prise de l'au moins un régulateur de tension (105) en appliquant une perturbation contrôlée au système de distribution d'électricité (100).
     
    3. Système de distribution d'électricité de la revendication 2 dans lequel le système de contrôle électronique central (179) est structuré pour appliquer la perturbation contrôlée au système de distribution d'électricité (100) dans des intervalles de temps pendant lesquels la ressource d'énergie distribuée (151, 157, 171, 177, 213) est inactive.
     
    4. Système de distribution d'électricité de la revendication 1 dans lequel le système de contrôle électronique central (179) est structuré pour déterminer au moins une partie de la matrice de sensibilité indiquant ladite sensibilité à la variation de puissance réelle totale consommée de la ligne électrique d'alimentation (103, 109), la variation de puissance réactive totale consommée de la ligne électrique d'alimentation (103, 109), la variation de puissance réelle totale produite de la ressource d'énergie distribuée (151, 157, 171, 177, 213), la variation de puissance réactive totale produite de la ressource d'énergie distribuée (151, 157, 171, 177, 213), en effectuant une analyse de régression sur un ensemble de multiples mesures de tension, de puissance réelle totale consommée de la ligne électrique d'alimentation (103, 109), de puissance réactive totale consommée de la ligne électrique d'alimentation (103, 109), de puissance réelle totale produite de la ressource d'énergie distribuée (151, 157, 171, 177, 213), de puissance réactive totale produite de la ressource d'énergie distribuée (151, 157, 171, 177, 213), et d'informations sur un état du banc de condensateurs commutés (113) et du régulateur de tension sur une pluralité d'intervalles de temps.
     
    5. Système de distribution d'électricité de la revendication 4 dans lequel la pluralité d'intervalles de temps sont sélectionnés pour inclure une pluralité de combinaisons de la puissance réelle totale consommée de la ligne électrique d'alimentation (103, 109), la puissance réactive totale consommée de la ligne électrique d'alimentation (103, 109), la puissance réelle totale produite de la ressource d'énergie distribuée (151, 157, 171, 177, 213) et la puissance réactive totale produite de la ressource d'énergie distribuée (151, 157, 171, 177, 213).
     
    6. Système de distribution d'électricité de la revendication 1 dans lequel le contrôleur prédictif de modèle est structuré pour déterminer des valeurs de la pluralité de commandes de telle sorte qu'une tension prédite de la ligne électrique d'alimentation (103, 109) respecte un critère prédéterminé ; ou
    dans lequel le contrôleur prédictif de modèle est configuré pour utiliser une relation linéaire entre la variation de tension de la ligne électrique d'alimentation (103, 109) et la variation de puissance réelle totale consommée de la ligne électrique d'alimentation (103, 109), la puissance réactive totale consommée de la ligne électrique d'alimentation (103, 109), la puissance réelle totale produite de la ressource d'énergie distribuée (151, 157, 171, 177, 213), la puissance réactive totale produite de la ressource d'énergie distribuée (151, 157, 171, 177, 213), la puissance réactive de l'au moins un banc de condensateurs commutés (113) et la position de la prise de l'au moins un régulateur de tension (105) ; ou
    dans lequel une ou plusieurs informations parmi des informations de circulation d'électricité du système de distribution d'électricité (100), des informations de mise en phase de l'au moins une ligne électrique latérale (121, 129) et au moins une ligne électrique secondaire (141, 161) par rapport à la ligne électrique d'alimentation (103, 109) et des informations d'impédance de l'au moins une ligne électrique latérale (121, 129) et au moins une ligne électrique secondaire (141, 161) sont inconnues du système de contrôle électronique central (179).
     




    Drawing















    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description