(19)
(11)EP 3 382 047 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
11.12.2019 Bulletin 2019/50

(21)Application number: 18164884.1

(22)Date of filing:  29.03.2018
(51)International Patent Classification (IPC): 
C22C 14/00(2006.01)

(54)

TITANIUM-COPPER-IRON ALLOY AND ASSOCIATED THIXOFORMING METHOD

TITAN-KUPFER-EISEN-LEGIERUNG UND ENTSPRECHENDES THIXOFORMING-VERFAHREN

ALLIAGE TITANE-CUIVRE-FER ET PROCÉDÉ DE THIXOFORMAGE ASSOCIÉ


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 29.03.2017 US 201715472948

(43)Date of publication of application:
03.10.2018 Bulletin 2018/40

(73)Proprietors:
  • The Boeing Company
    Chicago, IL 60606-1596 (US)
  • Universidade Estadual de Campinas - Unicamp
    13083-970 Campinas - SP (BR)

(72)Inventors:
  • PARRISH, Catherine J.
    Huntington Beach, CA California 92647 (US)
  • CARAM Jr., Rubens
    Huntington Beach, CA California 92647 (US)
  • CAMPO, Kaio Niitsu
    Huntington Beach, CA California 92647 (US)
  • CHAUSSE de FREITAS, Caio
    Huntington Beach, CA California 92647 (US)

(74)Representative: Harris, Jennifer Lucy et al
Kilburn & Strode LLP Lacon London 84 Theobalds Road
London WC1X 8NL
London WC1X 8NL (GB)


(56)References cited: : 
WO-A1-98/03686
US-A- 4 568 398
GB-A- 2 156 850
  
  • CARDOSO F F ET AL: "Hexagonal martensite decomposition and phase precipitation in TiCu alloys", MATERIALS AND DESIGN, LONDON, GB, vol. 32, no. 8, 16 March 2011 (2011-03-16) , pages 4608-4613, XP028224893, ISSN: 0261-3069, DOI: 10.1016/J.MATDES.2011.03.040 [retrieved on 2011-03-22]
  • YONGNAN CHEN ET AL: "Effect of Cu Content on the Semi-Solid Formability and Mechanical Properties of Ti-Cu Alloys", RARE METAL MATERIALS AND ENGINEERING, vol. 45, no. 6, 1 June 2016 (2016-06-01), pages 1406-1412, XP029733070, ISSN: 1875-5372, DOI: 10.1016/S1875-5372(16)30122-9
  • ZHANG ERLIN ET AL: "Effect of extrusion processing on the microstructure, mechanical properties, biocorrosion properties and antibacterial properties of Ti-Cu sintered alloys", MATERIALS SCIENCE AND ENGINEERING C, ELSEVIER SCIENCE S.A, CH, vol. 69, 20 July 2016 (2016-07-20), pages 760-768, XP029725041, ISSN: 0928-4931, DOI: 10.1016/J.MSEC.2016.07.051
  
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description

FIELD



[0001] This application relates to titanium alloys and, more particularly, to thixoforming of titanium alloys.

BACKGROUND



[0002] Titanium alloys offer high tensile strength over a broad temperature range, yet are relatively light weight. Furthermore, titanium alloys are resistant to corrosion. Therefore, titanium alloys are used in various demanding applications, such as aircraft components, medical devices and the like.

[0003] Plastic forming of titanium alloys is a costly process. The tooling required for plastic forming of titanium alloys must be capable of withstanding heavy loads during deformation. Therefore, the tooling for plastic forming of titanium alloys is expensive to manufacture and difficult to maintain due to high wear rates. Furthermore, it can be difficult to obtain complex geometries when plastic forming titanium alloys. Therefore, substantial additional machining is often required to achieve the desired shape of the final product, thereby further increasing costs.

[0004] Casting is a common alternative for obtaining titanium alloy products having more complex shapes. However, casting of titanium alloys is complicated by the high melting temperatures of titanium alloys, as well as the excessive reactivity of molten titanium alloys with mold materials and ambient oxygen.

[0005] Accordingly, titanium alloys are some of the most difficult metals to be processed in a cost-effective manner. Therefore, those skilled in the art continue with research and development efforts in the field of titanium alloys.

[0006] CARDOSO F F ET AL, "Hexagonal martensite decomposition and phase precipitation in TiCu alloys", MATERIALS AND DESIGN, LONDON, GB, vol. 32, no. 8, ISSN 0261-3069, (20110316), pages 4608 - 4613 relates to hexagonal martensite decomposition and phase precipitation in TiCu alloys.

[0007] YONGNAN CHEN ET AL, "Effect of Cu Content on the Semi-Solid Formability and Mechanical Properties of Ti-Cu Alloys", RARE METAL MATERIALS AND ENGINEERING, (20160601), vol. 45, no. 6, ISSN 1875-5372, pages 1406 - 1412 relates to the effect of Cu content on the semi-solid formability and mechanical properties of Ti-Cu alloys.

[0008] ZHANG ERLIN ET AL, "Effect of extrusion processing on the microstructure, mechanical properties, biocorrosion properties and antibacterial properties of Ti-Cu sintered alloys", MATERIALS SCIENCE AND ENGINEERING C, ELSEVIER SCIENCE S.A, CH, (20160720), vol. 69, ISSN 0928-4931, pages 760 - 768 relates to the effect of extrusion processing on the microstructure, mechanical properties, biocorrosion properties and antibacterial properties of Ti-Cu sintered alloys.

SUMMARY



[0009] In an aspect, a titanium alloy is provided in claim 1. In another aspect, a method for manufacturing a metallic article is provided in claim 9.

[0010] The disclosed titanium alloy includes 5 to 33 percent by weight copper, 1 to 8 percent by weight iron, and titanium.

[0011] In one embodiment, the disclosed method for manufacturing a metallic article includes the steps of (1) heating a mass of titanium alloy to a thixoforming temperature, the thixoforming temperature being between a solidus temperature of the titanium alloy and a liquidus temperature of the titanium alloy, the titanium alloy including copper, iron and titanium; and (2) forming the mass into the metallic article while the mass is at the thixoforming temperature.

[0012] In another embodiment, the disclosed method for manufacturing a metallic article includes the steps of (1) heating a mass of titanium alloy to a thixoforming temperature, the thixoforming temperature being between a solidus temperature of the titanium alloy and a liquidus temperature of the titanium alloy, the titanium alloy including about 5 to about 33 percent by weight copper, about 1 to about 8 percent by weight iron, and titanium; and (2) forming the mass into the metallic article while the mass is at the thixoforming temperature.

[0013] Other embodiments of the disclosed titanium-copper-iron alloy and associated thixoforming method will become apparent from the following detailed description, the accompanying drawings and the appended claims.

BRIEF DESCRIPTION OF THE DRAWINGS



[0014] 

Fig. 1 is a phase diagram of a titanium-copper-iron alloy;

Figs. 2A and 2B are plots of liquid fraction versus temperature for three example titanium alloys generated assuming equilibrium (Fig. 2A) and Scheil (Fig. 2B) conditions;

Fig. 3A, 3B and 3C are photographic images depicting the microstructures versus time (when maintained at 1010 °C) for three example titanium alloys, specifically Ti-18Cu-4Fe (Fig. 3A), Ti-20Cu-4Fe (Fig. 3B) and Ti-22Cu-4Fe (Fig. 3C);

Fig. 4 is a flow diagram depicting one embodiment of the disclosed method for manufacturing a metallic article;

Fig. 5 is a flow diagram of an aircraft manufacturing and service methodology; and

Fig. 6 is a block diagram of an aircraft.


DETAILED DESCRIPTION



[0015] Disclosed is a titanium-copper-iron alloy. When the compositional limits of the copper addition and the iron addition in the disclosed titanium-copper-iron alloy are controlled as disclosed herein, the resulting titanium-copper-iron alloy may be particularly well-suited for use in the manufacture of metallic articles by way of thixoforming.

[0016] Without being limited to any particular theory, it is believed that the disclosed titanium-copper-iron alloys are well-suited for use in the manufacture of metallic articles by way of thixoforming because the disclosed titanium-copper-iron alloys have a relatively broad solidification range. As used herein, "solidification range" refers to the difference (ΔT) between the solidus temperature and the liquidus temperature of the titanium-copper-iron alloy, and is highly dependent upon alloy composition. As one example, the solidification range of the disclosed titanium-copper-iron alloys may be at least about 50 °C. As another example, the solidification range of the disclosed titanium-copper-iron alloys may be at least about 100 °C. As another example, the solidification range of the disclosed titanium-copper-iron alloys may be at least about 150 °C. As another example, the solidification range of the disclosed titanium-copper-iron alloys may be at least about 200 °C. As another example, the solidification range of the disclosed titanium-copper-iron alloys may be at least about 250 °C. As another example, the solidification range of the disclosed titanium-copper-iron alloys may be at least about 300 °C.

[0017] The disclosed titanium-copper-iron alloys become thixoformable when heated to a temperature between the solidus temperature and the liquidus temperature of the titanium-copper-iron alloy. However, the advantages of thixoforming are limited when the liquid fraction of the titanium-copper-iron alloy is too high (processing becomes similar to casting) or too low (processing becomes similar to plastic metal forming). Therefore, it may be advantageous to thixoform when the liquid fraction of the titanium-copper-iron alloy is between about 30 percent and about 50 percent.

[0018] Without being limited to any particular theory, it is further believed that the disclosed titanium-copper-iron alloys are well-suited for use in the manufacture of metallic articles by way of thixoforming because the disclosed titanium-copper-iron alloys achieve a liquid fraction between about 30 percent and about 50 percent at temperatures significantly below traditional titanium alloy casting temperatures. In one expression, the disclosed titanium-copper-iron alloys achieve a liquid fraction between about 30 percent and about 50 percent at a temperature less than 1,200 °C. In another expression, the disclosed titanium-copper-iron alloys achieve a liquid fraction between about 30 percent and about 50 percent at a temperature less than 1,150 °C. In another expression, the disclosed titanium-copper-iron alloys achieve a liquid fraction between about 30 percent and about 50 percent at a temperature less than 1,100 °C. In another expression, the disclosed titanium-copper-iron alloys achieve a liquid fraction between about 30 percent and about 50 percent at a temperature less than 1,050 °C. In yet another expression, the disclosed titanium-copper-iron alloys achieve a liquid fraction between about 30 percent and about 50 percent at a temperature of about 1,010 °C.

[0019] In one embodiment, disclosed is a titanium-copper-iron alloy having the composition shown in Table 1.
TABLE 1
ElementRange (wt%)
Cu 5 - 33
Fe 1 - 8
Ti Balance


[0020] Thus, the disclosed titanium-copper-iron alloy may consist of (or consist essentially of) titanium (Ti), copper (Cu) and iron (Fe).

[0021] Those skilled in the art will appreciate that various impurities, which do not substantially affect the physical properties of the disclosed titanium-copper-iron alloy, may also be present, and the presence of such impurities will not result in a departure from the scope of the present disclosure. For example, the impurities content of the disclosed titanium-copper-iron alloy may be controlled as shown in Table 2.
TABLE 2
ImpurityMaximum (wt%)
O 0.25
N 0.03
Other Elements, Each 0.10
Other Elements, Total 0.30


[0022] The copper addition to the disclosed titanium-copper-iron alloy increases the liquid fraction at a given temperature. Therefore, without being limited to any particular theory, it is believed that the copper addition contributes to the thixoformability of the disclosed titanium-copper-iron alloy.

[0023] As shown in Table 1, the compositional limits of the copper addition to the disclosed titanium-copper-iron alloy range from about 5 percent by weight to about 33 percent by weight. In one variation, the compositional limits of the copper addition range from about 13 percent by weight to about 33 percent by weight. In another variation, the compositional limits of the copper addition range from about 15 percent by weight to about 30 percent by weight. In another variation, the compositional limits of the copper addition range from about 17 percent by weight to about 25 percent by weight. In yet another variation, the compositional limits of the copper addition range from about 18 percent by weight to about 22 percent by weight.

[0024] Iron is a strong β-stabilizer, but can increase density and cause embrittlement. Therefore, without being limited to any particular theory, it is believed that the iron addition retains the Ti-β phase during cooling, but without an excessive density increase and without causing significant embrittlement.

[0025] As shown in Table 1, the compositional limits of the iron addition to the disclosed titanium-copper-iron alloy range from about 1 percent by weight to about 8 percent by weight. In one variation, the compositional limits of the iron addition range from about 2 percent by weight to about 7 percent by weight. In another variation, the compositional limits of the iron addition range from about 3 percent by weight to about 6 percent by weight. In another variation, the compositional limits of the iron addition range from about 3 percent by weight to about 5 percent by weight. In yet another variation, iron is present at a concentration of about 4 percent by weight.

Example 1


(Ti-13-33Cu-4Fe)



[0026] One general, non-limiting example of the disclosed titanium-copper-iron alloy has the composition shown in Table 3.
TABLE 3
ElementConcentration (wt%)
Cu 13 - 33
Fe 4
Ti Balance


[0027] Referring to the phase diagram of Fig. 1, specifically to the cross-hatched region of Fig. 1, the disclosed Ti-13-33Cu-4Fe alloy has a relatively low solidus temperature (around 1,000 °C) and a relatively broad solidification range. Therefore, the disclosed Ti-13-33Cu-4Fe alloy is well-suited for thixoforming.

Example 2


(Ti-18Cu-4Fe)



[0028] One specific, non-limiting example of the disclosed titanium-copper-iron alloy has the following nominal composition:

        Ti-18Cu-4Fe

and the measured composition shown in Table 4.
TABLE 4
ElementConcentration (wt%)
Ti Balance
Cu 17.7 ± 0.6
Fe 4.0 ± 0.1
O 0.155 ± 0.006
N 0.008 ± 0.001


[0029] PANDAT™ software (version 2014 2.0) from CompuTherm LLC of Middleton, Wisconsin, was used to generate liquid fraction versus temperature data for the disclosed Ti-18Cu-4Fe alloy, assuming both equilibrium conditions and Scheil conditions. The results are shown in Figs. 2A (equilibrium conditions) and 2B (Scheil conditions). Based on the data from Fig. 2A (equilibrium conditions), the disclosed Ti-18Cu-4Fe alloy has a solidus temperature of about 1,007 °C and a liquidus temperature of about 1,345 °C, with a solidification range of about 338 °C (364 °C using Scheil conditions/Fig. 2B).

[0030] Referring to Fig. 3A, the disclosed Ti-18Cu-4Fe alloy was heated to 1,010 °C-a temperature between the solidus and liquidus temperatures (i.e., a thixoforming temperature)-and micrographs were taken at 0 seconds, 60 seconds, 300 seconds and 600 seconds. The micrographs show how the disclosed Ti-18Cu-4Fe alloy has a globular microstructure at 1,010 °C that becomes increasingly globular over time. Therefore, the disclosed Ti-18Cu-4Fe alloy is particularly well-suited for thixoforming.

Example 3


(Ti-20Cu-4Fe)



[0031] Another specific, non-limiting example of the disclosed titanium-copper-iron alloy has the following nominal composition:

        Ti-20Cu-4Fe

and the measured composition shown in Table 5.
TABLE 5
ElementConcentration (wt%)
Ti Balance
Cu 19.5 ± 0.5
Fe 4.0 ± 0.1
O 0.166 ± 0.010
N 0.008 ± 0.001


[0032] PANDAT™ software (version 2014 2.0) was used to generate liquid fraction versus temperature data for the disclosed Ti-20Cu-4Fe alloy, assuming both equilibrium conditions and Scheil conditions. The results are shown in Figs. 2A (equilibrium conditions) and 2B (Scheil conditions). Based on the data from Fig. 2A (equilibrium conditions), the disclosed Ti-20Cu-4Fe alloy has a solidus temperature of about 999 °C and a liquidus temperature of about 1,309 °C, with a solidification range of about 310 °C (329 °C using Scheil conditions/Fig. 2B).

[0033] Referring to Fig. 3B, the disclosed Ti-20Cu-4Fe alloy was heated to 1,010 °C-a temperature between the solidus and liquidus temperatures (i.e., a thixoforming temperature)-and micrographs were taken at 0 seconds, 60 seconds, 300 seconds and 600 seconds. The micrographs show how the disclosed Ti-20Cu-4Fe alloy has a globular microstructure at 1,010 °C that becomes increasingly globular over time. Therefore, the disclosed Ti-20Cu-4Fe alloy is particularly well-suited for thixoforming.

Example 4


(Ti-22Cu-4Fe)



[0034] Yet another specific, non-limiting example of the disclosed titanium-copper-iron alloy has the following nominal composition:

        Ti-22Cu-4Fe

and the measured composition shown in Table 6.
TABLE 6
ElementConcentration (wt%)
Ti Balance
Cu 21.5 ± 0.5
Fe 4.0 ± 0.1
O 0.176 ± 0.013
N 0.008 ± 0.001


[0035] PANDAT™ software (version 2014 2.0) was used to generate liquid fraction versus temperature data for the disclosed Ti-22Cu-4Fe alloy, assuming both equilibrium conditions and Scheil conditions. The results are shown in Figs. 2A (equilibrium conditions) and 2B (Scheil conditions). Based on the data from Fig. 2A (equilibrium conditions), the disclosed Ti-22Cu-4Fe alloy has a solidus temperature of about 995 °C and a liquidus temperature of about 1,271 °C, with a solidification range of about 276 °C (290 °C using Scheil conditions/Fig. 2B).

[0036] Referring to Fig. 3C, the disclosed Ti-22Cu-4Fe alloy was heated to 1,010 °C-a temperature between the solidus and liquidus temperatures (i.e., a thixoforming temperature)-and micrographs were taken at 0 seconds, 60 seconds, 300 seconds and 600 seconds. The micrographs show how the disclosed Ti-22Cu-4Fe alloy has a globular microstructure at 1,010 °C that becomes increasingly globular over time. Therefore, the disclosed Ti-22Cu-4Fe alloy is particularly well-suited for thixoforming.

[0037] Accordingly, discloses are titanium-copper-iron alloys that are well-suited for thixoforming. Also, disclosed are methods for manufacturing a metallic article, particularly a titanium alloy article, by way of thixoforming.

[0038] Referring now to Fig. 4, one embodiment of the disclosed method for manufacturing a metallic article, generally designated 10, may begin at Block 12 with the selection of a titanium alloy for use as a starting material. For example, the selection of a titanium alloy (Block 12) may include selecting a titanium-copper-iron alloy having the composition shown in Table 1, above.

[0039] At this point, those skilled in the art will appreciate that selection of a titanium alloy (Block 12) may include selecting a commercially available titanium alloy or, alternatively, selecting a non-commercially available titanium alloy. In the case of a non-commercially available titanium alloy, the titanium alloys may be custom made for use in the disclosed method 10.

[0040] As is disclosed herein, the solidification range may be one consideration during selection (Block 12) of a titanium alloy. For example, selection of a titanium alloy (Block 12) may include selecting a titanium-copper-iron alloy having a solidification range of at least 50 °C, such as at least 100 °C, or at least 150 °C, or at least 200 °C or at least 250 °C, or at least 300 °C.

[0041] As is also disclosed herein, the temperature at which a liquid fraction between about 30 percent and about 50 percent is achieved may be another consideration during selection (Block 12) of a titanium alloy. For example, selection of a titanium alloy (Block 12) may include selecting a titanium-copper-iron alloy that achieves a liquid fraction between about 30 percent and about 50 percent at a temperature less than 1,200 °C, such as a temperature less than 1,150 °C, or a temperature less than 1,100 °C, or a temperature less than 1,050 °C.

[0042] At Block 14, a mass of the titanium alloy may be heated to a thixoforming temperature (i.e., a temperature between the solidus and liquidus temperatures of the titanium alloy). In one particular implementation, the mass of the titanium alloy may be heated to a particular thixoforming temperature, and the particular thixoforming temperature may be selected to achieve a desired liquid fraction in the mass of the titanium alloy. As one example, the desired liquid fraction may be about 10 percent to about 70 percent. As another example, the desired liquid fraction may be about 20 percent to about 60 percent. As yet example, the desired liquid fraction may be about 30 percent to about 50 percent.

[0043] At Block 16, the mass of the titanium alloy may optionally be maintained at the thixoforming temperature for a predetermined minimum amount of time prior to proceeding to the next step (Block 18). As one example, the predetermined minimum amount of time may be about 10 seconds. As another example, the predetermined minimum amount of time may be about 30 seconds. As another example, the predetermined minimum amount of time may be about 60 seconds. As another example, the predetermined minimum amount of time may be about 300 seconds. As yet another example, the predetermined minimum amount of time may be about 600 seconds.

[0044] At Block 18, the mass of the titanium alloy may be formed into a metallic article while the mass is at the thixoforming temperature. Various forming techniques may be used, such as, without limitation, casting and molding.

[0045] Accordingly, the disclosed titanium-copper-iron alloy and associated thixoforming method may facilitate the manufacture of net shape (or near net shape) titanium alloy articles at temperatures that are significantly lower than traditional titanium casting temperatures, and without the need for the complex/expensive tooling typically associated with plastic forming of titanium alloys. Therefore, the disclosed titanium-copper-iron alloy and associated thixoforming method have the potential to significantly reduce the cost of manufacturing titanium alloy articles.

[0046] Examples of the disclosure may be described in the context of an aircraft manufacturing and service method 100, as shown in Fig. 5, and an aircraft 102, as shown in Fig. 6. During pre-production, the aircraft manufacturing and service method 100 may include specification and design 104 of the aircraft 102 and material procurement 106. During production, component/subassembly manufacturing 108 and system integration 110 of the aircraft 102 takes place. Thereafter, the aircraft 102 may go through certification and delivery 112 in order to be placed in service 114. While in service by a customer, the aircraft 102 is scheduled for routine maintenance and service 116, which may also include modification, reconfiguration, refurbishment and the like.

[0047] Each of the processes of method 100 may be performed or carried out by a system integrator, a third party, and/or an operator (e.g., a customer). For the purposes of this description, a system integrator may include without limitation any number of aircraft manufacturers and major-system subcontractors; a third party may include without limitation any number of venders, subcontractors, and suppliers; and an operator may be an airline, leasing company, military entity, service organization, and so on.

[0048] As shown in Fig. 6, the aircraft 102 produced by example method 100 may include an airframe 118 with a plurality of systems 120 and an interior 122. Examples of the plurality of systems 120 may include one or more of a propulsion system 124, an electrical system 126, a hydraulic system 128, and an environmental system 130. Any number of other systems may be included.

[0049] The disclosed titanium-copper-iron alloy and associated thixoforming method may be employed during any one or more of the stages of the aircraft manufacturing and service method 100. As one example, components or subassemblies corresponding to component/subassembly manufacturing 108, system integration 110, and or maintenance and service 116 may be fabricated or manufactured using the disclosed titanium-copper-iron alloy and associated thixoforming method. As another example, the airframe 118 may be constructed using the disclosed titanium-copper-iron alloy and associated thixoforming method. Also, one or more apparatus examples, method examples, or a combination thereof may be utilized during component/subassembly manufacturing 108 and/or system integration 110, for example, by substantially expediting assembly of or reducing the cost of an aircraft 102, such as the airframe 118 and/or the interior 122. Similarly, one or more of system examples, method examples, or a combination thereof may be utilized while the aircraft 102 is in service, for example and without limitation, to maintenance and service 116.

[0050] The disclosed titanium-copper-iron alloy and associated thixoforming method is described in the context of an aircraft; however, one of ordinary skill in the art will readily recognize that the disclosed titanium-copper-iron alloy and associated thixoforming method may be utilized for a variety of applications. For example, the disclosed titanium-copper-iron alloy and associated thixoforming method may be implemented in various types of vehicle including, for example, helicopters, passenger ships, automobiles, marine products (boat, motors, etc.) and the like. Various non-vehicle applications, such as medical applications, are also contemplated.

[0051] Although various embodiments of the disclosed titanium-copper-iron alloy and associated thixoforming method have been shown and described, modifications may occur to those skilled in the art upon reading the specification. The present application includes such modifications and is limited only by the scope of the claims.


Claims

1. A titanium alloy comprising:

5 to 33 percent by weight copper;

1 to 8 percent by weight iron; and

the balance being titanium;

wherein impurities are present at:

0 to 0.25 percent by weight oxygen;

0 to 0.03 percent by weight nitrogen;

0 to 0.3 percent by weight in total of one or more other elements, wherein the or each other element is independently present at 0 to 0.1 percent by weight.


 
2. The titanium alloy of Claim 1 wherein said copper is present at 13 to 33 percent by weight.
 
3. The titanium alloy of Claim 1 wherein said copper is present at 15 to 30 percent by weight.
 
4. The titanium alloy of Claim 1 wherein said copper is present at 17 to 25 percent by weight.
 
5. The titanium alloy of Claim 1 wherein said copper is present at 18 to 22 percent by weight.
 
6. The titanium alloy of any one of Claims 1 - 5 wherein said iron is present at 2 to 7 percent by weight.
 
7. The titanium alloy of any one of Claims 1 - 5 wherein said iron is present at 3 to 5 percent by weight; optionally wherein said iron is present at 4 percent by weight.
 
8. The titanium alloy of any one of Claims 1 - 7 wherein:

said copper is present at 13 to 33 percent by weight, and

said iron is present at 3 to 5 percent by weight.


 
9. A method for manufacturing a metallic article comprising:
heating a mass of titanium alloy to a thixoforming temperature, said thixoforming temperature being between a solidus temperature of said titanium alloy and a liquidus temperature of said titanium alloy, said titanium alloy comprising:

5 to 33 percent by weight copper;

1 to 8 percent by weight iron; and

the balance being titanium;

wherein impurities are present at:

0 to 0.25 percent by weight oxygen;

0 to 0.03 percent by weight nitrogen;

0 to 0.3 percent by weight in total of one or more other elements, wherein the or each other element is independently present at 0 to 0.1 percent by weight;
the method further comprising forming said mass into said metallic article while said mass is at said thixoforming temperature.
 
10. The method of Claim 9 further comprising maintaining said mass at said thixoforming temperature for at least 60 seconds prior to said forming said mass into said metallic article.
 
11. The method of Claim 9 or 10 further comprising maintaining said mass at said thixoforming temperature for at least 600 seconds prior to said forming said mass into said metallic article.
 
12. The method of any one of Claims 9 - 11 further comprising selecting said titanium alloy such that a difference between said solidus temperature and said liquidus temperature is at least 200 °C.
 
13. The method of any one of Claims 9 - 12 further comprising selecting said titanium alloy such that a difference between said solidus temperature and said liquidus temperature is at least 250 °C.
 
14. The method of any one of Claims 9 - 13 further comprising selecting said titanium alloy to have a liquid fraction between 30 percent and 50 percent at a temperature less than 1,100 °C.
 
15. The method of any one of Claims 9 - 14 wherein:

said copper is present in said titanium alloy at 13 to 33 percent by weight; and

said iron is present in said titanium alloy at 3 to 5 percent by weight.


 


Ansprüche

1. Titanlegierung, die aufweist:

5 bis 33 Gew.-% Kupfer;

1 bis 8 Gew.-% Eisen; und

wobei der Rest Titan ist;

wobei Fremdstoffe vorliegen mit:

0 bis 0,25 Gew.-% Sauerstoff;

0 bis 0,03 Gew.-% Stickstoff;

0 bis 0,3 Gew.-% gesamt von einem oder mehreren anderen Elementen, wobei das oder jedes andere Element unabhängig mit 0 bis 0,1 Gew.-% vorliegt.


 
2. Titanlegierung nach Anspruch 1, wobei das Kupfer mit 13 bis 33 Gew.-% vorliegt.
 
3. Titanlegierung nach Anspruch 1, wobei das Kupfer mit 15 bis 30 Gew.-% vorliegt.
 
4. Titanlegierung nach Anspruch 1, wobei das Kupfer mit 17 bis 25 Gew.-% vorliegt.
 
5. Titanlegierung nach Anspruch 1, wobei das Kupfer mit 18 bis 22 Gew.-% vorliegt.
 
6. Titanlegierung nach einem der Ansprüche 1 - 5, wobei das Eisen mit 2 bis 7 Gew.-% vorliegt.
 
7. Titanlegierung nach einem der Ansprüche 1 - 5, wobei das Eisen mit 3 bis 5 Gew.-% vorliegt; wobei optional das Eisen mit 4 Gew.-% vorliegt.
 
8. Titanlegierung nach einem der Ansprüche 1 - 7, wobei:

das Kupfer mit 13 bis 33 Gew.-% vorliegt; und

das Eisen mit 3 bis 5 Gew.-% vorliegt.


 
9. Verfahren zum Herstellen eines Metallartikels, das aufweist:

Erhitzen einer Masse von Titanlegierung auf eine Thixoformingtemperatur, wobei die Thixoformingtemperatur zwischen einer Solidustemperatur der Titanlegierung und einer Liquidustemperatur der Titanlegierung liegt, wobei die Titanlegierung aufweist:

5 bis 33 Gew.-% Kupfer

1 bis 8 Gew.-% Eisen; und

wobei der Rest Titan ist;

wobei Fremdstoffe vorliegen mit:

0 bis 0,25 Gew.-% Sauerstoff;

0 bis 0,03 Gew.-% Stickstoff;

0 bis 0,3 Gew.-% gesamt von einem oder mehreren anderen Elementen, wobei das oder jedes andere Element unabhängig mit 0 bis 0,1 Gew.-% vorliegt;

wobei das Verfahren des Weiteren das Formen der Masse zu dem Metallartikel aufweist, während sich die Masse auf der Thixoformingtemperatur befindet.


 
10. Verfahren nach Anspruch 9, das des Weiteren das Halten der Masse für wenigstens 60 Sekunden auf der Thixoformingtemperatur aufweist, bevor die Masse zu dem Metallartikel geformt wird.
 
11. Verfahren nach Anspruch 9 oder 10, das des Weiteren das Halten der Masse für wenigstens 600 Sekunden auf der Thixoformingtemperatur aufweist, bevor die Masse zu dem Metallartikel geformt wird.
 
12. Verfahren nach einem der Ansprüche 9 - 11, das des Weiteren das Auswählen der Titanlegierung derart aufweist, dass eine Differenz zwischen der Solidustemperatur und der Liquidustemperatur wenigstens 200°C beträgt.
 
13. Verfahren nach einem der Ansprüche 9 - 12, das des Weiteren das Auswählen der Titanlegierung derart aufweist, dass eine Differenz zwischen der Solidustemperatur und der Liquidustemperatur wenigstens 250°C beträgt.
 
14. Verfahren nach einem der Ansprüche 9 - 13, das des Weiteren das Auswählen der Titanlegierung derart aufweist, dass sie einen flüssigen Anteil zwischen 30 Prozent und 50 Prozent bei einer Temperatur von weniger als 1.100°C hat.
 
15. Verfahren nach einem der Ansprüche 9 - 14, wobei:

das Kupfer in der Titanlegierung mit 13 bis 33 Gew.-% vorliegt; und

das Eisen in der Titanlegierung mit 3 bis 5 Gew.-% vorliegt.


 


Revendications

1. Alliage de titane, comprenant :

entre 5 et 33 pour cent en poids de cuivre ;

entre 1 et 8 pour cent en poids de fer ; et

le restant étant du titane ;

dans lequel des impuretés sont présentes à :

entre 0 et 0,25 pour cent en poids d'oxygène ;

entre 0 et 0,03 pour cent en poids d'azote ;

entre 0 et 0,3 pour cent en poids au total d'un ou plusieurs autres éléments, dans lequel le ou chaque autre élément est indépendamment présent à entre 0 et 0,1 pour cent en poids.


 
2. Alliage de titane selon la revendication 1, dans lequel ledit cuivre est présent à entre 13 et 33 pour cent en poids.
 
3. Alliage de titane selon la revendication 1, dans lequel ledit cuivre est présent à entre 15 et 30 pour cent en poids.
 
4. Alliage de titane selon la revendication 1, dans lequel ledit cuivre est présent à entre 17 et 25 pour cent en poids.
 
5. Alliage de titane selon la revendication 1, dans lequel ledit cuivre est présent à entre 18 et 22 pour cent en poids.
 
6. Alliage de titane selon l'une quelconque des revendications 1 - 5, dans lequel ledit fer est présent à entre 2 et 7 pour cent en poids.
 
7. Alliage de titane selon l'une quelconque des revendications 1 - 5, dans lequel ledit fer est présent à entre 3 et 5 pour cent en poids ; facultativement dans lequel ledit fer est présent à 4 pour cent en poids.
 
8. Alliage de titane selon l'une quelconque des revendications 1 - 7, dans lequel :

ledit cuivre est présent à entre 13 et 33 pour cent en poids, et

ledit fer est présent à entre 3 et 5 pour cent en poids.


 
9. Procédé de fabrication d'un article métallique comprenant :
le chauffage d'une masse d'alliage de titane à une température de thixoformage, ladite température de thixoformage étant entre une température de solidus dudit alliage de titane et une température de liquidus dudit alliage de titane, ledit alliage de titane comprenant :

entre 5 et 33 pour cent en poids de cuivre ;

entre 1 et 8 pour cent en poids de fer ; et

le restant étant du titane ;

dans lequel des impuretés sont présentes à :

entre 0 et 0,25 pour cent en poids d'oxygène ;

entre 0 et 0,03 pour cent en poids d'azote ;

entre 0 et 0,3 pour cent en poids au total d'un ou plusieurs autres éléments, dans lequel le ou chaque autre élément est indépendamment présent à entre 0 et 0,1 pour cent en poids ;

le procédé comprenant en outre la formation de ladite masse dans ledit article métallique tandis que ladite masse est à ladite température de thixoformage.


 
10. Procédé selon la revendication 9, comprenant en outre le maintien de ladite masse à ladite température de thixoformage pendant au moins 60 secondes avant ladite formation de ladite masse dans ledit article métallique.
 
11. Procédé selon la revendication 9 ou 10, comprenant en outre le maintien de ladite masse à ladite température de thixoformage pendant au moins 600 secondes avant ladite formation de ladite masse dans ledit article métallique.
 
12. Procédé selon l'une quelconque des revendications 9 - 11, comprenant en outre la sélection dudit alliage de titane de sorte qu'une différence entre ladite température de solidus et ladite température de liquidus soit au moins de 200 °C.
 
13. Procédé selon l'une quelconque des revendications 9 - 12, comprenant en outre la sélection dudit alliage de titane de sorte qu'une différence entre ladite température de solidus et ladite température de liquidus soit au moins de 250 °C.
 
14. Procédé selon l'une quelconque des revendications 9 - 13, comprenant en outre la sélection dudit alliage de titane pour avoir une fraction liquide entre 30 pour cent et 50 pour cent à une température inférieure à 1 100 °C.
 
15. Procédé selon l'une quelconque des revendications 9 - 14, dans lequel :

ledit cuivre est présent dans ledit alliage de titane à entre 13 et 33 pour cent en poids ; et

ledit fer est présent dans ledit alliage de titane à entre 3 et 5 pour cent en poids.


 




Drawing




















Cited references

REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Non-patent literature cited in the description