(19)
(11)EP 3 380 553 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
26.06.2019 Bulletin 2019/26

(21)Application number: 17739315.4

(22)Date of filing:  27.05.2017
(51)International Patent Classification (IPC): 
C08K 5/42(2006.01)
C08L 69/00(2006.01)
G02B 1/04(2006.01)
(86)International application number:
PCT/IB2017/053138
(87)International publication number:
WO 2017/203495 (30.11.2017 Gazette  2017/48)

(54)

COPOLYCARBONATE LENSES, METHODS OF MANUFACTURE, AND APPLICATIONS THEREOF

COPOLYCARBONATLINSEN, VERFAHREN ZUR HERSTELLUNG UND ANWENDUNGEN DAVON

LENTILLES EN COPOLYCARBONATE, PROCÉDÉS POUR LEUR FABRICATION ET APPLICATIONS CORRESPONDANTES


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 27.05.2016 US 201662342414 P

(43)Date of publication of application:
03.10.2018 Bulletin 2018/40

(73)Proprietor: SABIC Global Technologies B.V.
4612 PX Bergen op Zoom (NL)

(72)Inventors:
  • VAN DER MEE, Mark Adrianus Johannes
    4612 PX Bergen op Zoom (NL)
  • GONZALEZ VIDAL, Nathalie
    4612 PX Bergen op Zoom (NL)
  • MICCICHE, Fabrizio
    4612 PX Bergen op Zoom (NL)
  • ASSINK, Roland Sebastian
    4612 PX Bergen op Zoom (NL)
  • MITSUI, Kazuhiko
    Moka Tochigi 321-4392 (JP)
  • DE BROUWER, Johannes
    4612 PX Bergen op Zoom (NL)
  • SHAFAEI, Shahram
    4612 PX Bergen op Zoom (NL)
  • VAN HEERBEEK, Hendrikus Petrus Cornelis
    4612 PX Bergen op Zoom (NL)
  • EGGENHUISEN, Tamara Marijke
    4612 PX Bergen op Zoom (NL)
  • VAN DE GRAMPEL, Robert Dirk
    4612 PX Bergen op Zoom (NL)

(74)Representative: Modiano, Micaela Nadia et al
Modiano & Partners Thierschstrasse 11
80538 München
80538 München (DE)


(56)References cited: : 
US-A1- 2009 088 504
US-A1- 2013 270 591
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    BACKGROUND



    [0001] This disclosure generally relates to polycarbonate lenses, and more particularly, to copolycarbonate lenses, methods of manufacture, and uses thereof.

    [0002] Polycarbonates are useful in the manufacture of articles and components for a wide range of applications, from automotive parts to electronic appliances. Because of their beneficial properties such as transparency and impact resistance, polycarbonates have been used in applications such as camera lenses, eyeglass and safety glass lenses, illumination lenses such as light fixtures, flashlight and lantern lenses, and motor vehicle headlight lenses and covers. Since many of the lenses are used in high-temperature environment or have to be processed under abusive conditions, it is desirable for the lenses materials to have the ability to withstand elevated temperatures without deformation or discoloration, and/or ability to maintain good optical properties even when processed under abusive conditions.

    [0003] Some known "high heat" copolycarbonates can have high glass transition temperatures of 150°C or higher. But such polycarbonates are typically more yellow after processing and have lower transmission values. There accordingly remains a need for polycarbonate lenses having improved balance of high heat performance and optical properties.

    [0004] US2009/088504 discloses a polymer blend comprising a first polycarbonate comprising a first structural unit derived from a 2-aryl-3.3-bis(4-hydroxyaryl))phthalimidine and a second structural unit derived from a dihydroxy aromatic compound wherein the second structural unit is not identical to the first structural unit, and a second polycarbonate comprising a structural unit derived from a dihydroxy aromatic compound, a method of making the polymer blend and articles prepared from the blend.

    SUMMARY



    [0005] A lens comprises a polycarbonate composition comprising: a copolycarbonate comprising bisphenol A carbonate units and second carbonate units of the formula

    wherein Ra and Rb are each independently a C1-12 alkyl, C1-12 alkenyl, C3-8 cycloalkyl, or C1-12 alkoxy, each R3 is independently a C1-6 alkyl, R4 is hydrogen, C2-6 alkyl or phenyl optionally substituted with 1 to 5 C1-6 alkyl groups, p, q, and j are each independently 0 to 4, optionally a bisphenol A homopolycarbonate; and 2 to 40 ppm of an organosulfonic stabilizer of the formula

    wherein each R7 is independently a C1-30 alkyl, C6-30 aryl, C7-30 alkylarylene, C7-30 arylalkylene, or a polymer unit derived from a C2-32 ethylenically unsaturated aromatic sulfonic acid or its ester, R8 is C1-30 alkyl; or R8 is a group of the formula -S(=O)2-R7; wherein the second carbonate units are present in an amount of 20 to 49 mol%, preferably 30 to 40 mol% based on the sum of the moles of the copolycarbonate and the bisphenol A; and wherein the polycarbonate composition has: a Vicat B120 of 160°C or higher measured according to ISO 306; and a yellowness index of less than 12, preferably less than 8, more preferably less than 6 measured according to ASTM D1925 on a plaque of 2.5 mm thickness molded at a temperature of 355°C for a residence time of 10 minutes.

    [0006] The lens can be a molded lens, a thermoformed lens, an extruded lens, a cast lens, or a layer of a multi-layer lens.

    [0007] In still another embodiment, a method of manufacture of a lens comprises injection molding, injection-compression molding, heat-cool molding, extrusion, rotational molding, blow molding, or thermoforming the above-described polycarbonate composition into the lens.

    [0008] A device comprising the lens can be a camera, an electronic device, a vehicle, a flashlight, a business machine, a lighting device, an imaging device, a protective article, a vision corrective device, or a toy.

    [0009] The above described and other features are exemplified by the following drawings, detailed description, examples, and claims.

    DETAILED DESCRIPTION



    [0010] Surprisingly, it has now been found that a copolycarbonate lens having desirable high heat performance and enhanced optical properties can be formed from a polycarbonate composition comprising phthalimidine copolycarbonates such as N-phenylphenolphthaleinyl bisphenol, 2,2-bis(4-hydro)-bisphenol A copolycarbonate ("PPPBP-BPA"), optionally a bisphenol A homopolymer, and an organosulfonic acid, acid ester, or acid anhydride stabilizer has desirable high glass transition temperature and enhanced optical properties. In particular, the polycarbonate composition may not only have good initial color and transmission after molding under standard conditions, but also lower color change after molding at aggressive conditions. This would allow using these compositions in more demanding lens applications, for example complex lens designs requiring high melt temperatures to completely fill the mold or lenses that have demanding requirements on color stability during part lifetime under one or more of high heat, hydro (high moisture), and high ultraviolent (UV) conditions.

    [0011] As used herein, phthalimidine copolycarbonates are high heat copolycarbonates having a glass transition temperature of 155°C or higher, and comprising bisphenol A carbonate units and second carbonate units of formula (1)

    wherein Ra and Rb are each independently a C1-12 alkyl, C1-12 alkenyl, C3-8 cycloalkyl, or C1-12 alkoxy, preferably a C1-3 alkyl, each R3 is independently a C1-6 alkyl, R4 is hydrogen, C1-6 or C2-6 alkyl or phenyl optionally substituted with 1 to 5 C1-6 alkyl groups, and p and q are each independently 0 to 4, preferably 0 to 1. For example, second carbonate units can be of formula (1a)

    wherein R5 is hydrogen, phenyl optionally substituted with up to five C1-6 alkyl groups, or C1-4 alkyl, such as methyl or C2-4 alkyl. In an embodiment, R5 is hydrogen or phenyl, preferably phenyl. Carbonate units (1a) wherein R5 is phenyl can be derived from 2-phenyl-3,3'-bis(4-hydroxy phenyl)phthalimidine (also known as 3,3-bis(4-hydroxyphenyl)-2-phenylisoindolin-1-one or N-phenyl phenolphthalein or "PPPBP"). Bisphenol A carbonate units have formula (2).



    [0012] The copolycarbonate comprises 15 to 90 mole percent (mol%) of the bisphenol A carbonate units and 10 to 85 mol% of the second carbonate units, preferably the copolycarbonate comprises from 50 to 90 mol% of the bisphenol A carbonate units and 10 to 50 mol% of the second carbonate units, and more preferably the copolycarbonate comprises from 50 to 70 mol% of the bisphenol A carbonate units and 30 to 50 mol%, or 60 to 70 mol% of the bisphenol A carbonate units and 30 to 40 mol% of the second carbonate units, each based on the total number of carbonate units in the copolycarbonate.

    [0013] In some embodiments, the high heat copolycarbonates further include third carbonate units different from bisphenol A carbonate units and second carbonate units. The third carbonate units can have the formula



    or a combination thereof, wherein Rc and Rd are each independently a C1-12 alkyl, C1-12 alkenyl, C3-8 cycloalkyl, or C1-12 alkoxy, each R6 is independently C1-3 alkyl or phenyl, preferably methyl, Xa is a C6-12 polycyclic aryl, C3-18 mono- or polycycloalkylene, C3-18 mono- or polycycloalkylidene, -(Q1)x-G-(Q2)y- group wherein Q1 and Q2 are each independently a C1-3 alkylene, G is a C3-10 cycloalkylene, x is 0 or 1, and y is 1, or -C(P1)(P2) - wherein P1 is C1-12 alkyl and P2 is C6-12 aryl; and m and n are each independently 0 to 4.

    [0014] Exemplary third carbonate units include the following









    or a combination thereof, wherein Rc and Rd are the same as defined herein for formulas (3) to (5), each R1 is independently hydrogen or C1-4 alkyl, each R2 is independently C1-4 alkyl, and g is 0 to 10. Preferably, each R1 is independently hydrogen or methyl, each R2 is independently methyl or hydrogen, g is 0 to 2, and m and n are 0. In a specific embodiment the third carbonate units are 1,1-bis(4-hydroxyphenyl)-3,3,5-trimethyl-cyclohexane carbonate units, 1,1-bis(4-hydroxy-3-methylphenyl)cyclohexane, or a combination thereof. Preferably, the third carbonate units are 1,1-bis(4-hydroxyphenyl)-3,3,5-trimethyl-cyclohexane (BPA TMC) carbonate units. When the third carbonate units are present, the copolycarbonates can comprise 10 to 70 mol% of the bisphenol A carbonate units, 5 to 50 mol% of the second carbonate units, and 5 to 50 mol% of the third carbonate units, each based on the sum of moles of the bisphenol A carbonate units, second carbonate units, and third carbonate units. Preferably, the copolycarbonates comprise 30 to 60 mol% of the bisphenol A carbonate units, 5 to 35 mol% of the second carbonate units, 5 to 35 mol% of the third carbonate units, each based on the sum of the moles of the bisphenol A carbonate units, second carbonate units, and third carbonate units.

    [0015] In an embodiment, the copolycarbonates are highly random copolymers, which have less than 15 mol% or less than 10 mol% of the second carbonate units directly coupled to another second carbonate unit based on the total number of carbonate units in the copolycarbonates. The molar percent can be determined by nuclear magnetic resonance spectroscopy (NMR). Without wishing to be bound by theory, it is believed that by keeping the randomness of the high heat polymer, the properties of the high heat polymer remains consistent from batch to batch.

    [0016] To further enhance the optical properties of the polycarbonate compositions, the high heat copolycarbonates are essentially free of certain metal ions, other anions, and preferably, low molecular weight molecules (those having a molecular weight of less than 150 Dalton) arising from the starting materials or process from manufacture of the copolymers. In another embodiment, the high heat copolycarbonates comprise less than 2 ppm of each chloride, sodium, calcium, iron, nickel, copper, and zinc ions as residual impurities.

    [0017] In an embodiment, which is preferred, the the copolycarbonates have a very low residual impurity content, in particular less than 2 ppm of each of triethyl amine, calcium ions, magnesium ions, potassium ions, iron ions, and chloride ions. In another embodiment, the copolycarbonates have a low residual impurity content, in particular less than 2 ppm by weight of each of lithium, sodium, potassium, calcium, magnesium, ammonium, chloride, bromide, fluoride, nitrite, nitrate, phosphite, phosphate, sulfate, acetate, citrate, oxalate, trimethylammonium, and triethylammonium. It is to be understood that the foregoing residual impurities can exist in the copolycarbonates or polycarbonate compositions in un-ionized form (for example as triethylamine or formic acid), but are determined based on their ionized form.

    [0018] The residual impurity content can be determined by methods known in the art, for example those described in US 2016/0237210 and US9287471 using ion chromatography. For example, determination can be accomplished via ion exchange, of a sample obtained by dissolving 2.4 gram of copolycarbonate in 20 mL of dichloromethane and extracting with 10 mL of distilled, deionized water for 1 hour. The water layer is analyzed by ion chromatography with respect to the desired anions, cations, and amines, in particular fluoride, acetate, formate, chloride, nitrite, bromide, nitrate, phosphite, sulphate, oxalate, phosphate, citrate, lithium, sodium, potassium, ammonium, magnesium, calcium, and diethylamine and triethylamine. In another embodiment of quantitative analysis of ions, the sample can be submerged in de-ionized water kept at 55°C for 24 hours, the anions released into the water then analyzed via ion chromatography, e.g., with a Dionex DX500 Ion Chromatograph. Alternatively, quantitative analysis of metals and other compounds can be carried out by conventional inductively coupled plasma emission spectroscopy (ICP) methods to determine the presence of each constituent to the parts per billion (ppb) levels.

    [0019] The high heat copolycarbonates have a weight average molecular weight (Mw) of 10,000 to 50,000 Daltons (Da), preferably 16,000 to 30,000 Da, as measured by gel permeation chromatography (GPC), using a crosslinked styrene-divinylbenzene column and calibrated to bisphenol A homopolycarbonate references. GPC samples are prepared at a concentration of 1 mg per ml, and are eluted at a flow rate of 1.5 ml per minute.

    [0020] The high heat copolycarbonates have a high glass transition temperature (Tg). The Tg of the high heat copolycarbonates is 155 to 280°C, more preferably 165 to 260°C, even more preferably 185 to 230°C, determined by differential scanning calorimetry (DSC) as per ASTM D3418 with a 20°C/min heating rate.

    [0021] The high heat copolycarbonates can have high heat resistance. The heat deflection temperature (HDT) of the high heat copolycarbonates is 145 to 270°C, more preferably 155 to 260°C, even more preferably 175 to 220°C, measured flat on a 80 x 10 x 4 mm bar with a 64 mm span at 0.45 MPa according to ISO 75/Bf.

    [0022] The high heat copolycarbonates can have high Vicat softening temperature. In an embodiment, the high heat copolycarbonates have a Vicat B120 of 150 to 275°C, preferably 160 to 255°C, even more preferably 180 to 225°C, measured according to ISO 306.

    [0023] The high heat copolycarbonates can be present in an amount of 10 to 99 wt%, 90 to 99.8 wt%, 20 to 80 wt%, 40 to 70 wt%, or 50 to 70 wt% based on the total weight of the polycarbonate compositions. Preferably the second carbonate units of the high heat copolycarbonates are present in the composition in an amount of 20 to 49 mol%, preferably 30 to 40 mol% based on the sum of the moles of the copolycarbonate and the bisphenol A homopolycarbonate.

    [0024] The high heat copolycarbonates can be produced using a BPA monomer having both a high level of organic purity (e.g., measured by high pressure liquid chromatography (HPLC) of greater than or equal to 99.7 wt%) and a sulfur level of less than or equal to 2 parts per million (ppm) as measured by a commercially available Total Sulfur Analysis based on combustion and coulometric detection. The organic purity can be defined as 100 wt% minus the sum of known and unknown impurities detected using ultraviolet (UV) (see HPLC method in Nowakowska et al., Polish J. Appl. Chem., XI(3), 247-254 (1996)). In addition, an end-capping agent is present during manufacture of the high heat copolycarbonate such that high heat copolycarbonate comprises a free hydroxyl level less than or equal to 250 ppm, preferably less than or equal to 200 ppm, more preferably less than or equal to 150 ppm.

    [0025] Optionally, the polycarbonate compositions include a bisphenol A homopolycarbonate. The bisphenol A homopolymer carbonate can be derived from a bisphenol A monomer having a purity less than 99.7% determined by HPLC. Alternatively, the bisphenol A homopolycarbonate can be derived from a high purity bisphenol A monomer having a purity equal to or greater than 99.7% determined by HPLC.

    [0026] It has been found by the inventors hereof that the optical properties of the polycarbonate composition can be further improved using bisphenol A homopolycarbonates having specific additional properties. In an embodiment, the bisphenol A homopolycarbonate is manufactured via an interfacial process using a BPA monomer having both a high level of organic purity (e.g., measured by HPLC of greater than or equal to 99.7 wt%) and a sulfur level of less than or equal to 2 parts per million (ppm) as measured by a commercially available Total Sulfur Analysis based on combustion and coulometric detection. The organic purity can be defined as 100 wt% minus the sum of known and unknown impurities detected using ultraviolet (UV) (see HPLC method in Nowakowska et al., Polish J. Appl. Chem., XI(3), 247-254 (1996)). In addition, an end-capping agent is present during manufacture of the bisphenol A homopolycarbonate such that bisphenol A homopolycarbonate comprises a free hydroxyl level less than or equal to 150 ppm. Bisphenol A homopolycarbonates of high purity, suitable for use in the present compositions, can also be manufactured via the melt process.

    [0027] These bisphenol A homopolycarbonates are characterized by specific properties. In particular, the preferred bisphenol A homopolycarbonates have a low yellowness index and are heat stable. For example, a molded sample comprising the bisphenol A homopolycarbonate has a yellowness index (YI) of 2.5 or less, 2.0 or less, 1.5 or less, 1.2 or less, or 1.1 or less as measured by ASTM D1925 on a plaque with 2.5 mm thickness. The bisphenol A homopolycarbonates can further be characterized by a molded sample thereof with a thickness of 2.5 mm having an increase in YI (ΔYI) of less than 12, less than 12, or less than 10 after 5,000 hours of heat aging at 130°C as measured by ASTM D1925. Alternatively, or in addition, the bisphenol A homopolycarbonates can have an increase in YI (ΔYI) of less than 3, less than 2.5, or less than 2 after 2,000 hours of heat aging at 130°C.

    [0028] The preferred bisphenol A homopolycarbonates are also transparent in the absence of any light diffusers or other fillers. For example, a molded sample of the bisphenol A homopolycarbonate has transmission level greater than or equal to 90.0% at 2.5 millimeter (mm) thickness as measured by ASTM D1003-00, Procedure A, measured, e.g., using a HAZE-GUARD DUAL from BYK-Gardner, using and integrating sphere (0°/diffuse geometry), wherein the spectral sensitivity conforms to the International Commission on Illumination (CIE) standard spectral value under standard lamp D65.

    [0029] In an embodiment, the bisphenol A polycarbonate homopolymer is a linear bisphenol A polycarbonate homopolymer having an Mw of 10,000 to 100,000 Da, specifically 15,000 to 50,000 Da, more specifically 17,000 to 35,000 Da, as measured by gel permeation chromatography (GPC), using a crosslinked styrene-divinylbenzene column and calibrated to bisphenol A homopolycarbonate references. GPC samples are prepared at a concentration of 1 mg per ml, and are eluted at a flow rate of 1.5 ml per minute.

    [0030] More than one bisphenol A polycarbonate homopolymer can be present. For example, the polycarbonate compositions can comprise a first bisphenol A polycarbonate homopolymer having an Mw of 20,000 Da to 25,000 Da and a second bisphenol A polycarbonate homopolymer having an Mw of 28,000 to 32,000 Daltons, or a second bisphenol A polycarbonate homopolymer having an Mw of 16,000 Daltons to 20,000 Daltons, each measured by GPC using bisphenol A homopolycarbonate standards. The weight ratio of the first bisphenol A polycarbonate homopolymer relative to the second bisphenol A polycarbonate homopolymer is 10:1 to 1:10, specifically 5:1 to 1: 5, more specifically 3:1 to 1:3 or 2:1 to 1:2.

    [0031] The polycarbonate homopolymer can be present in an amount of 10 to 90 wt%, preferably 10 to 80 wt%, 10 to 60 wt%, 15 to 50 wt%, or 20 to 45 wt%, based on the total weight of the polycarbonate composition.

    [0032] In an embodiment, the bisphenol A (BPA) purity of the polycarbonate composition is equal to or greater than 99.6% or equal or greater than 99.7% measured using HPLC. As used herein, the bisphenol A purity of the polycarbonate composition refers to the overall purity of the bisphenol A monomer used to prepare the high heat copolycarbonate and the bisphenol A homopolymer, if present. The bisphenol A purity of a polycarbonate composition can be determined by a mild depolymerization followed by a HPLC analysis. For example, about 200 milligrams (mg) of the polycarbonate composition is dissolved in 5 ml of tetrahydrofuran (THF) and 2 ml of a 10% solution of potassium hydroxide diluted in methanol. The depolymerization of polycarbonate is carried out with the use of these solvents. The solution is shaken for 2 hours. Then, 2 milliliters (ml) of acetic acid are added to protonate the BPA carbonate salts and decrease the pH. The solution is shaken again for half an hour for homogenization and dissolution of all precipitates. The sample is analyzed by HPLC. The wt% of BPA impurities in the polycarbonate composition can be calculated by:



    [0033] In equation 1, wt% of impurities refers to the impurities measured by HPLC after depolymerization. Because the BPA molar mass is different from the carbonated BPA, the wt% of impurities is multiplied by 254 grams per mole (g/mol) and divided by 228 g/mol. An amount of 254 g/mol and 228 g/mol correspond to the BPA carbonate the BPA molar mass, respectively.

    [0034] In some embodiments, it can be advantageous to use copolycarbonates and bisphenol A homopolycarbonates with very low residual contents of volatile impurities. For example, the polymer components can have a content of chlorobenzene and other aromatic chlorine compounds of less than 10 ppm, preferably less than 5 ppm and more preferably less than 2 ppm, dichloromethane of less than 1 ppm, preferably less than 0.5 ppm, monohydric phenols such as phenol, tert-butylphenol and cumylphenol of less than 15 ppm, preferably less than 5 ppm and more preferably less than 2 ppm, and alkanes of less than 10 ppm, preferably less than 5 ppm. In other embodiments, the polymers can preferably have residual contents of: carbon tetrachloride of less than 0.01 ppm, diaryl carbonates, in particular diphenyl carbonate and di-tert-butyl phenolcarbonate, of less than 5 ppm, preferably less than 2 ppm, bisphenol A and other bisphenols of less than 5 ppm, preferably less than 2 ppm and more preferably less than 0.5 ppm, sodium and other alkali metals and alkaline earth metals of less than 0.05 ppm, cresols of less than 1 ppm, preferably less than 0.2 ppm, phenolic OH groups of less than 300 ppm, preferably less than 200 ppm, more preferably less than 100 ppm, alkaline earth metals of less than 0.1 ppm, more preferably less than 0.05 ppm, pyridine of less than 1 ppm, preferably less than 0.1 ppm, nonhalogenated aromatic compounds such as xylene and toluene of less than 10 ppm, preferably less than 5 ppm. Methods for obtaining and measuring these amounts are described, for example, in US2012/0157653.

    [0035] The polycarbonates can be manufactured by processes such as interfacial polymerization and melt polymerization, which are known, and are described, for example, in WO 2013/175448 A1 and WO 2014/072923 A1. An end-capping agent (also referred to as a chain stopper agent or chain terminating agent) can be included during polymerization to provide end groups, for example monocyclic phenols such as phenol, p-cyanophenol, and C1-C22 alkyl-substituted phenols such as p-cumyl-phenol, resorcinol monobenzoate, and p-and tertiarybutyl phenol, monoethers of diphenols, such as p-methoxyphenol, monoesters of diphenols such as resorcinol monobenzoate, functionalized chlorides of aliphatic monocarboxylic acids such as acryloyl chloride and methacryoyl chloride, and mono-chloroformates such as phenyl chloroformate, alkyl-substituted phenyl chloroformates, p-cumyl phenyl chloroformate, and toluene chloroformate. Combinations of different end groups can be used. Branched polycarbonate blocks can be prepared by adding a branching agent during polymerization, for example trimellitic acid, trimellitic anhydride, trimellitic trichloride, tris-p-hydroxyphenylethane, isatin-bis-phenol, tris-phenol TC (1,3,5-tris((p-hydroxyphenyl)isopropyl)benzene), tris-phenol PA (4(4(1,1-bis(p-hydroxyphenyl)-ethyl) alpha, alpha-dimethyl benzyl)phenol), 4-chloroformyl phthalic anhydride, trimesic acid, and benzophenone tetracarboxylic acid. The branching agents can be added at a level of 0.05 to 2.0 wt%. Combinations comprising linear polycarbonates and branched polycarbonates can be used.

    [0036] It has been found that without any organosulfonic stabilizers, a polycarbonate composition containing the high heat copolycarbonate and the optional bisphenol A homopolycarbonate can have less than desirable color stability when the polycarbonate composition is molded under aggressive conditions for example at temperatures equal to or greater than 340°C, or equal to or greater than 350°C, or greater than 360°C, especially when the residence time in the molding is equal to or greater than 5 min, or equal to or greater than 10 min. Typical upper limits include 450°C and 20 minutes.

    [0037] Surprisingly it has been found that including an organosulfonic stabilizer as described herein in a polycarbonate composition containing the high heat copolycarbonate and the optional bisphenol A homopolycarbonate improves the color stability of the composition after the composition is molded under aggressive conditions, typically at high melt temperatures, such as 350°C or higher, or prolonged residence times during molding, such as times exceeding 7.5 or 10 minutes, or both. In some embodiments it is possible to simultaneously improve the initial color of the polycarbonate composition and the color stability of the composition after the composition is molded under aggressive conditions, typically at high melt temperatures, such as 350°C or higher, or prolonged residence times during molding, such as times exceeding 7.5 or 10 minutes, or both.

    [0038] For example, a molded part of the composition with a thickness of 2.5 mm has a YI determined according to ASTM D1925 at least 30% lower, or at least 50% lower, or at least 60% lower, as compared to a reference sample of an otherwise identical composition except for not containing the organosulfonic stabilizer, when both the sample and the reference sample are molded at a temperature of equal to or greater than 340°C. In another embodiment, a molded sample of the composition, when tested at thickness of 2.5 mm determined according to ASTM D1925, has a change in YI of less than 20, preferably less than 10, more preferably less than 5, following molding under aggressive conditions as compared to a reference sample of an identical composition molded under standard process conditions. As used herein, aggressive molding conditions include a molding temperature of equal to or greater than 330°C, and standard molding conditions include a molding temperature equal to or of less than 330°C.

    [0039] The molded sample can further have high heat copolycarbonates can have high Vicat softening temperature. In an embodiment, the polycarbonate composition can have a Vicat B120 of 160°C or higher, preferably 160 to 275°C, preferably 160 to 255°C, even more preferably 180 to 225°C, each measured according to ISO 306.

    [0040] Moreover, the improvement on the color and color stability provided by the inclusion of the organosulfonic stabilizer is more significant than the improvement provided by other acid stabilizers such as H3PO3.

    [0041] The organosulfonic stabilizer can be an aryl or aliphatic sulfonic acid, including a polymer thereof, an aryl or an aliphatic sulfonic acid anhydride, or an aryl or aliphatic ester of an aryl or aliphatic sulfonic acid, or a polymer thereof. In particular, the organosulfonic stabilizer is a C1-30 alkyl sulfonic acid, a C6-30 aryl sulfonic acid, a C7-30 alkylarylene sulfonic acid, a C7-30 arylalkylene sulfonic acid, or an aromatic sulfonic acid polymer; an anhydride of a C1-30 alkyl sulfonic acid, a C6-30 aryl sulfonic acid, a C7-30 alkylarylene sulfonic acid, or a C7-30 arylalkylene sulfonic acid; or a C6-30 aryl ester of a C1-30 alkyl sulfonic acid, a C6-30 aryl sulfonic acid, a C7-30 alkylarylene sulfonic acid, a C7-30 arylalkylene sulfonic acid, or an aromatic sulfonic acid polymer; or a C1-30 aliphatic ester of a C1-30 alkyl sulfonic acid, a C6-30 aryl sulfonic acid, a C7-30 alkylarylene sulfonic acid, a C7-30 arylalkylene sulfonic acid, or an aromatic sulfonic acid polymer. A combination of one or more of the foregoing can be used.

    [0042] In preferred embodiments, the organosulfonic stabilizers are represented by formula (8)



    [0043] In formula (8), R7 is each independently a C1-30 alkyl, C6-30 aryl, C7-30 alkylarylene, C7-30 arylalkylene, or a polymer unit derived from a C2-32 ethylenically unsaturated aromatic sulfonic acid or its corresponding C1-32 alkyl ester. The C2-32 ethylenically unsaturated aromatic sulfonic acid can be of the formula

    wherein R9 is hydrogen or methyl, and R8 is as defined in formula (8). Preferably the ethylenically unsaturated group and the sulfonic acid or ester group are located para on the phenyl ring.

    [0044] Further in formula (8), R8 is C1-30 alkyl; or R8 is a group of the formula -S(=O)2-R7. When R8 is a group of the formula -S(=O)2-R7, each R7 in the compound of formula (8) can be the same or different, but preferably each R7 is the same.

    [0045] In an embodiment in formula (8), R7 is a C6-12 aryl, C7-24 alkylarylene, or a polymer unit derived from a C2-14 ethylenically unsaturated aromatic sulfonic acid or its ester; and R8 is hydrogen, C1-24 alkyl, or a group of the formula -S(=O)2-R7 wherein R7 is a C6-12 aryl or C7-24 alkylarylene.

    [0046] In a preferred embodiment, R7 is a C7-10 alkylarylene or a polymer unit derived from a C2-14 ethylenically unsaturated aromatic sulfonic acid, and R8 is a hydrogen, C1-25 alkyl, or a group of the formula -S(=O)2-R7 wherein R7 is a C7-10 alkylarylene. In a specific embodiment, R7 is a C7-10 alkylarylene and R8 is a hydrogen or C1-6 alkyl. In still another embodiment, R7 is a C7-10 alkylarylene and R8 is a hydrogen or C12-25 alkyl, or R8 is a C14-20 alkyl.

    [0047] In specific embodiment, R7 is a polymer unit derived from a C2-14 ethylenically unsaturated aromatic sulfonic acid, preferably p-styrene sulfonic acid or para-methyl styrene sulfonic acid, such that in formula (8) R8 is hydrogen.

    [0048] In an embodiment, the organosulfonic stabilizer is a C1-10 alkyl ester of a C7-12 alkylarylene sulfonic acid, preferably of p-toluene sulfonic acid. More preferably the stabilizer is a C1-6 alkyl ester of p-toluene sulfonic acid, and even more preferably is butyl tosylate.

    [0049] In another embodiment, the organosulfonic stabilizer is an anhydride of a C7-12 alkylarylene sulfonic acid, preferably para-toluene sulfonic anhydride as shown in Table 13.

    [0050] In still another embodiment, R7 is a C11-24 alkylarylene sulfonic acid, and R8 is hydrogen. Alternatively, R7 is a C16-22 alkylarylene sulfonic acid, and R8 is hydrogen.

    [0051] The organosulfonic stabilizer can be used in an amount of 2 to 40 ppm, more preferably 2 to 20 ppm, still more preferably 4 to 15 ppm, or 4 to 10 ppm, or 4 to 8 ppm by weight based on the total weight of the organic components of the polycarbonate composition.

    [0052] The polycarbonate composition can also contain an epoxy additive. The inclusion of an epoxy compound can be used as a chain extender to improve molecular weight stability of the polycarbonate composition after hydroaging (for instance at 85°C and 85% relative humidity) or autoclaving at temperatures of 121°C, 134°C, 155°C, or other temperatures above 100°C. Epoxy compounds useful as additives include epoxy modified acrylic oligomers or polymers (such as a styrene-acrylate-epoxy polymer, prepared from for example a combination of: a substituted or unsubstituted styrene such as styrene or 4-methylstyrene; an acrylate or methacrylate ester of a C1-22 alkyl alcohol such as methyl acrylate, methyl methacrylate, ethyl acrylate, butyl acrylate, or the like; and an epoxy-functionalized acrylate such as glycidyl acrylate, glycidyl methacrylate, 2-(3,4-epoxycyclohexyl)ethyl acrylate, 2-(3,4-epoxycyclohexyl)ethyl methacrylate, or the like), or an epoxy carboxylate oligomer based on cycloaliphatic epoxides (such as, for example, 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexylcarboxylate, or the like). Specific commercially available exemplary epoxy functionalized stabilizers include Cycloaliphatic Epoxide Resin ERL-4221 supplied by Union Carbide Corporation (a subsidiary of Dow Chemical), Danbury, CT; and epoxy modified acrylates such as JONCRYL ADR-4300 and JONCRYL ADR-4368, available from BASF. Epoxy additives are typically used in amounts of up to 1 wt%, specifically 0.001 to 1 wt%, more specifically 0.001 to 0.5 wt%, based on the total weight of the polycarbonate composition. In an embodiment, the epoxy additive can be included in an amount of 0.001 to 0.3 wt%, specifically 0.01 to 0.3 wt%, and more specifically 0.1 to 0.3 wt%, based on the total weight of the polycarbonate composition. Use of greater amounts of epoxy compound may cause more splay, i.e., mold lines which fan outward from the point of injection into the mold, and observable to the unaided eye in molded lenses comprising the polycarbonate composition.

    [0053] The polycarbonate compositions can include various additives ordinarily incorporated into polymer compositions of this type, with the proviso that the additive(s) are selected so as to not significantly adversely affect the desired properties of the polycarbonate composition, in particular melt flow, optical clarity, and thermal properties. Such additives can be mixed at a suitable time during the mixing of the components for forming the composition. Additives include antioxidants, heat stabilizers, light stabilizers, ultraviolet (UV) light stabilizers, plasticizers, lubricants, mold release agents, antistatic agents, colorants such as organic dyes, surface effect additives, radiation stabilizers, flame retardants, anti-drip agents, and impact modifiers. In an embodiment, the polycarbonate composition further comprises a processing aid, a heat stabilizer, an ultraviolet light absorber, a colorant, a flame retardant, an impact modifier, or a combination thereof. A combination of additives can be used, for example a combination of a heat stabilizer, mold release agent, and ultraviolet light stabilizer. In general, the additives are used in the amounts generally known to be effective. For example, the total amount of the additives (other than any impact modifier, filler, or reinforcing agents) can be 0 to 5 wt% or 0.01 to 5 wt%, based on the total weight of the polycarbonate composition.

    [0054] Antioxidant additives include organophosphites such as tris(nonyl phenyl)phosphite, tris(2,4-di-t-butylphenyl)phosphite, bis(2,4-di-t-butylphenyl)pentaerythritol diphosphite, distearyl pentaerythritol diphosphite; alkylated monophenols or polyphenols; alkylated reaction products of polyphenols with dienes, such as tetrakis[methylene(3,5-di-tert-butyl-4-hydroxyhydrocinnamate)] methane; butylated reaction products of para-cresol or dicyclopentadiene; alkylated hydroquinones; hydroxylated thiodiphenyl ethers; alkylidene-bisphenols; benzyl compounds; esters of beta-(3,5-di-tert-butyl-4-hydroxyphenyl)-propionic acid with monohydric or polyhydric alcohols; esters of beta-(5-tert-butyl-4-hydroxy-3-methylphenyl)-propionic acid with monohydric or polyhydric alcohols; esters of thioalkyl or thioaryl compounds such as distearylthiopropionate, dilaurylthiopropionate, ditridecylthiodipropionate, octadecyl-3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate, pentaerythrityl-tetrakis[3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate; amides of beta-(3,5-di-tert-butyl-4-hydroxyphenyl)-propionic acid, or combinations comprising at least one of the foregoing antioxidants. Antioxidants are used in amounts of 0.01 to 0.1 parts by weight, based on 100 parts by weight of the total composition, excluding any filler.

    [0055] Heat stabilizer additives include organophosphites such as triphenyl phosphite, tris-(2,6-dimethylphenyl)phosphite, tris-(mixed mono-and di-nonylphenyl)phosphite; phosphonates such as dimethylbenzene phosphonate, phosphates such as trimethyl phosphate, or combinations comprising at least one of the foregoing heat stabilizers. Heat stabilizers are used in amounts of 0.01 to 0.1 parts by weight, based on 100 parts by weight of the total composition, excluding any filler.

    [0056] Light stabilizers, including ultraviolet light (UV) absorbers, can also be used. Light stabilizers include benzotriazoles such as 2-(2-hydroxy-5-methylphenyl)benzotriazole and 2-(2-hydroxy-5-tert-octylphenyl)-benzotriazole, 2-hydroxy-4-n-octoxy benzophenone, or combinations comprising at least one of the foregoing light stabilizers. UV absorbing additives include hydroxybenzophenones; hydroxybenzotriazoles; hydroxybenzotriazines; cyanoacrylates; oxanilides; benzoxazinones; 2-(2H-benzotriazol-2-yl)-4-(1,1,3,3-tetramethylbutyl)-phenol (CYASORB* 5411); 2-hydroxy-4-n-octyloxybenzophenone (CYASORB* 531); 2-[4,6-bis(2,4-dimethylphenyl)-1,3,5-triazin-2-yl]-5-(octyloxy)-phenol (CYASORB* 1164); 2,2'-(1,4-phenylene)bis(4H-3,1-benzoxazin-4-one) (CYASORB* UV-3638); 1,3-bis[(2-cyano-3,3-diphenylacryloyl)oxy]-2,2-bis[[(2-cyano-3,3-diphenylacryloyl)oxy]methyl]propane (UVINUL* 3030); 2,2'-(1,4-phenylene) bis(4H-3,1-benzoxazin-4-one); 1,3-bis[(2-cyano-3,3-diphenylacryloyl)oxy] -2,2-bis[[(2-cyano-3,3-diphenylacryloyl)oxy]methyl]propane; phenol, 2-(2H-benzotriazol-2-yl)-4,6-bis(1-methyl-1-phenylethyl)-(TINUVIN* 234); BCAP bismalonate from Clariant; nano-size inorganic materials such as titanium oxide, cerium oxide, and zinc oxide, all with particle size less than or equal to 100 nanometers;, or combinations comprising at least one of the foregoing UV absorbers. Light stabilizers are used in amounts of 0.01 to 5 parts by weight, based on 100 parts by weight of the polycarbonate composition.

    [0057] Flame retardants can also be used. Flame retardants include flame retardant salts such as alkali metal salts of perfluorinated C1-16 alkyl sulfonates such as potassium perfluorobutane sulfonate (Rimar salt), potassium perfluoroctane sulfonate, tetraethylammonium perfluorohexane sulfonate, potassium diphenylsulfone sulfonate (KSS), and the like, sodium benzene sulfonate, sodium toluene sulfonate (NATS) and the like; and salts formed by reacting for example an alkali metal or alkaline earth metal (for example lithium, sodium, potassium, magnesium, calcium and barium salts) and an inorganic acid complex salt, for example, an oxo-anion, such as alkali metal and alkaline-earth metal salts of carbonic acid, such as Na2CO3, K2CO3, MgCO3, CaCO3, and BaCO3 or fluoro-anion complex such as Li3AlF6, BaSiF6, KBF4, K3AlF6, KAlF4, K2SiF6, and/or Na3AlF6 or the like. Rimar salt and KSS and NATS, alone or in combination with other flame retardants, are particularly useful in the compositions disclosed herein. Flame retardant salts are typically used in amounts of 0.01 to 1.0 parts by weight, based on 100 parts by weight of the polycarbonate composition.

    [0058] Organophosphorus flame retardants can be used. Organophosphorus compounds include aromatic organophosphorus compounds having at least one organic aromatic group and at least one phosphorus-containing group, as well as organic compounds having at least one phosphorus-nitrogen bond.

    [0059] In the aromatic organophosphorus compounds that have at least one organic aromatic group, the aromatic group can be a substituted or unsubstituted C3-30 group containing one or more of a monocyclic or polycyclic aromatic moiety (which can optionally contain with up to three heteroatoms (N, O, P, S, or Si)) and optionally further containing one or more nonaromatic moieties, for example alkyl, alkenyl, alkynyl, or cycloalkyl. The aromatic moiety of the aromatic group can be directly bonded to the phosphorus-containing group, or bonded via another moiety, for example an alkylene group. The aromatic moiety of the aromatic group can be directly bonded to the phosphorus-containing group, or bonded via another moiety, for example an alkylene group. In an embodiment the aromatic group is the same as an aromatic group of the polycarbonate backbone, such as a bisphenol group (e.g., bisphenol A), a monoarylene group (e.g., a 1,3-phenylene or a 1,4-phenylene), or a combination thereof.

    [0060] The phosphorus-containing group can be a phosphate (P(=O)(OR)3), phosphite (P(OR)3), phosphonate (RP(=O)(OR)2), phosphinate (R2P(=O)(OR)), phosphine oxide (R3P(=O)), or phosphine (R3P), wherein each R in the foregoing phosphorus-containing groups can be the same or different, provided that at least one R is an aromatic group. A combination of different phosphorus-containing groups can be used. The aromatic group can be directly or indirectly bonded to the phosphorus, or to an oxygen of the phosphorus-containing group (i.e., an ester).

    [0061] In an embodiment the aromatic organophosphorus compound is a monomeric phosphate. Representative monomeric aromatic phosphates are of the formula (GO)3P=O, wherein each G is independently an alkyl, cycloalkyl, aryl, alkylarylene, or arylalkylene group having up to 30 carbon atoms, provided that at least one G is an aromatic group. Two of the G groups can be joined together to provide a cyclic group. In some embodiments G corresponds to a monomer used to form the polycarbonate, e.g., resorcinol. Exemplary phosphates include phenyl bis(dodecyl) phosphate, phenyl bis(neopentyl) phosphate, phenyl bis(3,5,5'-trimethylhexyl) phosphate, ethyl diphenyl phosphate, 2-ethylhexyl di(p-tolyl) phosphate, bis(2-ethylhexyl) p-tolyl phosphate, tritolyl phosphate, bis(2-ethylhexyl) phenyl phosphate, tri(nonylphenyl) phosphate, bis(dodecyl) p-tolyl phosphate, dibutyl phenyl phosphate, 2-chloroethyl diphenyl phosphate, p-tolyl bis(2,5,5'-trimethylhexyl) phosphate, 2-ethylhexyl diphenyl phosphate, and the like. A specific aromatic phosphate is one in which each G is aromatic, for example, triphenyl phosphate, tricresyl phosphate, isopropylated triphenyl phosphate, and the like.

    [0062] Di- or polyfunctional aromatic phosphorus-containing compounds are also useful, for example, compounds of the formulas below

    wherein each G1 is independently a C1-30 hydrocarbyl; each G2 is independently a C1-30 hydrocarbyl or hydrocarbyloxy; each X is independently a bromine or chlorine; m is 0 to 4, and n is 1 to 30. Di- or polyfunctional aromatic phosphorus-containing compounds of this type include resorcinol tetraphenyl diphosphate (RDP), the bis(diphenyl) phosphate of hydroquinone and the bis(diphenyl) phosphate of bisphenol A, respectively, their oligomeric and polymeric counterparts, and the like.

    [0063] Specific aromatic organophosphorus compounds have two or more phosphorus-containing groups, and are inclusive of acid esters of the formula (9)

    wherein R16, R17, R18, and R19 are each independently C1-8 alkyl, C5-6 cycloalkyl, C6-20 aryl, or C7-12 arylalkylene, each optionally substituted by C1-12 alkyl, specifically by C1-4 alkyl and X is a mono- or poly-nuclear aromatic C6-30 moiety or a linear or branched C2-30 aliphatic radical, which can be OH-substituted and can contain up to 8 ether bonds, provided that at least one of R16, R17, R18, R19, and X is an aromatic group. In some embodiments R16, R17, R18, and R19 are each independently C1-4 alkyl, naphthyl, phenyl(C1-4)alkylene, or aryl groups optionally substituted by C1-4 alkyl. Specific aryl moieties are cresyl, phenyl, xylenyl, propylphenyl, or butylphenyl. In some embodiments X in formula (9) is a mono- or poly-nuclear aromatic C6-30 moiety derived from a diphenol. Further in formula (9), n is each independently 0 or 1; in some embodiments n is equal to 1. Also in formula (9), q is from 0.5 to 30, from 0.8 to 15, from 1 to 5, or from 1 to 2. Specifically, X can be represented by the following divalent groups (9), or a combination comprising one or more of these divalent groups.



    [0064] In these embodiments, each of R16, R17, R18, and R19 can be aromatic, i.e., phenyl, n is 1, and p is 1-5, specifically 1-2. In some embodiments at least one of R16, R17, R18, R19, and X corresponds to a monomer used to form the polycarbonate, e.g., bisphenol A or resorcinol. In another embodiment, X is derived especially from resorcinol, hydroquinone, bisphenol A, or diphenylphenol, and R16, R17, R18, R19, is aromatic, specifically phenyl. A specific aromatic organophosphorus compound of this type is resorcinol bis(diphenyl phosphate), also known as RDP. Another specific class of aromatic organophosphorus compounds having two or more phosphorus-containing groups are compounds of formula (10)

    wherein R16, R17, R18, R19, n, and q are as defined for formula (9) and wherein Z is C1-7 alkylidene, C1-7 alkylene, C5-12 cycloalkylidene, -O-, -S-, -SO2-, or -CO-, specifically isopropylidene. A specific aromatic organophosphorus compound of this type is bisphenol A bis(diphenyl phosphate), also known as BPADP, wherein R16, R17, R18, and R19 are each phenyl, each n is 1, and q is from 1 to 5, from 1 to 2, or 1.

    [0065] Organophosphorus compounds containing at least one phosphorus-nitrogen bond includes phosphazenes, phosphorus ester amides, phosphoric acid amides, phosphonic acid amides, phosphinic acid amides, and tris(aziridinyl) phosphine oxide. Phosphazenes (11) and cyclic phosphazenes (12)

    in particular can used, wherein w1 is 3 to 10,000 and w2 is 3 to 25, specifically 3 to 7, and each Rw is independently a C1-12 alkyl, alkenyl, alkoxy, aryl, aryloxy, or polyoxyalkylene group. In the foregoing groups at least one hydrogen atom of these groups can be substituted with a group having an N, S, O, or F atom, or an amino group. For example, each Rw can be a substituted or unsubstituted phenoxy, an amino, or a polyoxyalkylene group. Any given Rw can further be a crosslink to another phosphazene group. Exemplary crosslinks include bisphenol groups, for example bisphenol A groups. Examples include phenoxy cyclotriphosphazene, octaphenoxy cyclotetraphosphazene decaphenoxy cyclopentaphosphazene, and the like. A combination of different phosphazenes can be used. A number of phosphazenes and their synthesis are described in H. R. Allcook, "Phosphorus-Nitrogen Compounds" Academic Press (1972), and J. E. Mark et al., "Inorganic Polymers" Prentice-Hall International, Inc. (1992).

    [0066] Depending on the particular organophosphorus compound used, the polycarbonate compositions can comprise 0.5 to 15 wt% or 3.5 to 12 wt% of the organophosphorus flame retardant, each based on the total weight of the composition. Specifically, the organophosphorus compounds can be bisphenol A bis(diphenyl phosphate), triphenyl phosphate, resorcinol bis(diphenyl phosphate), tricresyl phosphate, or a combination thereof.

    [0067] The polycarbonate compositions can further comprise a cyclic siloxane and/or a linear siloxane to impart fire/flame-retardant properties. The cyclic siloxane can include those with the general formula below

    wherein each R in the cyclic siloxane is independently C1-36 alkyl, fluorinated or perfluorinated C1-36 alkyl, C1-36 alkoxy, C6-14 aryl, aryloxy of 6 to 14 carbon atoms, arylalkoxy of 7 to 36 carbon atoms, or C1-36 alkyl-substituted aryl of 6 to 14 carbon atoms. In an embodiment, at least one R can be a phenyl. Examples of cyclic siloxanes include, but not limited to, a cyclic phenyl containing siloxane, octaphenylcyclotetrasiloxane, hexamethylcyclotrisiloxane, octamethylcyclotetrasiloxane, decamethylcyclopentasiloxane, dodecamethylcyclohexasiloxane, trimethyltriphenylcyclotrisiloxane, and tetramethyltetraphenylcyclotetrasiloxane. Octaphenylcyclotetrasiloxane is specifically mentioned.

    [0068] Linear siloxanes can also be used. The linear siloxanes can be a linear phenyl containing siloxane such as a poly(phenylmethylsiloxane). In an embodiment, the polycarbonate compositions contain 0.01% to 1% of a cyclic siloxane, a linear siloxane, or a combination thereof.

    [0069] The polycarbonate compositions can be manufactured by various methods known in the art. For example, powdered polycarbonate, and other optional components are first blended, optionally with any fillers, in a high speed mixer or by hand mixing. The blend is then fed into the throat of a twin-screw extruder via a hopper. Alternatively, at least one of the components can be incorporated into the composition by feeding it directly into the extruder at the throat and/or downstream through a sidestuffer, or by being compounded into a masterbatch with a desired polymer and fed into the extruder. The extruder is generally operated at a temperature higher than that necessary to cause the composition to flow. The extrudate can be immediately quenched in a water bath and pelletized. The pellets so prepared can be one-fourth inch long or less as desired. Such pellets can be used for subsequent molding, shaping, or forming.

    [0070] In certain embodiments, which are preferred, the polycarbonate compositions can have a low residual impurity content, in particular less than 2 ppm by weight of each of lithium, sodium, potassium, calcium, magnesium, ammonium, chloride, bromide, fluoride, nitrite, nitrate, phosphite, phosphate, sulfate, acetate, citrate, oxalate, trimethylammonium, and triethylammonium. It is to be understood that the foregoing residual impurities can exist in the polycarbonate compositions in un-ionized form (for example as triethylamine or formic acid), but are determined based on their ionized form.

    [0071] The polycarbonate compositions can be molded under standard molding conditions in range of 300 to 350°C depending on the glass transition temperature of the composition. For example, the polycarbonate compositions can be molded at a temperature of 100 to 175°C above the glass transition temperature of the polycarbonate composition for a residence time of 2 to 20 minutes.

    [0072] The polycarbonate compositions can have a glass transition temperature of 155°C or higher, preferably 155°C to 280°C, more preferably 165 to 260°C, and even more preferably 185 to 230°C, determined by differential scanning calorimetry (DSC) as per ASTM D3418 with a 20°C/min heating rate.

    [0073] The polycarbonate compositions can have a heat deflection temperature of 160°C or higher as measured on a 80 x 10 x 4 mm bar with a 64 mm span at 0.45 MPa according to ISO 75/Bf.

    [0074] The polycarbonate compositions can have excellent transparency. In an embodiment, the polycarbonate compositions can have a haze of less than 5%, or less than 3%, or less than 1.5%, or less than 1.0%, and a transmission greater than 86%, more preferably greater than 87%, more preferably greater than 88%, even more preferably greater than 90% each measured according to ASTM D1003-00 on a molded plaque with a 1.0 mm thickness. In another embodiment, the polycarbonate compositions can have a haze of less than 15%, more preferably less than 10%, more preferably less than 5%, even more preferably less than 1.5%, or less than 1.0% and a total transmission greater than 84% or greater than 86%, each measured according to ASTM D1003-00 on a molded plaque with a 3.0 mm thickness.

    [0075] The polycarbonate compositions can have a transmission at wavelength of 400 nm of greater than 75%, or greater than 80% or greater than 85% measured with Perkin Elmer 950 spectrometer equipped with 15 cm integrated sphere on a molded plaque with a thickness of 1 mm.

    [0076] The polycarbonate compositions can have a transmission at wavelength of 550 nm of greater than 85%, or greater than 87% or greater than 88% measured with Perkin Elmer 950 spectrometer equipped with 15 cm integrated sphere on a molded plaque with a thickness of 1 mm.

    [0077] The polycarbonate compositions can have excellent transparency in the infrared wavelength range. In an embodiment, the compositions have a transmission at wavelength of 940 nm of greater than 88.0%, preferably greater than 89.0%, more preferably greater than 90.0%, as measured with Perkin Elmer 950 spectrometer equipped with 15 cm integrated sphere on 1 mm.

    [0078] In still another embodiment, the polycarbonate compositions can have a refractive index of greater than 1.59 or greater than 1.60 at 587.6 nm or a refractive index of greater than 1.57 or greater than 1.58 at 940 nm measured according to ISO 489 on a molded plaque with a thickness of 1 mm.

    [0079] The polycarbonate compositions can have an Abbe number of less than 32 or less than 30 measured according to ISO 489 on a molded plaque with a thickness of 1 mm.

    [0080] The copolycarbonate com positions can have excellent color after molding under demanding conditions. In an embodiment, the polycarbonate compositions have a YI of less than 12, preferably less than 8, more preferably less than 6 as measured by ASTM D1925 on a 2.5 mm plaque. For example, the polycarbonate compositions are molded at a temperature of 100 to 175°C above the glass transition temperature of the polycarbonate composition for a residence time of 2 to 20 minutes. Typical conditions would be molding at melt temperatures of 350°C or higher and residence times of 3 minutes or longer. In a specific embodiment, the polycarbonate compositions have a YI of less than 12, preferably less than 8, more preferably less than 6 measured according to ASTM D1925 on a plaque of 2.5 mm thickness molded at a temperature of 355°C for a residence time of 10 minutes.

    [0081] The polycarbonate compositions have excellent color stability during exposure for prolonged time at elevated temperatures in the absence of moisture, referred to further as heat ageing. The polycarbonate compositions can have an increase in YI of less than 5, more preferably less than 4, more preferably less than 3, during 1500 hours of heat aging at 140°C, as measured by ASTM D1925 on a 1.0 mm thick molded plaque. In an embodiment, the polycarbonate compositions can have an increase in YI of less than 10, more preferably less than 8, more preferably less than 6, during 1500 hours of heat aging at 155°C, as measured by ASTM D1925 on a 1.0 mm thick molded plaque. In another embodiment, the polycarbonate compositions can have an increase in YI of less than 20, more preferably less than 10, more preferably less than 5, during 1000 hours of heat aging at 160°C, as measured by ASTM D1925 on a 2.5 mm thick molded plaque. In still another embodiment, the polycarbonate compositions can have an increase in YI of less than 20, more preferably less than 10, more preferably less than 5, during 500 hours of heat aging at 170°C, as measured by ASTM D1925 on a 2.5 mm thick molded plaque.

    [0082] The polycarbonate compositions have excellent color stability during exposure for prolonged time at elevated temperatures in the presence of moisture, referred to herein as hydroaging. In an embodiment, the polycarbonate compositions can have an increase in YI of less than 5, more preferably less than 3, more preferably less than 1, after 1000 hours of hydroaging at 80°C and 85% relative humidity, as measured by ASTM D1925 on a 2.5 mm thick molded plaque. Alternatively, the polycarbonate compositions can have an increase in YI of less than 0.5, or of less than 0.3 after 100 hours of hydroaging at 121°C in an autoclave, as measured by ASTM D1925 on a 2.5 mm thick molded plaque.

    [0083] The polycarbonate compositions have excellent color stability during exposure for prolonged time to autoclave conditions or multiple cycle of autoclave sterilization. In an embodiment, the polycarbonate compositions have an increase in YI of less than 2, more preferably less than 1, after 100 hours of autoclaving at 121°C, as measured by ASTM D1925 on a 2.5 mm thick molded plaque. In an embodiment, the polycarbonate compositions have an increase in YI of less than 5, more preferably less than 3, more preferably less than 1, after 100 hours of autoclaving at 134°C, as measured by ASTM D1925 on a 2.5 mm thick molded plaque. In another embodiment, the polycarbonate compositions have an increase in YI of less than 10, more preferably less than 5, more preferably less than 3, after 100 hours of autoclaving at 143°C, as measured by ASTM D1925 on a 2.5 mm thick molded plaque.

    [0084] In another embodiment, the polycarbonate compositions can have an increase in yellowness index of less than 10, or of less than 8 after 500 hours of heat aging at 155°C, as measured by ASTM D1925 on a 2.5 mm thick molded plaque; or an increase in yellowness index of less than 10, or of less than 8 during 1000 hours of heat aging at 155°C, as measured by ASTM D1925 on a 1.0 mm thick molded plaque.

    [0085] In another embodiment, the polycarbonate compositions can have an increase in YI of less than 6, or of less than 5 during 1500 hours of heat aging at 140°C, as measured by ASTM D1925 on a 1.0 mm thick molded plaque.

    [0086] The polycarbonate compositions can have a melt volume flow rate (MVR) greater than 10 cc/min, measured at 330°C/ 2.16 Kg at 360 second dwell according to ISO 1133.

    [0087] The polycarbonate compositions can have an Izod notched impact energy of at least 6 kJ/m2, or of at least 8 kJ/m2, as measured at 23°C according to ISO 180/1A using a multipurpose test specimen in accordance with ISO 3167 TYPE A. The polycarbonate compositions can have an Izod notched impact energy of at least 70 J/m, or of at least 88 J/m, as measured at 23°C according to ASTM D256.

    [0088] The polycarbonate compositions can have a UL94-V0 rating at a thickness of 2.5 mm or higher, for example up to 5.0 mm. The polycarbonate compositions can have a UL94-V2 rating at a thickness of 0.8 mm to 2.5 mm.

    [0089] The copolycarbonate polycarbonate compositions can be provided as pellets, and are useful to form lenses via various methods. The methods to make the lenses are not particularly limited. Exemplary methods include part production via multi-cavity tools; molding such as injection molding, gas assist injection molding, vacuum molding, over-molding, compression molding, rotary molding, heat/cool molding, overmolding, transfer molding, or cavity molding; thermoforming; extruding; calendaring; casting; and the like.

    [0090] Advantageously, the lenses have no significant part distortion or discoloration when the articles are subjected to a secondary operation such as over-molding, or coating with high temperature curing, or a combination thereof. High temperature cure of a coating can be, for example, 100°C or higher, for example 100 to 250°C. In some embodiments, "no significant part distortion" includes a volume distortion of less than 10 volume percent (vol%), or less than 5 vol%, or less than 1 vol%. Significant discoloration can be detected by the unaided eye at a distance of 18 inches. The polycarbonate compositions, which have good flow (MVR) for excellent mold filling properties while maintaining desirable mechanical properties can, in the manufacture of lenses, provide a high degree of reproducibility for successive lenses molded from the polycarbonate composition.

    [0091] The lens can be a planar (flat) lens, a curved lens, a cylindrical lens, a toric lens, a sphero-cylindrical lens, a fresnel lens, a convex lens, a biconvex lens, a concave lens, a biconcave lens, a convex-concave lens, a plano-convex lens, a plano-concave lens, a lenticular lens, a gradient index lens, an axicon lens, a conical lens, an astigmatic lens, an aspheric lens, a corrective lens, a diverging lens, a converging lens, a compound lens, a photographic lens, a doublet lens, a triplet lens, an achromatic lens, or a multi-array lens. Thus, the lens can be a layer of a multi-layer lens.

    [0092] The lenses can be defined by several dimensional features such as thickness, effective lens area, diameter of an effective lens area, and an overall diameter. Lens thickness, as defined herein, is measured at the center of the lens (i.e., along the z axis, orthogonal to the diameter of the lens which is measured in the x-y plane of the lens). Since lenses have curvature, the thickness of the lens may vary along the contour of the surface. Also, depending upon the type of the lens (convex, concave, etc.) the variation of the thickness can differ widely. In an embodiment, the lens has a thickness of a thickness of 0.1 mm to 50 cm, or 0.1 mm to 10 cm, 0.1 mm to 1 cm, or 0.1 mm to 0.5 cm, or 0.1 mm to 50 mm, measured at the thickest part of the lens. In a specific embodiment, the lens has a thickness of 0.25 to 2.5 mm, or 0.5 to 2.4 mm, or 0.8 to 2.3 mm, measured at the center of the lens.

    [0093] The size of the lens is characterized by the term "effective lens area," which is defined as the area of the lens where the curvature is positive, and hence light which is refracted through this area is usable in actual imaging. "Curvature" as defined herein, is the reciprocal of the optical radius of the lens (as defined by the light path). For example a flat surface has infinite radius and therefore zero curvature. For those lenses that include a flat portion around the periphery of the lens, which is used for mounting the lens into the optical assembly, this flat portion is not considered part of the effective lens area. A typical lens has at least two surfaces, a first and a second surface. On the first (incident) surface, light enters the lens and exits through the second (refractive) surface. One or both of these surfaces may have a curvature. The effective lens area as defined above may be the same for the first and second surfaces, or may be different for the first and second surfaces. Where different, the larger value of the effective surface area for the first and second surfaces is considered to be the effective lens area for the overall lens. The lens can have an effective lens area of 0.2 mm2 to 10 m2, or 0.2 mm2 to 1 m2, or 0.2 mm2 to 10 cm2, or 0.2 mm2 to 5 mm2, or 0.2 mm2 to 100 mm2.

    [0094] Effective lens area diameter as defined herein describes the diameter measured at the outermost periphery of the effective (optically useable) area of the lens; whereas overall diameter of the lens is the diameter which includes the non-optically relevant flat portion. The lenses disclosed herein can have a diameter of an effective lens area of 0.1 mm to 500 cm, or 0.25 mm to 50 cm, or 0.5 mm to 1 cm, or 0.5 mm to 10 mm; or an overall diameter of 0.1 mm to 2 m, or 0.25 mm to 100 cm, or 0.5 mm to 2 cm, or 0.5 mm to 20 mm.

    [0095] The lens can have an overall diameter of 0.1 mm to 500 cm, or 0.25 mm to 100 cm, or 0.5 mm to 2 cm, or 0.5 mm to 20 mm

    [0096] The lenses can have surface textures such as a macrotexture, a microtexture, a nanotexture, or a combination thereof on a surface of the lenses. Textures can also be imparted to the lenses using methods known in the art including but not limited to calendaring or embossing techniques. In an embodiment, the lenses can pass through a gap between a pair of rolls with at least one roll having an embossed pattern thereon, to transfer the embossed pattern to a surface of the lenses. Textures can be applied to control gloss or reflection.

    [0097] The shape of the lenses is not particularly limited. The lenses can also have different types. For example, the lenses can be a flat or planar lens, a curved lens, a cylindrical lens, a toric or sphero-cylindrical lens, a fresnel lens, a convex lens, a biconvex lens, a concave lens, a biconcave lens, a convex-concave lens, a plano-convex lens, a plano-concave lens, a lenticular lens, a gradient index lens, an axicon lens, a conical lens, an astigmatic lens, an aspheric lens, a corrective lens, a diverging lens, a converging lens, a compound lens, a photographic lens, a doublet lens, a triplet lens, an achromatic lens, or a multi-array lens.

    [0098] The lenses can further comprise an indicia or a coating disposed on at least a portion of one or both sides of the lens to impart additional properties such as scratch resistance, ultra violet light resistance, aesthetic appeal, hydrophilicity, hydrophobicity, and the like. In an embodiment, the coating is a hard coat, a UV protective coat, an anti-refractive coat, an anti-reflective coat, a scratch resistant coat, a hydrophobic coat, a hydrophilic coat, or a combination comprising at least one of the foregoing. Coatings can be applied through standard application techniques such as overmolding, rolling, spraying, dipping, brushing, flow coating, or combinations comprising at least one of the foregoing application techniques.

    [0099] Depending on the applications, at least a portion of a surface of the lens is metallized in some embodiments. A metal layer can be disposed onto the surface of the lenses with the aid of electrocoating deposition, physical vapor deposition, or chemical vapor deposition or a suitable combination of these methods. Sputtering processes can also be used. The metal layer resulting from the metallizing process (e.g., by vapor deposition) can be 0.001 to 50 micrometers (µm) thick. Chrome, nickel, aluminum, and the like can be listed as examples of vaporizing metals. Aluminum vapor deposition is used in one embodiment as metal vapor deposition. The surface of the molded substrate can be treated with plasma, cleaned, or degreased before vapor deposition in order to increase adhesion.

    [0100] The lenses can have low birefringence, which means that the lenses can have low light distortion and a better quality image.

    [0101] Exemplary lenses include a camera lens, a sensor lens, an illumination lens, a safety glass lens, an ophthalmic corrective lens, or an imaging lens.

    [0102] The foregoing types of lenses can be used in a wide variety of applications. For example, the camera lens can be a mobile phone camera lens, a table camera lens, a security camera lens, a mobile phone camera lens, a tablet camera lens, a laptop camera lens, a security camera lens, a camera sensor lens, a copier camera lens, or a vehicle camera lens (e.g., an automotive camera lens).

    [0103] The sensor lens can be a motion detector lens, a proximity sensor lens, a gesture control lens, an infrared sensor lens, or a camera sensor lens.

    [0104] The illumination lens can be an indoor lighting lens, an outdoor lighting lens, vehicle headlamp lens, a vehicle foglight lens, a vehicle rearlight lens, a vehicle running light lens, a vehicle foglight lens, a vehicle interior lens, an a light emitting diode (LED) lens, or an organic light emitting diode (OLED) lens.

    [0105] The safety glass lens is a glasses lens, a goggles lens, a visor, a helmet lens, or other protective gear.

    [0106] The ophthalmic corrective lens can be incorporated into monocles, corrective glasses (including bifocals, trifocals, progressive lens, and the like), contact lenses, and the like.

    [0107] The imaging lens can be a scanner lens, a projector lens, a magnifying glass lens, a microscope lens, a telescope lens, a security lens, reading glasses lens, and the like.

    [0108] Accordingly, the lenses can be incorporated into a wide variety of devices, including a camera (including reflex cameras), an electronic device (such as mobile phones, tablets, laptop computers, and desk computers), a vehicle (which as used herein refers to any transportation devices, for example bicycles, scooters, motorcycles, automobiles, buses, trains, boats, ships, and aircraft) a flashlight, a business machine (such as a copier or a scanner), a lighting device (including indoor lighting such as table lamps and ceiling lights, outdoor lighting such as floodlights and streetlights, vehicle headlights, rearlights, side lights, running lights, foglights, and interior lights), an imaging device (such as a microscope, a telescope, a projector, a security lens (e.g. in a door), or reading glasses), a safety article (such as goggles, glasses, and headgear such as helmets), a vision corrective article (glasses or contact lens), or a toy.

    [0109] The invention is further illustrated by the following non-limiting examples.

    EXAMPLES



    [0110] The materials used in the Examples are described in Table 1.
    Table 1.
    ComponentChemical DescriptionSource
    CPC-1 PPP-BP (N-phenylphenolphthaleinyl bisphenol, 2,2-bis(4-hydro) - bisphenol A polycarbonate copolymer, 33 mol% PPP-BP, Mw = 21-25 kDa as determined by GPC using bisphenol A polycarbonate standards, para-cumylphenol (PCP) end-capped, with BPA carbonate units derived from BPA having 99.4-99.5% purity SABIC
    CPC-2 PPP-BP (N-phenylphenolphthaleinyl bisphenol, 2,2-bis(4-hydro) - Bisphenol A polycarbonate copolymer, 33 mol% PPP-BP, Mw = 21-25 kDa as determined by GPC using bisphenol A polycarbonate standards, para-cumylphenol (PCP) end-capped, with BPA carbonate units derived from BPA having 99.7% purity SABIC
    PC-1 Linear bisphenol A polycarbonate, produced via interfacial polymerization from BPA having 99.4-99.5% purity as determined by HPLC, Mw = 29-32 kDa as determined by GPC using bisphenol A polycarbonate standards, phenol end-capped SABIC
    PC-2 Linear Bisphenol A Polycarbonate, produced via interfacial polymerization, Mw of about 21,800 g/mol as determined by GPC using polycarbonate standards, para-cumylphenol (PCP) end-capped with BPA carbonate units derived from BPA having 99.4-99.5% purity as determined by HPLC SABIC
    PC-3 Linear bisphenol A polycarbonate, produced via interfacial polymerization from BPA having 99.7% purity as determined by HPLC, Mw = 29-32 kDa as determined by GPC using bisphenol A polycarbonate standards, phenol end-capped SABIC
    PC-4 Linear Bisphenol A Polycarbonate, produced via interfacial polymerization, Mw of about 21,800 g/mol as determined by GPC using polycarbonate standards, para-cumylphenol (PCP) end-capped with BPA carbonate units derived from BPA having 99.7% purity as determined by HPLC SABIC
    PC-5 Linear Bisphenol A Polycarbonate, produced via interfacial polymerization, Mw of about 35,000 g/mol as determined by GPC using polycarbonate standards, phenol end-capped with BPA carbonate units derived from BPA having 99.7% purity as determined by HPLC SABIC
    Tosylate Premix- 1 Premix of 0.06 wt% of butyl tosylate (source Aldrich) in PC-2 SABIC
    Tosylate Premix-2 Premix of 0.3 wt% of butyl tosylate (source Aldrich) in PC-2 SABIC
    Tosylate Premix-3 Premix of 0.4 wt% of butyl tosylate(source Aldrich) in PC-2 SABIC
    P-TSA premix Premix of 0.34 wt% of polystyrene sulfonic acid (source Aldrich) in PC-2 SABIC
    Et Tosylate premix Premix of 0.35 wt% of ethyl p-toluene sulfonate (source Aldrich) in PC-2 SABIC
    Poly p-TSA premix Premix of 0.34 wt% of polystyrene sulfonic acid (source Aldrich) in PC-2 SABIC
    OD p-TS premix Premix of 0.74 wt% of octadecyl p-toluenesulfonate (source TCI) in PC-2 SABIC
    p-TSAA premix Premix of 0.28 wt% of p-toluenesulfonic anhydride (source Aldrich) in PC-2 SABIC
    4-DBSA premix Premix of 0.57 wt% of 4-dodecylbenzenesulfonic acid (source Aldrich) in PC-2 SABIC
    p-TSA Na premix Premix of 0.34 wt% of sodium p-toluenesulfonate (source Aldrich) in PC-2 SABIC
    10-CSA premix Premix of 0.41 wt% of 10-camphorsulfonic acid (source Aldrich) in PC-2 SABIC
    Ph Tosylate premix Premix of 0.44 wt% of phenyl p-toluenesulfonate (source TCI) in PC-2 SABIC
    AO-1 Tris(2,4-di-t-butylphenyl)phosphite (IRGAFOS 168) Ciba
    AO-2 Octadecyl-3-(3,5-di-tert-butyl-4-hydroxyphenyl) propionate IRGANOX 1076 BASF
    PETS Palmitic/stearic acid (50/50) ester of dipenta/pentaerythritol (Loxiol EP8578) Cognis Oleochemicals
    H3PO3 Premix Premix of 0.626 wt% of a 45 wt% phosphorous acid aqueous solution in PC-1 SABIC
    UVA 234 2-[2-hydroxy-3,5-di-(1,1-dimethylbenzyl)]-2H-benzotriazol BASF
    UVA 5411 2-(2H-benzotriazol-2-yl)-4-(1,1,3,3-tetramethylbutyl)phenol CYTEC
    Epoxy Styrene-acrylate-epoxy oligomer BASF
    Rimar salt potassium perfluorobutane sulfonate 3M

    Blending, Extrusion, and Molding Conditions



    [0111] The compositions were made as follows. All solids were dry blended off-line as concentrates using one of the primary polymer powders as a carrier and starve-fed via gravimetric feeder(s) into the feed throat of the extruder. The remaining polymer(s) were starve-fed via gravimetric feeder(s) into the feed throat of the extruder as well. The liquid additives, if any, were fed before the vacuum using a liquid injection system. It will be recognized by one skilled in the art that the method is not limited to these processing steps or processing equipment.

    [0112] Extrusion of all materials was performed on a 25 mm Werner-Pfleiderer ZAK twin-screw extruder (L/D ratio of 33/1) with a vacuum port located near the die face. The extruder has 9 zones, which were set at temperatures of 40°C (feed zone), 200°C (zone 1), 250°C (zone 2), 270°C (zone 3) and 290 to 330°C (zone 4 to 8). Screw speed was 300 rpm and throughput was between 10 and 25 kg/hr. It will be recognized by one skilled in the art that the method is not limited to these temperatures or processing equipment.

    [0113] Samples of the compositions were molded after drying at 100 to 110°C for 6 hours on a 45-ton Engel molding machine with 22 mm screw or 75-ton Engel molding machine with 30 mm screw operating at a temperature 310 to 360°C with a mold temperature of 80 to 150°C with a typical residence between 3 and 15 minutes. It will be recognized by one skilled in the art that the method is not limited to these temperatures or processing equipment.

    Testing Methods



    [0114] Yellowness Index (YI) was calculated from the transmission spectrum from a MacBeth ColorEye7000A according to ASTM D1925. Parts with thickness of 1 mm or 2.5 mm were used, as specified in the Examples
    Tensile stress and tensile modulus were measured in accordance with ISO 527 with speed of 50 mm/min
    Flexural stress and flexural modulus were measured in accordance with ISO 178.

    [0115] ASTM Izod notched impact energy was as measured at 23°C according to ASTM D256 using a 80 mm x 10 mm x 4 mm specimen.

    [0116] ISO notched Izod impact was measured at 23°C according to ISO 180/1A using a multipurpose test specimen in accordance with ISO 3167 TYPE.

    [0117] A Vicat B120 softening temperature was measured according to ISO 306.

    [0118] Heat deflection temperature (HDT) was measured flat on a 80 mm x 10 mm x 4 mm bar with a 64 mm span at 0.45 MPa according to ISO 75/Bf.

    [0119] Melt volume flow rate (MVR) was measured at 330°C/ 2.16 Kg at 300 second dwell according to ISO 1133.

    [0120] Transmission at 400 nm, 550 nm, 940 nm, or 1310 nm was measured with Perkin Elmer 950 spectrometer equipped with 15 cm integrated sphere on a molded plaque with a thickness of 1 mm, 2 mm, or 3 mm.

    [0121] Haze was measured according to ASTM D1003-00 on a molded plaque with thickness of 1 to 3 mm.

    [0122] Refractive index was measured according to ISO 489 on a molded plaque with a thickness of 1 mm.

    [0123] Abbe number was measured according to ISO 489 on a molded plaque with a thickness of 1 mm.

    [0124] Flammability tests were performed following the procedure of Underwriter's Laboratory Bulletin 94 entitled "Tests for Flammability of Plastic Materials for Parts in Devices and Appliances" (ISBN 0-7629-0082-2), Fifth Edition, Dated October 29, 1996, incorporating revisions through and including December 12, 2003. Several ratings can be applied based on the rate of burning, time to extinguish, ability to resist dripping, and whether or not drips are burning. According to this procedure, materials can be classified as HB, UL94 V0, V1, V2, VA, and/or VB.

    Examples 1-14



    [0125] Examples 1-14 demonstrate the effect of the addition of butyl tosylate on the color of PPPBP-BPA copolycarbonate/BPA homopolycarbonate blends, based on polymers produced using BPA with 99.4 to 99.5% purity, with and without ultraviolet light stabilizers after the blends are molded under different conditions. Formulations and results are shown in Tables 2 and 3, where the formulations in Table 2 do not contain any ultraviolet light stabilizer while the formulations in Table 3 contain an ultraviolet light stabilizer. All YI measurements were performed on 2.5 mm thick plaques molded per conditions as specified in Table 2.
    Table 2.
    ComponentUnitCEx 1Ex 2Ex 3Ex 4Ex 5Ex 6CEx 7
    CPC-1 Wt% 63.70 63.70 63.70 63.70 63.70 63.70 63.7
    PC-1 Wt% 11.30 11.30 11.30 11.30 11.30 11.30 11.3
    PC-2 Wt% 24.58 24.25 23.91 23.58 22.91 22.08 24.5
    PETS Wt% 0.30 0.30 0.30 0.30 0.30 0.30 0.3
    AO-1 Wt% 0.08 0.08 0.08 0.08 0.08 0.08 0.08
    AO-2 Wt% 0.04 0.04 0.04 0.04 0.04 0.04 0.04
                     
    Tosylate premix-1 Wt%   0.33 0.67 1.00 1.67 2.50  
    H3PO3 Premix Wt%             0.11
    Total Wt% 100 100 100 100 100 100 100
    Sulfonic stabilizer content ppm 0 2 4 6 10 15 3
    Property        
    YI after molding at 310°C/5 min   2.1 2.1 2.1 2.1 2.1 2.1 1.94
    YI after molding at 335°C/10 min   9.7 3.1 2.6 2.7 2.7 2.7 4.99
    YI after molding at 355°C/5 min   8.9 3.6 3 2.8 2.7 2.7  
    YI after molding at 355°C/10 min   18.9 8.9 6.1 5.7 5.0 5 16.57
    YI after molding at 355°C/15 min   25.2 14.1 9.5 9.7 7.9 7.9  
    YI improvement* at 310°C/5 min % - 0 0 0 0 0 -8
    YI improvement* at 335°C/10 min % - -68 -73 -72 -72 -72 -49
    YI improvement* at 355°C/5 min % - -60 -66 -69 -70 -70 NA
    YI improvement* at 355°C/10 min % - -53 -68 -70 -74 -74 -12
    YI improvement* at 355°C/15 min % - -44 -62 -62 -69 -69 NA
    *Vs. CEx1
    Table 3.
    ComponentUnitCEx8Ex9Ex10Ex11Ex12Exl3CEx14
    CPC-1 Wt% 63.70 63.70 63.70 63.70 63.70 63.70 63.7
    PC-1 Wt% 11.30 11.30 11.30 11.30 11.30 11.30 11.3
    PC-2 Wt% 24.28 23.95 23.61 23.28 22.61 21.78 24.2
    PETS Wt% 0.30 0.30 0.30 0.30 0.30 0.30 0.3
    AO-1 Wt% 0.08 0.08 0.08 0.08 0.08 0.08 0.08
    AO-2 Wt% 0.04 0.04 0.04 0.04 0.04 0.04 0.04
    UVA 234 Wt% 0.30 0.30 0.30 0.30 0.30 0.30 0.3
    Tosylate premix-1 Wt% 0.00 0.33 0.67 1.00 1.67 2.50  
    H3PO3 Premix               0.11
    Total Wt% 100 100 100 100 100 100  
    Organosulfonic content ppm 0 2 4 6 10 15 3
    Property        
    YI after molding at 310°C/5 min   3.2 3.0 3 3 2.9 2.9 2.8
    YI after molding at 335°C/10 min   10.4 4.4 4 3.7 3.6 3.7 3.7
    YI after molding at 355°C/5 min   10.5 4.2 4.1 3.9 3.6 3.7  
    YI after molding at 355°C/10 min   19.8 8.6 6.9 6.8 5.4 5.7 10.4
    YI after molding at 355°C/15 min   26.7 14.3 10.3 11 7 7.7  
    YI improvement* at 310°C/5 min % - -6 -6 -6 -9 -9 -13
    YI improvement* at 335°C/10 min % - -58 -62 -64 -65 -64 -64
    YI improvement* at 355°C/5 min % - -60 -61 -63 -66 -65  
    YI improvement* at 355°C/10 min % - -57 -65 -66 -73 -71 -47
    YI improvement* at 355°C/15 min % - -46 -61 -59 -74 -71  
    * vs CEx8


    [0126] The data in Tables 2 and 3 indicates that the addition of as little as 2 ppm of butyl tosylate significantly improves YI when the blends are molded at 335 to 355°C for 5 to 15 minutes compared to a reference that does not contain the tosylate regardless whether an ultraviolet light stabilizer is present (CEx8) or not (CEx1). The improvement on color is more pronounced when the blends are molded at higher temperatures for longer time. Generally increasing the amount of butyl tosylate to up to 15 ppm further improves the color stability of the blends, comparing for instance Examples 3-6 with Example 2, and comparing Examples 10-13 with Example 9. Loadings of 4 ppm of butyl tosylate are desired for better color, higher than 6 ppm of loading provides further improved color. Typically color improvements of 50% or higher, or 60% or higher are achieved compared to the reference composition not containing the butyl tosylate at 335 or 355°C.

    [0127] The data also shows that H3PO3 is far less efficient in improving the color of the PPPBP-BPA copolycarbonate/BPA homopolycarbonate blends after abusive molding as compared to butyl tosylate, especially at most abusive conditions at melt temperature of 355°C.

    Examples 15-19



    [0128] Examples 15-19 compare the color stability of high purity PPPBP-BPA copolycarbonate/BPA homopolycarbonate blends that contain butyl tosylate, H3PO3, or citric acid after samples are molded under various process conditions at a thickness of 2.5 mm. Formulations and results are shown in Table 4.
    Table 4.
    ComponentUnitCEx15CEx17Ex18CEx19
    CPC-2 Wt% 44.8 44.8 44.88 44.8
    PC-3 Wt% 8.69 8.685 8.68 8.67
    PC-5 Wt% 46.09 46.09 46.09 46.09
    PETS Wt% 0.3 0.3 0.3 0.3
    AO-1 Wt% 0.08 0.08 0.08 0.08
    AO-2 Wt% 0.04 0.04 0.04 0.04
    Tosylate Premix-1 Wt%     0.067  
    Citric acid Wt%       0.01
    Total Wt% 100 100 100 100
    Organosulfonic content ppm 0 0 4 5
    Property     
    YI after molding at 290°C/5 min   1.9 1.7 1.8 4
    YI after molding at 290°C/10 min   1.8 1.6 1.9 5.6
    YI after molding at 340°C/5 min   3.2 2.6 2.1 16
    YI after molding at 340°C/10 min   8.9 4.5 2.9 23.6
    YI improvement vs CEx15 at 290°C/5 min % - -11 -5 111
    YI improvement vs CEx15 at 290°C/10 min % - -11 6 211
    YI improvement vs CEx15 at 340°C/5 min % - -19 -34 400
    YI improvement vs CEx8 at 340°C/10 min % - -49 -67 165


    [0129] The data in Table 4 shows that the addition of butyl tosylate significantly improves YI of blends containing a high purity PPPBP-BPA copolycarbonate and a BPA homopolycarbonate when the blends are molded at 340°C for 10 minutes compared to a control that does not contain any organosulfonic stabilizer (CEx15), or reference blends either contain phosphoric acid (CEx17) or citric acid (CEx19).

    Examples 20-35



    [0130] Examples 20-35 illustrate the effects of butyl tosylate on the color of blends containing PPPBP-BPA copolycarbonate and a BPA homopolycarbonate having various BPA purities (STD=99.4-99.5% purity, HP=99.7% purity) after the samples are molded under various processing conditions. Formulations and results are shown in Tables 5 and 6.
    Table 5.
    Component (wt%)CEx20Ex21Ex22Ex23CEx24Ex25Ex26Ex27
    CPC-1 63.7 63.7 63.7 63.7        
    CPC-2         63.7 63.7 63.7 63.7
    PC-1 24.6 23.3 23.0 22.6 24.6 23.3 23.0 22.6
    PC-2 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3
    PETS 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
    AO-1 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08
    AO-2 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04
    UVA 234 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
    Tosylate premix-1 0 1.00 1.33 1.67 0 1.00 1.33 1.67
    Total 100 100 100 100 100 100 100 100
    Sulfonic content (ppm) 0 6 8 10 0 6 8 10
    CPC/PC purity STD/STD STD/STD STD/STD STD/STD HP/STD HP/STD HP/STD HP/STD
    Property        
    YI after molding *                
     at 310°C/5 min 3.1 3.0 3.0 3.0 3.3 3.2 3.1 3.2
     at 335°C/10 min 8.6 3.6 3.7 3.7 8.2 3.8 3.7 3.6
     at 355°C/10 min 20.7 6.1 6.1 5.1 16.6 6.0 5.5 6.5
    YI improvement at 310°C/5 min - -3** -3** -3**   -3*** -6*** -3***
    YI improvement at 335°C/10 min - -58** -57** -57**   -54*** -55*** -56***
    YI improvement at 355°C/10 min - -71** -71** -75**   -64*** -67*** -61***
    *2.5 mm sample
    **vs. CEx20
    ***vs. CEx24
    Table 6.
    Component (wt%)CEx28Ex29Ex30Ex31CEx32Ex33Ex34Ex35
    CPC-1 63.7 63.7 63.7 63.7        
    CPC-2         63.7 63.7 63.7 63.7
    PC-3 24.6 23.3 23.0 22.6 24.6 23.3 23.0 22.6
    PC-4 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3
    PETS 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
    AO-1 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08
    AO-2 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04
    UVA 234 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
    Tosylate premix-1 0 1.00 1.33 1.67 0 1.00 1.33 1.67
    Total 100 100 100 100 100 100 100 100
    Sulfonic content (ppm) 0 6 8 10 0 6 8 10
    CPC/PC purity STD/HP STD/HP STD/HP STD/HP HP/HP HP/HP HP/HP HP/HP
    Property        
    YI after molding *                
     at 310°C/5 min 3.4 3.0 3.0 3.1 3.9 3.3 3.2 3.1
     at 335°C/10 min 8.7 3.8 3.6 3.6 8.3 3.9 3.6 3.3
     at 355°C/10 min 18.5 5.6 4.8 4.9 18.3 6.5 5.9 4.7
    YI improvement at 310°C/5 min - -12** -12** -9** - -15*** -18*** -21***
    YI improvement at 335°C/10 min - -56** -59** -59** - -53*** -57*** -60***
    YI improvement at 355°C/10 min - -70** -74** -74** - -64*** -68*** -74***
    *2.5 mm sample
    **vs. CEx28
    ***vs. CEx32


    [0131] The data in Tables 5 and 6 shows that adding butyl tosylate to PPPBP-BPA copolycarbonate/BPA homopolycarbonate blends improves the abusive YI (335°C/10 minutes and 355°C /10 minutes) for any BPA purity in the copolycarbonate and the homopolycarbonate, using any combination of standard and high purity resins, comparing for instance Ex21, Ex25, Ex29 and Ex33 (all containing 6 ppm butyl tosylate) with CEx20, CEx24, CEx28 and CEx32 respectively (same composition, but without the butyl tosylate), achieving YI reductions versus the comparative examples of 50-75%. The data also indicates that loadings of 6-10 ppm of butyl tosylate provide similar results in color stability, all achieving comparable improvements.

    Examples 36-47



    [0132] Examples 36-47 illustrate the effects of different loadings of butyl tosylate on the color of PPPBP-BPA copolycarbonate derived from high purity BPA (99.7% purity) without ultraviolet light stabilizers after the samples are molded under different conditions. Formulation and results are shown in Table 7.
    Table 7
    Component (wt%)CEx36Ex37Ex38Ex39Ex40Ex41Ex42Ex43Ex44CEx45CEx46CEx47
    CPC-2 99.59 98.91 98.58 98.25 99.31 99.25 99.18 99.05 98.91 99.47 99.42 99.36
    PETS 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
    AO-1 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08
    AO-2 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04
    H3PO3 premix                   0.11 0.165 0.22
    Tosylate premix-1   0.67 1.00 1.33                
    Tosylate premix-2         0.27 0.33 0.40 0.53 0.67      
    Total 100 100 100 100 100 100 100 100 100 100 100 100
    Sulfonic content (ppm) 0 4 6 8 8 10 12 16 20 3 4.5 6
    Property            
    YI after molding*                        
     at 330°C/5 min 5.9 3.2 2.9 2.8 3.2 3.2 3.1 3.2 3.1 3.4 3.3 2.6
     at 350°C/7.5 min 19.6 5.7 4.7 4.9 4.6 4.2 4.1 4.0 3.9 13.6 13.8 13.1
     at 355°C/10 min 24.9 10.4 7.6 6.5 6.9 6.9 6.1 5.8 6.0 21.1 19.1 19.3
     at 350°C/12.5 min 33.9 18.6 14.9 9.3           28.3 26.6 25.4
    YI improvement vs CEx36            
     at 330°C/5 min - -46 -51 -53 -46 -46 -47 -46 -47 -42 -44 -56
     at 350°C/7.5 min - -71 -76 -75 -77 -79 -79 -80 -80 -31 -30 -33
     at 355°C/10 min - -58 -69 -74 -72 -72 -76 -77 -76 -15 -23 -22
     at 350°C/12.5 min - -45 -56 -73           -17 -22 -25
    *2.5 mm sample


    [0133] The data in Table 7 shows that the addition of 4-20 ppm of butyl tosylate significantly improves YI of high purity PPPBP-BPA copolycarbonate without ultraviolet light stabilizers when the samples are molded at 330°C, 350°C, and 355°C for 5-12.5 minutes compared to a control that does not contain butyl tosylate (CEx36), achieving color reductions between 45 and 75% depending on the conditions as well as reference samples containing H3PO3 instead of butyl tosylate (CEx45-47), which are having improvements of 30% or less. The improvement is more pronounced when the samples are molded under more abusive conditions.

    Examples 48-60



    [0134] Examples 48-60 illustrate the effects of different loadings of butyl tosylate on the color of PPPBP-BPA copolycarbonate derived from high purity BPA (99.7% purity) with ultraviolet light stabilizers after the samples are molded under different conditions. Formulation and results are shown in Table 8.
    Table 8.
    Component (wt%)CEx48Ex50Ex51Ex52CEx53CEx54CEx58Ex59Ex60
    CPC-2 99.28 99.15 99.08 99.01 99.22 99.17 99.58 99.01 98.88
    PETS 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
    AO-1 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08
    AO-2 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04
    UVA 234 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
    UVA 5411                  
    H3PO3 premix         0.055 0.11      
    Tosylate premix-2   0.134 0.200 0.267     0.267 0.4 0.667
    Total 100 100 100 100 100 100 100 100 100
    Sulfonic content (ppm) 0 4 6 8 1.5 3 0 8 12
    Property         
    YI after molding                  
     330°C/5 min/2.5 mm             6.2 3.9 3.8
     330°C/5 min/1 mm 4.9 2.5 2.4 2.3 2.8 2.6      
     350°C/7.5min/2.5mm             14.7 5.2 4.9
     355°C/10min/2.5mm             22.9 6.1 5.8
     355°C/10 min/1 mm 14.8 7.1 5.8 7.1 12.4 10.9      
    YI improvement vs CEx Vs. CEx48Vs. CEx48Vs. CEx48Vs. CEx48Vs. CEx48 Vs. CEx58Vs. CEx58
     330°C/5 min/2.5 mm               -37 -39
     330°C/5 min/1 mm   -49 -51 -53 -43 -47      
     350°C/7.5min /2.5mm               -65 -67
     355°C/10min/2.5mm               -73 -75
     355°C/10 min/1 mm   -52 -61 -52 -16 -26      


    [0135] The data in Table 8 shows that the addition of 4 to 20 ppm of butyl tosylate (Ex50 to 52 and Ex59 to 60) significantly improves YI of high purity PPPBP-BPA copolycarbonate with ultraviolet light stabilizer when the samples are molded at 330°C, 350°C, and 355°C for 5 to 12.5 minutes compared to a control that does not contain butyl tosylate (CEx48 or CEx58), achieving color reductions between 40 and 61% depending on the conditions, as well as compared to reference samples containing H3PO3 instead of butyl tosylate (CEx53 to 54), which show improvements of 30% or less. The improvement is more pronounced when the samples are molded under more abusive conditions.

    Examples 62-67



    [0136] Examples 62-67 illustrate the effects of different loadings of butyl tosylate on the color of PPPBP-BPA copolycarbonate derived from standard purity BPA without ultraviolet light stabilizers after the samples are molded under different conditions. Formulation and results are shown in Table 9.
    Table 9.
    Component (wt%)Ex62Ex63Ex64Ex65Ex66Ex67CEx68
    CPC-1 99.58 99.25 98.91 98.58 99.31 99.18 99.47
    PETS 0.3 0.3 0.3 0.3 0.3 0.3 0.3
    AO-1 0.08 0.08 0.08 0.08 0.08 0.08 0.08
    AO-2 0.04 0.04 0.04 0.04 0.04 0.04 0.04
    H3PO3 premix             0.11
    Tosylate Premix-1   0.33 0.67 1.00      
    Tosylate Premix-2         0.27 0.40  
    Total              
    Organosulfonic content (ppm) 0 2 4 6 8 12 3
    Property              
    YI after molding              
     at 330°C/5 min/2.5 mm 3.72 2.44 3.00 2.84 2.82 2.84 3.55
     at 345°C/5 min/ 2.5 mm   3.81 3.81       4.29
     at 345°C/7.5 min/2.5 mm   7.77 5.14       10.64
     at 350°C/7.5 min/2.5 mm 28.99     6.93 5.07 4.52 19.63
     at 355°C/10 min/2.5 mm 35.59     15.71 9.25 8.86 26.74


    [0137] The data in Table 9 shows that the addition of 2-12 ppm of butyl tosylate significantly improves YI of standard purity PPPBP-BPA polycarbonate compositions that do not contain an ultraviolet light stabilizer when the samples are molded at 330°C, 345°C, 350°C, and 355°C for five to ten minutes compared to a control that does not contain butyl tosylate as well as a reference sample containing H3PO3 instead of butyl tosylate. The improvement is more pronounced when the samples are molded under abusive conditions.

    Examples 68-72



    [0138] Examples 68-42 compare the color stability of PPPBP-BPA copolycarbonate/BPA homopolycarbonate blends that contain butyl tosylate, or H3PO3 stabilizer, or neither butyl tosylate nor H3PO3 stabilizer after autoclaving. Formulations and results are shown in Table 10.
    Table 10.
    Component (wt%)CEx68CEx69CEx70Ex71Ex72
    CPC-1 63.70 63.70 63.70 63.70 63.70
    PC-1 7.0 7.0 7.0 7.0 7.0
    PC-2 28.88 28.55 28.44 28.21 27.88
    AO-1 0.08 0.08 0.08 0.08 0.08
    PETS 0.3 0.3 0.3 0.3 0.3
    AO-2 0.04 0.04 0.04 0.04 0.04
    H3PO3 Premix     0.11    
    Tosylate premix-1       0.67 0.67
    Epoxy   0.33 0.33   0.33
    Total 100 100 100 100 100
               
    Tosylate (ppm) 0 0   4 4
    Property          
    YI before autoclaving 2.2 2.9 2.5 2.2 2.2
    YI after autoclaving at 121°C for 100 hours 2.8 3.8 3.2 2.3 2.2
    YI shift 0.6 0.9 0.7 0.1 0


    [0139] The results in Table 10 indicate that butyl tosylate improves color stability after autoclaving in compositions with and without JONCRYL epoxy (Ex71 and Ex72). Compositions without additional organosulfonic stabilizer have a YI shift of 0.5 and higher (CEx68 and CEx69). A composition with H3PO3 stabilizer has a YI shift of 0.7 (CEx70). Surprisingly a composition containing butyl tosylate has a YI shift of 0.1 (Ex71) and a composition containing butyl tosylate and an epoxy additive has no YI shift after autoclaving at 121°C for 100 hours.

    Examples 73-74



    [0140] Examples 73-74 compare the effect of butyl tosylate loading on the color stability of PPPBP-BPA polycarbonate compositions having 45 mol% PPPBP carbonate units. The results are summarized in Table 11.
    Table 11.
    ComponentCEx73Ex74
    PPPBP carbonate units (mol.%) 45 45
    Butyl tosylate (ppm) 0 8
    YI after molding    
     at 350°C/5 min 27.31 21.49
     at 370°C/5 min 43.39 36.9
     at 370°C/7.5 min 59.05 52.39


    [0141] The data shows that the addition of butyl tosylate to PPPBP-BPA polycarbonate compositions having 45 mol% PPPBP carbonate units improves color after abusive molding.

    Examples 77-84



    [0142] Examples 77-84 illustrates various properties of compositions containing high purity PPPBP-BPA, butyl tosylate, and optionally a high purity BPA homopolycarbonate. Formulations and results are shown in Table 12. About 0.0002 wt% of a dye package was also present.
    Table 12.
    ComponentUnitEx77Ex78Ex79Ex82Ex83Ex84
    CPC-2 wt% 63.7 63.7 63.7 99.31 99.01 98.83
    PC4 wt% 28.68 28.38 23.9 0 0 0
    PC3 wt% 7 7 11.3 0 0 0
    Tosylate premix-2 wt% 0.2 0.2 0.2 0.27 0.27 0.27
    AO-1 wt% 0.08 0.08 0.08 0.08 0.08 0.08
    AO-2 wt% 0.04 0.04 0.04 0.04 0.04 0.04
    PETS wt% 0.3 0.3 0.3 0.3 0.3 0.3
    UVA234 wt% 0 0.3 0.3 0 0.3 0.3
    Rimar salt wt% 0 0 0.08 0 0 0.08
    Octaphenylcyclotetrasiloxane wt% 0 0 0.1 0 0 0.1
                   
    Tensile Modulus, 1 mm/min MPa 2488 2511 2522 2550 2589 2571
    Tensile Stress, yield, 50 mm/min MPa 76 77 77 82 83 82
    Tensile Stress, break, 50 mm/min MPa 64 69 67 65 65 65
    Tensile Strain, yield, 50 mm/min % 6.4 6.9 6.9 7.3 7.3 7.2
    Tensile Strain, break, 50 mm/min % 60 84 78 40 30 27
    Flexural Modulus, 2 mm/min MPa 2524 2518 2526 2547 2634 2574
    Flexural Stress, yield, 2 mm/min MPa 116 117 114 123 125 124
    Izod Impact, notched, +23°C J/m 89 83 80 74 72 76
    Izod Impact, notched, -30°C J/m NA 79 78 73 68 74
    Izod Impact, notched* +23°C kJ/m2 8 8 8 8 7 7
    Izod Impact, notched* -30°C kJ/m2 NA 6 7 6 6 7
    Vicat Softening Temp, B/120 °C 173.1 171.7 171.6 192.9 191.0 189.7
    HDT °C 164.7 165.5 165.4 186.0 185.0 184.4
    MVR at 330°C/2.16 kg, 300s cm3/10 min 29.51 30.77 33.27 14.1 15.0 16.7
    Transmission at 400 nm, 1 mm % 86.5     85.5 71.4 82.9
    Transmission at 400 nm, 2 mm % 84.8     82.4 58.7 78.2
    Transmission at 400 nm, 3 mm % 82.8     79.6 48.5 73.6
    Transmission at 550 nm, 1 mm % 88.1     88.1 87.2 87.8
    Transmission at 550 nm, 2 mm % 86.8     86.7 85.2 86.5
    Transmission at 550 nm, 3 mm % 85.5     85.3 83.1 85.0
    Transmission at 940 nm, 1 mm % 90.3     90.1 90.1 90.0
    Transmission at 940 nm, 2 mm % 90.2     90.0 89.9 89.9
    Transmission at 940 nm, 3 mm % 89.9     89.8 89.8 89.6
    Transmission at 1310 nm, 1 mm % 90.0     89.8 89.8 89.8
    Transmission at 1310 nm, 2 mm % 89.3     89.2 89.1 89.1
    Transmission at 1310 nm, 3 mm % 88.6     88.5 88.5 88.4
    Total transmission, 1 mm % 89.5 89.0 90.0 89.5 88.7 89.3
    Total transmission, 2 mm % 88.4 88.7 88.9 88.1 86.6 88.0
    Total transmission, 3 mm % 87.1 7.4 87.8 86.8 84.7 86.7
    Haze, 1 mm % 0.4 0.3 0.3 0.4 0.4 0.3
    Haze, 2 mm % 0.7 0.3 0.3 0.6 0.6 0.4
    Haze, 3mm % 0.9 0.4 0.4 0.8 0.8 0.5
    Refractive index at 587.6 nm - 1.602 1.602 NA 1.609 1.609 NA
    Refractive index at 940 nm - 1.583 1.583 NA 1.589 1.589 NA
    Refractive index at 1310 nm - 1.577 1.577 NA 1.583 1.583 NA
    Abbe number - 30 30 NA 29 29 NA
    UL94 rating at 2.5 mm - NA NA V0 NA NA V0
    UL94 rating at 2.0 mm - NA NA V2 NA NA V2
    UL94 rating at 1.5 mm - NA NA V2 NA NA V2
    UL94 rating at 0.8 mm - NA NA V2 NA NA V2

    Examples 85-101



    [0143] Examples 85-101 illustrate the effects of different organosulfonic stabilizers on the color of PPPBP-BPA copolycarbonate, optionally blended with a BPA homopolycarbonate after the samples are molded at 355°C for 5 minutes or 10 minutes. For these examples, the molding conditions used were a sample drying time of 140°C for 5 hours, using a J85AD (85 ton) molding machine by JSW having a screw diameter Φ=25 mm, a set temperature of 355°C, and a tool temperature of 120°C. YI was determined on a 3.2mm color plaque using on a MacBeth ColorEye7000A (ASTM D1925). The organosulfonic stabilizers screened are shown in Table 13.
    Table 13.
    NameOrganosulfonic stabilizer NameOrganosulfonic stabilizer
    Sodium p-toluenesulfonic acid (p-TSA Na)

      Ethyl tosylate (Et Tosylate)

    Phenyl p-toluenesulfonate (Ph tosylate)

      p-Toluenesulfonic anhydride (p-TSAA)

    4-Docecylbenzenesulfonic acid (4-DBSA)

      Octadecyl p-toluenesulfonate (OD p-TS)

    Polystyrene sulfonic acid (Poly p-TSA)

      Camphorsulfonic acid (10-CSA)

    Butyl tosylate (n-Bu tosylate)

      p-Toluenesulfonic acid (p-TSA)



    [0144] The formulations and results are shown in Table 14 and FIG. 1. The level of organosulfonic stabilizer in the premix was 6 ppm (0.06 wt%). CEx96 to CEx98 are comparative examples with no organosulfonic stabilizer.
    Table 14.
    Component (wt%)Ex85Ex86Ex87Ex88Ex89Ex90Ex91CEx96Ex99Ex 100Ex 101Ex92Ex93CEx 97Ex94Ex95CEx 98
    CPC-1 63.49 63.49 63.49 63.49 63.49 63.49 63.49 63.64 63.49 63.49 63.49            
    CPC-2                       63.49 63.49 63.64 99.49 99.49 99.64
    PC-1 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0      
    PC-2 29.0 29.0 29.0 29.0 29.0 29.0 29.0 29.0 29.0 29.0 29.0 29.0 29.0 29.0      
    PETS 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
    AO-1 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08
    AO-2 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04
    n-Bu tosylate premix 0.15                     0.15     0.15    
    p-TSA premix   0.15                     0.15     0.15  
    Poly p-TSA premix     0.15                            
    Et Tosylate premix       0.15                          
    OD p-TS premix         0.15                        
    p-TSAA premix           0.15                      
    4-DBSA premix             0.15                    
    p-TSA Na premix                 0.15                
    10-CSA premix                   0.15              
    Ph tosylate premix                     0.15            
    Total 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
    Property                 
    YI after molding*                                  
     at 355°C/5 min 3.8 3.7 4.9 3.8 3.8 3.7 3.7 7.5 6.3 4.5 7.1 3.4 3.5 3.9 5.7 5.9 11.7
     at 355°C/10 min 9.9 10.6 10.4 9.5 11.5 10.5 9.0 23.5 23.2 17.9 23.4 4.3 4.3 12.3 9.4 11.3 33.9
    *3.2mm thickness plaque


    [0145] Comparison of CEx96, Ex99, and Ex101 show that the sodium salt of p-toluene sulfonic acid and have very little effect on the color of a blend of PPPBP-BPA copolycarbonate and phenyl tosylate a BPA homopolycarbonate after abusive molding. It may be possible to substitute the phenyl group of phenyl tosylate to improve its efficacy. For example, it may be that certain substituents that improve the leaving group capability of the phenyl group can be used. Ex 100 shows that camphorsulfonic acid provides certain improvement on color after abusive molding; however, the improvement is limited. The remaining organosulfonic stabilizers significantly improve the color of PPP-BPA copolycarbonate or a blend of PPP-BPA copolycarbonate and a BPA homopolycarbonate, after abusive molding at 355°C for 5 minutes or 10 minutes.

    [0146] The singular forms "a," "an," and "the" include plural referents unless the context clearly dictates otherwise. "Or" means "and/or." The endpoints of all ranges directed to the same component or property are inclusive and independently combinable. Unless defined otherwise, technical and scientific terms used herein have the same meaning as is commonly understood by one of skill in the art to which this invention belongs. As used herein, a "combination" is inclusive of blends, mixtures, alloys, reaction products, and the like. A "combination thereof" includes any combination comprising at least one of the listed components or properties optionally together with a like component or property not listed.

    [0147] Compounds are described using standard nomenclature. For example, any position
    not substituted by any indicated group is understood to have its valency filled by a bond as indicated, or a hydrogen atom. A dash ("-") that is not between two letters or symbols is used to indicate a point of attachment for a substituent. For example, -CHO is attached through carbon of the carbonyl group.

    [0148] As used herein, the term "hydrocarbyl" and "hydrocarbon" refers broadly to a substituent comprising carbon and hydrogen, optionally with 1 to 3 heteroatoms, for example, oxygen, nitrogen, halogen, silicon, sulfur, or a combination thereof; "alkyl" refers to a straight or branched chain, saturated monovalent hydrocarbon group; "alkylene" refers to a straight or branched chain, saturated, divalent hydrocarbon group; "alkylidene" refers to a straight or branched chain, saturated divalent hydrocarbon group, with both valences on a single common carbon atom; "alkenyl" refers to a straight or branched chain monovalent hydrocarbon group having at least two carbons joined by a carbon-carbon double bond; "aryl" refers to an aromatic monovalent group containing only carbon in the aromatic ring or rings; "arylene" refers to an aromatic divalent group containing only carbon in the aromatic ring or rings; "alkylarylene" refers to an aryl group that has been substituted with an alkyl group as defined above, with 4-methylphenyl being an exemplary alkylarylene group; "arylalkylene" refers to an alkyl group that has been substituted with an aryl group as defined above, with benzyl being an exemplary arylalkylene group.

    [0149] Unless otherwise indicated, each of the foregoing groups can be unsubstituted or substituted, provided that the substitution does not significantly adversely affect synthesis, stability, or use of the compound. The term "substituted" as used herein means that at least one hydrogen on the designated atom or group is replaced with another group, provided that the designated atom's normal valence is not exceeded. When the substituent is oxo (i.e., =O), then two hydrogens on the atom are replaced. Combinations of substituents and/or variables are permissible provided that the substitutions do not significantly adversely affect synthesis or use of the compound. Groups that can be present on a substituted position include (-NO2), cyano (-CN), halogen, thiocyano (-SCN), C2-6 alkanoyl (e.g., acyl (H3CC(=O)-); carboxamido; C1-6 or C1-3 alkyl, cycloalkyl, alkenyl, and alkynyl; C1-6 or C1-3 alkoxy; C6-10 aryloxy such as phenoxy; C1-6 alkylthio; C1-6 or C1-3 alkylsulfinyl; C1-6 or C1-3 alkylsulfonyl; C6-12 aryl having at least one aromatic rings (e.g., phenyl, biphenyl, naphthyl, or the like, each ring either substituted or unsubstituted aromatic); C7-19 arylalkylene having 1 to 3 separate or fused rings and 6 to 18 ring carbon atoms; or arylalkoxy having 1 to 3 separate or fused rings and 6 to 18 ring carbon atoms. The stated number of carbon atoms includes any substituents.

    [0150] While typical embodiments have been set forth for the purpose of illustration, the foregoing descriptions should not be deemed to be a limitation on the scope herein. Accordingly, various modifications, adaptations, and alternatives can occur to one skilled in the art without departing from the scope herein.


    Claims

    1. A copolycarbonate lens comprising a polycarbonate composition comprising:

    a copolycarbonate comprising bisphenol A carbonate units and second carbonate units of the formula

    wherein

    Ra and Rb are each independently a C1-12 alkyl, C1-12 alkenyl, C3-8 cycloalkyl, or C1-12 alkoxy,

    each R3 is independently a C1-6 alkyl,

    R4 is hydrogen, C2-6 alkyl or phenyl optionally substituted with 1 to 5 C1-6 alkyl groups,

    p, q, and j are each independently 0 to 4,

    optionally a bisphenol A homopolycarbonate; and

    2 to 40 ppm of an organosulfonic stabilizer of the formula

    wherein

    each R7 is independently a C1-30 alkyl, C6-30 aryl, C7-30 alkylarylene, C7-30 arylalkylene, or a polymer unit derived from a C2-32 ethylenically unsaturated aromatic sulfonic acid or its ester, and

    R8 is C1-30 alkyl; or R8 is a group of the formula -S(=O)2-R7;

    wherein the second carbonate units are present in an amount of 20 to 49 mol%, preferably 30 to 40 mol% based on the sum of the moles of the copolycarbonate and the bisphenol A homopolycarbonate; and

    wherein the polycarbonate composition has:

    a Vicat B120 of 160°C or higher measured according to ISO 306; and

    a yellowness index of less than 12, preferably less than 8, more preferably less than 6 measured according to ASTM D1925 on a plaque of 2.5 mm thickness molded at a temperature of 355°C for a residence time of 10 minutes.


     
    2. The copolycarbonate lens of claim 1, wherein the lens is a planar lens, a curved lens, a cylindrical lens, a toric lens, a sphero-cylindrical lens, a fresnel lens, a convex lens, a biconvex lens, a concave lens, a biconcave lens, a convex-concave lens, a plano-convex lens, a plano-concave lens, a lenticular lens, a gradient index lens, an axicon lens, a conical lens, an astigmatic lens, an aspheric lens, a corrective lens, a diverging lens, a converging lens, a compound lens, a photographic lens, a doublet lens, a triplet lens, an achromatic lens, or a multi-array lens.
     
    3. The copolycarbonate lens of any one or more of claims 1 to 2, further comprising a macrotexture, a microtexture, a nanotexture, or a combination thereof on a surface of the lens.
     
    4. The copolycarbonate lens of any one or more of claims 1 to 3, wherein the lens has one or more of:

    a thickness of 0.1 mm to 50 cm, or 0.1 mm to 10 cm, 0.1 mm to 1 cm, or 0.1 mm to 0.5 cm, or 0.1 mm to 50 mm measured at the thickest part of the lens, preferably a thickness of 0.25 to 2.5 mm, or 0.5 to 2.4 mm, or 0.8 to 2.3 mm, measured at the center of the lens;

    an effective lens area of 0.2 mm2 to 10 m2, or 0.2 mm2 to 1 m2, or 0.2 mm2 to 10 cm2, or 0.2 mm2 to 5 mm2, or 0.2 mm2 to 100 mm2;

    a diameter of an effective lens area of 0.1 mm to 500 cm, or 0.25 mm to 50 cm, or 0.5 mm to 1 cm, or 0.5 mm to 10 mm; or

    an overall diameter of 0.1 mm to 500 cm, or 0.25 mm to 100 cm, or 0.5 mm to 2 cm, or 0.5 mm to 20 mm.


     
    5. The copolycarbonate lens of any one or more of claims 1 to 4, further comprising an indicia or a coating disposed on at least a portion of one or both surfaces of the copolycarbonate lens.
     
    6. The copolycarbonate lens of claim 5, wherein the coating is a hard coat, a UV protective coat, an anti-refractive coat, an anti-reflective coat, a scratch resistant coat, or a combination comprising at least one of the foregoing, or wherein at least a portion of a surface of the lens is metallized.
     
    7. The copolycarbonate lens of any one or more of claims 1 to 6, wherein the copolycarbonate lens is a camera lens, a sensor lens, an illumination lens, a safety glass lens, an ophthalmic corrective lens, or an imaging lens, and optionally
    wherein

    the camera lens is a mobile phone camera lens, a table camera lens, a security camera lens, a mobile phone camera lens, a tablet camera lens, a laptop camera lens, a security camera lens, a camera sensor lens, or a vehicle camera lens,

    the sensor lens can be a motion detector lens, a proximity sensor lens, a gesture control lens, an infrared sensor lens, or a camera sensor lens,

    the illumination lens is an indoor lighting lens, an outdoor lighting lens, vehicle headlamp lens, a vehicle foglight lens, a vehicle rearlight lens, a vehicle running light lens, a vehicle foglight lens, a vehicle interior lens, an a light emitting diode lens, or an organic light emitting diode lens,

    the safety glass lens is a glasses lens, a goggles lens, a visor, or a helmet lens,

    the ophthalmic corrective lens is a monocle lens, a corrective glasses lens, or a contact lens, or

    the imaging lens is a scanner lens, a projector lens, a magnifying glass lens, a microscope lens, a telescope lens, a security lens, or a reading glasses lens,


     
    8. The copolycarbonate lens of any one or more of claim 1 to 7, wherein the second carbonate repeating units in the copolycarbonate are of the formula

    wherein R5 is hydrogen, phenyl or methyl, preferably phenyl.
     
    9. The copolycarbonate lens of any one or more of claims 1 to 8, wherein the copolycarbonate comprises from 15 to 90 mole percent of the bisphenol A carbonate units and 10 to 85 mole percent of the second carbonate units, each based on the total number of carbonate units in the copolycarbonate, and preferably
    wherein the copolycarbonate comprises from 50 to 90 mole percent of the bisphenol A carbonate units and 10 to 50 mole percent of the second carbonate units, and has less than 15 mole percent of the second carbonate units directly coupled to another second carbonate unit, each based on the total number of carbonate units in the copolycarbonate.
     
    10. The copolycarbonate lens of any one or more of claims 1 to 9, wherein the copolycarbonate further comprises at least 5 mole percent of a third carbonate unit different from the bisphenol A carbonate units and the second carbonate units, the third carbonate unit comprising units of the formula



    or a combination thereof, wherein

    Rc and Rd are each independently a C1-12 alkyl, C1-12 alkenyl, C3-8 cycloalkyl, or C1-12 alkoxy, each R6 is independently C1-3 alkyl or phenyl,

    Xa is a C6-12 polycyclic aryl, C3-18 mono- or polycycloalkylene, C3-18 mono- or polycycloalkylidene, -(Q1)x-G-(Q2)y- group wherein Q1 and Q2 are each independently a C1-3 alkylene, G is a C3-10 cycloalkylene, x is 0 or 1, and y is 1, or -C(P1)(P2)- wherein P1 is C1-12 alkyl and P2 is C6-12 aryl, and

    m and n are each independently 0 to 4, and preferably

    wherein the copolycarbonate comprises from 15 to 70 mole percent of the bisphenol A carbonate units, 5 to 50 mole percent of the second carbonate units, and 5 to 50 mole percent of the third carbonate units, each based on the total number of carbonate units in the copolycarbonate.
     
    11. The copolycarbonate lens of any one or more of claim 1 to 10, wherein in the organosulfonic stabilizer each R7 is independently a C6-12 aryl, C7-24 alkylarylene, or a polymer unit derived from a C2-14 ethylenically unsaturated aromatic sulfonic acid or its C1-30 alkyl ester; and R8 is C1-24 alkyl, or a group of the formula -S(=O)2-R7 wherein R7 is a C6-12 aryl or C7-24 alkylarylene.
     
    12. The copolycarbonate lens of any one or more of claims 1 to 11, wherein in the organosulfonic stabilizer

    R7 is a C6-12 aryl, C7-24 alkylarylene, or a polymer unit derived from a C2-14 ethylenically unsaturated aromatic sulfonic acid or its ester; and R8 is C1-24 alkyl, or a group of the formula - S(=O)2-R7 wherein R7 is a C6-12 aryl or C7-24 alkylarylene; or

    R7 is a C7-10 alkylarylene or a polymer unit derived from a C2-14 ethylenically unsaturated aromatic sulfonic acid, and R8 is a C1-25 alkyl, or a group of the formula -S(=O)2-R7 wherein R7 is a C7-10 alkylarylene; or

    R7 is a polymer unit derived from a C2-14 ethylenically unsaturated aromatic sulfonic acid, preferably p-styrene sulfonic acid or para-methyl styrene sulfonic acid; or

    R7 is a C1-10 alkyl ester of a C7-12 alkylarylene sulfonic acid, preferably of p-toluene sulfonic acid, more preferably butyl tosylate; or

    R7 is a group of the formula -S(=O)2-R1 wherein R1 is a C6-12 aryl or C7-24 alkylarylene, preferably a C7-10 alkylarylene.


     
    13. The copolycarbonate lens any one or more of claim 1 to 12, wherein the stabilizer is present in an amount of 2 ppm to 20 ppm, preferably 4 ppm to 15 ppm, based on the total weight of the polycarbonate composition.
     
    14. The copolycarbonate lens of any one or more of claims 1 to 13, wherein the polycarbonate composition has a bisphenol A purity of equal to or greater than 99.6%, or of equal to or greater than 99.7% measured by high performance liquid chromatography.
     
    15. The copolycarbonate lens of any one or more of claims 1 to 14, wherein the polycarbonate homopolymer is present in an amount of 10 to 90 wt%, preferably 10 to 65 wt%, more preferably 15 wt% 50 wt%, most preferably 20 to 45 wt%, based on the total weight of the polycarbonate composition.
     
    16. The copolycarbonate lens of any or more of claims 1 to 15, comprising:
    a copolycarbonate comprising bisphenol A carbonate units and second carbonate units of the formula

    wherein

    R5 is hydrogen, phenyl, or methyl, preferably phenyl,

    optionally a bisphenol A homopolycarbonate; and

    2 to 20 ppm or 4 to 10 ppm of an organosulfonic stabilizer comprising a C1-30 alkyl ester of p-toluenesulfonic acid, and more preferably butyl tosylate;

    wherein the polycarbonate composition has 25 mol% to 49 mol% or 30 to 40 mol% of second carbonate units based on the sum of the moles of the copolycarbonate and the bisphenol A homopolycarbonate.


     
    17. The copolycarbonate lens of any one or more of claims 1 to 16, comprising, based on the total weight of the polycarbonate composition:
    60 to 70 wt% of a copolycarbonate comprising bisphenol A carbonate units and second carbonate units of the formula

    wherein

    R5 is hydrogen, phenyl or methyl, preferably phenyl.

    25 to 40 wt% of a bisphenol A homopolycarbonate; and

    2 to 20 ppm or 4 to 10 ppm or 4 to 8 ppm of an organosulfonic stabilizer comprising a C1-30 alkyl ester of p-toluenesulfonic acid or a combination thereof, and more preferably butyl tosylate;

    wherein the polycarbonate composition has 25 mol% to 49 mol% or 30 to 40 mol% of second carbonate units based on the sum of the moles of the copolycarbonate and the bisphenol A homopolycarbonate.


     
    18. The copolycarbonate lens of any one or more of claims 1 to 16, comprising, based on the total weight of the polycarbonate composition:
    96 to 99.9 wt% of a copolycarbonate comprising bisphenol A carbonate units and second carbonate units of the formula

    wherein

    R5 is hydrogen, phenyl or methyl, preferably phenyl; and

    2 to 20 ppm, or 4 to 10 ppm, or 4 to 8 ppm of an organosulfonic stabilizer comprising a C1-30 alkyl ester of p-toluenesulfonic acid, and more preferably butyl tosylate;

    wherein the polycarbonate composition has 25 mol% to 49 mol%, or 30 to 40 mol% of second carbonate units based on the moles of the copolycarbonate.


     
    19. The copolycarbonate lens of any one or more of claims 1 to 18, wherein the copolycarbonate has a hydroxyl end group content of less than 200 ppm and the optional bisphenol A homopolycarbonate has a hydroxyl end group content of less than 150 ppm, and
    wherein the optional bisphenol A homopolycarbonate has a sulfur content of less than 2 ppm, or the copolycarbonate, the optional bisphenol A homopolycarbonate, or both are derived from a bisphenol A having a sulfur content of less than 2 ppm, each as measured by a Total Sulfur Analysis based on combustion and coulometric detection, or the optional bisphenol A homopolycarbonate.
     
    20. A device comprising the copolycarbonate lens of any one or more of claims 1 to 19, wherein the device is a camera, an electronic device, a vehicle, a flashlight, a business machine, a lighting device, an imaging device, a protective article, a vision corrective article , or a toy.
     


    Ansprüche

    1. Eine Copolycarbonatlinse, die eine Polycarbonatzusammensetzung umfasst, Folgendes umfassend:
    ein Copolycarbonat, das Bisphenol A-Carbonateinheiten und zweite Carbonateinheiten mit der Formel

    umfasst, worin

    Ra und Rb jeweils unabhängig ein C1-12-Alkyl, C1-12-Alkenyl, C3-8-Cycloalkyl oder C1-12-Alkoxy sind,

    jedes R3 unabhängig ein C1-6-Alkyl ist,

    R4 Wasserstoff, C2-6-Alkyl oder Phenyl, wahlweise substituiert mit 1 bis 5 C1-6 Alkylgruppen, ist,

    p, q und j jeweils unabhängig 0 bis 4 sind;

    wahlweise ein Bisphenol A-Homopolycarbonat und

    2 bis 40 ppm eines organo-sulfonischen Stabilisators mit der Formel

    worin

    jedes R7 unabhängig ein C1-30-Alkyl, C6-30-Aryl, C7-30-Alkylarylen, C7-30-Arylalkylen oder eine Polymereinheit, abgeleitet von einer ethylenisch ungesättigten aromatischen C2-32-Sulfonsäure oder ihrem Ester, ist und

    R8 C1-30-Alkyl oder eine Gruppe mit der Formel -S(=O)2-R7 ist;

    wobei die zweiten Carbonateinheiten in einer Menge von 20 bis 49 Molprozent, vorzugsweise 30 bis 40 Molprozent, basierend auf der Summe der Mol des Copolycarbonats und des Bisphenol A-Homopolycarbonats, vorliegen; und

    wobei die Polycarbonatzusammensetzung Folgendes hat:

    einen Vicat B120 von 160°C oder mehr, gemessen nach ISO 306; und

    einen Gelbheitsindex von weniger als 12, vorzugsweise weniger als 8, stärker bevorzugt weniger als 6, gemessen nach ASTM D1925 an einer Platte von 2,5 mm Dicke, geformt bei einer Temperatur von 355°C für eine Verweilzeit von 10 Minuten.


     
    2. Die Copolycarbonatlinse gemäß Anspruch 1, wobei die Linse eine planare Linse, eine gekrümmte Linse, eine zylindrische Linse, eine torische Linse, eine sphärozylindrische Linse, eine Fresnel-Linse, eine konvexe Linse, eine bikonvexe Linse, eine konkave Linse, eine bikonkave Linse, eine konvex-konkave Linse, eine plankonvexe Linse, eine plankonkave Linse, eine Lentikularlinse, eine Gradienten-Index-Linse, eine Axicon-Linse, eine konische Linse, eine astigmatische Linse, eine asphärische Linse, eine Korrekturlinse, eine Zerstreuungslinse, eine Sammellinse, ein Objektiv, eine fotografische Linse, eine Dublettenlinse, eine Triplettenlinse, eine achromatische Linse oder eine Multi-Array-Linse ist.
     
    3. Die Copolycarbonatlinse gemäß einem beliebigen oder mehreren der Ansprüche 1 bis 2, die weiter eine Makrotextur, eine Mikrotextur, eine Nanotextur oder eine Kombination davon auf einer Oberfläche der Linse umfasst.
     
    4. Die Copolycarbonatlinse gemäß einem beliebigen oder mehreren der Ansprüche 1 bis 3, wobei die Linse eines oder mehrere von Folgendem hat:

    einer Dicke von 0,1 mm bis 50 cm, oder 0,1 mm bis 10 cm, 0,1 mm bis 1 cm oder 0,1 mm bis 0,5 cm oder 0,1 mm bis 50 mm, gemessen am dicksten Teil der Linse; vorzugsweise einer Dicke von 0,25 bis 2,5 mm oder 0,5 bis 2,4 mm oder 0,8 bis 2,3 mm, gemessen in der Mitte der Linse;

    einer wirksamen Linsenfläche von 0,2 mm2 bis 10 m2 oder 0,2 mm2 bis 1 m2 oder 0,2 mm2 bis 10 cm2 oder 0,2 mm2 bis 5 mm2 oder 0,2 mm2 bis 100 m2;

    eines Durchmessers einer wirksamen Linsenfläche von 0,1 mm bis 500 cm oder 0,25 mm bis 50 cm oder 0,5 mm bis 1 cm oder 0,5mm bis 10 mm; oder

    eines Gesamtdurchmessers von 0,1 mm bis 500 cm oder 0,25 mm bis 100 cm oder 0,5 mm bis 2 cm oder 0,5 mm bis 20 mm.


     
    5. Die Copolycarbonatlinse gemäß einem beliebigen oder mehreren der Ansprüche 1 bis 4, die weiter eine Markierung oder eine Beschichtung umfasst, angebracht auf mindestens einem Teil einer oder beider Oberflächen der Copolycarbonatlinse.
     
    6. Die Copolycarbonatlinse gemäß Anspruch 5, wobei die Beschichtung eine Hartbeschichtung, eine UV-Schutzschicht, eine anti-refraktive Beschichtung, eine reflexmindernde Beschichtung, eine kratzfeste Beschichtung oder eine Kombination ist, die mindestens eine der oben Genannten umfasst, oder wobei mindestens ein Teil einer Oberfläche der Linse metallisiert ist.
     
    7. Die Copolycarbonatlinse gemäß einem beliebigen oder mehreren der Ansprüche 1 bis 6, wobei die Copolycarbonatlinse eine Kameralinse, eine Sensorlinse, eine Beleuchtungslinse, eine Sicherheitsglaslinse, eine ophthalmologische Korrekturlinse oder eine Abbildungslinse ist und wobei wahlweise
    die Kameralinse eine Mobiltelefon-Kameralinse, eine Tischkameralinse, eine Sicherheitskameralinse, eine Tablet-Kameralinse, eine Laptop-Kameralinse, eine Kamerasensorlinse oder eine Fahrzeugkameralinse ist,
    die Sensorlinse eine Bewegungssensorlinse, eine Näherungssensorlinse, eine Gestiksteuerungslinse, eine Infrarotsensorlinse oder eine Kamerasensorlinse sein kann,
    die Beleuchtungslinse eine Innenraum-Beleuchtungslinse, eine Außenraum-Beleuchtungslinse, eine Fahrzeugscheinwerferlinse, eine Fahrzeug-Nebelscheinwerferlinse, eine Fahrzeugrücklichtlinse, eine Fahrzeug-Begrenzungsleuchtenlinse, eine Fahrzeug-Innenraumlinse, eine LED-Linse oder eine OLED-Linse ist,
    die Sicherheitsglaslinse ein Brillenglas, ein Schutzbrillenglas, eine Blende oder eine Helmlinse ist,
    die ophthalmologische Korrekturlinse eine Monokellinse, eine Korrekturglaslinse oder eine Kontaktlinse ist oder
    die Abbildungslinse eine Scannerlinse, eine Projektorlinse, eine Vergrößerungsglaslinse, eine Mikroskoplinse, eine Teleskoplinse, eine Sicherheitslinse oder eine Lesebrillenlinse ist.
     
    8. Die Copolycarbonatlinse gemäß einem beliebigen oder mehreren der Ansprüche 1 bis 7, wobei die zweiten Carbonatwiederholungseinheiten im Copolycarbonat folgende Formel haben:

    wobei R5 Wasserstoff, Phenyl oder Methyl, vorzugsweise Phenyl, ist.
     
    9. Die Copolycarbonatlinse gemäß einem beliebigen oder mehreren der Ansprüche 1 bis 8, wobei das Copolycarbonat von 15 bis 90 Molprozent der Bisphenol A-Carbonateinheiten und 10 bis 85 Molprozent der zweiten Carbonateinheiten umfasst, jeweils basierend auf der Gesamtzahl der Carbonateinheiten im Copolycarbonat, und wobei vorzugsweise
    das Copolycarbonat 50 bis 90 Molprozent der Bisphenol A-Carbonateinheiten und 10 bis 50 Molprozent der zweiten Carbonateinheiten umfasst, wobei weniger als 15 Molprozent der zweiten Carbonateinheiten direkt mit einer anderen zweiten Carbonateinheit gekoppelt sind, jeweils basierend auf der Gesamtzahl der Carbonateinheiten im Copolycarbonat.
     
    10. Die Copolycarbonatlinse gemäß einem beliebigen oder mehreren der Ansprüche 1 bis 9, wobei das Copolycarbonat weiter mindestens 5 Molprozent einer dritten Carbonateinheit umfasst, die sich von den Bisphenol A-Carbonateinheiten und den zweiten Carbonateinheiten unterscheidet; wobei die dritte Carbonateinheit Einheiten mit folgenden Formeln



    oder einer Kombination derselben umfasst, wobei

    Rc und Rd jeweils unabhängig ein C1-12-Alkyl, C1-12-Alkenyl, C3-8-Cycloalkyl oder C1-12-Alkoxy sind,

    jedes R6 unabhängig C1-3-Alkyl oder Phenyl ist,

    Xa ein polycyclisches C6-12-Aryl, C3-18-Mono- oder Polycycloalkylen, C3-18-Mono- oder Polycycloalkyliden, eine
    - (Q1)x-G-(Q2)y-Gruppe, worin Q1 und Q2 jeweils unabhängig ein C1-3-Alkylen sind, G ein C3-10-Cycloalkylen ist, x 0 oder 1 ist und y 1 ist, oder -C(P1) (P2)-, worin P1 C1-12-Alkyl ist und P2 C6-12-Aryl ist; und

    m und n jeweils unabhängig 0 bis 4 sind und wobei vorzugsweise

    das Copolycarbonat 15 bis 70 Molprozent der Bisphenol A-Carbonateinheiten, 5 bis 50 Molprozent der zweiten Carbonateinheiten und 5 bis 50 Molprozent der dritten Carbonateinheiten, jeweils basierend auf der Gesamtzahl der Carbonateinheiten im Copolycarbonat, umfasst.


     
    11. Die Copolycarbonatlinse gemäß einem beliebigen oder mehreren der Ansprüche 1 bis 10, wobei im organosulfonischen Stabilisator jedes R7 unabhängig ein C6-12-Aryl, C7-24-Alkylarylen oder eine Polymereinheit, abgeleitet von einer ethylenisch ungesättigten aromatischen C2-14-Sulfonsäure oder ihrem C1-30-Alkylester ist und R8 C1-24-Alkyl oder eine Gruppe mit der Formel -S(=O)2-R7 ist, wobei R7 ein C6-12-Aryl oder
    C7-24-Alkylarylen ist.
     
    12. Die Copolycarbonatlinse gemäß einem beliebigen oder mehreren der Ansprüche 1 bis 11, wobei im organosulfonischen Stabilisator
    R7 ein C6-12-Aryl, C7-24-Alkylarylen oder eine Polymereinheit, abgeleitet von einer ethylenisch ungesättigten aromatischen
    C2-14-Sulfonsäure oder ihrem Ester, ist und R8 C1-24-Alkyl oder eine Gruppe mit der Formel -S(=O)2-R7 ist, worin R7 ein C6-12-Aryl oder C7-24-Alkylarylen ist; oder
    R7 ein C7-10-Alkylarylen oder eine Polymereinheit, abgeleitet von einer ethylenisch ungesättigten aromatischen
    C2-14-Sulfonsäure, ist und R8 ein C1-25-Alkyl oder eine Gruppe mit der Formel -S(=O)2-R7 ist, worin R7 ein C7-10-Alkylarylen ist; oder
    R7 eine Polymereinheit, abgeleitet von einer ethylenisch ungesättigten aromatischen C2-14-Sulfonsäure, vorzugsweise p-Styrolsulfonsäure oder para-Methylstyrolsulfonsäure, ist; oder
    R7 ein C1-10-Alkylester einer C7-12-Alkylarylensulfonsäure, vorzugsweise p-Toluensulfonsäure, vorzugsweise Butyltosylat, ist; oder
    R7 eine Gruppe mit der Formel -S(=O)2-R1 ist, wobei R1 ein C6-12-Aryl oder C7-24-Alkylarylen, vorzugsweise ein C7-10-Alkylarylen, ist.
     
    13. Die Copolycarbonatlinse gemäß einem beliebigen oder mehreren der Ansprüche 1 bis 12, wobei der Stabilisator in einer Menge von 2 ppm bis 20 ppm, vorzugsweise 4 ppm bis 15 ppm, basierend auf dem Gesamtgewicht der Polycarbonatzusammensetzung, vorliegt.
     
    14. Die Copolycarbonatlinse gemäß einem beliebigen oder mehreren der Ansprüche 1 bis 13, wobei die Polycarbonatzusammensetzung eine Bisphenol A-Reinheit von mindestens 99,6% oder mindestens 99,7%, gemessen durch Hochleistungsflüssigchromatographie, hat.
     
    15. Die Copolycarbonatlinse gemäß einem beliebigen oder mehreren der Ansprüche 1 bis 14, wobei das Polycarbonathomopolymer in einer Menge von 10 bis 90 Gewichtsprozent, vorzugsweise 10 bis 65 Gewichtsprozent, stärker bevorzugt 15 bis 50 Gewichtsprozent, am stärksten bevorzugt 20 bis 45 Gewichtsprozent, basierend auf dem Gesamtgewicht der Polycarbonatzusammensetzung, vorliegt.
     
    16. Die Copolycarbonatlinse gemäß einem beliebigen oder mehreren der Ansprüche 1 bis 15, die Folgendes umfasst:
    ein Copolycarbonat, das Bisphenol A-Carbonateinheiten und zweite Carbonateinheiten mit folgender Formel umfasst:

    worin R5 Wasserstoff, Phenyl oder Methyl, vorzugsweise Phenyl, ist, wahlweise ein Bisphenol A-Homopolycarbonat und

    2 bis 20 ppm oder 4 bis 10 ppm eines organosulfonischen Stabilisators, der einen C1-30-Alkylester von p-Toluensulfonsäure, und stärker bevorzugt Butyltosylat, umfasst;

    wobei die Polycarbonatzusammensetzung 25 Molprozent bis 49 Molprozent oder 30 bis 40 Molprozent zweiter Carbonateinheiten, basierend auf der Summe der Mol des Copolycarbonats und des Bisphenol A-Homopolycarbonats, hat.


     
    17. Die Copolycarbonatlinse gemäß einem beliebigen oder mehreren der Ansprüche 1 bis 16, die, basierend auf dem Gesamtgewicht der Polycarbonatzusammensetzung, Folgendes umfasst:
    60 bis 70 Gewichtsprozent eines Copolycarbonats, das Bisphenol A-Carbonateinheiten und zweite Carbonateinheiten mit folgender Formel umfasst:

    worin R5 Wasserstoff, Phenyl oder Methyl, vorzugsweise Phenyl, ist, 25 bis 40 Gewichtsprozent eines Bisphenol A-Homopolycarbonats und 2 bis 20 ppm oder 4 bis 10 ppm oder 4 bis 8 ppm eines organosulfonischen Stabilisators, der einen C1-30-Alkylester von p-Toluensulfonsäure oder eine Kombination davon, und stärker bevorzugt Butyltosylat, umfasst;

    wobei die Polycarbonatzusammensetzung 25 Molprozent bis 49 Molprozent oder 30 bis 40 Molprozent zweiter Carbonateinheiten, basierend auf der Summe der Mol des Copolycarbonats und des Bisphenol A-Homopolycarbonats, hat.


     
    18. Die Copolycarbonatlinse gemäß einem beliebigen oder mehreren der Ansprüche 1 bis 16, die, basierend auf dem Gesamtgewicht der Polycarbonatzusammensetzung, Folgendes umfasst:
    96 bis 99,9 Gewichtsprozent eines Copolycarbonats, das Bisphenol A-Carbonateinheiten und zweite Carbonateinheiten mit folgender Formel umfasst:

    worin R5 Wasserstoff, Phenyl oder Methyl, vorzugsweise Phenyl, ist; und

    2 bis 20 ppm oder 4 bis 10 ppm oder 4 bis 8 ppm eines organosulfonischen Stabilisators, der einen C1-30-Alkylester von p-Toluensulfonsäure, und stärker bevorzugt Butyltosylat, umfasst;

    wobei die Polycarbonatzusammensetzung 25 Molprozent bis 49 Molprozent oder 30 bis 40 Molprozent zweiter Carbonateinheiten, basierend auf den Mol des Copolycarbonats, hat.


     
    19. Die Copolycarbonatlinse gemäß einem beliebigen oder mehreren der Ansprüche 1 bis 18, wobei das Copolycarbonat einen Hydroxylendgruppen-Gehalt von weniger als 200 ppm hat und das optionale Bisphenol A-Homopolycarbonat einen Hydroxylendgruppen-Gehalt von weniger als 150 ppm hat, und
    wobei das optionale Bisphenol A-Homopolycarbonat einen Schwefelgehalt von weniger als 2 ppm hat oder das Copolycarbonat, das optionale Bisphenol A-Homopolycarbonat oder beide von einem Bisphenol A abgeleitet sind, das einen Schwefelgehalt von weniger als 2 ppm hat, jeweils gemessen durch eine Gesamtschwefelanalyse auf der Grundlage von Verbrennung und coulometrischer Analyse, oder das optionale Bisphenol A-Homopolycarbonat.
     
    20. Eine Vorrichtung, die die Copolycarbonatlinse gemäß einem beliebigen oder mehreren der Ansprüche 1 bis 19 umfasst, wobei die Vorrichtung eine Kamera, ein elektronisches Gerät, ein Fahrzeug, eine Taschenlampe, ein Bürogerät, eine Beleuchtungsvorrichtung, eine Abbildungsvorrichtung, eine Schutzvorrichtung, eine Sehhilfe oder ein Spielzeug ist.
     


    Revendications

    1. Lentille en copolycarbonate comprenant une composition de polycarbonate comprenant :
    un copolycarbonate comprenant des motifs carbonate de bisphénol A et des deuxièmes motifs carbonate de formule

    dans laquelle

    chacun de Ra et Rb est indépendamment un alkyle en C1 à C12, alcényle en C1 à C12, cycloalkyle en C3 à C8, ou alcoxy en C1 à C12,

    chaque R3 est indépendamment un alkyle en C1 à C6,

    R4 est un hydrogène, alkyle en C2 à C6 ou phényle éventuellement substitué par 1 à 5 groupes alkyle en C1 à C6,

    chacun de p, q et j vaut indépendamment de 0 à 4,

    éventuellement un homopolycarbonate de bisphénol A ; et

    2 à 40 ppm d'un stabilisant sulfonique organique de formule

    dans laquelle

    chaque R7 est indépendamment un alkyle en C1 à C30, aryle en C6 à C30, alkylarylène en C7 à C30, arylalkylène en C7 à C30, ou un motif polymère dérivé d'un acide sulfonique aromatique à insaturation éthylénique en C2 à C32 ou de son ester, et

    R8 est un alkyle en C1 à C30 ; ou R8 est un groupe de formule - S(=O)2-R7 ;

    dans laquelle les deuxièmes motifs carbonate sont présents en une quantité de 20 à 49 % en moles, de préférence de 30 à 40 % en moles par rapport à la somme des moles du copolycarbonate et de l'homopolycarbonate de bisphénol A ; et

    dans laquelle la composition de polycarbonate a :

    un point Vicat B120 de 160°C ou plus, mesuré conformément à la norme ISO 306 ; et

    un indice de jaunissement inférieur à 12, de préférence inférieur à 8, mieux encore inférieur à 6, mesuré conformément à la norme ASTM D1925 sur une plaque ayant une épaisseur de 2,5 mm, moulée à une température de 355°C pendant un temps de séjour de 10 minutes.


     
    2. Lentille en copolycarbonate selon la revendication 1, laquelle lentille est une lentille plane, une lentille incurvée, une lentille cylindrique, une lentille torique, une lentille sphéro-cylindrique, une lentille de Fresnel, une lentille convexe, une lentille biconvexe, une lentille concave, une lentille biconcave, une lentille convexe-concave, une lentille plane-convexe, une lentille plane-concave, une lentille lenticulaire, une lentille à indice de gradient, une lentille en axicon, une lentille conique, une lentille astigmatique, une lentille asphérique, une lentille correctrice, une lentille divergente, une lentille convergente, une lentille combinée, une lentille photographique, une lentille en doublet, une lentille en triplet, une lentille achromatique, ou une lentille à réseaux multiples.
     
    3. Lentille en copolycarbonate selon l'une quelconque ou plusieurs des revendications 1 et 2, comprenant en outre une macrotexture, une microtexture, une nanotexture, ou une combinaison de celles-ci sur une surface de la lentille.
     
    4. Lentille en copolycarbonate selon l'une quelconque ou plusieurs des revendications 1 à 3, laquelle lentille a un ou plusieurs parmi :

    une épaisseur de 0,1 mm à 50 cm, ou de 0,1 mm à 10 cm, de 0,1 mm à 1 cm, ou de 0,1 mm à 0,5 cm, ou de 0,1 mm à 50 mm, mesurée au niveau de la partie la plus épaisse de la lentille, de préférence une épaisseur de 0,25 à 2,5 mm, ou de 0,5 à 2,4 mm, ou de 0,8 à 2,3 mm, mesurée au niveau du centre de la lentille ;

    une surface utile de lentille de 0,2 mm2 à 10 m2, ou de 0,2 mm2 à 1 m2, ou de 0,2 mm2 à 10 cm2, ou de 0,2 mm2 à 5 mm2, ou de 0,2 mm2 à 100 mm2 ;

    un diamètre de surface utile de lentille de 0,1 mm à 500 cm, ou de 0,25 mm à 50 cm, ou de 0,5 mm à 1 cm, ou de 0,5 mm à 10 mm ; ou

    un diamètre global de 0,1 mm à 500 cm, ou de 0,25 mm à 100 cm, ou de 0,5 mm à 2 cm, ou de 0,5 mm à 20 mm.


     
    5. Lentille en copolycarbonate selon l'une quelconque ou plusieurs des revendications 1 à 4, comprenant en outre un marquage ou un revêtement disposé sur au moins une partie de l'une ou des deux surfaces de lentille en copolycarbonate.
     
    6. Lentille en copolycarbonate selon la revendication 5, dans laquelle le revêtement est un revêtement dur, un revêtement protégeant contre les UV, un revêtement anti-réfraction, un revêtement antireflet, un revêtement résistant aux rayures, ou une combinaison comprenant au moins l'un des précédents, ou dans laquelle au moins une partie d'une surface de la lentille est métallisée.
     
    7. Lentille en copolycarbonate selon l'une quelconque ou plusieurs des revendications 1 à 6, laquelle lentille en copolycarbonate est une lentille de caméra, une lentille de capteur, une lentille d'éclairage, une lentille de verre de sécurité, une lentille correctrice ophtalmique, ou une lentille d'imagerie, et éventuellement
    dans laquelle
    la lentille de caméra est une lentille de caméra de téléphone cellulaire, une lentille de caméra de table, une lentille de caméra de sécurité, une lentille de caméra de téléphone cellulaire, une lentille de caméra de tablette, une lentille de caméra d'ordinateur portable, une lentille de caméra de sécurité, une lentille de capteur de caméra, ou une lentille de caméra de véhicule,
    la lentille de capteur peut être une lentille de détecteur de mouvement, une lentille de capteur de proximité, une lentille de contrôle de gestuelle, une lentille de capteur à infrarouges, ou une lentille de capteur de caméra,
    la lentille d'éclairage est une lentille d'éclairage intérieur, une lentille d'éclairage extérieur, une lentille de phare de véhicule, une lentille de feu antibrouillard de véhicule, une lentille de feu arrière de véhicule, une lentille de feu de position de véhicule, une lentille de feu antibrouillard de véhicule, une lentille d'intérieur de véhicule, une lentille de diode luminescente, ou une lentille de diode luminescente organique,
    la lentille de verre de sécurité est un verre de lunette, un verre de lunette de protection, un viseur, ou une lentille de casque,
    la lentille correctrice ophtalmique est un verre de monocle, un verre de lunette correctrice, ou une lentille de contact, ou
    la lentille d'imagerie est une lentille de scanner, une lentille de projecteur, une lentille de loupe, une lentille de microscope, une lentille de télescope, une lentille de sécurité, ou un verre de lunette de lecture.
     
    8. Lentille en copolycarbonate selon l'une quelconque ou plusieurs des revendications 1 à 7, dans laquelle les deuxièmes motifs répétitifs carbonate dans le copolycarbonate sont de formule

    dans laquelle R5 est un hydrogène, phényle ou méthyle, de préférence phényle.
     
    9. Lentille en copolycarbonate selon l'une quelconque ou plusieurs des revendications 1 à 8, dans laquelle le copolycarbonate comprend de 15 à 90 % en moles des motifs carbonate de bisphénol A et 10 à 85 % en moles des deuxièmes motifs carbonate, chacun par rapport au nombre total de motifs carbonate dans le copolycarbonate, et de préférence dans laquelle le copolycarbonate comprend de 50 à 90 % en moles des motifs carbonate de bisphénol A et de 10 à 50 % en moles des deuxièmes motifs carbonate, et a moins de 15 % en moles des deuxièmes motifs carbonate directement couplés à un autre deuxième motif carbonate, chacun par rapport au nombre total de motifs carbonate dans le copolycarbonate.
     
    10. Lentille en copolycarbonate selon l'une quelconque ou plusieurs des revendications 1 à 9, dans laquelle le copolycarbonate comprend en outre au moins 5 % en moles d'un troisième motif carbonate différent des motifs carbonate de bisphénol A et des deuxièmes motifs carbonate, le troisième motif carbonate comprenant des motifs de formule



    ou une combinaison de ces formules, dans lesquelles

    chacun de Rc et Rd est indépendamment un alkyle en C1 à C12, alcényle en C1 à C12, cycloalkyle en C3 à C8 ou alcoxy en C1 à C12,

    chaque R6 est indépendamment un alkyle en C1 à C3 ou phényle,

    Xa est un aryle polycyclique en C6 à C12, mono- ou poly-cycloalkylène en C3 à C18, mono- ou poly-cycloalkylidène en C3 à C18, un groupe - (Q1)x-G-(Q2)y où chacun de Q1 et Q2 est indépendamment un alkylène en C1 à C3, G est un cycloalkylène en C3 à C10, x vaut 0 ou 1, et y vaut 1, ou -C(P1) (P2)- où P1 est un alkyle en C1 à C12 et P2 est un aryle en C6 à C12, et

    chacun de m et n vaut indépendamment de 0 à 4,

    et de préférence dans laquelle le copolycarbonate comprend de 15 à 70 % en moles des motifs carbonate de bisphénol A, 5 à 50 % en moles des deuxièmes motifs carbonate, et 5 à 50 % en moles des troisièmes motifs carbonate, chacun par rapport au nombre total de motifs carbonate dans le copolycarbonate.


     
    11. Lentille en copolycarbonate selon l'une quelconque ou plusieurs des revendications 1 à 10, dans laquelle, dans le stabilisant sulfonique organique, chaque R7 est indépendamment un aryle en C6 à C12, un alkylarylène en C7 à C24, ou un motif polymère dérivé d'un acide sulfonique aromatique à insaturation éthylénique en C2 à C14 ou de son ester alkylique en C1 à C30 ; et R8 est un alkyle en C1 à C24, ou un groupe de formule - S(=O)2-R7 dans laquelle R7 est un aryle en C6 à C12 ou un alkylarylène en C7 à C24.
     
    12. Lentille en copolycarbonate selon l'une quelconque ou plusieurs des revendications 1 à 11, dans laquelle, dans le stabilisant sulfonique organique,
    R7 est un aryle en C6 à C12, un alkylarylène en C7 à C24, ou un motif polymère dérivé d'un acide sulfonique aromatique à insaturation éthylénique en C2 à C14 ou de son ester ; et R8 est un alkyle en C1 à C24 ou un groupe de formule -S(=O)2-R7 dans laquelle R7 est un aryle en C6 à C12 ou un alkylarylène en C7 à C24 ; ou
    R7 est un alkylarylène en C7 à C10 ou un motif polymère dérivé d'un acide sulfonique aromatique à insaturation éthylénique en C2 à C14, et R8 est un alkyle en C1 à C25 ou un groupe de formule -S(=O)2-R7 dans laquelle R7 est un alkylarylène en C7 à C10 ; ou
    R7 est un motif polymère dérivé d'un acide sulfonique aromatique à insaturation éthylénique en C2 à C14, de préférence l'acide p-styrènesulfonique ou l'acide para-méthylstyrènesulfonique ; ou
    R7 est un ester alkylique en C1 à C10 d'un acide alkylarylènesulfonique en C7 à C12, de préférence d'acide p-toluènesulfonique, mieux encore le tosylate de butyle ; ou
    R7 est un groupe de formule -S(=O)2-R1 dans laquelle R1 est un aryle en C6 à C12 ou un alkylarylène en C7 à C24, de préférence un alkylarylène en C7 à C10.
     
    13. Lentille en copolycarbonate selon l'une quelconque ou plusieurs des revendications 1 à 12, dans laquelle le stabilisant est présent en une quantité de 2 ppm à 20 ppm, de préférence de 4 ppm à 15 ppm, par rapport au poids total de la composition de polycarbonate.
     
    14. Lentille en copolycarbonate selon l'une quelconque ou plusieurs des revendications 1 à 13, dans laquelle la composition de polycarbonate a une pureté du bisphénol A égale ou supérieure à 99,6 %, ou égale ou supérieure à 99,7 %, mesurée par chromatographie liquide haute performance.
     
    15. Lentille en copolycarbonate selon l'une quelconque ou plusieurs des revendications 1 à 14, dans laquelle l'homopolymère de polycarbonate est présent en une quantité de 10 à 90 % en poids, de préférence de 10 à 65 % en poids, mieux encore de 15 % en poids à 50 % en poids, tout spécialement de 20 à 45 % en poids par rapport au poids total de la composition de polycarbonate.
     
    16. Lentille en copolycarbonate selon l'une quelconque ou plusieurs des revendications 1 à 15, comprenant :
    un copolycarbonate comprenant des motifs carbonate de bisphénol A et des deuxièmes motifs carbonate de formule

    dans laquelle R5 est un hydrogène, phényle ou méthyle, de préférence phényle,

    éventuellement un homopolycarbonate de bisphénol A ; et

    2 à 20 ppm ou 4 à 10 ppm d'un stabilisant sulfonique organique comprenant un ester alkylique en C1 à C30 d'acide p-toluènesulfonique, et mieux encore le tosylate de butyle ;

    dans laquelle la composition de polycarbonate a 25 % en moles à 49 % en moles ou 30 à 40 % en moles de deuxièmes motifs carbonate, par rapport à la somme des moles du copolycarbonate et de l'homopolycarbonate de bisphénol A.


     
    17. Lentille en copolycarbonate selon l'une quelconque ou plusieurs des revendications 1 à 16, comprenant, par rapport au poids total de la composition de polycarbonate :
    60 à 70 % en poids d'un copolycarbonate comprenant des motifs carbonate de bisphénol A et des deuxièmes motifs carbonate de formule

    dans laquelle R5 est un hydrogène, phényle ou méthyle, de préférence phényle,

    25 à 40 % en poids d'un homopolycarbonate de bisphénol A ; et

    2 à 20 ppm ou 4 à 10 ppm ou 4 à 8 ppm d'un stabilisant sulfonique organique comprenant un ester alkylique en C1 à C30 d'acide p-toluènesulfonique ou une combinaison de tels esters, et mieux encore le tosylate de butyle ;

    dans laquelle la composition de polycarbonate a 25 % en moles à 49 % en moles ou 30 à 40 % en moles de deuxièmes motifs carbonate, par rapport à la somme des moles du copolycarbonate et de l'homopolycarbonate de bisphénol A.


     
    18. Lentille en copolycarbonate selon l'une quelconque ou plusieurs des revendications 1 à 16, comprenant, par rapport au poids total de la composition de polycarbonate :
    96 à 99,9 % en poids d'un copolycarbonate comprenant des motifs carbonate de bisphénol A et des deuxièmes motifs carbonate de formule

    dans laquelle R5 est un hydrogène, phényle ou méthyle, de préférence phényle ; et

    2 à 20 ppm ou 4 à 10 ppm ou 4 à 8 ppm d'un stabilisant sulfonique organique comprenant un ester alkylique en C1 à C30 d'acide p-toluènesulfonique, et mieux encore le tosylate de butyle ;

    dans laquelle la composition de polycarbonate a 25 % en moles à 49 % en moles ou 30 à 40 % en moles de deuxièmes motifs carbonate, par rapport aux moles du copolycarbonate.


     
    19. Lentille en copolycarbonate selon l'une quelconque ou plusieurs des revendications 1 à 18, dans laquelle le copolycarbonate a une teneur en groupe terminal hydroxyle inférieure à 200 ppm et l'homopolycarbonate de bisphénol A optionnel a une teneur en groupe terminal hydroxyle inférieure à 150 ppm, et
    dans laquelle l'homopolycarbonate de bisphénol A optionnel a une teneur en soufre inférieure à 2 ppm, ou bien le copolycarbonate, l'homopolycarbonate de bisphénol A optionnel ou les deux dérivent d'un bisphénol A ayant une teneur en soufre inférieure à 2 ppm, chacune telle que mesurée par une analyse de soufre total basée sur une combustion et une détection coulométrique, ou l'homopolycarbonate de bisphénol A optionnel.
     
    20. Dispositif comprenant la lentille en copolycarbonate de l'une quelconque des revendications 1 à 19, lequel dispositif est une caméra, un dispositif électronique, un véhicule, une lampe torche, une machine de bureau, un dispositif d'éclairage, un dispositif d'imagerie, un article protecteur, un article corrigeant la vision, ou un jouet.
     






    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description




    Non-patent literature cited in the description