(19)
(11)EP 3 380 554 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
10.06.2020 Bulletin 2020/24

(21)Application number: 16822270.1

(22)Date of filing:  24.11.2016
(51)International Patent Classification (IPC): 
C08L 5/16(2006.01)
C08B 37/16(2006.01)
(86)International application number:
PCT/IB2016/057088
(87)International publication number:
WO 2017/089978 (01.06.2017 Gazette  2017/22)

(54)

CRYSTALLINE FORMS OF PER-CHLORO-GAMMA-CYCLODEXTRINES

KRISTALLINE FORMEN VON PERCHLORO-GAMMACYCLODEXTRINEN

FORMES CRISTALLINES DES PERCHLORO-GAMMA-CYCLODEXTRINES


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 25.11.2015 IN 3842DE2015

(43)Date of publication of application:
03.10.2018 Bulletin 2018/40

(73)Proprietor: Fresenius Kabi iPSUM S.r.l.
20060 Cassina de' Pecchi - Milano (IT)

(72)Inventors:
  • CABRI, Walter
    20089 Rozzano(MI) (IT)
  • RICCI, Antonio
    65010 Spoltore (Pescara) (IT)
  • ZANON, Jacopo
    30123 Venezia (IT)
  • LAHIRI, Saswata
    Ghaziabad U.P. 201010 (IN)
  • SINGH, Govind
    Ghaziabad U.P. 201010 (IN)
  • SHELKE, Shivaji Haribhau
    Ahmednagar Maharashtra 414607 (IN)
  • REDDY, Shridhar
    Gurgaon Haryana 122001 (IN)
  • KUMAR, Nitin
    Delhi 110059 (IN)
  • SINGH, Madan
    Delhi 110084 (IN)

(74)Representative: Fresenius Kabi Deutschland GmbH 
Patent Department Borkenberg 14
61440 Oberursel
61440 Oberursel (DE)


(56)References cited: : 
WO-A1-01/40316
WO-A1-2014/125501
WO-A1-2012/025937
  
  • CHMURSKI K ET AL: "An Improved Synthesis of 6-Deoxyhalo Cyclodextrins via Halomethylenemorpholinium Halides Vilsmeier-Haack Type Reagents", TETRAHEDRON LETTERS, ELSEVIER, AMSTERDAM, NL, vol. 38, no. 42, 20 October 1997 (1997-10-20), pages 7365-7368, XP004111215, ISSN: 0040-4039, DOI: 10.1016/S0040-4039(97)10019-3
  
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description

FIELD OF THE INVENTION



[0001] The present application provides crystalline forms of 6-per-deoxy-6-per-chloro-cyclodextrin, polymorphs thereof and methods to produce it. More particularly, the application relates to a process of dissolving 6-per-deoxy-6-per-chloro-cyclodextrin and its isolation as a crystalline compound.

BACKGROUND OF THE INVENTION



[0002] Cyclodextrins (CD) are a family of cyclic oligosaccharides composed of -(1,4) linked glucopyranose subunits. According to the general accepted nomenclature of cyclodextrins a (alpha)-cyclodextrin is a 6-membered ring molecule, a ∮ (beta)-cyclodextrin is a 7-membered ring molecule and a ∴(gamma)-cyclodextrin is a 8-membered ring molecule. Cyclodextrins are useful molecular chelating agents. They possess a cage-like supramolecular structure. As a result of molecular complexation phenomena CDs are widely used in many industrial products, technologies and analytical methods.

[0003] The ∴(gamma)-cyclodextrin with a commercial interest is sugammadex. A key intermediate for preparing Sugammadex is 6-per-deoxy-6-per-chloro-cyclodextrin of formula I.



[0004] The preparation of 6-per-deoxy-6-per-chloro-cyclodextrin is disclosed in WO2012/025937. This document discloses the preparation of 6-per-deoxy-6-perchloro-cyclodextrin by chlorination of cyclodextrin with a halogenating agent prepared from phosphorous pentachloride and dimethylformamide. After completion of the chlorination the solvent is removed to obtain a viscous residue. The viscous residue is diluted with water followed by adjusting the pH 8 with 5M sodium hydroxide to obtain a slurry. Said slurry is then filtered, washed with water and dried to give 6-per-deoxy-6-per-chloro-cyclodextrin.

[0005] The process disclosed in WO2012/025937A1 suffers from the following disadvantages:
  1. (i) The halogenating agent, which is prepared by reaction of phosphorous pentachloride and dimethylformamide, produces numerous phosphorous species on reaction with dimethylformamide, and its subsequent use for the halogenation of cyclodextrin also produces phosphate esters as impurities which are difficult to remove.
  2. (ii) The removal of dimethylformamide after chlorination of cyclodextrin gives highly viscous oil, which is very cumbersome to stir.
  3. (iii) The filtration of 6-per-deoxy-6-per-chloro-cyclodextrin is also very challenging due to its amorphous nature and it takes very long time for the filtration.
  4. (iv) The purity of 6-per-deoxy-6-per-chloro-cyclodextrin is also very low (about 22%).


[0006] WO2014/125501 discloses the preparation of 6-per-deoxy-6-per-chloro-cyclodextrin by chlorination of cyclodextrin with a halogenating agent, prepared from phosphorous pentachloride and dimethylformamide. After completion of the chlorination, the mixture is quenched with water. The obtained mixture is hydrolyzed with aqueous sodium hydroxide solution, filtered, washed repeatedly with water and dried to give 6-per-deoxy-6-per-chloro-cyclodextrin.

[0007] The process disclosed in WO2014/125501A1 suffers from the following disadvantages:
  1. (i) The halogenating agent, which is prepared by reaction of phosphorous pentachloride and dimethylformamide, produces numerous phosphorous species on reaction with dimethylformamide, and its subsequent use for the halogenation of cyclodextrin also produces phosphate esters as impurities which are difficult to remove.
  2. (ii) The filtration of 6-per-deoxy-6-per-chloro-cyclodextrin is very challenging as it takes very long time for the filtration due to its amorphous nature.
  3. (iii) The purity of 6-per-deoxy-6-per-chloro-cyclodextrin is also very low (about 23%).


[0008] Thus, the prior art procedures for the preparation of 6-per-deoxy-6-per-chloro-cyclodextrin suffer from the following disadvantages outlined below;
  1. (i) The use of phosphorus based reagents for the halogenation of cyclodextrin. The reagent produces unwanted impurities as by product which is very difficult to remove and require multiple purifications.
  2. (ii) The handling of highly viscous reaction mixture of 6-per-deoxy-6-per-chloro-cyclodextrin is very difficult.
  3. (iii) The filtration of 6-per-deoxy-6-per-chloro-cyclodextrin is also very challenging due to its amorphous nature.

BRIEF DESCRIPTION OF THE DRAWINGS



[0009] 

FIG. 1 is an illustration of a XRPD pattern of crystalline form I of 6-per-deoxy-6-per-chloro-cyclodextrin.

FIG. 2 is an illustration of a XRPD pattern of crystalline form II of 6-per-deoxy-6-per-chloro-cyclodextrin.

FIG. 3 is an illustration of a XRPD pattern of crystalline form III of 6-per-deoxy-6-per-chloro-cyclodextrin.


SUMMARY OF THE INVENTION



[0010] In one aspect, the application provides a process of preparing crystalline 6-per-deoxy-6-per-chloro-cyclodextrin of formula I,

comprising the steps of:
  1. a) dissolving 6-per-deoxy-6-per-chloro-cyclodextrin in dimethylformamide,
  2. b) adding a mixture of water and alcoholic solvent as anti-solvent,
  3. c) isolating crystalline 6-per-deoxy-6-per-chloro-cyclodextrin.


[0011] Another aspect of the present application provides crystalline forms I, II and III of 6-per-deoxy-6-per-chloro-cyclodextrin of formula I.


DESCRIPTION OF THE INVENTION


DEFINITIONS



[0012] The following definitions are used in connection with the present application unless the context indicates otherwise.

[0013] The term 'anti-solvent_refers to a liquid that, when combined with a solution of 6-per-deoxy-6-per-chloro-cyclodextrin, for example, reduces solubility of the 6-per-deoxy-6-per-chloro-cyclodextrin in the solution, causing crystallization or precipitation in some instances spontaneously, and in other instances with additional steps, such as seeding, cooling, scratching, and/or concentrating.

[0014] The term 6-per-deoxy-6-per-chloro-cyclodextrin means a perhalogenated cyclodextrin wherein the halogen is chloride of formula I. The term cyclodextrin means a cyclodextrin of formula II.



[0015] The term crude 6-per-deoxy-6-per-chloro- cyclodextrin means any 6-per-deoxy-6-per-chloro-cyclodextrin as suitable starting material of the inventive process, regardless of the source obtained from or how prepared, the purity grade or impurity profile, crystalline form or amorphous form.

[0016] All percentages and ratios used herein are by weight of the total composition and all measurements made are at about 25°C and about atmospheric pressure, unless otherwise designated. All temperatures are in degrees Celsius unless specified otherwise.

[0017] The terms 'about,_ 'general,_ 'generally,_ and the like are to be construed as modifying a term or value such that it is not an absolute. Such terms will be defined by the circumstances and the terms that they modify as those terms are understood by those of skill in the art. This includes, at the very least, the degree of expected experimental error, technique error and instrument error for a given technique used to measure a value.

[0018] As used herein, the terms 'comprising_ and 'comprises_ mean the elements recited, or their equivalents in structure or function, plus any other element or elements which are not recited. The terms 'having_ and 'including_ are also to be construed as open ended. All ranges recited herein include the endpoints, including those that recite a range between two values. Whether so indicated or not, all values recited herein are approximate as defined by the circumstances, including the degree of expected experimental error, technique error, and instrument error for a given technique used to measure a value.

[0019] The term 'optional_ or 'optionally_ is taken to mean that the event or circumstance described in the specification may or may not occur, and that the description includes instances where the event occurs and instances where it does not.

[0020] In general, polymorphism refers to the ability of a substance to exist as two or more crystalline forms that have different spatial arrangements and/or conformations of molecules in their crystal lattices. Thus, 'polymorphs_ refer to different crystalline forms of the same substance in which the molecules have different spatial arrangements of the molecules, atoms, and/or ions forming the crystal. Different polymorphs may have different physical properties such as melting points, solubilities, X-ray diffraction patterns, etc.

[0021] Polymorphism may also include solvation or hydration products (also known as pseudopolymorphs) and amorphous forms. Differences in these forms could, in some cases, affect the quality or performance of the new drug products (European Medicines Agency; 'Test Procedures and Acceptance Criteria for New Drug Substances and New Drug Products_; Document CPMP/ICH/367/96, May 2000).

[0022] In an aspect, the present application provides crystalline forms of 6-per-deoxy-6-per-chloro-cyclodextrin. In detail it provides polymorphs form I, form II and form III and methods for preparing said forms.

[0023] The process for preparing crystalline 6-per-deoxy-6-per-chloro-cyclodextrin based on the surprising finding that the use of dimethylformamide as solvent for 6-per-deoxy-6-per-chloro-cyclodextrin and use of a mixture of water and alcoholic solvent as anti-solvent, specifically produces crystalline 6-per-deoxy-6-per-chloro-cyclodextrin.

[0024] Any obtained crystalline 6-per-deoxy-6-per-chloro-cyclodextrin can optionally be purified by a suitable purification method to achieve the desired purity of crystalline 6-per-deoxy-6-per-chloro-cyclodextrin.

[0025] The process of the present application can also be used for purifying the crude 6-per-deoxy-6-per-chloro-cyclodextrin by dissolving in dimethylformamide followed by addition of a mixture of water and alcoholic solvent to isolate purified crystalline 6-per-deoxy-6-per-chloro-cyclodextrin.

[0026] The isolated and / or purified crystalline form of 6-per-deoxy-6-per-chloro-cyclodextrin may optionally be dried to get amorphous form.

[0027] The present application further provides a method for making crystalline form I of 6-per-deoxy-6-per-chloro-cyclodextrin, comprising, dissolving 6-per-deoxy-6-per-chloro-cyclodextrin in dimethylformamide, followed by addition of a mixture of water and methanol to isolate crystalline form I of 6-per-deoxy-6-per-chloro-cyclodextrin.

[0028] The present application further provides a method for making crystalline form II of 6-per-deoxy-6-per-chloro- cyclodextrin, comprising, dissolving 6-per-deoxy-6-per-chloro-cyclodextrin in dimethylformamide, followed by addition of a mixture of water and ethanol or isopropanol to isolate crystalline form II of 6-per-deoxy-6-per-chloro-cyclodextrin.

[0029] The present application further provides a method for making crystalline Form III of 6-per-deoxy-6-per-chloro-cyclodextrin, comprising, dissolving 6-per-deoxy-6-per-chloro-cyclodextrin in dimethylformamide, followed by addition of a mixture of water and tert-butanol to isolate crystalline form III of 6-per-deoxy-6-per-chloro-cyclodextrin.

[0030] A useful ratio of the water and alcoholic solvent mixture may be in the range of 10/1 to 1/0.1 (v/v), preferably from 5/1 to 1/0.1 and most preferably from 2/1 to 1/0.05. The alcoholic solvents which may be used include, but are not limited to C1-C4 alcohols such as methanol, ethanol, propanol, isopropyl alcohol, n-butanol, iso-butanol, tert-butanol or mixtures thereof.

[0031] Interestingly, it is also observed that the choice of the alcohol influences the crystalline pattern of the isolated 6-per-deoxy-6-per-chloro-cyclodextrin. In all cases, however, the crystalline pattern was recorded with wet samples of 6-per-deoxy-6-per-chloro-cyclodextrin, i.e. the isolated crystals are not subjected to an additional and/or special drying step, like heating or vacuum drying.

[0032] Cyclodextrin and its derivatives are known to lose their crystalline habit upon drying (Hunt A. et al, Carbohydrate Res. 2005 Jul 4; 340(9):1631-7). Nevertheless, the crystalline forms of the invention strongly improve the filtration time and quality of the intermediate.

[0033] A comparison with known prior art processes concerning filtration time and polymorphic form of 6-per-deoxy-6-per-chloro-cyclodextrin is tabulated below (5g substance each):
Table 1:
Reference ExamplesSolventAnti-solventFiltration timePolymorph
WO2001/040316A1 (example 3) Dimethylformamide Water > 9hr Amorphous
WO2012/025937A1 (example 1) Dimethylformamide Water > 3hr Amorphous
WO2014/125501A1 (example 1) Dimethylformamide Water > 4hr Amorphous
Examples of the present application Dimethylformamide Water/ Methanol < 5 min. Crystalline form I
Dimethylformamide Water/ Ethanol < 5 min. Crystalline form II
Dimethylformamide Water/ Isopropanol < 5 min. Crystalline form II
Dimethylformamide Water/ Tert-butanol < 5 min. Crystalline form III


[0034] It is evident from the comparative data that the filtration time has been reduced many folds due to the formation of crystalline 6-per-deoxy-6-per-chloro-cyclodextrin as compared to the cumbersome filtration of amorphous material obtained from the known prior art procedures. It is also clearly observed that the use of water and alcoholic solvent as anti-solvent contributes to the formation of crystalline 6-per-deoxy-6-per-chloro-cyclodextrin.

[0035] The isolated crystalline forms of 6-per-deoxy-6-per-chloro-cyclodextrin has higher yield (about 94%) and purity (about 94%) as compared to the isolated amorphous form of 6-per-deoxy-6-per-chloro-cyclodextrin of the known prior art methods, as reported in the reference examples 1, 2 and 3.

[0036] According to another aspect the present application provides novel crystalline forms I, II and III of 6-per-deoxy-6-per-chloro-cyclodextrin.

[0037] The crystalline form I shows on X-ray diffraction a peak at an angle of refraction 2 theta (:), of 4.1, 5.8, 8.2, 16.8, 23.5 ± 0.2 degrees; preferably it includes five or more peaks at angles of refraction 2 theta (:) selected from the group consisting of 4.1, 5.8, 7.1, 8.2, 9.1, 10.0, 10.8, 11.5, 12.2, 12.9, 13.5, 14.7, 15.3, 15.8, 16.3, 16.8, 17.3, 17.8, 18.3, 18.7, 19.1, 19.6, 20.4, 20.8, 21.2, 21.6, 22.0, 22.7, 23.1, 23.5, 23.8, 24.2, 24.9, 25.5, 26.2, 26.5, 26.8, 27.5, 28.1, 28.4, 28.7, 29.3, 29.9, 30.1, 30.4, 31.0, 31.3, 32.1, 32.6, 33.4, 33.7, 34.2, 35.2, 35.7, 36.2, 36.6, 37.1, 37.6, 38.1, and 38.5 ± 0.2 degrees.

[0038] The crystalline form II shows on X-ray diffraction a peak at an angle of refraction 2 theta (:), of 6.4, 11.1, 11.5, 16.1, 16.9 ± 0.2 degrees; preferably it includes five or more peaks at angles of refraction 2 theta (:) selected from the group consisting of 5.5, 5.8, 6.4, 6.5, 7.4, 8.5, 9.8, 10.2, 11.1, 11.5, 12.5, 12.8, 13.6, 14.0, 14.3, 14.6, 15.0, 15.3, 15.7, 16.1, 16.3, 16.7, 16.9, 17.2, 17.6, 17.8, 18.1, 18.7, 19.4, 20.1, 20.3, 20.6, 20.8, 21.2, 21.5, 21.7, 21.9, 22.3, 22.5, 22.9, 23.1, 23.6, 24.2, 24.4, 24.8, 25.4, 25.7, 25.9, 26.4, 26.7, 27.5, 28.7, 29.1, 29.7, 30.9, 31.3, 32.4, 33.3, 33.9, 35.2, 36.0, 36.5, 38.2, 38.7, 39.6 ± 0.2 degrees.

[0039] The crystalline form III shows on X-ray diffraction a peak at an angle of refraction 2 theta (:), of 7.5, 15.6, 15.9, 16.6, 17.2 ± 0.2 degrees; preferably it includes five or more peaks at angles of refraction 2 theta (:) selected from the group consisting of 5.5, 5.6, 5.8, 6.1, 7.0, 7.5, 7.7, 8.3, 8.8, 9.4, 10.4, 10.7, 10.9, 11.2, 11.5, 11.8, 12.4, 12.9, 13.5, 13.7, 14.1, 14.3, 14.9, 15.6, 15.9, 16.0, 16.4, 16.6, 17.2, 17.9, 18.1, 18.3, 18.6, 19.0, 19.5, 19.7, 20.2, 20.4, 20.7, 21.1, 21.9, 22.5, 23.2, 23.8, 24.0, 24.4, 25.1, 26.4, 27.2, 27.7, 28.5, 29.6, 31.6, 33.9, 34.8, 35.5, 36.2, 37.7 ± 0.2 degrees.

[0040] The obtained crystalline forms I, II and III of 6-per-deoxy-6-per-chloro-cyclodextrin can be used to prepare sugammadex as per the methods disclosed in WO2001/040316A1, WO2012/025937A1 and WO2014/125501A1.

[0041] Certain specific aspects of the present application will be explained in greater detail with reference to the following examples, which are provided only for purposes of illustration and should not be construed as limiting the scope of the disclosure in any manner.

EXAMPLES



[0042] To demonstrate the benefits of the present invention, examples of the prior art were reworked and indicated as reference example.

Reference example 1 (Example 3 of WO2001/040316A1)


Preparation of 6-per-deoxy-6-per-iodo-γ-cyclodextrin



[0043] Triphenylphosphine (15 g) was dissolved in dimethylformamide (80ml) at ambient temperature and iodine (15.2 g) was slowly added to the solution in 10-15 minutes. To this mixture was added dry cyclodextrin (5 g) and the solution was heated to 70°C and kept stirring at this temperature for 24 hour. The solution was allowed to cool before the addition of sodium methoxide (1.55 g in 25 ml of methanol). The solution thus obtained was stirred for 30 minutes, poured to 400 ml of methanol and evaporated under vacuum to obtain a dense oily residue. To this residue, 250 ml of water was added to get a dark sticky solid, which was filtered under vacuum. The solid was washed with water (3 x 50 ml) and methanol (3 x 50 ml) and dried under vacuum to obtain 2 g of 6-per-deoxy-6-per-iodo-cyclodextrin as amorphous yellow powder. Yield: 40%; HPLC Purity: 20.3%

Reference example 2 (Example 1 of WO2012/025937A1)


Preparation of 6-per-deoxy-6-per-chloro-γ-cyclodextrin



[0044] Phosphorous pentachloride (25.6g) was slowly added to dimethylformamide (30ml) at 0-5°C. The suspension was stirred at 25-30°C for 1 hour before the addition of a solution of Cyclodextrin (5g) in dimethylformamide (40ml). The suspension thus obtained was heated at 65-70°C and stirred at this temperature for 14 hours. Dimethylformamide was removed under vacuum to obtain thick oil. Water (100ml) was slowly added to the oil followed by sodium hydroxide 20% until pH reached the value of 8.0. The resulted suspension was stirred for 1 hour at 5-10°C. The suspension was filtered and dried under vacuum to obtain 2.5 grams of 6-per-deoxy-6-per-chloro-cyclodextrin as amorphous yellow powder. Yield: 44.8%; HPLC Purity: 22.4%

Reference example 3 (Example 1 of WO2014/125501A1)


Preparation of 6-per-deoxy-6-per-chloro-γ-cyclodextrin



[0045] Phosphorous pentachloride (25.6g) was slowly added to dimethylformamide (20ml) at 25-30°C. The suspension was stirred at 25-30°C for 1 hour before the addition of Cyclodextrin (5g). The suspension thus obtained was heated at 65-70°C and stirred at this temperature for 15 hours. The obtained mixture was slowly added to water (100ml) and cooled at 10°C followed by addition of sodium hydroxide 30% until pH reached the value of 7.5-8.0. The resulted suspension was stirred for 2 hour at this temperature. The suspension was filtered, washed with water (20ml) and dried under vacuum to obtain 4.5 grams of 6-per-deoxy-6-per-chloro-cyclodextrin as amorphous yellow powder. Yield: 80.7%; HPLC Purity: 23.0%

Example 1: Preparation and isolation of crystalline form I of 6-per-deoxy-6-per-chloro-γ-cyclodextrin



[0046] To a solution of 6-per-deoxy-6-per-chloro-cyclodextrin (5g) in dimethylformamide (25ml) was added a mixture of water and methanol (1:1) to obtain a suspension. The suspension was stirred for 1 hour, filtered and the cake was washed two times with a mixture of water and methanol (1:1) to obtain crystalline form I of 6-per-deoxy-6-per-chloro-cyclodextrin. HPLC Purity: 94.4%

Example 2: Preparation and isolation of crystalline form II of 6-per-deoxv-6-per-chloro-γ-cyclodextrin



[0047] To a solution of 6-per-deoxy-6-per-chloro-cyclodextrin (5g) in dimethylformamide (25ml) was added a mixture of water and ethanol (1:1) to obtain a suspension. The suspension was stirred for 1 hour, filtered and the cake was washed two times with a mixture of water and ethanol (1:1) to obtain crystalline form II of 6-per-deoxy-6-per-chloro-cyclodextrin. HPLC Purity: 94.9%

Example 3: Preparation and isolation of crystalline form II of 6-per-deoxv-6-per-chloro-γ-cyclodextrin



[0048] To a solution of 6-per-deoxy-6-per-chloro-cyclodextrin (5g) in dimethylformamide (25ml) was added a mixture of water and isopropanol (1:1) to obtain a suspension. The suspension was stirred for 1 hour, filtered and the cake was washed two times with a mixture of water and isopropanol (1:1) to obtain crystalline form II of 6-per-deoxy-6-per-chloro-cyclodextrin. HPLC Purity: 95.1%

Example 4: Preparation and isolation of crystalline form III of 6-per-deoxy-6-per-chloro-γ-cyclodextrin



[0049] To a solution of 6-per-deoxy-6-per-chloro-cyclodextrin (5g) in dimethylformamide (25ml) was added a mixture of water and tert-butanol (1:1) to obtain a suspension. The suspension was stirred for 1 hour, filtered and the cake was washed two times with a mixture of water and tert-butanol (1:1) to obtain crystalline form III of 6-per-deoxy-6-per-chloro-cyclodextrin. HPLC Purity: 97.4%


Claims

1. Crystalline form of 6-per-deoxy-6-per-chloro-γ-cyclodextrin of formula I,

wherein said form is form I with XRPD peaks at an angle of refraction 2 theta (θ) of 4.1, 5.8, 8.2, 16.8, 23.5 ± 0.2 degrees, or

wherein said form is form II with XRPD peaks at an angle of refraction 2 theta (θ) of 6.4, 11.1, 11.5, 16.1, 16.9 ± 0.2 degrees, or

wherein said form is form III with XRPD peaks at an angle of refraction 2 theta (θ) of 7.5, 15.6, 15.9, 16.6, 17.2 ± 0.2 degrees.


 
2. A process for preparing crystalline 6-per-deoxy-6-per-chloro-γ-cyclodextrin of formula I,

comprising the steps of:

a) dissolving 6-per-deoxy-6-per-chloro-γ-cyclodextrin in dimethylformamide,

b) adding a mixture of water and alcoholic solvent as anti-solvent,

c) isolating crystalline 6-per-deoxy-6-per-chloro-γ-cyclodextrin.


 
3. A process according to claim 2, wherein the ratio of the water and alcoholic solvent mixture is in the range of 10/1 to 1/0.1 (v/v), preferably from 5/1 to 1/0.1 and most preferably from 2/1 to 1/0.05.
 
4. A process according to claim 2 or 3, wherein the water and alcoholic solvent mixture is water/methanol for preparing crystalline 6-per-deoxy-6-per-chloro-γ-cyclodextrin of form I.
 
5. A process according to claim 2 or 3, wherein the water and alcoholic solvent mixture is water/ethanol or water/isopropanol for preparing crystalline 6-per-deoxy-6-per-chloro-γ-cyclodextrin of form II.
 
6. A process according to claim 2 or 3, wherein the water and alcoholic solvent mixture is water/tert-butanol for preparing crystalline 6-per-deoxy-6-per-chloro-γ-cyclodextrin of form III.
 
7. Use of crystalline 6-per-deoxy-6-per-chloro-γ-cyclodextrin, obtainable by the process of any of claims 2-6, for preparing sugammadex.
 


Ansprüche

1. Kristalline Form von 6-Per-deoxy-6-per-chloro-γ-cyclodextrin der Formel I,

wobei die genannte Form die Form I mit XRPD-Peaks bei einem Brechungswinkel 2 Theta (θ) von 4,1, 5,8, 8,2, 16,8, 23,5 ± 0,2 Grad ist, oder

wobei die genannte Form die Form II mit XRPD-Peaks bei einem Brechungswinkel 2 Theta (θ) von 6,4, 11,1, 11,5, 16,1, 16,9 ± 0,2 Grad ist, oder

wobei die genannte Form die Form III mit XRPD-Peaks bei einem Brechungswinkel 2 Theta (θ) von 7,5, 15,6, 15,9, 16,6, 17,2 ± 0,2 Grad ist.


 
2. Verfahren zur Zubereitung von kristallinem 6-Per-deoxy-6-per-chloro-γ-cyclodextrin der Formel I,

umfassend die folgenden Schritte

a) das Lösen von 6-Per-deoxy-6-per-chloro-γ-cyclodextrin in Dimethylformamid,

b) das Hinzufügen einer Mischung aus Wasser und alkoholischem Lösungsmittel als Anti-Lösungsmittel,

c) das Isolieren von kristallinem 6-Per-deoxy-6-per-chloro-γ-cyclodextrin.


 
3. Verfahren nach Anspruch 2, wobei das Verhältnis der Mischung aus Wasser und alkoholischem Lösungsmittel im Bereich von 10/1 bis 1/0,1 (v/v), vorzugsweise von 5/1 bis 1/0,1 und am meisten bevorzugt von 2/1 bis 1/0,05 liegt.
 
4. Verfahren nach Anspruch 2 oder 3, wobei die Mischung aus Wasser und alkoholischem Lösungsmittel Wasser/Methanol zur Zubereitung von kristallinem 6-Per-deoxy-6-per-chloro-γ-cyclodextrin der Form I ist.
 
5. Verfahren nach Anspruch 2 oder 3, wobei die Mischung aus Wasser und alkoholischem Lösungsmittel Wasser/Ethanol oder Wasser/Isopropanol zur Zubereitung von kristallinem 6-Per-deoxy-6-per-chloro-γ-cyclodextrin der Form II ist.
 
6. Verfahren nach Anspruch 2 oder 3, wobei die Mischung aus Wasser und alkoholischem Lösungsmittel Wasser/tert-Butanol zur Zubereitung von kristallinem 6-Per-deoxy-6-per-chloro-γ-cyclodextrin der Form III ist.
 
7. Verwendung von kristallinem 6-Per-deoxy-6-per-chloro-γ-cyclodextrin, welches mittels des Verfahrens nach einem der Ansprüche 2-6 erhalten werden kann, zur Zubereitung von Sugammadex.
 


Revendications

1. Forme cristalline de 6-per-désoxy-6-per-chloro-γ-cyclodextrine de formule I,

dans laquelle ladite forme est la forme I avec des pics de XRPD formant un angle de réfraction 2 thêta (θ) de 4,1, 5,8, 8,2, 16,8, 23,5 ± 0,2 degrés, ou

dans laquelle ladite forme est la forme II avec des pics de XRPD formant un angle de réfraction 2 thêta (θ) de 6,4, 11,1, 11,5, 16,1, 16,9 ± 0,2 degrés, ou

dans laquelle ladite forme est la forme III avec des pics de XRPD formant un angle de réfraction 2 thêta (θ) de 7,5, 15,6, 15,9, 16,6, 17,2 ± 0,2 degrés.


 
2. Procédé pour la préparation de 6-per-désoxy-6-per-chloro-γ-cyclodextrine cristalline de formule I,

comprenant les étapes de :

a) dissoudre de la 6-per-désoxy-6-per-chloro-γ-cyclodextrine dans de la diméthylformamide,

b) ajouter un mélange d'eau et de solvant alcoolique comme anti-solvant,

c) isoler la 6-per-désoxy-6-per-chloro-γ-cyclodextrine cristalline.


 
3. Procédé selon la revendication 2, dans lequel le rapport du mélange d'eau et de solvant alcoolique se trouve dans la plage de 10/1 à 1/0,1 (v/v), de préférence de 5/1 à 1/0,1 et de la façon la plus préférée de 2/1 à 1/0,05.
 
4. Procédé selon la revendication 2 ou 3, dans lequel le mélange d'eau et de solvant alcoolique est eau/méthanol pour préparer de la 6-per-désoxy-6-per-chloro-γ-cyclodextrine cristalline de forme I.
 
5. Procédé selon la revendication 2 ou 3, dans lequel le mélange d'eau et de solvant alcoolique est eau/éthanol ou eau/isopropanol pour préparer de la 6-per-désoxy-6-per-chloro-γ-cyclodextrine cristalline de forme II.
 
6. Procédé selon la revendication 2 ou 3, dans lequel le mélange d'eau et de solvant alcoolique est eau/tert-butanol pour préparer de la 6-per-désoxy-6-per-chloro-γ-cyclodextrine cristalline de forme III.
 
7. Utilisation de 6-per-désoxy-6-per-chloro-γ-cyclodextrine cristalline, pouvant être obtenue par le procédé selon l'une quelconque des revendications 2-6, pour préparer du sugammadex.
 




Drawing














Cited references

REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description




Non-patent literature cited in the description