(19)
(11)EP 3 380 875 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
22.07.2020 Bulletin 2020/30

(21)Application number: 16856465.6

(22)Date of filing:  17.11.2016
(51)International Patent Classification (IPC): 
G01V 5/00(2006.01)
(86)International application number:
PCT/IB2016/056937
(87)International publication number:
WO 2017/089932 (01.06.2017 Gazette  2017/22)

(54)

APPARATUS AND METHOD FOR THE NON-INVASIVE INSPECTION OF SOLID BODIES VIA MUON IMAGING

VORRICHTUNG UND VERFAHREN ZUR NICHTINVASIVEN INSPEKTION VON FESTKÖRPERN DURCH MYONENTOMOGRAFIE

APPAREIL ET PROCÉDÉ POUR L'INSPECTION NON INVASIVE DE CORPS SOLIDES GRÂCE À UNE IMAGERIE PAR MUONS


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 23.11.2015 IT UB20155808

(43)Date of publication of application:
03.10.2018 Bulletin 2018/40

(73)Proprietor: Istituto Nazionale di Astrofisica
00136 Roma (IT)

(72)Inventors:
  • CATALANO, Osvaldo
    00136 Roma (RM) (IT)
  • CONCONI, Paolo
    00136 Roma (RM) (IT)
  • CUSUMANO, Giancarlo
    00136 Roma (RM) (IT)
  • DEL SANTO, Melania
    00136 Roma (RM) (IT)
  • LA ROSA, Giovanni
    00136 Roma (RM) (IT)
  • MACCARONE, Maria Concetta
    00136 Roma (RM) (IT)
  • MINEO, Teresa
    00136 Roma (RM) (IT)
  • PARESCHI, Giovanni
    00136 Roma (RM) (IT)
  • SOTTILE, Giuseppe
    00136 Roma (RM) (IT)

(74)Representative: Lisa, Elisabetta 
Praxi Intellectual Property S.p.A. Corso Vittorio Emanuele II, 3
10125 Torino
10125 Torino (IT)


(56)References cited: : 
US-A1- 2011 035 151
US-B1- 6 518 580
  
  • O. CATALANO ET AL: "Volcanoes muon imaging using Cherenkov telescopes", NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH. SECTION A: ACCELERATORS, SPECTROMETERS, DETECTORS, AND ASSOCIATED EQUIPMENT, vol. 807, 5 November 2015 (2015-11-05), pages 5-12, XP55372802, NL ISSN: 0168-9002, DOI: 10.1016/j.nima.2015.10.065
  • Osvaldo Catalano ET AL: "Osvaldo Catalano- 9th ASTRI Collaboration Meeting, 23-26 February 2015 Volcanoes muon imaging using the ASTRI Cherenkov prototype", , 26 February 2015 (2015-02-26), XP55372807, Retrieved from the Internet: URL:http://astri.iasfbo.inaf.it/events/tal ks/catalano_muon_bologna.pdf [retrieved on 2017-05-15]
  • HEINRICH J. VÖLK ET AL: "Imaging very high energy gamma-ray telescopes", EXPERIMENTAL ASTRONOMY, vol. 25, no. 1-3, 10 March 2009 (2009-03-10), pages 173-191, XP055290031, NL ISSN: 0922-6435, DOI: 10.1007/s10686-009-9151-z
  • O. Catalano ET AL: "Volcanoes muon imaging using Cherenkov telescopes", Nuclear Instruments & Methods in Physics Research. Section A, vol. 807, 3 November 2015 (2015-11-03), pages 5-12, XP055542041, NL ISSN: 0168-9002, DOI: 10.1016/j.nima.2015.10.065
  
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description

Technical field



[0001] The present invention has application in the technical field of measuring instruments and it relates to an apparatus for non-invasive inspection of solid bodies by muon imaging usable in civil engineering, archeology, volcanology, tectonics and everywhere a radiographic and/or tomographic non-destructive inspection of geological and/or engineering structures, even of large dimensions, is necessary.

[0002] The invention further relates to a method for non-invasive inspection by muon imaging implementable by said apparatus.

Prior art



[0003] Tomographic investigations based on "tracking" techniques are known which exploit the detection of energy associated to charged particles of cosmic rays passing through a material to be investigated such to perform non-invasive inspections.

[0004] Such techniques are based on displaying the trajectory of the particle that while passing through detection planes, usually scintillating planes, produce an electric pulse that, once suitably analysed, gives the direction of origin of the particle.

[0005] The interaction of the primary cosmic ray (hadrons and gamma photons) with the atoms of the atmosphere generates a shower of other particles, among which many pions that decay very quickly into muons, highly penetrating particles.

[0006] The latter, since having a longer decay time and mainly interacting with the matter through Coulombic force, are able to reach the earth surface giving rise to a isotropic flux of penetrating charged radiation that at the sea level is about 1 muon per square centimeter per minute.

[0007] The muon "tracking" techniques for radiography/tomography of massive objects exploit the high penetrability of muons and their contemporaneous energy loss through the electromagnetic interactions in the crossed material, since energy absorption depends on thickness and density of the crossed material and on energy of the incident muon.

[0008] Therefore the outgoing muon has energy lower than the incident one and moreover it deflects from the original direction due to many small angle deflections occurring when crossing (Coulomb scattering).

[0009] Moreover the mean deflection angle is proportional to the inverse of momentum of the particle and to the square root of the real density of the material measured in radiation lengths.

[0010] Therefore by measuring the muon flux attenuation as a function of the amount of matter crossed in different directions it is possible to determine the distribution density in the investigated material.

[0011] The known geophysical survey techniques, particularly used in volcanology field, provide to use telescopes with scintillator bars read by light detectors such as photomultipliers or silicon photomultipliers that intercept the muons coming out from the volcano, such as described for example in JP20060096285.

[0012] However the signal produced by such instruments is affected by the effect of accidental coincidences, for example due to low energy particles that contemporaneously hit the telescope planes simulating an event, and above all the so called back-flux that is the flux arriving from the direction opposite to the one passing through the examined material.

[0013] Moreover such instruments do not provide information about energy spectrum of indecent muons that has to be known for calculating the integrated flux model through the body to be compared with observed data.

[0014] Some instruments tried to limit the back-flux by inserting up to six scintillator planes between lead and iron absorber planes. This solution has considerably decreased, even if not completely, the non-coherent muon background, but it has also increased too much the weight of the instrument limiting its transportability and compactness. JP2010101892 describes a measuring techniques applied in the volcanology field based on detecting muon tracks passing through scintillator plane endoscopes. However such technique requires many detection layers and a resolution time high enough to reduce the level of false positives due to the inevitable background particles. US-B1-6518580 discloses an apparatus using Cherenkov radiation to provide a radiographic measurement of a target. The path of the radiation within the apparatus is quite simple in particular because the target of the measurement is a relatively small object, i.e. an IC engine, which is exposed to a radiation source.

[0015] O. CATALANO ET AL: "Volcanoes muon imaging using Cherenkov telescopes", NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH. SECTION A: ACCELERATORS, SPECTROMETERS, DETECTORS, AND ASSOCIATED EQUIPMENT, vol. 807, 5 November 2015 (2015-11-05), pages 5-12, XP055372802, NL ISSN: 0168-9002, DOI: 10.1016/j.nima.2015.10.065 discloses to use telescopes based on the atmospheric Cherenkov imaging technique to study the interior of volcanoes detecting the Cherenkov light produced by relativistic cosmic-ray muons that survive after crossing the volcano; the Cherenkov light produced along the muon path is imaged as a typical annular pattern containing all the essential information to reconstruct particle direction and energy; this approach offers the advantage of a negligible background and an improved spatial resolution; simulations with a toy-model based on the geometrical parameters of ASTRI SST-2M, i.e. the imaging atmospheric Cherenkov telescope currently under installation onto the Etna volcano, have been carried out to test the feasibility of the method that, compared with previous experiments based on particle detectors, allows to achieve a gain of at least a factor of 10 in sensitivity.

[0016] Osvaldo Catalano ET AL: "Osvaldo Catalano- 9th ASTRI Collaboration Meeting, 23-26 February 2015 Volcanoes muon imaging using the ASTRI Cherenkov prototype", 26 February 2015 (2015-02-26), XP055372807, discloses measurements of the inner structure of volcanos using muons based on the detection of muons-track crossing hodoscopes made up of scintillators or nuclear emulsion planes; the study was carried out at the Etna volcano, which rises at North-Est of the Serra La Nave Observatory where the ASTRI SST-2M telescope was located; As muons interact very little with matter, they can travel through large extent of rocks, losing a fraction of energy proportionally to the thickness of the rocks crossed; density distribution of the interior of a volcano can be determined by measuring the differential attenuation of the muon flux as a function of the amount of rocks crossed along different directions.

[0017] HEINRICH J. VOLK ET AL: "Imaging very high energy gamma-ray telescopes", EXPERIMENTAL ASTRONOMY, vol. 25, no. 1-3, 10 March 2009 (2009-03-10), pages 173-191, XP055290031, NL ISSN: 0922-6435, DOI: 10.1007/s10686-009-9151-z discloses the technique of γ-ray astronomy at very high energies (VHE: >100 GeV) with ground-based imaging atmospheric Cherenkov telescopes, the H.E.S.S. array in Namibia serving as example; mainly a discussion of the physical principles of the atmospheric Cherenkov technique is given, emphasizing its rapid development during the last decade; the present status is illustrated by two examples: the spectral and morphological characterization in VHE y -rays of a shell-type supernova remnant together with its theoretical interpretation, and the results of a survey of the Galactic Plane that shows a large variety of non-thermal sources.

[0018] US 2011/035151 A1 discloses methods and related systems for use for making subterranean nuclear measurements; the system can include a plurality of elongated scintillator members each generating optical signals in response to ionizing radiation; optical detector units can be optically coupled to at least one end of each elongated scintillator member so as to detect optical signals from each elongated scintillator member; the system can be suitable for permanent or semi-permanent deployment downhole; for example, the system can operate for more than six months in a subterranean deployment measuring cosmic radiation; the system can be suited to monitor density changes in subterranean regions of interest, for example, density changes brought about by steam injection as part of a steam assisted gravity drainage operation.

Disclosure of the invention



[0019] The object of the present invention is to overcome the above mentioned drawbacks, by providing an apparatus according to claim 1, for non-invasive inspection of solid bodies by muon imaging that is particularly efficient and quite cheap.

[0020] A particular object is to provide an apparatus for non-invasive inspection of solid bodies by muon imaging allowing radiography and/or tomography of structures, even of large dimensions, to be reliably carried out, while minimizing errors and while taking considerably less time than known techniques.

[0021] Still another object is to provide an apparatus for non-invasive inspection of solid bodies by muon imaging having considerably reduced encumbrances and weights such to be possibly transported and such to allow radiography and/or tomography investigations of large bodies, such as volcanos, in a rapid and reliable manner.

[0022] Still another object is to provide an apparatus for non-invasive inspection of solid bodies by muon imaging that is flexible to be used.

[0023] A further object is to provide a method according to claim 8, for non-invasive inspection of solid bodies by muon imaging that is particularly reliable and cheap and that allows systemic errors and false positives to be minimized.

[0024] Such objects, as well as other objects that will be more evident below, are achieved by an apparatus for non-invasive inspection of solid bodies by muon imaging that, according to claim 1, comprises a receiver adapted to intercept a Cherenkov radiation from a muon flux associated with cosmic rays passing through a portion of a body to be inspected, sensor means adapted to detect the amount of photons or Cherenkov radiation associated with the muon flux, electronic processing means adapted to reconstruct energy and direction of the muon flux incident the portion of the body to be inspected to calculate the local density thereof.

[0025] The receiver comprises an optical device provided with at least one receiving surface having reflecting and/or diffractive properties adapted to convey the Cherenkov radiation associated with muons toward said sensor means.

[0026] Sensor means in turn comprise a multipixel detection chamber adapted to provide an annular image of the muon having radius and position variable as a function of the energy and direction of the muon flux.

[0027] By means of such combination of characteristics it will be possible to use an instrument extremely more simple and reliable than those used for muon tracking techniques to obtain density measurements.

[0028] Moreover the investigation is based on the analysis and reconstruction of the Cherenkov ring image, that is a well-established and efficient technique. The measurement of the muon energy allows also the absorption inside the object to be evaluated and therefore allows the real path of the muon inside the object to be efficaciously determined.

[0029] A further advantage is the fact that no active elements are required for detecting the muon, such as for example plastic scintillators, since atmosphere is the muon-Cherenkov photons conversion medium.

[0030] Advantageously said detection chamber can be arranged at the focal plane of said receiver optical device.

[0031] The optical device can comprise a primary receiving surface intended to convey the flux of Cherenkov photons toward said focal plane.

[0032] Moreover the optical device can be of the type with double reflection and/or diffraction with a secondary receiving surface facing and aligned with said primary receiving surface for transferring the flux of photons received by the latter and for concentrating it toward said detection chamber facing said secondary reflecting or diffractive surface. Thus the Cherenkov signal produced by the muon will be directional and highly collimated and it will be possible to eliminate the back-flux produced by the other muons generated in the atmosphere that inevitably would contribute to false coincidences.

[0033] Only the muons arriving from the receiving surface of the optical device within an angle of 1,3°, that is the angular size of the radiation cone of the Cherenkov photon, with respect to the optical axis will be able to generate a Cherenkov ring in the focal plane of the optical device.

[0034] Opportunely the apparatus can comprise a plurality of said optical devices associated to respective sensor means and to respective electronic processing means to detect muon fluxes coming from different directions, at least one of said optical devices being movable to vary its detection direction.

[0035] Thus it will be possible to arrange the planes of detection of the muon flux about the material body under examination to perform 3D tomography.

[0036] According to another aspect of the invention there is provided a method for non-invasive inspection of solid bodies by muon imaging according to claim 8 having all the above advantages.

[0037] Advantageous embodiments of the invention are obtained according to the dependent claims.

Brief description of the drawings



[0038] Further characteristics and advantages of the invention will be more clear from the detailed description of a preferred but non-exclusive embodiment of an apparatus for non-invasive inspection of solid bodies by muon imaging according to the invention, shown by way of a non-limitative example by the help of the annexed drawing tables wherein:

FIG. 1 is a schematic view of an apparatus according to the invention;

FIG. 2 is the image of a muon generated by the apparatus in two different impact conditions of the muon;

FIG. 3 is a schematic view of an optical device belonging to the apparatus according to a preferred configuration;

FIG. 4 is a graph about the spot diagram and fraction of photons enclosed in the image for some angles of the focus range as a function of the radius measured with respect to the center of the image.


Detailed description of a preferred embodiment



[0039] With reference to the annexed figures they show a preferred but not exclusive configuration of an apparatus for non-invasive inspection of solid bodies by muon imaging.

[0040] Particularly Fig.1 schematically shows a preferred arrangement of an apparatus of the movable type, generally denoted by 1, namely mounted into a movable structure 2 such to be easily transported and placed in different detection areas. The apparatus 1 thus can be used both for 2D radiography and 3D tomography, possibly in a system comprising two or more apparatuses according to the invention, not necessarily similar to each other.

[0041] The apparatus 1 essentially comprises a receiver 3 adapted to intercept a Cherenkov radiation from a muon flux associated with cosmic rays passing through a portion of a body to be inspected, sensor means 4 adapted to detect the amount of Cherenkov radiation associated with the muon flux and electronic processing means, not visible since they are embedded into the mechanical structure of the sensor means, adapted to reconstruct energy and direction of the muon flux incident the portion of the body to be inspected to calculate the local density thereof.

[0042] The receiver 3 comprises an optical device 5 provided with at least one receiving surface 6 having reflecting properties adapted to convey the Cherenkov radiation associated with muons toward the sensor means.

[0043] Particularly the reflecting surface 6 belongs to a mirror 7 suitably designed for intercepting the Cherenkov radiation from a muon flux and to direct it towards the sensor means 4. These latter comprise a multipixel detection chamber 8 arranged at the focal plane of the receiving optical device 5 and adapted to provide an annular image of the muon having radius and position variable as a function of the energy and direction of muon flux.

[0044] Fig.2 shows the typical annular image of a muon as processed by a multipixel chamber 8. Particularly the image on the left shows the case when a muon impacts the receiving surface, while the image on the right shows the case when the impact point of the muon is outside the receiving surface.

[0045] According to the preferred but not exclusive shown configuration the optical device 5 is of the double-mirror type, with a primary mirror 7 and a secondary mirror 9 having respective reflecting surfaces.

[0046] The primary reflecting receiving surface 6 is intended to intercept the flux of Cherenkov photons and to convey it on the secondary reflecting surface 10 facing and aligned with the primary receiving surface 6.

[0047] The sensor means 4 are interposed between the two reflecting surfaces 6, 10 with the relevant detection chamber 8 facing the secondary reflecting surface 10 such to obtain the alignment of the focal plane.

[0048] Such alignment can be obtained by a suitable mechanical support structure 11 that allows the mirrors 7, 9 and the chamber 8 to be mutually fastened in addition to allow the apparatus 1 to be fastened to the holding structure 2.

[0049] The secondary receiving surface 10 of the reflecting type thus can transfer the flux of photons received by the primary surface 6 and concentrate it towards the detection chamber 8 facing it.

[0050] The specific configuration of the optical device 5 can be selected depending on resolution needs and also on space needs. Fig. 3 schematically shows a possible configuration of the Schwarzschild-Couder type wherein the two receiving surfaces 6, 10 are defined by two aspheric mirrors 7, 9 designed to correct spherical aberrations and coma.

[0051] Such configuration allows an observational focus range to be provided between 10° and 15° and preferably close to 12°, such to have a greater resolution.

[0052] Moreover such configuration allows the dimensions of the chamber 8 to be considerably reduced, while making the dimensions of the pixels of the focal plane consistent with modern photon detectors like SiPMs.

[0053] In an exemplificative form the primary mirror 7 can be composed of 8 segments forming a primary reflecting surface 6 with a diameter of 2100 mm. The secondary mirror 9 is monolithic with a diameter of 800 mm. The distance between the primary mirror 7 and the secondary mirror 9 is 1600 mm, with the chamber 8 placed at a distance of 275 mm from the secondary mirror 9.

[0054] Simulations performed with the optical design software ZEMAX shows that in such configuration 80% of photons are concentrated within a range of 2.8 mm.

[0055] Fig.4 shows some graphs about the spot diagram and the fraction of photons enclosed in the image for some angles of the focus range as a function of the linear dimension (radius) measured with respect to the center of the image.

[0056] The Schwarzschild-Couder configuration has the advantage of reducing encumbrances and of obtaining a high collimation but it is not an exclusive configuration.

[0057] The present invention uses Fresnel lenses, also made of plastic material, with the advantage of further reducing the weight of the apparatus 1, improving the transportability thereof.

[0058] According to alternative, not shown, configurations the receiving surfaces 6,10 can be of the diffractive type. Particularly instead of mirrors 7, 9 it is possible to use two suitably designed lenses to convey the photon flux towards a focal plane where the chamber 8 will be arranged.

[0059] Particularly the sensor means 4 with the relevant detection chamber 8 will be placed at the focus of the secondary lens.

[0060] Hybrid configurations are also possible, wherein a receiving surface is a reflecting mirror while the other one is a refractive lens.

[0061] Regardless of the specific configuration employed for the optical device 5, the apparatus 1 can be composed of a system provided with a plurality of optical devices associated to respective sensor means and respective electronic processing means to detect muon fluxes coming from different directions, such to carry out 3D tomography. The optical devices have not to be necessarily of the same type and preferably at least one of them can be inserted in a movable structure, possibly autonomous from an energy perspective, to vary its detection direction.

[0062] As regards the characteristics of the sensors means 4 the multiplex chamber 8 can comprise photon sensors of the siPm type, photomultipliers or the like intended to generate analog signals as a function of the incident photon and of the direction of the muon flux to be sent to electronic processing means that provide to convert them into digital signals by a suitable processing unit.

[0063] Particularly the electronic processing means are intended to detect the signal of Cherenkov radiation and to carry out an analysis intended to measure the differential attenuation and the energy of the muon flux passing through the portion inspected along different directions and thus to determine the local density of the inspected body. The detection chamber 8 is essentially composed of a mechanical structure, whose main function is to contain all the electronic components, and the real electronic components, among which the voltage distribution module, detectors, image processor and command and data communication module.

[0064] In an exemplificative manner the mechanical structure of the detection chamber 8 has a cylindrical shape with diameter size of 300 mm and height size of 300 mm and it opportunely comprises a transparent window for reflected or diffracted photons to enter and a mechanical interface flange for the connection to the support structure 11 of the optical device 5.

[0065] The electronics of the chamber 8 comprises SiPM sensors, front-end electronics and back-end electronics.

[0066] The main role of front-end electronics is to process analog signals of SiPMs into digital signals, while back-end electronics manages and controls the overall behavior of the system, including the reading and management of data by a FPGA (Field Programmable Gate Array).

[0067] The back-end electronics further provides all the functions necessary to process and transmit to an external computer the whole stream of data including status information of the system such as for example, temperatures and voltages.

[0068] The focal plane of the chamber 8 is of the modular type, for example composed of 16 modules of dimensions 57mm57mm30mm. Each module contains the board with SiPMs (8 pixels8 pixels), the ASIC board reading and processing the signals of SiPMs and the FPGA board controlling and managing all the operating functions of the front-end electronics. Boards of each module can be mechanically fastened to a metal casing, for example made of aluminium, and connected with each other by means of connectors. The 16 modules are geometrically arranged in a grid containing 44 modules and will be mechanically fastened to an aluminium support for a 228mm228mm dimension.

[0069] The back-end electronics is the system processor and has to be able to receive and process data at a speed higher than that of the triggered events. Back-end electronics is based on a FPGA that controls and monitors the stream of data and commands for/to the electronics of the focal plane.

[0070] A voltage distribution board provides necessary voltages to the different modules by using a single input voltage of 24 V. The board provides to independently enable/disable each sub-system connected thereto.

[0071] There is also provided a data acquisition system, for example a portable PC connected to the back-end board through a Ethernet cable from which commands are sent and data are received.

[0072] However it is clear that the chamber 8 can be designed also in a different manner, for example with a different number of modules and/or with a different arrangement in the space thereof, without departing from the scope of protection of the present invention. From what is disclosed above it is clear that the apparatus and the method according to the invention achieves the above mentioned objects.

[0073] The apparatus and the method according to the invention are susceptible of many changes and variants, all falling within the inventive teaching disclosed in the annexed claims. The materials can be different depending on needs, without departing from the scope of protection of the present invention.

[0074] Even if the apparatus and the method have been described with a particular reference to the annexed figures, the reference numerals used in the description and in the claims are used to improve the comprehension of the invention and do not constitute any limitation to the scope of protection claimed.


Claims

1. An apparatus for non-invasive inspection of solid bodies by muon imaging, comprising:

- a receiver (3) adapted to intercept a Cherenkov radiation from a muon flux associated with cosmic rays passing through a portion of a body to be inspected;

- sensor means (4) adapted to detect the amount of Cherenkov radiation associated with the muon flux;

- electronic processing means adapted to reconstruct energy and direction of the muon flux incident the portion of the body to be inspected to calculate the local density thereof;

said receiver (3) comprising an optical device (5) provided with at least one receiving surface (6) having reflecting and/or diffractive properties adapted to convey the Cherenkov radiation associated with muons toward said sensor means (4), these latter comprising a multipixel detection chamber (8) adapted to provide an annular image of the muon having radius and position variable as a function of the energy and direction of muon flux,
said optical device (5) being of the type with double reflection and/or diffraction with a secondary receiving surface (10) facing and aligned with said primary receiving surface (6) for transferring the flow of photons received by the latter and for concentrating it towards said detection chamber (8) facing said secondary receiving surface (10)
characterized in that said optical device (5) comprises Fresnel lenses, made of plastic material, for reducing the weight of said apparatus and improving the transportability thereof.
 
2. Apparatus as claimed in claim 1, characterized in that said detection chamber (8) is arranged at the focal plane of said receiving optical device (5).
 
3. Apparatus as claimed in claim 1 or 2, characterized in that said optical device (5) comprises a primary receiving surface (6) adapted to convey the flow of Cherenkov photons towards said focal plane.
 
4. Apparatus as claimed in any preceding claim, characterized in that said optical device (5) is designed to have a focus range between 10° and 15° and preferably close to 12°.
 
5. Apparatus as claimed in any preceding claim, characterized by comprising a plurality of said optical devices associated with respective sensor means and respective electronic processing means to detect muon fluxes coming from different directions, at least one of said optical devices being movable to vary its detection direction.
 
6. Apparatus as claimed in any preceding claim, characterized in that said multipixel chamber (8) comprises photon sensors of the SiPM type, photomultipliers or the like adapted to generate analog signals as a function of the energy and the direction of muon flux, said electronic processing means comprising a processing unit adapted to transform said analog signals into digital signals.
 
7. Apparatus as claimed in claim 6, characterized in that said electronic processing means are adapted to detect the signal of the Cherenkov radiation and to perform an analysis adapted to measure the differential attenuation and the energy of the muon flux passing through the portion inspected along different directions and determine the local density of the inspected body.
 
8. A method for non-invasive inspection of solid bodies by muon imaging, comprising the following steps:

a. intercepting a Cherenkov radiation from a muon flux associated with cosmic rays passing through a portion of a body to be inspected along at least one detection plane;

b. detecting the amount of Cherenkov radiation associated with the muon flux to define an annular image of the muon;

c. transferring and concentrating the Cherenkov radiation towards a detection chamber by double reflection and/or diffraction;

d. electronic processing of the detected Cherenkov radiation to reconstruct the energy and the direction of the muon flux incident the portion of the body to be inspected to calculate the energy and the direction of the muon flux as a function of the radius and the position of said annular image and measure the local density of the inspected body as a function of the calculated energy and direction,

characterized in that said method

e. uses Fresnel lenses, made of plastic material.


 
9. Method as claimed in claim 8, characterized in that the Cherenkov radiation from a muon flux is intercepted along a plurality of detection planes, at least one of said planes being movable to perform a 3D tomography of the body to be inspected.
 


Ansprüche

1. Vorrichtung zur nichtinvasiven Inspektion fester Körper durch Muon Imaging, umfassend :

- einen Empfänger (3), der dazu geeignet ist, eine Cherenkov-Strahlung von einem Myonenfluss abzufangen, der mit kosmischen Strahlen verbunden ist, die durch einen zu inspizierenden Körperteil strömen;

- einen Sensor (4), der zur Erfassung des Ausmaßes der mit dem Myonenfluss verbundenen Cherenkov-Strahlung geeignet ist;

- ein elektronisches Verarbeitungsmittel, das in der Lage ist, die Energie und Richtung des Myonenflusses zu rekonstruieren, der auf den zu inspizierenden Körperteil einfällt, um seine lokale Dichte zu berechnen;

Wobei der Empfänger (3) umfasst eine optische Vorrichtung (5), die mit mindestens einer Empfangsfläche (6) mit reflektierenden und/oder diffraktiven Eigenschaften versehen ist, die zum Übertragen der mit Myonen verbundenen Cherenkov-Strahlung zum Sensor (4) geeignet sind, wobei diese auch eine Multipixel-Detektion-Kammer (8) umfassen, die geeignet ist, um ein ringförmiges Bild des Myons mit einem Radius und variablen Positionen gemäß der Energie und Richtung des Myonenflusses bereitzustellen,
wobei die optische Vorrichtung (5) ist vom Typ mit doppelter Reflexion und/oder Beugung, wobei eine sekundäre Empfangsfläche (10) zur primären Empfangsfläche (6) zeigt und mit dieser ausgerichtet ist, um den von dieser empfangenen Photonenfluss zu übertragen und zu der Erfassungskammer (8) zu konzentrieren, die zur sekundären Aufnahmefläche (10) zugewandt ist, dadurch gekennzeichnet, dass die optische Vorrichtung (5) Fresnellinsen umfasst, die aus einem Kunststoffmaterial hergestellt sind, um das Gewicht der Vorrichtung zu verringern und ihre Tragbarkeit zu verbessern.
 
2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Erfassungskammer (8) in der Brennebene der empfangenden optischen Vorrichtung (5) angeordnet ist.
 
3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die optische Vorrichtung (5) eine primäre Empfangsfläche (6) aufweist, die zum Befördern des Flusses von Cherenkov-Photonen in Richtung der Brennebene geeignet ist.
 
4. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die optische Vorrichtung (5) einen Fokussierungsbereich zwischen 10° und 15° und vorzugsweise nahe 12° aufweist.
 
5. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass sie mehrere optische Vorrichtungen umfasst, die jeweiligen Sensoren und jeweiligen elektronischen Verarbeitungsmitteln zugeordnet sind, um Myonenflüsse zu erfassen, die aus verschiedenen Richtungen kommen, wobei mindestens eine der optischen Vorrichtungen ist beweglich um ihre Erkennungsrichtung zu variieren.
 
6. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Multipixelkammer (8) Photonensensoren vom SiPM-Typ, Fotomultiplikatoren oder dergleichen umfasst, die zur Erzeugung analoger Signale als Funktion der Energie und Richtung des Myonenflusses geeignet sind, wobei die elektronischen Verarbeitungsmittel umfassen eine Verarbeitungseinheit, die geeignet ist, um analoge Signale in digitale Signale umzuwandeln.
 
7. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet ist, dass die analogen Verarbeitungsmittel geeignet sind, um das Cherenkov-Strahlungssignal zu erfassen und eine angepasste Analyse durchzuführen, um die Differenzdämpfung und die Energie des durchströmenden Myonenflusses, durch das in verschiedene Richtungen inspizierte Teil zu messen, und zur Bestimmung der lokalen Dichte des inspizierten Körpers.
 
8. Verfahren zur nicht invasiven Inspektion fester Körper durch Muon Imaging, umfassend die folgenden Schritte:

a. Abfangen von einen Cherenkov-Strahlung von einem Myonenfluss, der mit kosmischen Strahlen verbunden ist, die durch einen Teil eines Körpers gehen, der entlang mindestens einer Detektionsebene inspiziert werden soll,

b. Erfassen des Ausmaßes der Cherenkov-Strahlung, die mit dem Myonenfluss verbunden ist, um ein ringförmiges Bild des Myons zu definieren,

c. Übertragen und Konzentrieren von Cherenkov-Strahlung in Richtung einer Detektionskammer mittels Doppelreflexion und/oder Beugung,

d. Die erfasste Cherenkov-Strahlung wird elektronisch verarbeitet, um die Energie und Richtung des Myonflusses zu rekonstruieren, der auf den zu inspizierenden Körperteil einfällt, um die Energie und Richtung des Myonflusses als Funktion des Radius und der Position des ringförmigen Bildes zu berechnen und die lokale Dichte des inspizierten Körpers in Abhängigkeit von der berechneten Energie und Richtung zu messen,

dadurch gekennzeichnet, dass das Verfahren

e. Fresnellinsen aus Kunststoff verwendet.


 
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass die von einem Myonenfluss erzeugte Cherenkov-Strahlung entlang einer Vielzahl von Detektionsebenen abgefangen wird, wobei mindestens eine der Ebenen beweglich ist, um eine 3D-Tomographie des zu inspizierenden Körpers durchzuführen.
 


Revendications

1. Dispositif d'inspection non invasive de corps solides par imagerie muonique comprenant:

- un récepteur (3) adapté pour intercepter un rayonnement de Cherenkov provenant d'un flux muonique associé à des rayons cosmiques traversant une partie d'un corps à inspecter;

- un moyen capteur (4) adapté pour détecter l'étendue du rayonnement de Cherenkov associé au flux muonique;

- un moyen de traitement électronique capable de reconstruire l'énergie et la direction du flux muonique incident sur la partie du corps à inspecter pour calculer sa densité locale;

le récepteur (3) comprenant un dispositif optique (5) pourvu d'au moins une surface de réception (6) avec des propriétés réfléchissantes et/ou diffractives adaptées pour véhiculer le rayonnement de Cherenkov associé aux muons vers le moyen capteur (4), ce dernier comprenant une chambre de détection multipixel (8) adaptée pour fournir une image annulaire du muon ayant un rayon et des positions variables en fonction de l'énergie et de la direction du flux de muons,
le dispositif optique (5) étant du type à double réflexion et/ou diffraction avec une surface réceptrice secondaire (10) tournée et alignée avec la surface réceptrice primaire (6) pour transférer le flux de photons reçu par cette dernière et le concentrer vers la chambre de détection (8) faisant face à la surface réceptrice secondaire (10),
caractérisé en ce que le dispositif optique (5) comprend des lentilles de Fresnel réalisées dans un matériau plastique, pour réduire le poids du dispositif et améliorer sa portabilité.
 
2. Dispositif selon la revendication 1, caractérisé en ce que la chambre de détection (8) est disposée sur le plan focal du dispositif optique récepteur (5).
 
3. Dispositif selon la revendication 1 ou 2, caractérisé en ce que le dispositif optique (5) comprend une surface de réception primaire (6) apte à véhiculer le flux de photons de Cherenkov vers le plan focal.
 
4. Dispositif selon l'une des revendications précédentes, caractérisé en ce que le dispositif optique (5) est prévu pour avoir une plage de focalisation comprise entre 10° et 15° et de préférence proche de 12°.
 
5. Dispositif selon l'une des revendications précédentes, caractérisé en ce qu'il comprend une pluralité de dispositifs optiques associés à des moyens capteurs respectifs et des moyens de traitement électronique respectifs afin de détecter des flux muoniques provenant de directions différentes, au moins un des dispositifs optiques étant mobile à cet effet pour faire varier sa direction de détection.
 
6. Dispositif selon l'une des revendications précédentes, caractérisé en ce que la chambre multipixel (8) comprend des capteurs à photons du type SiPM, des photomultiplicateurs ou similaires aptes à générer des signaux analogiques en fonction de l'énergie et de la direction du flux muonique, les moyens des unités de traitement électronique comprenant une unité de traitement adaptée pour transformer des signaux analogiques en signaux numériques.
 
7. Dispositif selon l'une des revendications précédentes, caractérisé en ce que les moyens de traitement électroniques sont adaptés pour détecter le signal de rayonnement de Cherenkov et pour effectuer une analyse adaptée pour mesurer l'atténuation différentielle et l'énergie du flux muonique passant à travers la pièce inspectée dans des différentes directions, et pour déterminer la densité locale du corps inspecté.
 
8. Méthode d'inspection non invasive des corps solides par imagerie muonique, comprenant les opérations suivantes:

a. intercepter un rayonnement de Cherenkov provenant d'un flux muonique associé à des rayons cosmiques traversant une partie d'un corps à inspecter le long d'au moins un plan de détection,

b. détecter l'étendue du rayonnement de Cherenkov associé au flux muonique afin de définir une image annulaire du muon,

c. transférer et concentrer le rayonnement de Cherenkov vers une chambre de détection par double réflexion et/ou diffraction,

d. traiter électroniquement le rayonnement de Cherenkov détecté afin de reconstruire l'énergie et la direction du flux muonique incident sur la partie du corps à inspecter, afin de calculer l'énergie et la direction du flux muonique en fonction du rayon et de la position de l'image annulaire et de mesurer la densité locale du corps inspecté en fonction de l'énergie et de la direction calculées,

caractérisé en ce que la méthode

e. utilise des lentilles de Fresnel, en matière plastique.


 
9. Méthode selon la revendication 8, caractérisé en ce que le rayonnement de Cherenkov produit par un flux muonique est intercepté le long d'une pluralité de plans de détection, au moins l'un des plans étant mobile afin d'effectuer une tomographie 3D du corps à inspecter.
 




Drawing











Cited references

REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description




Non-patent literature cited in the description