(19)
(11)EP 3 376 655 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
29.04.2020 Bulletin 2020/18

(21)Application number: 17847003.5

(22)Date of filing:  30.08.2017
(51)International Patent Classification (IPC): 
G05F 1/46(2006.01)
(86)International application number:
PCT/KR2017/009508
(87)International publication number:
WO 2018/044078 (08.03.2018 Gazette  2018/10)

(54)

CONTROL SYSTEM FOR TRANSITIONING A DC-DC VOLTAGE CONVERTER FROM A BUCK OPERATIONAL MODE TO A SAFE OPERATIONAL MODE

STEUERUNGSSYSTEM ZUM UMSCHALTEN EINES GLEICHSPANNUNGSWANDLERS VON DER BUCK-BETRIEBSART IN DIE SICHERE BETRIEBSART

SYSTÈME DE COMMANDE DESTINÉ À COMMUTER UN CONVERTISSEUR DE TENSION CC-CC D'UN MODE DE FONCTIONNEMENT D'ABAISSEMENT À UN MODE DE FONCTIONNEMENT SÛR


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 30.08.2016 US 201662381125 P
21.08.2017 US 201715682143

(43)Date of publication of application:
19.09.2018 Bulletin 2018/38

(73)Proprietor: LG Chem, Ltd.
Seoul 07336 (KR)

(72)Inventor:
  • KATRAK, Kerfegar K.
    Fenton, Michigan48430 (US)

(74)Representative: Plasseraud IP 
66, rue de la Chaussée d'Antin
75440 Paris Cedex 09
75440 Paris Cedex 09 (FR)


(56)References cited: : 
EP-A1- 2 006 972
EP-A2- 2 490 124
KR-A- 20110 124 910
US-A1- 2011 235 527
US-A1- 2015 288 169
EP-A1- 2 566 027
JP-A- 2004 096 826
US-A1- 2003 155 814
US-A1- 2014 092 639
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    TECHNICAL FIELD



    [0001] The present invention relates to a control system for transitioning a DC-DC voltage converter.

    BACKGROUND ART



    [0002] A DC-DC voltage converter is a device for receiving an input voltage and generating an output voltage of a different level from the received input voltage and generally includes at least one switch. The DC-DC voltage converter may operate in various modes by shifting to a buck operational mode, a bust operational mode or the like.

    [0003] In particular, when the DC-DC voltage converter uses a single application, if the single application does not operate, an error occurs in shifting the operational mode to a safe operational mode, and thus the DC-DC voltage converter is not able to safely shift to a safe mode. A system for control of a DC-DC converter can be found for instance in EP 2 006 972 A1.

    DISCLOSURE


    TECHNICAL PROBLEM



    [0004] The inventor herein has recognized a need for an improved control system for transitioning a DC-DC voltage converter from a buck operational mode to a safe operational mode. In particular, the control system utilizes two distinct and independent applications that each command a microcontroller to generate a control signal to transition FET switches within a DC-DC voltage converter control circuit within the DC-DC voltage converter to open operational states. As a result, the inventive control system can more reliably transition the DC-DC voltage converter to the safe operational mode even if one of the two applications is malfunctioning or if one of the control signals is interrupted or not acted upon by the DC-DC voltage converter.

    [0005] These and other objects and advantages of the present disclosure may be understood from the following detailed description and will become more fully apparent from the exemplary embodiments of the present disclosure. Also, it will be easily understood that the objects and advantages of the present disclosure may be realized by the means shown in the appended claims and combinations thereof.

    TECHNICAL SOLUTION



    [0006] Various embodiments of the present invention to accomplish the above object are as follows.

    [0007] A control system for transitioning a DC-DC voltage converter from a buck operational mode to a safe operational mode in accordance with an exemplary embodiment is provided.

    [0008] The DC-DC voltage converter has a high voltage bi-directional switch, a pre-charge high voltage bi-directional switch, a low voltage bi-directional switch, a pre-charge low voltage bi-directional switch, a high side integrated circuit, and a low side integrated circuit.

    [0009] The low voltage bi-directional switch is electrically coupled in parallel to the pre-charge low voltage bi-directional switch between and to first and second electrical nodes. The high voltage bi-directional switch is electrically coupled in parallel to the pre-charge high voltage bi-directional switch between and to third and fourth electrical nodes. The high side integrated circuit is electrical coupled between the first electrical node and the fourth electrical node. The low side integrated circuit is electrically coupled between the first electrical node and the fourth electrical node. The high side integrated circuit has a first plurality of FET switches therein. The low side integrated circuit has a second plurality of FET switches therein. Each FET switch of the first plurality of FET switches is electrically coupled to a respective FET switch of the second plurality of FET switches.

    [0010] The control system includes a microcontroller having a first application and a second application.

    [0011] The first application commands the microcontroller to generate a first control signal that is received at a first input pin on the high side integrated circuit to command the high side integrated circuit to transition each of the first plurality of FET switches therein to an open operational state.

    [0012] The first control signal is further received at a first input pin on the low side integrated circuit to command the low side integrated circuit to transition each of the second plurality of FET switches therein to the open operational state.

    [0013] The microcontroller receives a first confirmation signal from at least one of an output pin of the high side integrated circuit and an output pin of the low side integrated circuit.

    [0014] The second application determines that at least one of the first plurality of FET switches and the second plurality of FET switches are transitioned to the open operational state based on the first confirmation signal.

    [0015] The second application commands the microcontroller to generate a second control signal that is received at a second input pin on the high side integrated circuit to command the high side integrated circuit to transition each of the first plurality of FET switches therein to the open operational state.

    [0016] The second control signal is further received at a second input pin on the low side integrated circuit to command the low side integrated circuit to transition each of the second plurality of FET switches therein to the open operational state.

    [0017] The second application commands the microcontroller to generate a third control signal to transition the low voltage bi-directional switch to the open operational state; and the second application commands the microcontroller to generate a fourth control signal to transition the pre-charge low voltage bi-directional switch to the open operational state.

    [0018] The control system further comprises a first voltage sensor electrically coupled to the first electrical node and a second voltage sensor electrically coupled to the second electrical node.

    [0019] The first voltage sensor outputs a first voltage measurement signal indicating a first voltage at the first electrical node, the first voltage measurement signal being received by the microcontroller.

    [0020] The second voltage sensor outputs a second voltage measurement signal indicating a second voltage at the second electrical node, the second voltage measurement signal being received by the microcontroller.

    [0021] The microcontroller determines first and second voltage values, respectively, based on the first and second voltage measurement signals, respectively, and the microcontroller further has a third application which determines that the low voltage bi-directional switch and the pre-charge low voltage bi-directional switch have each been transitioned to the open operational state, if an absolute value of a difference between the first and second voltage values is greater than a first threshold voltage value.

    [0022] The third application commands the microcontroller to generate a fifth control signal to transition the high voltage bi-directional switch to the open operational state, and the third application commands the microcontroller to generate a sixth control signal to transition the pre-charge high voltage bi-directional switch to the open operational state.

    [0023] The control system further comprises a third voltage sensor electrically coupled to the third electrical node and a fourth voltage sensor electrically coupled to the fourth electrical node.

    [0024] The third voltage sensor outputs a third voltage measurement signal indicating a third voltage at the third electrical node, the third voltage measurement signal being received by the microcontroller.

    [0025] The fourth voltage sensor outputs a fourth voltage measurement signal indicating a fourth voltage at the fourth electrical node, the fourth voltage measurement signal being received by the microcontroller.

    [0026] The microcontroller determines third and fourth voltage values, respectively, based on the third and fourth voltage measurement signals, respectively, and the microcontroller has a fourth application which determines that the high voltage bi-directional switch and the pre-charge high voltage bi-directional switch have each been transitioned to the open operational state, if an absolute value of a difference between the third and fourth voltage values is greater than a second threshold voltage value.

    [0027] Prior to the microcontroller generating the first control signal, the DC-DC voltage converter is in the buck operational mode in which the high voltage bi-directional switch has a closed operational state, the pre-charge high voltage bi-directional switch has the closed operational state, the low voltage bi-directional switch has the closed operational state, and the pre-charge low voltage bi-directional switch has the closed operational state.

    [0028] The high voltage bi-directional switch is a bi-directional MOSFET switch.

    [0029] The low voltage bi-directional switch is a bi-directional MOSFET switch.

    ADVANTAGEOUS EFFECTS



    [0030] According to at least one exemplary embodiment of the present invention, the control system has a microcontroller that utilizes two distinct and independent applications that each command the microcontroller to generate a control signal to transition FET switches within a DC-DC voltage converter control circuit within the DC-DC voltage converter to open operational states, and thus the inventive control system can more reliably transition the DC-DC voltage converter to the safe operational mode even if one of the two applications is malfunctioning or if one of the control signals is interrupted or not acted upon by the DC-DC voltage converter.

    [0031] The effects of the present invention are not limited to the above, and other effects not mentioned herein will be clearly understood from the appended claims by those skilled in the art.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0032] The accompanying drawings illustrate a preferred embodiment of the present disclosure and together with the foregoing disclosure, serve to provide further understanding of the technical features of the present disclosure, and thus, the present disclosure is not construed as being limited to the drawing.

    FIG. 1 is a schematic of a vehicle having a control system for a DC-DC voltage converter in accordance with an exemplary embodiment;

    FIG. 2 is a schematic of a bi-directional switch utilized in the DC-DC voltage converter;

    FIG. 3 is a block diagram of a main application, and first, second, third, and fourth applications utilized by a microcontroller in the control system of FIG. 1; and

    FIGS. 4-12 are a flowchart of a method for transitioning the DC-DC voltage converter from a buck operational mode to a safe operational mode.


    DETAILED DESCRIPTION



    [0033] Hereinafter, preferred embodiments of the present disclosure will be described in detail with reference to the accompanying drawings. Prior to the description, it should be understood that the terms used in the specification and the appended claims should not be construed as limited to general and dictionary meanings, but interpreted based on the meanings and concepts corresponding to technical aspects of the present disclosure on the basis of the principle that the inventor is allowed to define terms appropriately for the best explanation.

    [0034] Therefore, the description proposed herein is just a preferable example for the purpose of illustrations only, not intended to limit the scope of the disclosure, so it should be understood that other equivalents and modifications could be made thereto without departing from the scope of the disclosure.

    [0035] In addition, in the present disclosure, if it is judged that detailed explanation on a known technique or configuration may unnecessarily make the essence of the present disclosure vague, the detailed explanation will be omitted.

    [0036] Throughout the specification, when a portion is referred to as "comprising" or "including" any element, it means that the portion may include other elements further, not excluding other elements unless specifically stated otherwise. Furthermore, the term "control unit" described in the specification refers to a unit that processes at least one function or operation, and may be implemented by hardware, software, or a combination of hardware and software.

    [0037] In addition, throughout the specification, when a portion is referred to as being "connected" to another portion, it is not limited to the case that they are "directly connected", but it also includes the case where they are "indirectly connected" with another element being interposed between them.

    [0038] Referring to FIG. 1, a vehicle 10 is provided. The vehicle 10 includes a battery 40, a contactor 42, a 3-phase capacitor bank 48, a battery-starter generator unit 50, a DC-DC voltage converter 54, a battery 56, a control system 58, a vehicle controller 60, a communication bus 62, and electrical lines 64, 65, 66, 68, 70, 72, 74.

    [0039] An advantage of the control system 58 is that the control system 58 has a microcontroller 800 that can more reliably transition the DC-DC voltage converter 54 from a buck operational mode to a safe operational mode. In particular, the microcontroller 800 utilizes two distinct and independent applications that each command the microcontroller 800 to generate a control signal to transition FET switches 506, 606 within a DC-DC voltage converter control circuit 240 within the DC-DC voltage converter 54 to open operational states. As a result, the inventive control system 58 can more reliably transition the DC-DC voltage converter 54 to the safe operational mode even if one of the two applications is malfunctioning or if one of the control signals is interrupted or not acted upon by the DC-DC voltage converter 54.

    [0040] For purposes of understanding, a node or an electrical node is a region or a location in an electrical circuit. A signal can be an electrical voltage, an electrical current, or a binary value.

    [0041] The buck operational mode is an operational mode of the DC-DC voltage converter 54 in which the DC-DC voltage converter 54 applies a voltage to the battery 56. In an exemplary embodiment, when the DC-DC voltage converter 54 has the buck operational mode, the contactor 42 has a closed operational state, the high voltage bi-directional MOSFET switch 200 has a closed operational state, the pre-charge high voltage bi-directional MOSFET switch 202 has a closed operational state, the FET switches 506, 606 are being switched as desired, the low voltage bi-directional MOSFET switch 270 has a closed operational state, and the pre-charge low voltage bi-directional MOSFET switch 272 has a closed operational state.

    [0042] The safe operational mode is an operational mode of the DC-DC voltage converter 54 in which the DC-DC voltage converter 54 does not apply a voltage to the battery 56 or to the battery 40. In an exemplary embodiment, when the DC-DC voltage converter 54 has the safe operational mode, the contactor 42 has an open operational state, the high voltage bi-directional MOSFET switch 200 has an open operational state, the pre-charge high voltage bi-directional MOSFET switch 202 has an open operational state, the FET switches 506, 606 have the open operational state, the low voltage bi-directional MOSFET switch 270 has an open operational state, and the pre-charge low voltage bi-directional MOSFET switch 272 has an open operational state. Further, in the safe operational mode, the microcontroller 800 confirms that the above-mentioned switches each have an open operational state.

    [0043] The battery 40 includes a positive terminal 100 and a negative terminal 102. In an exemplary embodiment, the battery 40 generates 48 Vdc between the positive terminal 100 and the negative terminal 102. The positive terminal 100 is electrically coupled to a first electrical node 124 on a first side of the contactor 42. The negative terminal 102 is electrically coupled to an electrical ground.

    [0044] The contactor 42 has a contactor coil 120, a contact 122, a first electrical node 124 and a second electrical node 126. The first electrical node 124 is electrically coupled to the positive terminal 100 of the battery 40. The second electrical node 126 is electrically coupled to both the 3-phase capacitor bank 48 and the electrical node 210 of the DC-DC voltage converter 54. When the microcontroller 800 generates first and second control signals that are received by the voltage drivers 802, 804, respectively, the contactor coil 120 is energized which transitions the contact 122 to a closed operational state. Alternately, when the microcontroller 800 generates third and fourth control signals that are received by the voltage drivers 802, 804, respectively, the contactor coil 120 is de-energized which transitions the contact 122 to an open operational state. In an exemplary embodiment, the third and fourth control signals can each be a ground voltage level.

    [0045] The 3-phase capacitor bank 48 is utilized to store and release electrical energy from the battery starter-generator unit 50, the battery 40, and the DC-DC voltage converter 54. The 3-phase capacitor bank 48 is electrically coupled to the electrical node 126 of the contactor 126 and the electrical node 210 of the DC-DC voltage converter 54 utilizing the electrical line 65. The 3-phase capacitor bank 48 is further electrically coupled to the battery-starter generator 50 utilizing the electrical lines 68, 70, 72.

    [0046] The battery-starter generator unit 50 is provided to generate an AC voltage that is received by the 3-phase capacitor bank 48 via the electrical lines 68, 70, 72.

    [0047] The DC-DC voltage converter 54 includes a high-voltage bi-directional switch 200, a pre-charge high-voltage bi-directional switch 202, electrical nodes 210, 212, a DC-DC voltage converter control circuit 240, a low voltage bi-directional switch 270, a pre-charge low voltage bi-directional switch 272, electrical nodes 280, 282, voltage sensors 290, 292, 294, 296, and electrical lines 300, 312.

    [0048] Referring to FIGS. 1 and 2, in an exemplary embodiment, the high voltage bi-directional switch 200 includes a node 340, a node 342, MOSFET switches 344, 345, and diodes 346, 347. Of course, in an alternative embodiment, the high voltage bi-directional switch 200 could be replaced with another type of bi-directional switch having desired voltage and current capabilities.

    [0049] The high voltage bi-directional switch 200 is electrically coupled in parallel to the pre-charge high voltage bi-directional switch 202 between and to electrical nodes 210, 212. The node 340 is electrically coupled to the electrical node 210, and the node 342 is electrically coupled to the electrical node 212. When the microcontroller 800 generates a control signal that is received by the high voltage bi-directional switch 200 (or that is received by a controller or a microprocessor within the DC-DC voltage converter 54 that is operably coupled to the switch 200) via the electrical line 908, the microcontroller 800 induces the switch 200 to transition to a closed operational state. When the microcontroller 800 generates another control signal (e.g., ground voltage level control signal) on the electrical line 908, the microcontroller 800 induces the switch 200 to transition to an open operational state.

    [0050] The pre-charge high voltage bi-directional switch 202 has a node 350 that is electrically coupled to the electrical node 210, and a node 352 that is electrically coupled to the electrical node 212. When the microcontroller 800 generates a control signal that is received by the pre-charge high voltage bi-directional switch 202 (or that is received by a controller or a microprocessor within the DC-DC voltage converter 54 that is operably coupled to the switch 202) via the electrical line 910, the microcontroller 800 induces the switch 202 to transition to a closed operational state. When the microcontroller 800 generates another control signal (e.g., ground voltage level control signal) on the electrical line 910, the microcontroller 800 induces the switch 202 to transition to an open operational state. In an exemplary embodiment, the pre-charge high voltage bi-directional switch 202 is a bi-directional MOSFET switch.

    [0051] The DC-DC voltage converter control circuit 240 has a terminal 446, a terminal 448, a high side integrated circuit 450, and a low side integrated circuit 452. The DC-DC voltage converter control circuit 240 can convert a DC voltage received at the terminal 446 to another DC voltage that is output at the terminal 448. Alternately, the DC-DC voltage converter control circuit 240 can convert a DC voltage received at the terminal 448 to another DC voltage that is output at the terminal 446.

    [0052] The high side integrated circuit 450 includes an input pin 500, an input pin 502, an output pin 504, and a plurality of FET switches 506 therein. The input pin 500 is electrically coupled to an input-output device 942 of the microcontroller 800 utilizing an electrical line 900. The input pin 502 is electrically coupled to the input-output device 942 of the microcontroller 800 utilizing the electrical line 902. The output pin 504 is electrically coupled to the input-output device 942 of the microcontroller 800 utilizing an electrical line 916. The plurality of switches 506 are electrically coupled in parallel with one another between the terminals 446, 448. Further, each FET switch of the plurality of FET switches 506 is electrically coupled in series with a respective FET switch in the low side integrated circuit 452. When the high side integrated circuit 450 receives a control signal having a high logic level at the input pin 500, the high side integrated circuit 450 enables operation of the FET switches 506. Alternately, when the high side integrated circuit 450 receives a control signal having a low logic level at the input pin 500, the high side integrated circuit 450 transitions each FET switch of the plurality of FET switches 506 to an open operational state. Further, when the high side integrated circuit 450 receives a control signal having a low logic level at the input pin 502, the high side integrated circuit 450 transitions each FET switch of the plurality of FET switches 506 to an open operational state. Still further, when the high side integrated circuit 450 transitions each FET switch of the plurality of FET switches 506 to an open operational state, the output pin 504 outputs a confirmation signal indicating that each FET switch of the plurality of FET switches 506 has an open operational state, that is received by the input-output device 942 of the microcontroller 800 utilizing the electrical line 916.

    [0053] The low side integrated circuit 452 includes an input pin 600, an input pin 602, an output pin 604, and a plurality of FET switches 606. The input pin 600 is electrically coupled to an input-output device 942 of the microcontroller 800 utilizing an electrical line 900. The input pin 602 is electrically coupled to the input-output device 942 of the microcontroller 800 utilizing the electrical line 902. The output pin 604 is electrically coupled to the input-output device 942 of the microcontroller 800 utilizing an electrical line 916. The plurality of switches 606 are electrically coupled in parallel with one another between the terminals 446, 448. Further, each FET switch of the plurality of FET switches 606 are electrically coupled in series with a respective FET switch in the high side integrated circuit 450. When the low side integrated circuit 452 receives a control signal having a high logic level at the input pin 600, the low side integrated circuit 452 enables operation of the FET switches 606. Alternately, when the low side integrated circuit 452 receives a control signal having a low logic level at the input pin 600, the low side integrated circuit 452 transitions each FET switch of the plurality of FET switches 606 to an open operational state. Further, when the low side integrated circuit 452 receives a control signal having a low logic level at the input pin 602, the low side integrated circuit 452 transitions each FET switch of the plurality of FET switches 606 to an open operational state. Still further, when the low side integrated circuit 452 transitions each FET switch of the plurality of FET switches 606 to an open operational state, the output pin 604 outputs a confirmation signal indicating that each FET switch of the plurality of FET switches 606 has an open operational state, that is received by the input-output device 942 of the microcontroller 800 utilizing the electrical line 916.

    [0054] The low voltage bi-directional switch 270 is electrically coupled in parallel to the pre-charge low voltage bi-directional switch 272 between and to electrical nodes 280, 282. The low voltage bi-directional switch 270 has a node 760 that is electrically coupled to the electrical node 280, and a node 762 that is electrically coupled to the electrical node 282. When the microcontroller 800 generates a control signal that is received by the low voltage bi-directional switch 270 (or that is received by a controller or a microprocessor within the DC-DC voltage converter 54 that is operably coupled to the switch 270) via the electrical line 904, the microcontroller 800 induces the switch 270 to transition to a closed operational state. When the microcontroller 800 generates another control signal (e.g., ground voltage level control signal) on the electrical line 904, the microcontroller 800 induces the switch 270 to transition to an open operational state. In an exemplary embodiment, the low voltage bi-directional switch 270 is a bi-directional MOSFET switch.

    [0055] The pre-charge low voltage bi-directional switch 272 has a node 770 that is electrically coupled to the electrical node 280, and a node 772 that is electrically coupled to the electrical node 282. When the microcontroller 800 generates a control signal that is received by the pre-charge low voltage bi-directional switch 272 (or that is received by a controller or a microprocessor within the DC-DC voltage converter 54 that is operably coupled to the switch 272) via the electrical line 906, the microcontroller 800 induces the switch 272 to transition to a closed operational state. When the microcontroller 800 generates another control signal (e.g., ground voltage level control signal) on the electrical line 906, the microcontroller 800 induces the switch 272 to transition to an open operational state.

    [0056] The voltage sensor 290 is electrically coupled to the electrical node 210 and to the microcontroller 800. The voltage sensor 290 outputs a voltage measurement signal indicating a voltage at the electrical node 210 that is received by the microcontroller 800 via the electrical line 926.

    [0057] The voltage sensor 292 is electrically coupled to the electrical node 212 and to the microcontroller 800. The voltage sensor 292 outputs a voltage measurement signal indicating a voltage at the electrical node 212 that is received by the microcontroller 800 via the electrical line 928.

    [0058] The voltage sensor 294 is electrically coupled to the electrical node 280 and to the microcontroller 800. The voltage sensor 294 outputs a voltage measurement signal indicating a voltage at the electrical node 280 that is received by the microcontroller 800 via the electrical line 922.

    [0059] The voltage sensor 296 is electrically coupled to the electrical node 282 and to the microcontroller 800. The voltage sensor 296 outputs a voltage measurement signal indicating a voltage at the electrical node 282 that is received by the microcontroller 800 via the electrical line 924.

    [0060] The battery 56 includes a positive terminal 780 and a negative terminal 782. In an exemplary embodiment, the battery 56 generates 12 Vdc between the positive terminal 780 and the negative terminal 782. The positive terminal 780 is electrically coupled to the electrical node 282 of the DC-DC voltage converter 54. The negative terminal 782 is electrically coupled to an electrical ground, which may be different that the electrical ground that the battery 40 is coupled to.

    [0061] The control system 58 is utilized to transition the DC-DC voltage converter 54 to a buck operational mode and then to a safe operational mode. The control system 58 includes the microcontroller 800, the voltage drivers 802, 804, the voltage sensors 290, 292, 294, 296 and the electrical lines 900, 902, 904, 906, 908, 910, 916, 918, 920, 922, 924, 926, 928.

    [0062] Referring to FIGS. 1 and 3, the microcontroller 800 includes a microprocessor 940, the input-output device 942, the memory device 944, and the analog-to-digital converter 946. The microprocessor 940 further includes a main application 950, a buck application 952, a first application 954, a second application 956, a third application 958, and a fourth application 960 which are executed by the microprocessor 940. The buck application 952, the first application 954, the second application 956, the third application 958, and the fourth application 960 are stored in the memory device 944. The microprocessor 940 is operably coupled to the input-output device 942, the memory device 944, and the analog-to-digital converter 946, the DC-DC voltage converter 54, and the voltage drivers 802, 804.

    [0063] Referring to FIGS. 1 and 3-12, a flowchart of a method for inducing the DC-DC voltage converter 54 to transition to a buck operational mode, and then to transition the DC-DC voltage converter 54 from the buck operational mode to a safe operational mode is described. The flowchart includes the main application 950, the buck application 952, the first application 954, the second application 956, the third application 958, and the fourth application 960.

    [0064] Referring to FIG. 4, the main application 950 will now be explained.

    [0065] At step 980, the microcontroller 800 makes a determination as to whether the DC-DC voltage converter 54 is to be transitioned to a buck operational mode. In an exemplary embodiment, the microcontroller 800 makes the determination as to whether the DC-DC voltage converter 54 is to be transitioned to the buck operational mode, based on a control signal from the vehicle controller 60. If the value of step 980 equals "yes", the method advances to step 982. Otherwise, the method advances to step 984.

    [0066] At step 982, the microcontroller 800 executes the buck application 952. After step 982, the method advances to step 984.

    [0067] At step 984, the microcontroller 800 makes a determination as to whether the DC-DC voltage converter 54 is to be transitioned to a safe operational mode. In an exemplary embodiment, the microcontroller 800 makes the determination as to whether the DC-DC voltage converter 54 is to be transitioned to the safe operational mode, based on another control signal from the vehicle controller 60. If the value of step 984 equals "yes", the method advances to step 986. Otherwise, the method returns to step 980.

    [0068] At step 986, the microcontroller 800 executes the first application 954. After step 986, the method advances to step 988.

    [0069] At step 988, the microcontroller 800 executes the second application 956. After step 988, the method advances to step 990.

    [0070] At step 990, the microcontroller 800 executes the third application 958. After step 990, the method advances to step 992.

    [0071] At step 992, the microcontroller 800 executes the fourth application 960. After step 992, the method returns to step 980.

    [0072] Referring to FIGS. 5 and 6, the buck application 952 will now be explained. The buck application 952 is utilized to transition the DC-DC voltage converter 54 to a buck operational mode.

    [0073] At step 1000, the microcontroller 800 generates first and second control signals to induce first and second voltage drivers 802, 804, respectively, to transition the contactor 42 to a closed operational state. After step 1000, the method advances to step 1002.

    [0074] At step 1002, the microcontroller 800 generates a third control signal that is received by a pre-charge high voltage bi-directional switch 202 in the DC-DC voltage converter 54 to transition the pre-charge high voltage bi-directional switch 202 to a closed operational state. After step 1002, the method advances to step 1004.

    [0075] At step 1004, the microcontroller 800 generates a fourth control signal that is received by a pre-charge low voltage bi-directional switch 272 in the DC-DC voltage converter 54 to transition the pre-charge low voltage bi-directional switch 272 to the closed operational state. After step 1004, the method advances to step 1006.

    [0076] At step 1006, the microcontroller 800 generates a fifth control signal that is received by a high voltage bi-directional switch 200 in the DC-DC voltage converter 54 to transition the high voltage bi-directional switch 200 to the closed operational state. After step 1006, the method advances to step 1008.

    [0077] At step 1008, the microcontroller 800 generates a sixth control signal that is received by a low voltage bi-directional switch 270 in the DC-DC voltage converter 54 to transition the low voltage bi-directional switch 270 to the closed operational state. After step 1008, the method advances to step 1010.

    [0078] At step 1010, the microcontroller 800 generates a seventh control signal (e.g., high logic level voltage) that is received at a first input pin 500 on a high side integrated circuit 450 in the DC-DC voltage converter 54 to command the high side integrated circuit 450 to apply electrical power to a first plurality of FET switches 506 therein. The seventh control signal is further received at a first input pin 600 on a low side integrated circuit 452 in the DC-DC voltage converter 54 to command the low side integrated circuit 452 to apply electrical power to a second plurality of FET switches 606 therein. The first, second, third, fourth, fifth, sixth and seventh control signals induce the DC-DC voltage converter 54 to have the buck operational mode. After step 1010, the method returns to the main application 950.

    [0079] Referring to FIG. 7, the first application 954 will now be explained.

    [0080] At step 1022, the microcontroller 800 generates an eighth control signal (e.g., low logic level voltage) that is received at the first input pin 500 on the high side integrated circuit 450 in the DC-DC voltage converter 54 to command the high side integrated circuit 450 to transition each of the first plurality of FET switches 506 therein to an open operational state. The eighth control signal is further received at the first input pin 600 on the low side integrated circuit 452 in the DC-DC voltage converter 54 to command the low side integrated circuit 452 to transition each of the second plurality of FET switches 606 therein to the open operational state. After step 1022, the method returns to the main application 950.

    [0081] Referring to FIG. 8, the second application 956 will now be explained.

    [0082] At step 1024, the microcontroller 800 receives a first confirmation signal from at least one of an output pin 504 of the high side integrated circuit 450 in the DC-DC voltage converter 54 and an output pin 604 of the low side integrated circuit 452 in the DC-DC voltage converter 54 indicating that at least one of the first plurality of FET switches 506 and the second plurality of FET switches 606 are transitioned to the open operational state. After step 1024, the method advances to step 1026.

    [0083] At step 1026, the microcontroller 800 generates a ninth control signal (e.g., low logic level voltage) that is received at a second input pin 502 on the high side integrated circuit 450 in the DC-DC voltage converter 54 to command the high side integrated circuit 450 to transition each of the first plurality of FET switches 506 therein to the open operational state. The ninth control signal is further received at a second input pin 602 on the low side integrated circuit 452 in the DC-DC voltage converter 54 to command the low side integrated circuit 452 to transition each of the second plurality of FET switches 606 therein to the open operational state. After step 1026, the method advances to step 1040.

    [0084] At step 1040, the microcontroller 800 generates a tenth control signal to transition the low voltage bi-directional switch 270 in the DC-DC voltage converter 54 to the open operational state. After step 1040, the method advances to step 1042.

    [0085] At step 1042, the microcontroller 800 generates an eleventh control signal to transition the pre-charge low voltage bi-directional switch 272 in the DC-DC voltage converter 54 to the open operational state. After step 1042, the method returns to the main application 950.

    [0086] Referring to FIGS. 9 and 10, the third application 958 will now be explained.

    [0087] At step 1044, the voltage sensor 294 that is electrically coupled to the electrical node 280 outputs a first voltage measurement signal indicating a first voltage at the electrical node 280. The first voltage measurement signal is received by the microcontroller 800. After step 1044, the method advances to step 1046.

    [0088] At step 1046, the voltage sensor 296 that is electrically coupled to the electrical node 282 outputs a second voltage measurement signal indicating a voltage at the electrical node 282. The second voltage measurement signal is received by the microcontroller 800. After step 1046, the method advances to step 1048.

    [0089] At step 1048, the microcontroller 800 determines first and second voltage values, respectively, based on the first and second voltage measurement signals, respectively. After step 1048, the method advances to step 1050.

    [0090] At step 1050, the microcontroller 800 makes a determination as to whether an absolute value of a difference between the first and second voltage values is greater than a first threshold voltage value. If the value of step 1050 equals "yes", the method advances to step 1052. Otherwise, the method advances to step 1060.

    [0091] At step 1052, the microcontroller 800 determines that the low voltage bi-directional switch 270 and the pre-charge low voltage bi-directional switch 272 in the DC-DC voltage converter 54 each have the open operational state. After step 1052, the method advances to step 1060.

    [0092] At step 1060, the microcontroller 800 generates a twelfth control signal to transition the high voltage bi-directional switch 200 in the DC-DC voltage converter 54 to the open operational state. After step 1060, the method advances to step 1062.

    [0093] At step 1062, the microcontroller 800 generates a thirteenth control signal to transition the pre-charge high voltage bi-directional switch 202 in the DC-DC voltage converter 54 to the open operational state. After step 1062, the method returns to the main application 950.

    [0094] Referring to FIGS. 11 and 12, the fourth application 960 will now be explained.

    [0095] At step 1064, the voltage sensor 290 that is electrically coupled to the electrical node 210 outputs a third voltage measurement signal indicating a voltage at the electrical node 210. The third voltage measurement signal is received by the microcontroller 800. After step 1064, the method advances to step 1066.

    [0096] At step 1066, the voltage sensor 292 that is electrically coupled to the electrical node 212 outputs a fourth voltage measurement signal indicating a voltage at the electrical node 212. The fourth voltage measurement signal is received by the microcontroller 800. After step 1066, the method advances to step 1068.

    [0097] At step 1068, the microcontroller 800 determines third and fourth voltage values, respectively, based on the third and fourth voltage measurement signals, respectively. After step 1068, the method advances to step 1070.

    [0098] At step 1070, the microcontroller 800 makes a determination as to whether an absolute value of a difference between the third and fourth voltage values is greater than a second threshold voltage value. If the value of step 1070 equals "yes", the method advances to step 1080. Otherwise, the method advances to step 1082.

    [0099] At step 1080, the microcontroller 800 determines that the high voltage bi-directional switch 200 and the pre-charge high voltage bi-directional switch 202 in the DC-DC voltage converter 54 each have the open operational state. After step 1080, the method advances to step 1082.

    [0100] At step 1082, the microcontroller 800 generates fourteenth and fifthteenth control signals to induce the first and second voltage drivers 802, 804, respectively, to transition the contactor 42 to an open operational state. The eighth, ninth, tenth, eleventh, twelfth, thirteenth, fourteenth, and fifteenth control signals transition the DC-DC voltage converter 54 to the safe operational mode. After step 1082, the method returns to the main application 950.

    [0101] The control system for transitioning a DC-DC voltage converter from a buck operational mode to a safe operational mode provides a substantial advantage over other control systems. In particular, the control system has a microcontroller that utilizes two distinct and independent applications that each command the microcontroller to generate a control signal to transition FET switches within a DC-DC voltage converter control circuit within the DC-DC voltage converter to open operational states. As a result, the inventive control system can more reliably transition the DC-DC voltage converter to the safe operational mode even if one of the two applications is malfunctioning or if one of the control signals is interrupted or not acted upon by the DC-DC voltage converter.

    [0102] While the claimed invention has been described in detail in connection with only a limited number of embodiments, it should be readily understood that the invention is not limited to such disclosed embodiments. Rather, the claimed invention can be modified to incorporate any number of variations, alterations, substitutions or equivalent arrangements not heretofore described, but which are commensurate with the scope of the invention. Additionally, while various embodiments of the claimed invention have been described, it is to be understood that aspects of the invention may include only some of the described embodiments. Accordingly, the claimed invention is not to be seen as limited by the foregoing description. The scope of the invention is defined by the independent claims.


    Claims

    1. A system (58) comprising a control system and a DC-DC voltage converter (54), wherein the control system is configured to transition the DC-DC voltage converter from a buck operational mode to a safe operational mode, the DC-DC voltage converter having a high voltage bi-directional switch (200), a pre-charge high voltage bi-directional switch (202), a low voltage bi-directional switch (270), a pre-charge low voltage bi-directional switch (272), a high side integrated circuit (450), and a low side integrated circuit (452); the low voltage bi-directional switch being electrically coupled in parallel to the pre-charge low voltage bi-directional switch between and to first and second electrical nodes (280, 282); the high voltage bi-directional switch being electrically coupled in parallel to the pre-charge high voltage bi-directional switch between and to third and fourth electrical nodes (210, 212); the high side integrated circuit being electrical coupled between the first electrical node and the fourth electrical node, the low side integrated circuit being electrically coupled between the first electrical node and the fourth electrical node, the high side integrated circuit having a first plurality of FET switches (506) therein, the low side integrated circuit having a second plurality of FET switches (606) therein, each FET switch of the first plurality of FET switches being electrically coupled to a respective FET switch of the second plurality of FET switches, the control system comprising:

    a microcontroller (800) having a first application (954) and a second application (956);

    the first application adapted to command the microcontroller to generate a first control signal that is received at a first input pin (500) on the high side integrated circuit (450) to command the high side integrated circuit to transition each of the first plurality of FET switches therein to an open operational state, the first control signal being further received at a first input pin (600) on the low side integrated circuit (452) to command the low side integrated circuit to transition each of the second plurality of FET switches therein to the open operational state;

    the microcontroller adapted to receive a first confirmation signal from at least one of an output pin (504) of the high side integrated circuit and an output pin (604) of the low side integrated circuit, the second application adapted to determine that at least one of the first plurality of FET switches and the second plurality of FET switches are transitioned to the open operational state based on the first confirmation signal; and

    the second application adapted to command the microcontroller to generate a second control signal that is received at a second input pin (502) on the high side integrated circuit to command the high side integrated circuit to transition each of the first plurality of FET switches therein to the open operational state, the second control signal being further received at a second input pin (602) on the low side integrated circuit to command the low side integrated circuit to transition each of the second plurality of FET switches therein to the open operational state.


     
    2. The system of claim 1, wherein:

    the second application adapted to command the microcontroller to generate a third control signal to transition the low voltage bi-directional switch to the open operational state; and

    the second application adapted to command the microcontroller to generate a fourth control signal to transition the pre-charge low voltage bi-directional switch to the open operational state.


     
    3. The system of claim 2, further comprising:

    a first voltage sensor electrically coupled to the first electrical node, the first voltage sensor outputting a first voltage measurement signal indicating a first voltage at the first electrical node, the first voltage measurement signal being received by the microcontroller;

    a second voltage sensor electrically coupled to the second electrical node, the second voltage sensor outputting a second voltage measurement signal indicating a second voltage at the second electrical node, the second voltage measurement signal being received by the microcontroller;

    the microcontroller adapted to determine first and second voltage values, respectively, based on the first and second voltage measurement signals, respectively; and

    the microcontroller further having a third application which determines that the low voltage bi-directional switch and the pre-charge low voltage bi-directional switch have each been transitioned to the open operational state, if an absolute value of a difference between the first and second voltage values is greater than a first threshold voltage value.


     
    4. The system of claim 3, wherein:

    the third application adapted to command the microcontroller to generate a fifth control signal to transition the high voltage bi-directional switch to the open operational state; and

    the third application adapted to command the microcontroller to generate a sixth control signal to transition the pre-charge high voltage bi-directional switch to the open operational state.


     
    5. The system of claim 4, further comprising:

    a third voltage sensor electrically coupled to the third electrical node, the third voltage sensor outputting a third voltage measurement signal indicating a third voltage at the third electrical node, the third voltage measurement signal being received by the microcontroller; and

    a fourth voltage sensor electrically coupled to the fourth electrical node, the fourth voltage sensor outputting a fourth voltage measurement signal indicating a fourth voltage at the fourth electrical node, the fourth voltage measurement signal being received by the microcontroller;

    the microcontroller adapted to determine third and fourth voltage values, respectively, based on the third and fourth voltage measurement ignals, respectively; and

    the microcontroller having a fourth application which determines that the high voltage bi-directional switch and the pre-charge high voltage bi-directional switch have each been transitioned to the open operational state, if an absolute value of a difference between the third and fourth voltage values is greater than a second threshold voltage value.


     
    6. The system of claim 1, wherein prior to the microcontroller adapted to generate the first control signal, the DC-DC voltage converter is in the buck operational mode in which the high voltage bi-directional switch has a closed operational state, the pre-charge high voltage bi-directional switch has the closed operational state, the low voltage bi-directional switch has the closed operational state, and the pre-charge low voltage bi-directional switch has the closed operational state.
     
    7. The system of claim 1, wherein the high voltage bi-directional switch is a bi-directional MOSFET switch, and the low voltage bi-directional switch is a bi-directional MOSFET switch.
     


    Ansprüche

    1. System (58), umfassend ein Steuersystem und einen DC-DC-Spannungskonverter (54), wobei das Steuersystem dazu eingerichtet ist, den DC-DC-Spannungskonverter aus einem Abwärts-Betriebsmodus in einen Sicherheit-Betriebsmodus zu überführen, wobei der DC-DC-Spannungskonverter einen bidirektionalen Hochspannung-Schalter (200), einen bidirektionalen Vorlade-Hochspannung-Schalter (202), einen bidirektionalen Niederspannung-Schalter (270), einen bidirektionalen Vorlade-Niederspannung-Schalter (272), eine Hochseiten-Integrationsschaltung (450) und eine Niederseiten-Integrationsschaltung (452) aufweist; wobei der bidirektionale Niederspannung-Schalter parallel zu dem bidirektionalen Vorlade-Niederspannung-Schalter zwischen und mit ersten und zweiten elektrischen Knoten (280, 282) elektrisch gekoppelt ist;
    wobei der bidirektionale Hochspannung-Schalter elektrisch parallel zu dem bidirektionalen Vorlade-Hochspannung-Schalter zwischen und mit dritten und vierten elektrischen Knoten (210, 212) gekoppelt ist; wobei die Hochseiten-Integrationsspannung zwischen dem ersten elektrischen Knoten und dem vierten elektrischen Knoten elektrisch gekoppelt ist, wobei die Niederseiten-Integrationsschaltung zwischen dem ersten elektrischen Knoten und dem vierten elektrischen Knoten elektrisch gekoppelt ist, wobei die Hochseiten-Integrationsschaltung eine erste Mehrzahl von FET-Schaltern (506) darin aufweist, wobei die Niederseiten-Integrationsschaltung eine zweite Mehrzahl von FET-Schalter (606) darin aufweist, wobei jeder FET-Schalter aus der ersten Mehrzahl von FET-Schaltern mit einem jeweiligen FET-Schalter der zweiten Mehrzahl von FET-Schaltern elektrisch gekoppelt ist, wobei das Steuersystem umfasst:

    einen Mikrocontroller (800), welcher eine erste Anwendung (954) und

    eine zweite Anwendung (956) aufweist;

    wobei die erste Anwendung dazu eingerichtet ist, den Mikrocontroller anzuweisen, ein erstes Steuersignal zu erzeugen, welches an einem ersten Eingabepin (500) an der Hochseiten-Integrationsschaltung (450) empfangen wird, um die Hochseiten-Integrationsschaltung anzuweisen, jeden aus der ersten Mehrzahl von FET-Schaltern darin zu einem offenen Betriebszustand zu überführen, wobei das erste Steuersignal ferner an einem ersten Eingabepin (600) an der Niederseiten-Integrationsschaltung (452) empfangen wird, um die Niederseiten-Integrationsschaltung anzuweisen, jeden aus der zweiten Mehrzahl von FET-Schaltern darin zu einem offenen Betriebszustand zu überführen;

    wobei der Mikrocontroller dazu eingerichtet ist, ein erstes Bestätigungssignal von wenigstens einem aus einem Ausgabepin (504) der Hochseiten-Integrationsschaltung und einem Ausgabepin (604) der Niederseiten-Integrationsschaltung zu empfangen, wobei die zweite Anwendung dazu eingerichtet ist, zu bestimmen, dass wenigstens einer aus der ersten Mehrzahl von FET-Schaltern und der zweiten Mehrzahl von FET-Schaltern zu dem offenen Betriebszustand überführt worden ist, auf Grundlage des ersten Bestätigungssignals; und

    wobei die zweite Anwendung dazu eingerichtet ist, den Mikrocontroller anzuweisen, ein zweites Steuersignal zu erzeugen, welches an einem zweiten Eingabepin (502) an der Hochseiten-Integrationsschaltung empfangen wird, um die Hochseiten-Integrationsschaltung anzuweisen, jeden aus der ersten Mehrzahl von FET-Schaltern darin zu dem offenen Betriebszustand zu überführen, wobei das zweite Steuersignal ferner an einem zweiten Eingabepin (602) an der Niederseiten-Integrationsschaltung empfangen wird, um die Niederseiten-Integrationsschaltung anzuweisen, jeden aus der zweiten Mehrzahl von FET-Schaltern darin zu dem offenen Betriebszustand zu überführen.


     
    2. System nach Anspruch 1, wobei:

    die zweite Anwendung dazu eingerichtet ist, den Mikrocontroller anzuweisen, ein drittes Steuersignal zu erzeugen, um den bidirektionalen Niederspannung-Schalter zu dem offenen Betriebszustand zu überführen; und

    die zweite Anwendung dazu eingerichtet ist, den Mikrocontroller anzuweisen, ein viertes Steuersignal zu erzeugen, um den bidirektionalen Vorlade-Niederspannung-Schalter zu dem offenen Betriebszustand zu überführen.


     
    3. System nach Anspruch 2, ferner umfassend:

    einen ersten Spannungssensor, welcher mit dem ersten elektrischen Knoten elektrisch gekoppelt ist, wobei der erste Spannungssensor ein erstes Spannungmesssignal ausgibt, welches eine erste Spannung an dem ersten elektrischen Knoten anzeigt, wobei das erste Spannungmesssignal durch den Mikrocontroller empfangen wird;

    einen zweiten Spannungssensor, welcher mit dem zweiten elektrischen Knoten elektrisch gekoppelt ist, wobei der zweite Spannungssensor ein zweites Spannungmesssignal ausgibt, welches eine zweite Spannung an dem zweiten elektrischen Knoten anzeigt, wobei das zweite Spannungmesssignal durch den Mikrocontroller empfangen wird;

    wobei der Mikrocontroller dazu eingerichtet ist, erste bzw. zweite Spannungswerte auf Grundlage des ersten bzw. des zweiten Spannungmesssignals zu bestimmen; und

    wobei der Mikrocontroller ferner eine dritte Anwendung aufweist, welche bestimmt, dass der bidirektionale Niederspannung-Schalter und der bidirektionale Vorlade-Niederspannung-Schalter jeweils zu dem offenen Betriebszustand überführt worden sind, wenn ein Absolutwert einer Differenz zwischen den ersten und zweiten Spannungswerten größer ist als ein erster Spannung-Schwellenwert.


     
    4. System nach Anspruch 3, wobei:

    die dritte Anwendung dazu eingerichtet ist, den Mikrocontroller zu veranlassen, ein fünftes Steuersignal zu erzeugen, um den bidirektionalen Hochspannung-Schalter zu dem offenen Betriebszustand zu überführen; und

    wobei die dritte Anwendung dazu eingerichtet ist, den Mikrocontroller anzuweisen, ein sechstes Steuersignal zu erzeugen, um den bidirektionalen Vorlade-Hochspannung-Schalter zu dem offenen Betriebszustand überführen.


     
    5. System nach Anspruch 4, ferner umfassend:

    einen dritten Spannungssensor, welcher mit dem dritten elektrischen Knoten elektrisch gekoppelt ist, wobei der dritte Spannungssensor ein drittes Spannungmesssignal ausgibt, welches eine dritte Spannung an dem dritten elektrischen Knoten anzeigt, wobei das dritte Spannungmesssignal durch den Mikrocontroller empfangen wird; und einen vierten Spannungssensor, welcher mit dem vierten elektrischen Knoten elektrisch gekoppelt ist, wobei der vierte Spannungssensor ein viertes Spannungmesssignal ausgibt, welches eine vierte Spannung an dem vierten elektrischen Knoten anzeigt, wobei das vierte Spannungmesssignal durch den Mikrocontroller empfangen wird;

    wobei der Mikrocontroller dazu eingerichtet ist, dritte bzw. vierte Spannungswerte auf Grundlage des dritten bzw. vierten Spannungmesssignals zu bestimmen; und

    wobei der Mikrocontroller eine vierte Anwendung aufweist, welche bestimmt, dass der bidirektionale Hochspannung-Schalter und der bidirektionale Vorlade-Hochspannung-Schalter jeweils zu dem offenen Betriebszustand überführt worden sind, wenn ein Absolutwert einer Differenz zwischen den dritten und vierten Spannungswerten größer ist als ein zweiter Spannung-Schwellenwert.


     
    6. System nach Anspruch 1, wobei, bevor der Mikrocontroller dazu eingerichtet ist, das erste Steuersignal zu erzeugen, der DC-DC-Spannungskonverter in dem Abwärts-Betriebsmodus ist, in welchem der bidirektionale Hochspannung-Schalter einen geschlossenen Betriebszustand aufweist, wobei der bidirektionale Vorlade-Hochspannung-Schalter den geschlossenen Betriebszustand aufweist, wobei der bidirektionale Niederspannung-Schalter den geschlossenen Betriebszustand aufweist und der bidirektionale Vorlade-Niederspannung-Schalter den geschlossenen Betriebszustand aufweist.
     
    7. System nach Anspruch 1, wobei der bidirektionale Hochspannung-Schalter ein bidirektionaler MOSFET-Schalter ist und der bidirektionale Niederspannung-Schalter ein bidirektionaler MOSFET-Schalter ist.
     


    Revendications

    1. Système (58) comprenant un système de commande et un convertisseur de tension c.c.-c.c. (54), dans lequel le système de commande est configuré pour faire passer le convertisseur de tension c.c.-c.c. d'un mode de fonctionnement abaisseur à un mode de fonctionnement sûr, le convertisseur de tension c.c.-c.c. ayant un commutateur bidirectionnel haute tension (200), un commutateur bidirectionnel haute tension de précharge (202), un commutateur bidirectionnel basse tension (270), un commutateur bidirectionnel basse tension de précharge (272), un circuit intégré côté haut (450), et un circuit intégré côté bas (452) ;
    le commutateur bidirectionnel basse tension étant couplé électriquement en parallèle au commutateur bidirectionnel basse tension de précharge entre et à des premier et deuxième nœuds électriques (280, 282) ;
    le commutateur bidirectionnel haute tension étant couplé électriquement en parallèle au commutateur bidirectionnel haute tension de précharge entre et à des troisième et quatrième nœuds électriques (210, 212) ;
    le circuit intégré côté haut étant couplé électriquement entre le premier nœud électrique et le quatrième nœud électrique, le circuit intégré côté bas étant couplé électriquement entre le premier nœud électrique et le quatrième nœud électrique, le circuit intégré côté haut ayant une première pluralité de commutateurs FET (506) à l'intérieur de celui-ci, le circuit intégré côté bas ayant une seconde pluralité de commutateurs FET (606) à l'intérieur de celui-ci, chaque commutateur FET de la première pluralité de commutateurs FET étant couplé électriquement à un commutateur FET respectif de la seconde pluralité de commutateurs FET, le système de commande comprenant :

    un microcontrôleur (800) ayant une première application (954) et une deuxième application (956) ;

    la première application étant adaptée pour ordonner au microcontrôleur de générer un premier signal de commande qui est reçu au niveau d'une première broche d'entrée (500) sur le circuit intégré côté haut (450) pour ordonner au circuit intégré côté haut de faire passer chacun de la première pluralité de commutateurs FET à l'intérieur de celui-ci à un état de fonctionnement ouvert, le premier signal de commande étant en outre reçu au niveau d'une première broche d'entrée (600) sur le circuit intégré côté bas (452) pour ordonner au circuit intégré côté bas de faire passer chacun de la seconde pluralité de commutateurs FET à l'intérieur de celui-ci à l'état de fonctionnement ouvert ;

    le microcontrôleur étant adapté pour recevoir un premier signal de confirmation à partir d'au moins une parmi une broche de sortie (504) du circuit intégré côté haut et une broche de sortie (604) du circuit intégré côté bas, la deuxième application étant adaptée pour déterminer qu'au moins un de la première pluralité de commutateurs FET et de la seconde pluralité de commutateurs FET passe à l'état de fonctionnement ouvert sur la base du premier signal de confirmation ; et

    la deuxième application étant adaptée pour ordonner au microcontrôleur de générer un deuxième signal de commande qui est reçu au niveau d'une seconde broche d'entrée (502) sur le circuit intégré côté haut pour ordonner au circuit intégré côté haut de faire passer chacun de la première pluralité de commutateurs FET à l'intérieur de celui-ci à l'état de fonctionnement ouvert, le deuxième signal de commande étant en outre reçu au niveau d'une seconde broche d'entrée (602) sur le circuit intégré côté bas pour ordonner au circuit intégré côté bas de faire passer chacun de la seconde pluralité de commutateurs FET à l'intérieur de celui-ci à l'état de fonctionnement ouvert.


     
    2. Système selon la revendication 1, dans lequel :

    la deuxième application est adaptée pour ordonner au microcontrôleur de générer un troisième signal de commande pour faire passer le commutateur bidirectionnel basse tension à l'état de fonctionnement ouvert ; et

    la deuxième application est adaptée pour ordonner au microcontrôleur de générer un quatrième signal de commande pour faire passer le commutateur bidirectionnel basse tension de précharge à l'état de fonctionnement ouvert.


     
    3. Système selon la revendication 2, comprenant en outre :

    un premier capteur de tension couplé électriquement au premier nœud électrique, le premier capteur de tension émettant un premier signal de mesure de tension indiquant une première tension au niveau du premier nœud électrique, le premier signal de mesure de tension étant reçu par le microcontrôleur ;

    un deuxième capteur de tension couplé électriquement au deuxième nœud électrique, le deuxième capteur de tension émettant un deuxième signal de mesure de tension indiquant une deuxième tension au niveau du deuxième nœud électrique, le deuxième signal de mesure de tension étant reçu par le microcontrôleur ;

    le microcontrôleur adapté pour déterminer des première et deuxième valeurs de tension, respectivement, sur la base des premier et deuxième signaux de mesure de tension, respectivement ; et

    le microcontrôleur ayant en outre une troisième application qui détermine que le commutateur bidirectionnel basse tension et le commutateur bidirectionnel basse tension de précharge sont chacun passés à l'état de fonctionnement ouvert, si une valeur absolue d'une différence entre les première et deuxième valeurs de tension est plus grande qu'une première valeur de tension seuil.


     
    4. Système selon la revendication 3, dans lequel :

    la troisième application est adaptée pour ordonner au microcontrôleur de générer un cinquième signal de commande pour faire passer le commutateur bidirectionnel haute tension à l'état de fonctionnement ouvert ; et

    la troisième application est adaptée pour ordonner au microcontrôleur de générer un sixième signal de commande pour faire passer le commutateur bidirectionnel haute tension de précharge à l'état de fonctionnement ouvert.


     
    5. Système selon la revendication 4, comprenant en outre :

    un troisième capteur de tension couplé électriquement au troisième nœud électrique, le troisième capteur de tension émettant un troisième signal de mesure de tension indiquant une troisième tension au niveau du troisième nœud électrique, le troisième signal de mesure de tension étant reçu par le microcontrôleur ; et

    un quatrième capteur de tension couplé électriquement au quatrième nœud électrique, le quatrième capteur de tension émettant un quatrième signal de mesure de tension indiquant une quatrième tension au niveau du quatrième nœud électrique, le quatrième signal de mesure de tension étant reçu par le microcontrôleur ;

    le microcontrôleur adapté pour déterminer des troisième et quatrième valeurs de tension, respectivement, sur la base des troisième et quatrième signaux de mesure de tension, respectivement ; et

    le microcontrôleur ayant une quatrième application qui détermine que le commutateur bidirectionnel haute tension et le commutateur bidirectionnel haute tension de précharge sont chacun passés à l'état de fonctionnement ouvert, si une valeur absolue d'une différence entre les troisième et quatrième valeurs de tension est plus grande qu'une seconde valeur de tension seuil.


     
    6. Système selon la revendication 1, dans lequel avant que le microcontrôleur ne soit adapté pour générer le premier signal de commande, le convertisseur de tension c.c.-c.c. est dans le mode de fonctionnement abaisseur dans lequel le commutateur bidirectionnel haute tension a un état de fonctionnement fermé, le commutateur bidirectionnel haute tension de précharge a l'état de fonctionnement fermé, le commutateur bidirectionnel basse tension a l'état de fonctionnement fermé, et le commutateur bidirectionnel basse tension de précharge a l'état de fonctionnement fermé.
     
    7. Système selon la revendication 1, dans lequel le commutateur bidirectionnel haute tension est un commutateur MOSFET bidirectionnel, et le commutateur bidirectionnel basse tension est un commutateur MOSFET bidirectionnel.
     




    Drawing



































    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description