(19)
(11)EP 3 378 085 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
02.11.2022 Bulletin 2022/44

(21)Application number: 16801685.5

(22)Date of filing:  14.11.2016
(51)International Patent Classification (IPC): 
H01H 59/00(2006.01)
H01H 1/00(2006.01)
(52)Cooperative Patent Classification (CPC):
H01H 2001/0084; H01H 2059/0027; H01H 2059/0072; H01H 59/0009
(86)International application number:
PCT/US2016/061931
(87)International publication number:
WO 2017/087336 (26.05.2017 Gazette  2017/21)

(54)

THERMAL MANAGEMENT IN HIGH POWER RF MEMS SWITCHES

WÄRMEVERWALTUNG BEI HOCHLEISTUNGS-RF-MEMS-SCHALTERN

GESTION THERMIQUE DANS DES COMMUTATEURS MEMS RF HAUTE PUISSANCE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 16.11.2015 US 201562256005 P

(43)Date of publication of application:
26.09.2018 Bulletin 2018/39

(73)Proprietor: Qorvo US, Inc.
Greensboro, NC 27409 (US)

(72)Inventors:
  • VAN KAMPEN, Robertus Petrus
    San Jose, CA 95134 (US)
  • KNIPE, Richard L.
    San Jose, CA 95134 (US)

(74)Representative: D Young & Co LLP 
120 Holborn
London EC1N 2DY
London EC1N 2DY (GB)


(56)References cited: : 
WO-A1-2014/165624
US-A1- 2002 005 341
US-B1- 6 307 452
WO-A1-2015/017743
US-A1- 2003 227 361
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    BACKGROUND OF THE DISCLOSURE


    Field of the Disclosure



    [0001] Embodiments of the present disclosure generally relate to a technique for limiting temperature rise in MEMS switches in high electrical power applications.

    Description of the Related Art



    [0002] In operating a MEMS resistive switch, where a plate moves between a first position and a second position making electrical contact with a landing electrode, high electrical powers applied across the switch can cause current flows through the free standing MEMS device. These currents can cause resistive heating resulting in a temperature rise in the MEMS portion that can limit the device lifetime or modify the device operation in unwanted ways. The heating could cause unwanted thermal expansion leading to changes in the switching voltages or to phase changes in the alloy materials often used in the device fabrication.

    [0003] The plate of the MEMS device moves by applying a voltage to an actuation electrode. Once the electrode voltage reaches a certain voltage oftentimes referred to as a snap-in voltage, the plate moves towards the electrode. The plate moves back to the original position once the voltage is lowered to a release voltage. The release voltage is typically lower than the snap-in voltage due to the higher electrostatic forces when the plate is close to the actuation electrode and due to stiction between the plate and the surface to which the plate is in contact once moved closer to the electrode. The spring constant of the MEMS device sets the value of the pull in voltage and pull off voltage. If the nature of the MEMS material changes due to heating, then these voltages are also altered which is unwanted in a product.

    [0004] Therefore, there is a need in the art for a MEMS switch that can switch large voltages or currents without leading to excessive temperature rise in the MEMS. This is particularly important for switching RF signals in mobile phone applications. WO 2014/165624, US 2003/227361 and WO 2015/017743 each relate to MEMS switches. Document WO2014165624 discloses a MEMS device, comprising a substrate having a plurality of electrodes formed therein, wherein the plurality of electrodes comprises at least an anchor electrode, a pull-in electrode and an RF electrode; a first insulating layer disposed over the plurality of electrodes and the substrate; a switching element disposed over the insulating layer, wherein the switching element includes an anchor portion, a leg portion and a bridge portion and wherein the anchor portion is electrically coupled to the anchor electrode; a first post coupled to the RF electrode; and a second post electrically coupled to the anchor electrode, wherein the switching element is movable between a first position spaced from the first post and the second post, and a second position in contact with the first post and the second post.

    SUMMARY OF THE INVENTION



    [0005] The present disclosure generally relates to a mechanism for controlling temperature rise in a MEMS switch caused by current flows induced in the MEMS plate when switching high power electrical signals such as can be found in RF tuners in mobile phone applications. Electrical landing posts can be positioned to provide a parallel electrical path while also providing a thermal path to reduce heat in the plate.

    [0006] In one embodiment, a MEMS device comprises a substrate having a plurality of electrodes formed therein, wherein the plurality of electrodes comprises at least an anchor electrode, a pull-in electrode and an RF electrode; a first insulating layer disposed over the plurality of electrodes and the substrate; a switching element disposed over the first insulating layer, wherein the switching element includes an anchor portion, a leg portion and a bridge portion and wherein the anchor portion is electrically coupled to the anchor electrode; a first post coupled to the RF electrode wherein the first post is disposed on the first insulating layer and through an opening in the first insulating layer; and a second post electrically coupled to the anchor electrode, wherein the switching element is movable between a first position spaced from the first post and the second post, and a second position in contact with the first post and the second post.

    [0007] Optionally, the switching element has a bottom surface that has an insulating portion and a conductive portion; and the second post is disposed over the anchor electrode, wherein the insulating portion contacts the second post in the second position and the conductive portion contacts the first post in the second position.

    [0008] In another embodiment, a method of forming a MEMS device comprises depositing an insulating layer over a substrate, the substrate having a plurality of electrodes formed therein, wherein the plurality of electrodes includes at least an anchor electrode, a pull-in electrode and an RF electrode; removing at least a portion of the insulating layer to expose at least a portion of the anchor electrode and at least a portion of the RF electrode; forming a first post over and in contact with the RF electrode wherein the first post is disposed on the insulating layer and through an opening in the insulating layer; forming a second post over and in contact with the anchor electrode; and forming a switching element over the substrate, first post and second post, wherein the switching element includes an anchor portion that is electrically coupled to the anchor electrode, a leg portion and an RF electrode, wherein the switching element is movable from a first position spaced from the first post and the second post and a second position in contact with the first post and the second post.

    [0009] Optionally, the switching element has a bottom surface that has an insulating portion and a conductive portion, wherein the insulating portion contacts the second post in the second position and the conductive portion contacts the first post in the second position.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0010] So that the manner in which the above recited features of the present disclosure can be understood in detail, a more particular description of the invention, briefly summarized above, may be had by reference to embodiments, some of which are illustrated in the appended drawings.

    Figure 1 is a schematic top view of a MEMS ohmic switch according to one embodiment.

    Figures 2A and 2B are schematic top and cross-sectional illustrations of the MEMS device of the MEMS ohmic switch of Figure 1.

    Figure 3A is a schematic top illustration of an individual switching element in the MEMS device of the MEMS ohmic switch of Figure 1.

    Figures 3B-3D are schematic cross-sectional illustrations of an individual switching element in the MEMS device of the MEMS ohmic switch of Figure 1 according to various embodiments.

    Figures 4A-4D are schematic illustrations of a MEMS ohmic switch at various stages of fabrication according to one embodiment.

    Figures 5A-5D are schematic illustrations of a MEMS ohmic switch at various stages of fabrication according to another embodiment.



    [0011] To facilitate understanding, identical reference numerals have been used, where possible, to designate identical elements that are common to the figures. It is contemplated that elements disclosed in one embodiment may be beneficially utilized on other embodiments without specific recitation.

    DETAILED DESCRIPTION



    [0012] The present disclosure generally relates to a mechanism for controlling temperature rise in a MEMS switch caused by current flows induced in the MEMS plate when switching high power electrical signals such as can be found in RF tuners in mobile phone applications. Electrical landing posts can be positioned to provide a parallel electrical path while also providing a thermal path to reduce heat in the plate.

    [0013] Figure 1 shows a possible implementation of a MEMS ohmic switch 100 shown from the top. The MEMS ohmic switch 100 contains an array of cells 102. The RF connections 104 and 106 to each cell are on opposite ends. Each cell 102 contains an array of (5 to 40) switches 108 working in parallel. All switches 108 in a single cell 102 are actuated at the same time and provide a minimum capacitance when turned off or a low resistance between the terminals when turned on. Multiple cells 102 can be grouped to lower the total resistance.

    [0014] Figure 2A shows the top view of the MEMS device of the MEMS cell 102 of Figure 1. The cell 102 contains an array of switches 108. Underneath the switches 108 there is an RF electrode 202 and pull-in electrodes 204 and 206 to actuate the switches to the down-position (switch closed).

    [0015] Figure 2B shows the side view with pull up electrode 208 to actuate the switches 108 to the up-position (switch open), cavity 210 and underlying substrate 212. The substrate 212 can contain multiple metal levels for interconnect and also CMOS active circuitry to operate the device.

    [0016] Figure 3A shows a top view of one of the switches 108 in the array cells 102 in Figures 1 and 2A. Figure 3B shows a cross-section view of the switch 108 according to one embodiment. The switch 108 comprises a first MEMS device having a first electrode, a second electrode, and a plate movable between a first position spaced a first distance from the first electrode and a second position spaced a second distance from the first electrode. Very often a MEMS switch will have a stiff moveable plate a flexible leg portion that acts like a weak spring which is contacted to an anchor portions that locates the MEMS device. The stiff MEMS portion will sit over a landing electrode which contains a conducting post and one or more pull in electrodes which usually reside between the landing electrode and the flexible leg portion. The flexible leg portions provide electrical connection to close the circuit from the landing electrode through the stiff portion of the MEMS beam to the conducting anchor holding the stiff end of the leg portion. To make the leg portion flexible the metal has to be made thinner and or narrower than the stiff portion of the MEMS device, this means these sections are the most resistive and generate the most heat when a DC or RF AC current flows through the MEMS device when it is turned on. To reduce the effects of heating of the legs, conducting landing posts close to the legs can be placed on the substrate connected through low resistance interconnect to the stiff anchor of the MEMS device. Conducting portions on the underside of the MEMS cantilever allow voltages on the MEMS device to be shunted through the conducting posts when the MEMS switch is pulled down to make contact with the central conducting electrode. This contact both reduces the current flow through the narrow leg portions of the MEMS as well as providing an additional thermal path from the MEMS cantilever to the substrate.

    [0017] The switch 108 contains a stiff bridge consisting of conductive layers 302, 304 which are joined together using an array of posts 306. Layer 302 may not extend all the way to the end of the structure, making layer 302 shorter in length than layer 304. The MEMS bridge is suspended by legs 308 formed in the lower layer 304 and/or in the upper layer 302 of the MEMS bridge and anchored with via 310 onto conductor 312 which is connected to the anchor electrode 314. This allows for a stiff plate-section and compliant legs to provide a high contact-force while keeping the operating voltage to acceptable levels.

    [0018] Landing post 316 is conductive and makes contact with the conducting underside of the MEMS bridge. 316B is a surface material on the landing post 316 that provides good conductivity, low reactivity to the ambient materials and high melting temperature and hardness for long lifetime. A second set of landing electrodes 318 near the leg portion of the moveable plate with conducting surface 318B made from the same material as 316B, is used to make electrical contact to anchor electrode 314. Although not shown in these figures, there may be an insulating layer over the top and underside of the conductive layers 302, 304. A hole can be made in the insulator on the underside of layer 304 in the landing post area to expose a conducting region 316C and 318C for the conducting posts to make electrical contact with when the MEMS is pulled down. As shown in Figure 3B an opening is made in the insulating layer 320 that overlies the anchor electrode 314, pull-in electrodes 204, 206 and the RF electrode 202. Within the opening, landing electrodes 316 and 318 or posts are formed. The landing electrodes 318 provide both electrical coupling and thermal coupling of the switching element to the anchor electrode 314 when the switching element is in contact with the landing electrode 318. The landing post 316 provides both electrical and thermal coupling of the switching element to the RF electrode 202 when the switching element is in contact with the landing electrode 316. The landing electrode 318 provides a current path to the anchor electrode 314 in parallel with the legs 308 and thus reduces the current through the leg-portion of the switch and thus reduces heating of the switch. Typical materials used for the contacting layers 316, 316B, 316C, 318, 318B, 318C include Ti, TiN, TiAl, TiAIN, AIN, Al, W, Pt, Ir, Rh, Ru, RuO2, ITO and Mo and combinations thereof. In the actuated down state layer 304 of the MEMS bridge may land on multiple posts 322A-322D, which are provided to avoid secondary landing the MEMS bridge which can lead to reliability issues. The bottom surface of the switching element has a thin electrically insulating layer 340 formed thereon. Portions of the insulating layer 340 are removed to expose the electrically conductive material such as at 316C, 318C so that the switching element will be electrically coupled to the first and second posts 316, 318 when the switch is in the bottom position. In Figure 3B, there are insulating portions and conductive portions of the bottom surface of the switching element, and the conductive portions contact the first and second posts 316, 318.

    [0019] Above the MEMS bridge there is a dielectric layer 324 which is capped with metal 326 which is used to pull the MEMS up to the roof for the off state. Dielectric layer 324 avoids a short-circuit between the MEMS bridge and the pull-up electrode in the actuated-up state and limits the electric fields for high reliability. Moving the device to the top helps reduce the capacitance of the switch in the off state. The cavity is sealed with dielectric layer 328 which fills the etch holes used to remove the sacrificial layers. It enters these holes and helps support the ends of the cantilevers, while also sealing the cavity so that there is a low pressure environment in the cavities.

    [0020] Figure 3C shows a cross-section view of the switch 108 according to another embodiment. In the embodiment shown in Figure 3C, the dielectric layer at the underside of the conductive layer 304 is not removed above the anchor post 318. Thus, when the switch is landed on the anchor post, the post 318 provides thermal conductivity to reduce the temperature of the switch when the switch is in contact with the post 318, but it does not carry any current. As shown in Figure 3C, there are insulating portions and conductive portions in the bottom surface of the switching element. The conductive portion 316C will contact the first post 316 when the switching element is pulled down and the insulating portion will contact the second post 318 when the switching element is pulled down. Hence, the second post 318 only provide thermal conductivity, not electrically conductivity to the switching element whereas the first post 316 provides both thermal and electrical conductivity.

    [0021] Figure 3D shows a cross-section view of the switch 108 according to another embodiment. In the embodiment shown in Figure 3D, the post 318 is disposed directly on the insulating layer 320 and thus not in electrical contact with the anchor electrode 314. Thus, the post 318 provides thermal conductivity to reduce the temperature of the switch when the switch is in contact with the post 318, but it does not carry any current.

    [0022] Figures 4A-4D are schematic illustrations of a MEMS ohmic switch 400 at various stages of fabrication according to one embodiment. As shown in Figure 4A, the substrate 402 has a plurality of electrodes including the anchor electrodes 314, pull-in electrodes 204, 206 and the RF electrode 202. It is to be understood that the substrate 402 may comprise a single layer substrate or a multi-layer substrate such as a CMOS substrate having one or more layers of interconnects. Additionally, suitable material that may be used for the electrodes 314, 202, 204, 206 include titanium-nitride, aluminum, tungsten, copper, titanium, and combinations thereof including multi-layer stacks of different material.

    [0023] As shown in Figure 4B, an electrically insulating layer 320 is then deposited over the electrodes 314, 202, 204, 206. Suitable materials for the electrically insulating layer 320 include silicon based materials including siliconoxide, silicon-dioxide, silicon-nitride and silicon-oxynitride. Small landing posts 322A-322D are deposited on top of the insulating layer 320. As shown in Figure 4B, the electrically insulating layer 320 is removed over the RF electrode 202 and over portions of the anchor electrode 314 to create openings 404, 406, 408.

    [0024] Electrically conductive material 410 is then deposited over the electrically insulating layer 320 and in the openings 404, 406, 408 as shown in Figure 4C. The electrically conductive material 410 provides the direct electrical connection to the RF electrode 202 and to the device anchor electrode 314. Suitable materials that may be used for the electrically conductive material 410 include titanium, titanium nitride, tungsten, aluminum, combinations thereof and multilayer stacks that include different material layers. Over the RF electrode, the electrically conductive material corresponds to post 316 and over the anchor electrode the electrically conductive material corresponds to post 318. On top of conductive material 410 a thin layer of conductive contact material 412 is deposited which will provide the contact to the MEMS bridge in the landed-down state. Suitable materials that may be used for the electrically conductive contact material 412 include W, Pt, Ir, Rh, Ru, RuO2, ITO and Mo. The small landing posts 322A-322D may be formed with the electrically conductive materials 410, 412 or by insulating material in a separate step.

    [0025] Once the electrically conductive materials 410, 412 have been patterned, the remainder of the processing may occur to form the MEMS ohmic switch 400 shown in Figure 4D. As noted above, the switching element 414 may have insulating material coating the bottom surface thereof. In selected regions portions of this dielectric layer is removed and thus, an area 416 of exposed conductive material may be present that will land on the surface material 412. An additional electrically insulating layer 324 may be formed over the pull-off (i.e., pull-up) electrode 326, and a sealing layer 328 may seal the entire MEMS device such that the switching element 414 is disposed within a cavity. During fabrication, sacrificial material is used to define the boundary of the cavity.

    [0026] Figures 5A-5D are schematic illustrations of a MEMS ohmic switch 500 at various stages of fabrication according to one embodiment. The fabrication steps for MEMS switch 500 are the same as for MEMS switch 400 except that openings 416 are not formed over the anchor-post regions. Rather, the insulating layer at the underside of the switching element 414 remains in place at the location of the post 318 so that when the switching element is in contact with the post 318, the posts 318 are not electrically coupled to the anchor electrode 314, but are only coupled thermally.

    [0027] The conductive posts disclosed herein are beneficial to provide a thermal conductance that assists in cooling the switching element. Furthermore, the posts may also provide an electrical connection between the switching element and the anchor electrode that may additionally cool the switching element. The added electrical contact along the MEMS device removes current and heat from the MEMS structure close to the hottest points when the switching element is in contact with the posts.

    [0028] While the foregoing is directed to embodiments of the present disclosure, other and further embodiments of the disclosure may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow.


    Claims

    1. A MEMS device (108), comprising:

    a substrate (212) having a plurality of electrodes formed therein, wherein the plurality of electrodes comprises at least an anchor electrode (314), a pull-in electrode (204) and an RF electrode (202);

    a first insulating layer (320) disposed over the plurality of electrodes and the substrate (212);

    a switching element disposed over the first insulating layer, wherein the switching element includes an anchor portion (310), a leg portion (308) and a bridge portion (304) and wherein the anchor portion (310) is electrically coupled to the anchor electrode (314);

    a first post (316) coupled to the RF electrode (202), wherein the first post is disposed on the first insulating layer (320) and through an opening (406) in the first insulating layer; and

    a second post (318) electrically coupled to the anchor electrode (314), wherein the switching element is movable between a first position spaced from the first post (316) and the second post (318), and a second position in contact with the first post (316) and the second post (318).


     
    2. The MEMS device of claim 1, wherein the second post (318) comprises an electrically and thermally conductive material.
     
    3. The MEMS device of claim 2, wherein the switching element has a bottom surface (304) that has a first portion (316C) that is both electrically and thermally conductive and a second portion that is electrically insulating.
     
    4. The MEMS device of claim 1, wherein the second post (318) and the first post (316) each have a top surface (318B, 316B) and wherein the top surfaces comprise the same material.
     
    5. The MEMS device of claim 1, wherein the second post (318) is positioned at a location such that the bridge portion (304) is in contact with the second post when the switching element is in the second position.
     
    6. The MEMS device of claim 1, wherein the first post (316) is positioned at a location such that the RF electrode (202) is in contact with the first post (316) when the switching element is in the second position.
     
    7. The MEMS device of claim 1, further comprising a pull-up electrode (208) disposed over the switching element.
     
    8. The MEMS device of claim 1,

    wherein the switching element has a bottom surface (304) that has an insulating portion and a conductive portion (316C); and

    wherein the second post (318) is disposed over the anchor electrode (314) wherein the insulating portion contacts the second post (318) in the second position and the conductive portion (316C) contacts the first post (316) in the second position.


     
    9. A method of forming a MEMS device (108), comprising:

    depositing an insulating layer (320) over a substrate (212), the substrate having a plurality of electrodes formed therein, wherein the plurality of electrodes includes at least an anchor electrode (314), a pull-in electrode (204) and an RF electrode (202);

    removing at least a portion of the insulating layer (320) to expose at least a portion of the anchor electrode (314) and at least a portion of the RF electrode (202);

    forming a first post (316) over and in contact with the RF electrode (202), wherein the first post (316) is disposed on the insulating layer (320) and through an opening (406) in the insulating layer (320);

    forming a second post (318) over and in contact with the anchor electrode (314); and

    forming a switching element over the substrate (212), first post (316) and second post (318), wherein the switching element includes an anchor portion (310) that is electrically coupled to the anchor electrode (314) and a leg portion (308), wherein the switching element is movable from a first position spaced from the first post (316) and the second post (318) and a second position in contact with the first post (316) and the second post (318).


     
    10. The method of claim 9, wherein the second post (318) comprises an electrically and thermally conductive material.
     
    11. The method of claim 10, wherein the switching element has a bottom surface having a first portion (316C) that is both electrically and thermally conductive and a second portion that is electrically insulating.
     
    12. The method of claim 9, wherein the second post (318) and the first post (316) each have a top surface and wherein the top surfaces comprise the same material.
     
    13. The method of claim 9, wherein the second post (318) is positioned at a location such that the bridge portion (304) is in contact with the second post (318) when the switching element is in the second position.
     
    14. The method of claim 9, wherein the first post (316) is positioned at a location such that the RF electrode (202) is in contact with the first post (316) when the switching element is in the second position.
     
    15. The method of claim 9, further comprising forming a pull-up electrode (208) disposed over the switching element.
     
    16. The method of claim 9, wherein the switching element has a bottom surface that has an insulating portion and a conductive portion (316C), and wherein the insulating portion contacts the second post (318) in the second position and the conductive portion (316C) contacts the first post (316) in the second position.
     


    Ansprüche

    1. MEMS-Bauelement (108), umfassend:

    ein Substrat (212) mit mehreren darin gebildeten Elektroden, wobei die mehreren Elektroden mindestens eine Ankerelektrode (314), eine Pull-in-Elektrode (204) und eine HF-Elektrode (202) umfassen;

    eine erste Isolierschicht (320), die über den mehreren Elektroden und dem Substrat (212) angeordnet ist;

    ein Schaltelement, das über der ersten Isolierschicht angeordnet ist, wobei das Schaltelement einen Ankerabschnitt (310), einen Schenkelabschnitt (308) und einen Brückenabschnitt (304) enthält und wobei der Ankerabschnitt (310) elektrisch an die Ankerelektrode (314) gekoppelt ist;

    einen ersten Pfosten (316), der an die HF-Elektrode (202) gekoppelt ist, wobei der erste Pfosten auf der ersten Isolierschicht (320) und durch eine Öffnung (406) in der ersten Isolierschicht angeordnet ist; und

    einen zweiten Pfosten (318), der elektrisch an die Ankerelektrode (314) gekoppelt ist, wobei das Schaltelement zwischen einer von dem ersten Pfosten (316) und dem zweiten Pfosten (318) beabstandeten ersten Position und einer zweiten Position in Kontakt mit dem ersten Pfosten (316) und dem zweiten Pfosten (318) beweglich ist.


     
    2. MEMS-Bauelement nach Anspruch 1, wobei der zweite Pfosten (318) ein elektrisch und wärmeleitendes Material umfasst.
     
    3. MEMS-Bauelement nach Anspruch 2, wobei das Schaltelement eine Bodenoberfläche (304) aufweist, die einen ersten Abschnitt (316C), der sowohl elektrisch als auch wärmeleitend ist, und einen zweiten Abschnitt, der elektrisch isoliert, aufweist.
     
    4. MEMS-Bauelement nach Anspruch 1, wobei der zweite Pfosten (318) und der erste Pfosten (316) jeweils eine obere Oberfläche (318B, 316B) aufweisen und wobei die oberen Oberflächen das gleiche Material umfassen.
     
    5. MEMS-Bauelement nach Anspruch 1, wobei der zweite Pfosten (318) an einem Ort positioniert ist, so dass der Brückenabschnitt (304) mit dem zweiten Pfosten in Kontakt steht, wenn sich das Schaltelement in der zweiten Position befindet.
     
    6. MEMS-Bauelement nach Anspruch 1, wobei der erste Pfosten (316) an einem Ort positioniert ist, so dass die HF-Elektrode (202) mit dem ersten Pfosten (316) in Kontakt steht, wenn sich das Schaltelement in der zweiten Position befindet.
     
    7. MEMS-Bauelement nach Anspruch 1, weiter umfassend eine Pull-Up-Elektrode (208), die über dem Schaltelement angeordnet ist.
     
    8. MEMS-Bauelement nach Anspruch 1,

    wobei das Schaltelement eine Bodenoberfläche (304) aufweist, die einen Isolierabschnitt und einen leitfähigen Abschnitt (316C) aufweist; und

    wobei der zweite Pfosten (318) über der Ankerelektrode (314) angeordnet ist, wobei der Isolierabschnitt den zweiten Pfosten (318) in der zweiten Position kontaktiert und der leitfähige Abschnitt (316C) den ersten Pfosten (316) in der zweiten Position kontaktiert.


     
    9. Verfahren zum Bilden eines MEMS-Bauelements (108), umfassend:

    Abscheiden einer Isolierschicht (320) über einem Substrat (212), wobei das Substrat mehrere darin gebildete Elektroden aufweist, wobei die mehreren Elektroden mindestens eine Ankerelektrode (314), eine Pull-In-Elektrode (204) und eine HF-Elektrode (202) enthalten;

    Entfernen mindestens eines Abschnitts der Isolierschicht (320), um mindestens einen Abschnitt der Ankerelektrode (314) und mindestens einen Abschnitt der HF-Elektrode (202) zu exponieren;

    Bilden eines ersten Pfostens (316) über und in Kontakt mit der HF-Elektrode (202), wobei der erste Pfosten (316) auf der Isolierschicht (320) und durch eine Öffnung (406) in der Isolierschicht (320) angeordnet ist;

    Bilden eines zweiten Pfostens (318) über und in Kontakt mit der Ankerelektrode (314); und

    Bilden eines Schaltelements über dem ersten Substrat (212), dem ersten Pfosten (316) und dem zweiten Pfosten (318), wobei das Schaltelement einen Ankerabschnitt (310) enthält, der elektrisch an die Ankerelektrode (314) und einen Schenkelabschnitt (308) gekoppelt ist, wobei das Schaltelement von einer von dem ersten Pfosten (316) und dem zweiten Pfosten (318) beabstandeten ersten Position und einer zweiten Position in Kontakt mit dem ersten Pfosten (316) und dem zweiten Pfosten (318) beweglich ist.


     
    10. Verfahren nach Anspruch 9, wobei der zweite Pfosten (318) ein elektrisch und wärmeleitendes Material umfasst.
     
    11. Verfahren nach Anspruch 10, wobei das Schaltelement eine Bodenoberfläche aufweist, die einen ersten Abschnitt (316C), der sowohl elektrisch als auch wärmeleitend ist, und einen zweiten Abschnitt, der elektrisch isoliert, aufweist.
     
    12. Verfahren nach Anspruch 9, wobei der zweite Pfosten (318) und der erste Pfosten (316) jeweils eine obere Oberfläche aufweisen und wobei die oberen Oberflächen das gleiche Material umfassen.
     
    13. Verfahren nach Anspruch 9, wobei der zweite Pfosten (318) an einem Ort positioniert ist, so dass der Brückenabschnitt (304) mit dem zweiten Pfosten (318) in Kontakt steht, wenn sich das Schaltelement in der zweiten Position befindet.
     
    14. Verfahren nach Anspruch 9, wobei der erste Pfosten (316) an einem Ort positioniert ist, so dass die HF-Elektrode (202) mit dem ersten Pfosten (316) in Kontakt steht, wenn sich das Schaltelement in der zweiten Position befindet.
     
    15. Verfahren nach Anspruch 9, weiter umfassend das Bilden einer Pull-Up-Elektrode (208), die über dem Schaltelement angeordnet ist.
     
    16. Verfahren nach Anspruch 9, wobei das Schaltelement eine untere Oberfläche aufweist, die einen Isolierabschnitt und einen leitfähigen Abschnitt (316C) aufweist, und wobei der Isolierabschnitt den zweiten Pfosten (318) in der zweiten Position kontaktiert und der leitfähige Abschnitt (316C) den ersten Pfosten (316) in der zweiten Position kontaktiert.
     


    Revendications

    1. Dispositif MEMS (108), comprenant :

    un substrat (212) ayant une pluralité d'électrodes formées dans celui-ci, la pluralité d'électrodes comprenant au moins une électrode d'ancrage (314), une électrode d'actionnement (204) et une électrode RF (202) ;

    une première couche isolante (320) disposée par-dessus la pluralité d'électrodes et le substrat (212) ;

    un élément de commutation disposé par-dessus la première couche isolante, l'élément de commutation comportant une partie d'ancrage (310), une partie patte (308) et une partie pont (304) et la partie d'ancrage (310) étant couplée électriquement à l'électrode d'ancrage (314) ;

    un premier plot (316) couplé à l'électrode RF (202), le premier plot étant disposé sur la première couche isolante (320) et à travers une ouverture (406) dans la première couche isolante ; et

    un deuxième plot (318) couplé électriquement à l'électrode d'ancrage (314), l'élément de commutation étant mobile entre une première position espacée du premier plot (316) et du deuxième plot (318), et une deuxième position en contact avec le premier plot (316) et le deuxième plot (318).


     
    2. Dispositif MEMS selon la revendication 1, le deuxième plot (318) comprenant un matériau conducteur électriquement et thermiquement.
     
    3. Dispositif MEMS selon la revendication 2, l'élément de commutation ayant une surface inférieure (304) qui a une première partie (316C) qui est conductrice à la fois électriquement et thermiquement et une deuxième partie qui est isolante électriquement.
     
    4. Dispositif MEMS selon la revendication 1, le deuxième plot (318) et le premier plot (316) ayant chacun une surface supérieure (318B, 316B) et les surfaces supérieures comprenant le même matériau.
     
    5. Dispositif MEMS selon la revendication 1, le deuxième plot (318) étant positionné à un emplacement tel que la partie pont (304) est en contact avec le deuxième plot lorsque l'élément de commutation est dans la deuxième position.
     
    6. Dispositif MEMS selon la revendication 1, le premier plot (316) étant positionné à un emplacement tel que l'électrode RF (202) est en contact avec le premier plot (316) lorsque l'élément de commutation est dans la deuxième position.
     
    7. Dispositif MEMS selon la revendication 1, comprenant en outre une électrode d'amenée en position haute (208) disposée par-dessus l'élément de commutation.
     
    8. Dispositif MEMS selon la revendication 1,

    l'élément de commutation ayant une surface inférieure (304) qui a une partie isolante et une partie conductrice (316C) ; et

    le deuxième plot (318) étant disposé par-dessus l'électrode d'ancrage (314), la partie isolante étant en contact avec le deuxième plot (318) dans la deuxième position et la partie conductrice (316C) étant en contact avec le premier plot (316) dans la deuxième position.


     
    9. Procédé de formation d'un dispositif MEMS (108), comprenant :

    le dépôt d'une couche isolante (320) par-dessus un substrat (212), le substrat ayant une pluralité d'électrodes formées dans celui-ci, la pluralité d'électrodes comportant au moins une électrode d'ancrage (314), une électrode d'enclenchement (204) et une électrode RF (202) ;

    l'élimination d'au moins une partie de la couche isolante (320) pour faire apparaître au moins une partie de l'électrode d'ancrage (314) et au moins une partie de l'électrode RF (202) ;

    la formation d'un premier plot (316) par-dessus et en contact avec l'électrode RF (202), le premier plot (316) étant disposé sur la couche isolante (320) et à travers une ouverture (406) dans la couche isolante (320) ;

    la formation d'un deuxième plot (318) par-dessus et en contact avec l'électrode d'ancrage (314) ; et

    la formation d'un élément de commutation par-dessus le substrat (212), le premier plot (316) et le deuxième plot (318), l'élément de commutation comportant une partie d'ancrage (310) qui est couplée électriquement à l'électrode d'ancrage (314) et à une partie patte (308), l'élément de commutation étant mobile d'une première position espacée du premier plot (316) et du deuxième plot (318) et une deuxième position en contact avec le premier plot (316) et le deuxième plot (318).


     
    10. Procédé selon la revendication 9, le deuxième plot (318) comprenant un matériau conducteur électriquement et thermiquement.
     
    11. Procédé selon la revendication 10, l'élément de commutation ayant une surface inférieure qui a une première partie (316C) qui est conductrice à la fois électriquement et thermiquement et une deuxième partie qui est isolante électriquement.
     
    12. Procédé selon la revendication 9, le deuxième plot (318) et le premier plot (316) ayant chacun une surface supérieure et les surfaces supérieures comprenant le même matériau.
     
    13. Procédé selon la revendication 9, le deuxième plot (318) étant positionné à un emplacement tel que la partie pont (304) est en contact avec le deuxième plot (318) lorsque l'élément de commutation est dans la deuxième position.
     
    14. Procédé selon la revendication 9, le premier plot (316) étant positionné à un emplacement tel que l'électrode RF (202) est en contact avec le premier plot (316) lorsque l'élément de commutation est dans la deuxième position.
     
    15. Procédé selon la revendication 9, comprenant en outre la formation d'une électrode d'amenée en position haute (208) disposée par-dessus l'élément de commutation.
     
    16. Procédé selon la revendication 9, l'élément de commutation ayant une surface inférieure qui a une partie isolante et une partie conductrice (316C), et la partie isolante étant en contact avec le deuxième plot (318) dans la deuxième position et la partie conductrice (316C) étant en contact avec le premier plot (316) dans la deuxième position.
     




    Drawing




















    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description