(19)
(11)EP 3 384 591 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
09.06.2021 Bulletin 2021/23

(21)Application number: 15804435.4

(22)Date of filing:  02.12.2015
(51)International Patent Classification (IPC): 
H02P 21/06(2016.01)
B62D 5/04(2006.01)
H02P 6/08(2016.01)
G01R 33/00(2006.01)
(86)International application number:
PCT/EP2015/078336
(87)International publication number:
WO 2017/092799 (08.06.2017 Gazette  2017/23)

(54)

STRAY MAGNETIC FIELD COMPENSATION FOR A ROTOR POSITION SENSOR

STREUMAGNETFELDKOMPENSATION FÜR EINEN ROTORPOSITIONSSENSOR

COMPENSATION DES CHAMPS MAGNETIQUES PARASITES POUR UN CAPTEUR DE POSITION DE ROTOR


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(43)Date of publication of application:
10.10.2018 Bulletin 2018/41

(73)Proprietors:
  • thyssenkrupp Presta AG
    9492 Eschen (LI)
  • thyssenkrupp AG
    45143 Essen (DE)

(72)Inventor:
  • GÉMESI, Roland
    2120 Dunakeszi (HU)

(74)Representative: thyssenkrupp Intellectual Property GmbH 
ThyssenKrupp Allee 1
45143 Essen
45143 Essen (DE)


(56)References cited: : 
CN-B- 103 199 788
US-A1- 2003 057 913
US-A1- 2014 225 597
DE-A1-102008 043 265
US-A1- 2005 278 137
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description


    [0001] The present invention relates to a method for error compensation in a measurement of an electric motor's rotor position in a power steering system of a motor vehicle having the features of the preamble of claim 1 and to an electromechanical motor vehicle power steering mechanism having the features of the preamble of claim 7.

    [0002] In an electric power steering apparatus the steering assist force is applied to a steering mechanism by driving an electric motor in accordance with steering torque that is applied to a steering wheel by a driver. An electronic control unit with an inverter controls the motor. The inverter feeds the motor controller with motor parameters for torque generation. The control system of synchronous motors needs position feedback in order to calculate the phase currents necessary for obtaining the desired torque with maximum efficiency. For the detecting of rotor position mostly magneto-resistive sensors are used. A sensor chip detects the magnetic field of a permanent magnet, which is preferably round in form and mounted coaxially on a rotating shaft. This configuration is only applicable fulfilling the geometrical preconditions at a free rotor side of the electric drive. That is why this arrangement is called end of shaft (EOS). The sensors are negatively affected by a stray magnetic field caused by high motor currents, leading to undesired noises and loss of rotor position measurement accuracy. Hardware design best practices have evolved to minimize the disturbing effects but other system design constraints often prevent following them. To have a better understanding of the achieved rotor position sensor (RPS) accuracy, various measurement methods have been proposed. Hardware and software filtering are already applied to suppress higher frequency noise components and to compensate for the effect of measurement delays.

    [0003] US 2003/0057913 A1 relates to an electric power steering control system capable of performing normally any PWM drive even in the range that an amplitude of a fundamental wave of a line output voltage is not more than that of a power supply voltage, thereby utilizing the power supply voltage at the maximum. To this end a voltage compensation is performed by which the amplitude of the voltage applied to each phase necessary for obtaining the same applied line voltage as without compensation can be smaller.

    [0004] US 2014/0225597 A1 describes a magnetic field sensor providing an angle correction module, that can process an output signal from an angle sensing element to provide an output signal that has a high degree of angle accuracy and a relatively high speed. A variety of circuit characteristics of the magnetic field sensor contribute to the errors. One factor that contributes to the errors is switching noise of sequence switches sequencing through vertical hall elements of a CVH sensing element.

    [0005] From US 2005/0278137 A1 a method for adjusting a determination rule for an error compensation of an angle sensor is known in which five component value pairs for five different directions are detected, wherein a component value pair includes a first component value for the first component and a second component value for the second component of a magnetic field, and the determination rule is adjusted depending on the five component value pairs. DE 10 2008 043 265 A1 discloses a method for failure compensation of electric angle measurements. The magnetic interference field, which influences the magnetic field, is decomposed into single interference vectors. After that the magnetic interference field is vectorially subtracted from a detected magnetic field vector. The determination of the vector components of the measured magnetic field involves a high calculation effort. One disadvantage of the described state of the art is that the interference compensation is based on the usage of several look-up tables, which leads to a retarded detection of compensation parameters.

    [0006] It is an object of the present invention to provide an improved method for rotor position measurements in power steering systems of motor vehicles by reducing the influence of stray magnetic fields without affecting the electric motor performance. Further a reduction of undesired noises is intended.

    [0007] This object is achieved by a method having the features of claim 1 and an electromechanical motor vehicle power steering mechanism having the features of claim 7. Accordingly, a method for error compensation in a measurement of an electric motor's rotor position in a power steering system of a motor vehicle, wherein the electric motor generates a torque for assisting steering of the motor vehicle and wherein stray magnetic fields of electric motor currents affect the measurement of the rotor position with a rotor position sensor, is provided, which includes the following steps:
    • Measuring the rotor position with the rotor position sensor,
    • Determining a target motor torque based on signals representative of at least the vehicle velocity and the torque applied to a steering wheel,
    • Transferring the target motor torque into target voltages,
    • Transforming the target voltages into a current vector in the rotating reference frame fixed to the rotor of the electric motor,
    • Transforming the current vector into motor currents expressed in a coordinate system fixed to the stator of the electric motor,
    • Calculating at least two compensation values based on the current vector or a current vector which is transformed from motor currents into a coordinate system fixed to the rotor, the rotor position and hardware dependent parameters, wherein the at least two compensation values accounts for errors in the rotor position measurement due to stray magnetic fields of motor currents,
    • Calculating a compensated rotor position signal by subtracting the at least two compensation values from the measured rotor position, and
    • Transferring the compensated rotor position signal as part of a feed-back loop to the target motor torque determination.


    [0008] This method improves the accuracy of rotor position measurements and reduces undesired noises by eliminating the influences of stray magnetic fields without affecting the motor performance. The compensation is done straightforward by calculation of an error angle and subtraction of that error angle form the measured rotor angle. Further, advantageous embodiments can be taken from the dependent claims.

    [0009] A preferred error compensation method includes the following steps:
    • Measuring the rotor position with the rotor position sensor,
    • Determining a target motor torque based on signals representative of at least the vehicle velocity and the torque applied to a steering wheel,
    • Transferring the target motor torque into target voltages,
    • Transforming the target voltages into a motor current value expressed in a coordinate system fixed to the stator of the electric motor,
    • Transforming the motor current value into a current vector in the rotating reference frame fixed to the rotor of the electric motor and
    • Calculating at least two compensation values based on the current vector, the rotor position and hardware dependent parameters, wherein the at least two compensation values accounts for errors in the rotor position measurement due to stray magnetic fields of motor currents,
    • Calculating a compensated rotor position signal by subtracting the at least two compensation values from the measured rotor position, and
    • Transferring the compensated rotor position signal as part of a feed-back loop to the target motor torque determination.


    [0010] The preferred method works with high reliability at high dynamics and the compensation can be realized much faster by using the motor current value.

    [0011] The at least two compensation values are given for a respective harmonic of the measured rotor position by a trigonometric function of the rotor position, wherein the amplitude is dependent on the length of the current vector, the phase shift is dependent on the angle of the current vector and the periodic length is proportional to the number of the respective harmonic.

    [0012] The phase shift may include an electrical offset. Further it is preferred, that the amplitude is dependent on a parameter, which accounts for the error in the measurement of the rotor position due to stray magnetic fields of electric motor currents and which is linearly dependent on the current vector. Advantageously, this parameter is stored in a steering controller or in a look-up table. The parameter's dependency on the electric motor current is preferably constant for a given hardware design of the power steering system. Thus, the parameter can be determined beforehand, which reduces the calculation effort.

    [0013] It was determined that the noise caused by high motor currents mainly appears as harmonics XB and XA of the rotor position signal. The harmonic XA= P+1 and the harmonic XB= P-1, wherein P is the number of motor pole pairs of the electric motor. In a preferred embodiment, two compensation values are calculated, which account for the XB and XA harmonics.

    [0014] Further an electromechanical motor vehicle power steering mechanism for assisting steering of a motor vehicle by conferring torque generated by an electric motor to a steering mechanism, is provided, the mechanism comprising:
    • a rotor position sensor which measures the electric motor's rotor position,
    • a steering controller which receives signals representative of at least the vehicle velocity and the torque applied to a steering wheel to determine a target motor torque,
    • a motor controller which receives the target motor torque from the steering controller and transfers it into target voltages,
    • an inverter which transforms the target voltages into currents in the rotating reference frame fixed to the rotor of the electric motor,
    • a coordinate transformation which transforms the currents into motor currents expressed in a coordinate system fixed to the stator of the electric motor, and
    • a compensation unit which calculates a compensated rotor position signal based on the currents or a current vector which is transformed from motor currents into a coordinate system fixed to the rotor, the rotor position signal and hardware dependent parameters, wherein the compensation accounts for errors in the rotor position measurement due to stray magnetic fields of motor currents and which transfers the compensated rotor position signal to the steering controller. The features and advantages mentioned above with respect to the compensation also apply to the electromechanical motor vehicle power steering mechanism.


    [0015] In a preferred embodiment the mechanism comprises:
    • a rotor position sensor which measures the electric motor's rotor position,
    • a steering controller which receives signals representative of at least the vehicle velocity and the torque applied to a steering wheel to determine a target motor torque,
    • a motor controller which receives the target motor torque from the steering controller and transfers it into target voltages,
    • an inverter which transforms the target voltages into motor currents expressed in a coordinate system fixed to the stator of the electric motor,
    • a coordinate transformation which transforms the currents into currents in the rotating reference frame fixed to the rotor of the electric motor, and
    • a compensation unit which calculates a compensated rotor position signal based on the currents, the rotor position signal and hardware dependent parameters, wherein the compensation accounts for errors in the rotor position measurement due to stray magnetic fields of motor currents and which transfers the compensated rotor position signal to the steering controller. The features and advantages mentioned above with respect to the compensation also apply to the electromechanical motor vehicle power steering mechanism.


    [0016] The preferred method works with high reliability at high dynamics and the compensation can be realized much faster by using the motor current value.

    [0017] An exemplary embodiment of the present invention is described below with aid of the drawings. In all figures, the same reference signs denote the same components or functionally similar components.

    Figure 1 shows an electromechanical power steering mechanism in a schematic illustration;

    Figure 2a is a block diagram showing an electrical structure of the electric power steering apparatus;

    Figure 2b is another block diagram showing an electrical structure of the electric power steering apparatus;

    Figure 3 shows a three-dimensional view of an electric motor of the electromechanical power steering mechanism;

    Figure 4 shows the electric motor of Fig. 4 in more detail; and

    Figure 5 shows a longitudinal cut of the electric motor shown in Fig. 4.



    [0018] An electromechanical power steering mechanism 1 is schematically illustrated in figure 1 with a steering shaft 2 connected to a steering wheel 3 for operation by the driver. The steering shaft 2 is coupled to a steering rack 4 via a gear pinion 5. Steering track rods 6 are connected to the steering rack 4 and to steered wheels 7 of the motor vehicle. A rotation of the steering shaft 2 causes an axial displacement of the steering rack 4 by means of the gear pinion 5 which is connected to the steering shaft 2 in a torque-proof manner. To provide steering assistance, an electric motor 8 mounted to the side of the rack housing drives a ball-screw mechanism 9 via a toothed rubber belt 10. The electric motor 8 is a permanent magnet-excited synchronous motor. Electric power assist is provided through a steering controller 11 and a power assist actuator 12 comprising the electric motor 8 and a motor controller 13. The steering controller 11 in the example receives signals representative of the vehicle velocity v and the torque TTS applied to the steering wheel by the vehicle operator. In addition, as the rotor of the electric motor 8 turns, rotor position signals are generated within the electric motor 8. These rotor position signals are compensated for stray magentic fields of motor currents before they are provided to the steering controller 11. In response to the vehicle velocity v, the operator torque TTS and the compensated rotor position signal 16', the controller 11 determines the target motor torque Td and provides the signal through to the motor controller 13, where the motor currents are calculated via PWM (pulse-width modulation).

    [0019] Figure 2a and Figure 2b show a block diagram of the electrical structure of the electric power steering apparatus. A preferred embodiment of the invention is shown in Figure 2a. The steering controller 11 receives signals representative of the vehicle velocity v and the torque TTS applied to the steering wheel 3 by the vehicle operator and determines the target motor torque Td. This torque Td is fed to the motor controller 13, which determines the voltage input U1=Uα, Uβ for the PWM. An inverter 14 generates the motor currents IU,IV,IW=I2 in the three-dimensional coordinate system which are fed into the motor 8. By using the motor currents I2 the compensation works with high reliability at high dynamics and can be realized much faster.

    [0020] In Figure 2b the inverter 14 transforms in the unit 141 the voltage input U1 of the motor controller 13 into a current vector I1=Iq, Id in the rotating reference frame fixed to the rotor 19 and via a coordinate transformation 142 into the three-dimensional coordinate system of the motor 8. The motor currents IU,IV,IW=I2 are outputted. Hence, the motor 8 generates a torque T which is correlated to the operator torque TTS.

    [0021] A rotor position sensor (RPS) 16 measures the motor's rotor position angle ϕ1, which is transferred into a compensation unit 17. Preferably, the RPS is a magnetic or a magneto-resistive sensor with an end of shaft arrangement of the magnet. Based on the input parameters 11'= Id,Iq, shown in Figure 2a, or 11= Id,Iq, shown in Figure 2b, ϕ1, XA, XB and the amplitude and phase parameters of the harmonics of the motor current, the compensation unit 17 calculates the compensation values CompXB ,CompXA. As shown in Figure 2a the current vector I1' is obtained via a coordinate transformation 15 of the motor currents I2= IU,IV,IW into the rotating reference frame (d-q) fixed to the rotor 19 of the electric motor 8. In an preferred embodiment the harmonic XA= P+1 and the harmonic XB= P-1, wherein P is the number of motor pole pairs. In other words the harmonic XA is of P+1 order and the harmonic XB is of P-1 order. For the resulting compensated rotor position angle ϕ2 the compensation values CompP-1,CompP+1 are subtracted from the measured rotor position angle ϕ1. The resulting and corrected compensated rotor position angle ϕ2 is then used in the motor's feedback loop and is fed into the motor controller 13.

    [0022] The influence of stray magnetic fields on the rotor position angle measurement is expressed in the compensation values CompXB,CompXA. Stray magnetic fields are very dependent on many factors, e.g. the design of rotor and/or stator and the design of the motor housing including the numbers of screws and other likewise design topics.

    [0023] The number of motor coils is an essential influence on the stray field. It has been identified that the noise caused by high motor currents mainly appears as motor current harmonics P-1 and P+1, wherein P is the number of motor pole pairs. For example in case of a motor with four pole pairs, a significant disturbance appears in third and fifth order, where the rotor position angle error linearly depends on the applied motor current.

    [0024] The parameters of the compensation functions apart from the current and the measured rotor signal are constants which can be identified for a given hardware design. These parameters do not show piece-by-piece dependency.

    [0025] In order to characterise the hardware design and determine the compensation functions with their parameters, at first a Fast Fourier Transformation (FFT) of the RPS signal for different current values (e.g. 0A, 40A, 80A, 120A) is carried out and compared to reference values to find relevant harmonics of motor current, which cause the stray magnetic fields. This determination can be done with comparison of the measured RPS signal to a signal of reference sensors or by keeping the rotor fixed and direct measurement of the stray magnetic field influence on the RPS signal. Other harmonics than the P-1 and P+1 harmonics can be relevant and would be detected. The detection of the stray magnetic field is done only once and is applicable to all other steering systems with the same hardware design.

    [0026] Then high current values are set which account for the disturbances in the third and fifth order in the FFT. Here the amplitude and the phase shifting are also determined. The amplitudes of the harmonics depend on the length of the current vector (Id,Iq) in the rotating reference frame (d-q) fixed to the rotor of the motor 8. The phases of the harmonics are dependent on the angle of the current vector (Id,Iq). The disturbance of currents is proportional to the motor currents (Id,Iq). It rotates P times faster than the RPS-magnet and is offset by an electrical offset. The compensation values CompXB,CompXA are then calculated by the amplitude multiplied by the cosine of a given angle times the number of the respective harmonic corrected by a phase shift given by the phase of the respective harmonic and the electrical offset. Finally, the compensation values CompXB,CompXA are both subtracted from the measured rotor position angle ϕ1 to correct for the influences of the stray magnetic field. The stray magnetic field compensation is expressed as,



    with
    ϕ2= ϕ1- CompXA- CompXB, and wherein APC is a constant and ϕeloffset accounts for an electrical offset.

    [0027] Figures 3 to 5 show an electric motor 8. The electric motor 8 has a stator 18 and a rotor 19 with a rotor shaft 20. Three-phase AC voltage is applied to the windings 21 of the stator 18 and a rotating magnetic field is produced. The rotor 19 has three pole pairs 22 and is attracted or driven by the rotating stator field. This attraction exerts a torque on the rotor 19 and causes it to rotate at the synchronous speed of the rotating stator field. Rotor position of the electric motor 8 is measured with an RPS.

    [0028] The present invention provides an electromechanical motor vehicle power steering mechanism with an improved method for rotor position measurement by reducing the influence of stray magnetic fields of high motor currents without affecting the engine performance. Further undesired noises due to the stray magnetic field can be decreased or even eliminated. The invention is not limited to a specific number of motor pole pairs or even in general to a specific electric motor design. It is further applicable to any RPS, which works based on a magnetic principle.


    Claims

    1. A method for error compensation in a measurement of an electric motor's rotor position in a power steering system of a motor vehicle, wherein the electric motor generates a torque for assisting steering of the motor vehicle and wherein stray magnetic fields of electric motor currents affect the measurement of the rotor position with a rotor position sensor (16), which works based on a magnetic principle, with the following steps:

    - Measuring the rotor position (ϕ1) with the rotor position sensor (16),

    - Determining a target motor torque (Td) based on signals representative of at least the vehicle velocity (v) and the torque (TTS) applied to a steering wheel (3),

    - Transferring the target motor torque (Td) into target voltages (U1),

    - Transforming the target voltages (U1) into a current vector (I1=(Iq,Id)) in the rotating reference frame (d-q) fixed to the rotor (19) of the electric motor (8),

    - Transforming the currents (I1) into motor currents (12) expressed in a coordinate system fixed to the stator (18) of the electric motor (8)

    characterized in that the method further involves the steps:

    - Calculating at least two compensation values (CompXB,CompXA) based on the current vector (I1) or a current vector (I1') which is transformed from motor currents (12) into a coordinate system fixed to the rotor (19), the rotor position (ϕ1) and hardware dependent parameters, wherein the at least two compensation values (CompXB,CompXA) account for errors in the rotor position measurement due to stray magnetic fields of motor currents,

    - Calculating a compensated rotor position signal (16',ϕ2) by subtracting the at least two compensation values (CompXB, CompXA) of the measured rotor position (ϕ1), and

    - Transferring the compensated rotor position signal (16',ϕ2) as part of a feed-back loop to the target motor torque (Td) determination,

    wherein the at least two compensation values (CompXB,CompXA) are each given for a respective XB and XA harmonic by a trigonometric function of the rotor position (ϕ1), wherein an amplitude is dependent on the length of the current vector (I1), a phase shift is dependent on the angle of the current vector (I1) and the periodic length is proportional to the number XB, XA of the respective harmonic, and wherein the harmonic XA= P+1 and the harmonic XB= P-1, wherein P is the number of motor pole pairs (22) of the electric motor (8).
     
    2. Method for error compensation according to claim 1, characterized in that the phase shift includes an electrical offset (ϕeloffset).
     
    3. Method for error compensation according to according to claim 1 or claim 2, characterized in that the amplitude is dependent on a parameter, which accounts for the error in the measurement of the rotor position (ϕ1) due to stray magnetic fields of motor currents and which is linearly dependent on the current vector (I1).
     
    4. Method for error compensation according to according to claim 3, characterized in that the parameter is stored in a look-up table.
     
    5. Method for error compensation according to claim 3 or claim 4, characterized in that the parameter's dependency from the current vector (I1) is constant for a given hardware design of the power steering system.
     
    6. Method for error compensation according to any one of the proceeding claims, characterized in that two compensation values (CompXB,CompXA) are calculated, which account for the XB and XA harmonics of the rotor position signal (16').
     
    7. An electromechanical motor vehicle power steering mechanism (1) for assisting steering of a motor vehicle by conferring torque generated by an electric motor (8) to a steering mechanism, the mechanism (1) comprising:

    - a magneto-resistive rotor position sensor (16) which measures the electric motor's rotor position (ϕ1),

    - a steering controller (11) which receives signals representative of at least the vehicle velocity (v) and the torque (TTS) applied to a steering wheel (3) to determine a target motor torque (Td),

    - a motor controller (13) which receives the target motor torque (Td) from the steering controller (11) and transfers it into target voltages (U1),

    - an inverter (14) which transforms the target voltages (U1) into currents (I1) in the rotating reference frame (d-q) fixed to the rotor (19) of the electric motor (8), and

    - a coordinate transformation which transforms the currents (I1) into motor currents (12) expressed in a coordinate system fixed to the stator (18) of the electric motor (8)

    characterized in that the mechanism (1) further comprises a compensation unit (17) which calculates a compensated rotor position signal (16') based on the current vector (I1) or a current vector (I1') which is transformed from motor currents (12) into a coordinate system fixed to the rotor (19), the rotor position signal (ϕ1) and hardware dependent parameters, wherein the compensation accounts for errors in the rotor position measurement due to stray magnetic fields of motor (8) currents and which transfers the compensated rotor position signal (16', ϕ2) to the steering controller (11).
     


    Ansprüche

    1. Verfahren zur Fehlerkompensation bei einer Messung einer Rotorposition eines Elektromotors in einem Servolenkungssystem eines Kraftfahrzeugs, wobei der Elektromotor ein Drehmoment zur Unterstützung einer Lenkung des Kraftfahrzeugs erzeugt und wobei Streumagnetfelder von Elektromotorströmen die Messung der Rotorposition mit einem Rotorpositionssensor (16) beeinflussen, was basierend auf einem magnetischen Prinzip funktioniert, mit den folgenden Schritten:

    - Messen der Rotorposition (ϕ1) mit dem Rotorpositionssensor (16),

    - Bestimmen eines Zielmotordrehmoments (Td) basierend auf Signalen, die repräsentativ für mindestens die Fahrzeuggeschwindigkeit (v) und das auf ein Lenkrad (3) ausgeübte Drehmoment (TTS) sind,

    - Übertragen des Soll-Motordrehmoments (Td) in Soll-Spannungen (U1),

    - Transformieren der Soll-Spannungen (U1) in einen Stromvektor (I1=(Iq,Id)) in dem rotierenden Bezugssystem (d-q), das an dem Rotor (19) des Elektromotors (8) festgelegt ist,

    - Transformieren der Ströme (I1) in Motorströme (I2), die in einem Koordinatensystem ausgedrückt sind, das an dem Stator (18) des Elektromotors (8) festgelegt ist

    dadurch gekennzeichnet, dass das Verfahren ferner die folgenden Schritte beinhaltet:

    - Berechnen von mindestens zwei Kompensationswerten (CompXB, CompXA) basierend auf dem Stromvektor (I1) oder einem Stromvektor (I1'), der von Motorströmen (I2) in ein Koordinatensystem transformiert ist, das an dem Rotor (19) festgelegt ist, der Rotorposition (ϕ1) und hardwareabhängigen Parametern, wobei die mindestens zwei Kompensationswerte (CompXB, CompXA) Fehler bei der Rotorpositionsmessung aufgrund von Streumagnetfeldern von Motorströmen mit einbeziehen,

    - Berechnen eines kompensierten Rotorpositionssignals (16', ϕ2) durch Subtrahieren der mindestens zwei Kompensationswerte (CompXB, CompXA) von der gemessenen Rotorposition (ϕ1), und

    - Übertragen des kompensierten Rotorpositionssignals (16', ϕ2) als Teil einer Rückkopplungsschleife zu der Soll-Motordrehmoment (Td) -Bestimmung,

    wobei die mindestens zwei Kompensationswerte (CompXB, CompXA) jeweils für eine jeweilige XB- und XA-Harmonische durch eine trigonometrische Funktion der Rotorposition (ϕ1) gegeben sind, wobei eine Amplitude von der Länge des Stromvektors (I1) abhängig ist, eine Phasenverschiebung von dem Winkel des Stromvektors (I1) abhängig ist und die Periodenlänge proportional zu der Anzahl XB, XA der jeweiligen Harmonischen ist, und wobei die Harmonische XA= P+1 und die Harmonische XB= P-1 ist, wobei P die Anzahl von Motorpolpaaren (22) des Elektromotors (8) ist.
     
    2. Verfahren zur Fehlerkompensation nach Anspruch 1, dadurch gekennzeichnet, dass die Phasenverschiebung einen elektrischen Offset (ϕeloffset) umfasst.
     
    3. Verfahren zur Fehlerkompensation nach Anspruch 1 oder Anspruch 2, dadurch gekennzeichnet, dass die Amplitude von einem Parameter abhängig ist, der den Fehler bei der Messung der Rotorposition (ϕ1) aufgrund von Streumagnetfeldern von Motorströmen mit einbezieht und der linear abhängig von dem Stromvektor (I1) ist.
     
    4. Verfahren zur Fehlerkompensation nach Anspruch 3, dadurch gekennzeichnet, dass der Parameter in einer Nachschlagetabelle gespeichert wird.
     
    5. Verfahren zur Fehlerkompensation nach Anspruch 3 oder Anspruch 4, dadurch gekennzeichnet, dass die Abhängigkeit des Parameters von dem Stromvektor (I1) für eine vorgegebene Hardwarekonstruktion des Servolenkungssystems konstant ist.
     
    6. Verfahren zur Fehlerkompensation nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zwei Kompensationswerte (CompXB, CompXA) berechnet werden, die die XB- und XA-Harmonischen des Rotorpositionssignals (16') mit einbeziehen.
     
    7. Elektromechanischer Kraftfahrzeugservolenkungsmechanismus (1) zur Unterstützung einer Lenkung eines Kraftfahrzeugs durch Übergeben eines durch einen Elektromotor (8) erzeugten Drehmoments an einen Lenkungsmechanismus, wobei der Mechanismus (1) umfasst:

    - einen magnetoresistiven Rotorpositionssensor (16), der die Rotorposition (ϕ1) des Elektromotors misst,

    - eine Lenkungssteuerung (11), die Signale empfängt, die repräsentativ für mindestens die Fahrzeuggeschwindigkeit (v) und das auf ein Lenkrad (3) aufgebrachte Drehmoment (TTS) sind, um ein Soll-Motordrehmoment (Td) zu bestimmen,

    - eine Motorsteuerung (13), die das Soll-Motordrehmoment (Td) von der Lenkungssteuerung (11) empfängt und es in Soll-Spannungen (U1) überträgt,

    - einen Umrichter (14), der die Soll-Spannungen (U1) in Ströme (I1) in dem rotierenden Bezugssystem (d-q), das an dem Rotor (19) des Elektromotors (8) festgelegt ist, transformiert, und

    - eine Koordinatentransformation, die die Ströme (I1) in Motorströme (I2) transformiert, die in einem Koordinatensystem ausgedrückt sind, das an dem Stator (18) des Elektromotors (8) festgelegt ist,

    dadurch gekennzeichnet, dass der Mechanismus (1) ferner eine Kompensationseinheit (17) umfasst, die ein kompensiertes Rotorpositionssignal (16') basierend auf dem Stromvektor (I1) oder einem Stromvektor (I1'), der von Motorströmen (I2) in ein Koordinatensystem transformiert ist, das an dem Rotor (19) festgelegt ist, dem Rotorpositionssignal (ϕ1) und hardwareabhängigen Parametern berechnet, wobei die Kompensation Fehler bei der Rotorpositionsmessung aufgrund von Streumagnetfeldern von Motor(8)-Strömen mit einbezieht, und die das kompensierte Rotorpositionssignal (16', ϕ2) auf die Lenkungssteuerung (11) überträgt.
     


    Revendications

    1. Procédé de compensation d'erreurs dans une mesure de la position de rotor d'un moteur électrique dans un système de direction assistée d'un véhicule motorisé, le moteur électrique produisant un couple d'assistance à la direction du véhicule motorisé et des champs magnétiques parasites de courants du moteur électrique affectant la mesure de la position de rotor au moyen d'un capteur de position de rotor (16), lequel fonctionne sur la base d'un principe magnétique, le procédé comportant les étapes suivantes :

    - mesure de la position de rotor (ϕ1) au moyen du capteur de position de rotor (16),

    - détermination d'un couple moteur cible (Td) sur la base de signaux représentant au moins la vitesse (v) du véhicule et le couple (TTS) appliqué à un volant de direction (3),

    - transfert du couple moteur cible (Td) en tensions cibles (U1),

    - transformation des tensions cibles (U1) en un vecteur courant (I1=(Iq,Id)) dans le repère tournant (d-q) lié au rotor (19) du moteur électrique (8),

    - transformation des courants (I1) en courants de moteur (I2) exprimés dans un système de coordonnées lié au stator (18) du moteur électrique (8),

    le procédé étant caractérisé en ce qu'il comporte en outre les étapes suivantes :

    - calcul d'au moins deux valeurs de compensation (CompXB, CompXA) sur la base du vecteur courant (I1) ou d'un vecteur courant (I1') qui est transformé à partir de courants de moteur (I2) dans un système de coordonnées lié au rotor (19), de la position de rotor (ϕ1) et de paramètres qui dépendent du matériel, les au moins deux valeurs de compensation (CompXB, CompXA) tenant compte d'erreurs dans la mesure de la position de rotor dues à des champs magnétiques parasites de courants de moteur,

    - calcul d'un signal de position de rotor compensé (16', ϕ2) par soustraction des au moins deux valeurs de compensation (CompXB, CompXA) de la position de rotor mesurée (ϕ1), et

    - transfert du signal de position de rotor compensé (16', ϕ2) à la détermination du couple moteur cible (Td) dans le cadre d'une boucle de rétroaction,

    les au moins deux valeurs de compensation (CompXB, CompXA) étant chacune données pour un harmonique XB et XA respectif par une fonction trigonométrique de la position de rotor (ϕ1), une amplitude dépendant de la longueur du vecteur courant (I1), un déphasage dépendant de l'angle du vecteur courant (I1) et la longueur périodique étant proportionnelle au rang XB, XA de l'harmonique respectif, et l'harmonique XA = P+1 et l'harmonique XB = P-1, P étant le nombre de paires de pôles (22) de moteur du moteur électrique (8).
     
    2. Procédé de compensation d'erreurs selon la revendication 1, caractérisé en ce que le déphasage comporte un décalage électrique (ϕeloffset).
     
    3. Procédé de compensation d'erreurs selon la revendication 1 ou la revendication 2, caractérisé en ce que l'amplitude dépend d'un paramètre, lequel tient compte de l'erreur dans la mesure de la position de rotor (ϕ1) due à des champs magnétiques parasites de courants de moteur et lequel dépend linéairement du vecteur courant (I1).
     
    4. Procédé de compensation d'erreurs selon la revendication 3, caractérisé en ce que le paramètre est enregistré dans une table de correspondance.
     
    5. Procédé de compensation d'erreurs selon la revendication 3 ou la revendication 4, caractérisé en ce que la dépendance du paramètre vis-à-vis du vecteur courant (I1) est constante pour une conception de matériel donnée du système de direction assistée.
     
    6. Procédé de compensation d'erreurs selon l'une quelconque des revendications précédentes, caractérisé en ce que deux valeurs de compensation (CompXB, CompXA) sont calculées, lesquelles tiennent compte des harmoniques XB et XA du signal de position de rotor (16').
     
    7. Mécanisme de direction assistée électromécanique (1) de véhicule motorisé pour l'assistance à la direction d'un véhicule motorisé par application d'un couple produit par un moteur électrique (8) à un mécanisme de direction, le mécanisme (1) comprenant :

    - un capteur de position de rotor magnétorésistif (16) qui mesure la position de rotor (ϕ1) du moteur électrique,

    - une unité de commande de direction (11) qui reçoit des signaux représentant au moins la vitesse (v) du véhicule et le couple (TTS) appliqué à un volant de direction (3) dans le but de déterminer un couple moteur cible (Td),

    - une unité de commande de moteur (13) qui reçoit le couple moteur cible (Td) depuis l'unité de commande de direction (11) et le transfère en tensions cibles (U1),

    - un onduleur (14) qui transforme les tensions cibles (U1) en courants (I1) dans le repère tournant (d-q) lié au rotor (19) du moteur électrique (8), et

    - une transformation de coordonnées qui transforme les courants (I1) en courants de moteur (I2) exprimés dans un système de coordonnées lié au stator (18) du moteur électrique (8),

    le mécanisme (1) étant caractérisé en ce qu'il comprend en outre une unité de compensation (17) qui calcule un signal de position de rotor compensé (16') sur la base du vecteur courant (I1) ou d'un vecteur courant (I1') qui est transformé à partir de courants de moteur (I2) dans un système de coordonnées lié au rotor (19), du signal de position de rotor (ϕ1) et de paramètres qui dépendent du matériel, la compensation tenant compte d'erreurs dans la mesure de la position de rotor dues à des champs magnétiques parasites de courants du moteur (8), et qui transfère le signal de position de rotor compensé (16', ϕ2) à l'unité de commande de direction (11) .
     




    Drawing














    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description