(19)
(11)EP 3 395 980 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
06.05.2020 Bulletin 2020/19

(21)Application number: 16879377.6

(22)Date of filing:  23.12.2016
(51)Int. Cl.: 
C22C 38/04  (2006.01)
C21D 8/02  (2006.01)
C22C 38/18  (2006.01)
C21D 6/00  (2006.01)
C22C 38/02  (2006.01)
C22C 38/00  (2006.01)
C22C 38/06  (2006.01)
C22C 38/38  (2006.01)
C21D 9/46  (2006.01)
(86)International application number:
PCT/KR2016/015121
(87)International publication number:
WO 2017/111510 (29.06.2017 Gazette  2017/26)

(54)

NON-MAGNETIC STEEL MATERIAL HAVING EXCELLENT HOT WORKABILITY AND MANUFACTURING METHOD THEREFOR

NICHT-MAGNETISCHES STAHLMATERIAL MIT HERVORRAGENDER BEARBEITBARKEIT UND HERSTELLUNGSVERFAHREN DAFÜR

MATÉRIAU D'ACIER NON MAGNÉTIQUE AYANT UNE EXCELLENTE APTITUDE AU FAÇONNAGE À CHAUD ET SON PROCÉDÉ DE FABRICATION


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 23.12.2015 KR 20150184757
22.12.2016 KR 20160176294

(43)Date of publication of application:
31.10.2018 Bulletin 2018/44

(73)Proprietor: POSCO
Nam-gu Pohang-si, Gyeongsangbuk-do 37859 (KR)

(72)Inventors:
  • LEE, Un-Hae
    Gwangyang-si, Jeollanam-do 57807 (KR)
  • KIM, Sung-Kyu
    Gwangyang-si, Jeollanam-do 57807 (KR)
  • LEE, Soon-Gi
    Gwangyang-si, Jeollanam-do 57807 (KR)
  • KIM, Yong-Jin
    Gwangyang-si, Jeollanam-do 57807 (KR)
  • OH, Hong-Yeol
    Gwangyang-si, Jeollanam-do 57807 (KR)

(74)Representative: Potter Clarkson 
The Belgrave Centre Talbot Street
Nottingham NG1 5GG
Nottingham NG1 5GG (GB)


(56)References cited: : 
EP-A1- 2 796 585
JP-A- 2014 205 907
JP-A- 2015 196 837
KR-A- 20150 075 331
JP-A- 2013 023 743
JP-A- 2014 205 907
KR-A- 20140 103 107
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    [Technical Field]



    [0001] The present disclosure relates to a non-magnetic steel material having high hot workability and a method for manufacturing the non-magnetic steel material.

    [Background Art]



    [0002] Transformer structures include a case and a lock plate, and steel materials used for such transformer structures are required to have high non-magnetic characteristics.

    [0003] Recently, steel materials having high non-magnetic characteristics in which austenite is stabilized by adding large amounts of manganese (Mn) and carbon (C) while entirely excluding chromium (Cr) and nickel (Ni) have been developed. Austenite is a paramagnetic substance having low magnetic permeability and is more non-magnetic than ferrite.

    [0004] High manganese (Mn) steel materials having austenite in which carbon (C) is contained in large amounts are suitable for use as non-magnetic steel materials due to high stability of austenite.

    [0005] However, if elements such as aluminum (Al) or phosphorus (P), remaining in manufacturing processes of high manganese steel materials, are included in austenite in large amounts, the crack sensitivity of the steel materials increases at high temperatures. This is due to low hot ductility and internal grain boundary oxidation at high temperatures. High crack sensitivity has a large influence on the surface quality of steel materials at room temperature.

    [0006] Therefore, it is necessary to develop a non-magnetic steel material having low crack sensitivity and high surface qualities.

    [0007] JP 2014 205907 A discloses a non-magnetic steel containing C, Si, Mn, Al, P, S, N and a balance of Fe and unavoidable impurities. The steel comprises a microstructure of 99 area% or more of austenite, an austenite grain size number of 8.0 to 10.5 and an average N amount of 0.05% or more in a decarburization layer.

    [0008] EP 2 796 585 A1 discloses a non-magnetic high manganese steel sheet with high-strength and a method of manufacturing the steel sheet. The steel comprises C, Mn, Al, Si, Ti, Si, B, S, P, N and a balance of Fe and unavoidable impurities. The method comprises steps of reheating, hot-rolling, coiling, cold-rolling and continuous annealing.

    [Disclosure]


    [Technical Problem]



    [0009] An aspect of the present disclosure may provide a non-magnetic steel material having high hot workability, low hot crack sensitivity, and high surface qualities.

    [0010] Another aspect of the present disclosure may provide a method for manufacturing a non-magnetic steel material having high hot workability, low hot crack sensitivity, and high surface qualities.

    [Technical Solution]



    [0011] A non-magnetic steel material as disclosed in claim 1, and its manufacturing method as disclosed in claim 2.

    [Advantageous Effects]



    [0012] Embodiments of the present disclosure may provide a non-magnetic steel material having uniform austenite, good non-magnetic characteristics, and high surface qualities owing to low crack sensitivity, and a method for manufacturing the non-magnetic steel material.

    [Description of Drawings]



    [0013] 

    FIG. 1 is a view illustrating surface quality scores for measuring crack sensitivity, a score of 1 indicating a state having no surface crack, a score of 1.5 indicating a state having fine defects, and a score of 2 indicating a state in which cracks propagate and large cracks are present.

    FIG. 2 is a schematic example view illustrating crack sensitivity measurement portions for crack sensitivity evaluation.

    FIG. 3 is a graph illustrating a relationship between crack sensitivity and a composition index of sensitivity.


    [Best Mode]



    [0014] Embodiments of the present disclosure will now be described in detail.

    [0015] Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the disclosure to those skilled in the art.

    [0016] The disclosure may, however, be exemplified in many different forms and should not be construed as being limited to the specific embodiments set forth herein.

    [0017] It will be further understood that the terms "comprises" and/or "comprising" used herein specify the presence of stated features or elements, but do not preclude the presence or addition of one or more other features or elements.

    [0018] Hereinafter, a non-magnetic steel material of the present disclosure having high hot workability will be described in detail.

    [0019] First, the alloying elements and the contents of the alloying elements of the steel material will be described.

    Manganese (Mn): 15 wt% to 27 wt%



    [0020] The content of manganese (Mn) is adjusted to be within the range of 15 wt% to 27 wt%.

    [0021] Manganese (Mn) is an element stabilizing austenite.

    [0022] Manganese (Mn) is added in an amount of 15 wt% or greater to stabilize austenite at very low temperatures.

    [0023] If the content of manganese (Mn) is less than 15 wt%, ε-martensite being a metastable phase may be formed in a steel material having a low content of carbon (C), and may be easily transformed into α'-martensite at a very low temperature by strain induced transformation. Thus, the toughness of the steel material may decrease.

    [0024] Furthermore, in the case of a steel material having a content of carbon (C) increased to guarantee toughness, physical properties of the steel material may markedly deteriorate because of precipitation of carbides.

    [0025] If the content of manganese (Mn) is greater than 27 wt%, manufacturing costs increase, and thus the economic feasibility of the steel material may decrease.

    [0026] Preferably, the content of manganese (Mn) may be within the range of 15 wt% to 25 wt%, and more preferably within the range of 17 wt% to 25 wt%.

    Carbon (C): 0.1 wt% to 1.1 wt%



    [0027] The content of carbon (C) is adjusted to be within the range of 0.1 wt% to 1.1 wt%.

    [0028] Carbon (C) is an element stabilizing austenite and increasing the strength of the steel material.

    [0029] Carbon (C) may decrease transformation points Ms and Md at which austenite transforms into ε-martensite or α'-martensite during a cooling or processing process.

    [0030] If the content of carbon (C) is less than 0.1 wt%, the stability of austenite is insufficient to obtain stabile austenite at very low temperatures, and austenite may be easily transformed into ε-martensite or α'-martensite by external stress through strain induced transformation, thereby decreasing the toughness and strength of the steel material.

    [0031] If the content of carbon (C) is greater than 1.1 wt%, the toughness of the steel material may markedly decrease because of precipitation of carbides, and the strength of the steel material may excessively increase to result in a decrease in the workability of the steel material.

    [0032] Preferably, the content of carbon (C) may be within the range of 0.1 wt% to 1.0 wt%, and more preferably within the range of 0.1 wt% to 0.8 wt%.

    Silicon (Si): 0.05 wt% to 0.5 wt%



    [0033] Like aluminum (Al), silicon (Si) is an element inevitably added in very small amounts as a deoxidizer. If the content of silicon (Si) is excessive, oxides are formed along grain boundaries which may decrease high-temperature ductility and may decrease surface quality by causing cracks. However, costs may be excessively incurred to decrease the content of silicon (Si) in steel, and thus the lower limit of the content of silicon (Si) is set to be 0.05%. Silicon (Si) is more oxidable than aluminum (Al), and thus if the content of silicon (Si) is greater than 0.5%, oxides may be formed which cause cracks decreasing surface quality. Therefore, the content of silicon (Si) is adjusted to be within the range of 0.05 wt% to 0.5%.

    Chromium (Cr): 5 wt% or less



    [0034] If chromium (Cr) is added to the steel material in an appropriate amount, chromium (Cr) stabilizes austenite and thus improves the low-temperature impact toughness of the steel material. In addition, chromium (Cr) dissolves in austenite and thus increases the strength of the steel material. Furthermore, chromium (Cr) improves the corrosion resistance of the steel material. However, chromium (Cr) is a carbide forming element. Particularly, chromium (Cr) leads to the formation of carbides along grain boundaries of austenite and thus decreases low-temperature impact toughness. Therefore, the content of chromium (Cr) may be determined by considering a relationship with carbon (C) and other elements, and since chromium (Cr) is an expensive element, the content of chromium (Cr) is adjusted to be 5 wt% or less.

    [0035] Preferably, the content of chromium (Cr) may be within the range of 0 wt% to 4 wt%, and more preferably within the range of 0.001 wt% to 4 wt%.

    Boron (B): 0.01 wt% or less



    [0036] The content of boron (B) is adjusted to be within the range of 0.01 wt% or less.

    [0037] Boron (B) is an element strengthening austenite grain boundaries.

    [0038] Even a small amount of boron (B) may strengthen austenite grain boundaries and may thus decrease the crack sensitivity of the steel material at high temperatures. To improve surface quality by austenite grain boundary strengthening, the content of boron (B) may preferably be 0.0005 wt% or greater.

    [0039] However, if the content of boron (B) is greater than 0.01%, segregation may occur along austenite grain boundaries, and thus the crack sensitivity of the steel material may increase at high temperatures, thereby decreasing the surface quality of the steel material.

    Aluminum (A1) : 0.021 wt% to 0.050 wt%



    [0040] The content of aluminum (A1) is adjusted to be within the range of 0.021 wt% to 0.050 wt%.

    [0041] Aluminum (Al) is added as a deoxidizer. Aluminum (Al) may form precipitate by reacting with carbon (C) or nitrogen (N) and may thus decrease hot workability. Thus, the content of aluminum (A1) is adjusted to be 0.05 wt% or less Preferably, the content of aluminum (Al) may be within the range of 0.005 wt% to 0.05 wt%.

    Sulfur (S): more than 0 wt% but less than or equal to 0.01 wt%



    [0042] The content of sulfur (S) is adjusted to be 0.01% or less for controlling the amounts of inclusions. If the content of sulfur (S) is greater than 0.01%, hot embrittlement may occur.

    Phosphorus (P): more than 0 wt % but less than or equal to 0.03 wt%



    [0043] Phosphorus (P) easily segregates and leads to cracks during a casting process. To prevent this, the content of phosphorus (P) is adjusted to be 0.03% or less. If the content of phosphorus (P) is greater than 0.03%, castability may decrease, and thus the upper limit of the content of phosphorus (P) is set to be 0.03%.

    Nitrogen (N): more than 0 wt% but less than or equal to 0.1 wt%



    [0044] Like carbon (C), nitrogen (N) is an element stabilizing austenite and improving toughness. In addition, like carbon (C), nitrogen (N) is very effective in improving strength by the effect of solid solution strengthening or the formation of precipitate. However, if the content of nitrogen (N) is greater than 0.1%, physical properties or surface quality of the steel material deteriorate because of coarsening of carbonitrides coarsen, and thus the upper limit of the content of nitrogen (N) is set to be 0.1 wt%. Preferably, the content of nitrogen (N) may be within the range of 0.001 wt% to 0.06 wt%, and more preferably within the range of 0.005 wt% to 0.03 wt%.

    [0045] In the present disclosure, the steel material includes the balance of iron (Fe) and inevitable impurities.

    [0046] Impurities of raw materials or manufacturing environments may be inevitably included in the steel material, and such impurities may not be removed from the steel material.

    [0047] Such impurities are well-known to those of ordinary skill in the steel manufacturing industry, and thus descriptions thereof will not be given in the present disclosure.

    [0048] According to the aspect of the present disclosure, the non-magnetic austenitic steel material having high hot workability has a composition index of sensitivity expressed by Formula 1 below within the range of 3.4 or less.

    (where each of [P], [Al], [B], and [Cr] is the weight percent (wt%) of the corresponding element)

    [0049] If the composition index of sensitivity expressed by Formula 1 is greater than 3.4, cracking may easily occur and propagate, thereby increasing surface defects of products.

    [0050] According to the aspect of the present disclosure, the non-magnetic austenitic steel material having high hot workability has austenite in an area fraction of 95% or greater.

    [0051] Austenite, which is a paramagnetic substance having low magnetic permeability and is more non-magnetic than ferrite, is a key microstructure for guaranteeing non-magnetic characteristics.

    [0052] If the area fraction of austenite is less than 95%, it may be difficult to guarantee non-magnetic characteristics.

    [0053] The average grain size of austenite is 10 µm or greater.

    [0054] The grain size of austenite obtainable through a manufacturing process of the present disclosure is 10 µm or greater, and since the strength of the steel material may decrease if the grain size markedly increases, it may be preferable that the grain size of austenite be 60 µm or less.

    [0055] According to the aspect of the present disclosure, the non-magnetic steel material having high hot workability includes one or more of precipitates and ε-martensite in an area fraction of 5% or less.

    [0056] If the area fraction of one or more of precipitates and ε-martensite is greater than 5%, the toughness and ductility of the steel material may decrease.

    [0057] Hereinafter, a method for manufacturing a non-magnetic steel material having high hot workability will be described in detail according to the present disclosure.

    [0058] According to another aspect of the present disclosure, the method for manufacturing a non-magnetic steel material having high hot workability includes:

    preparing a slab, the slab including the chemical composition of claim 1, the slab having a composition index of sensitivity expressed by Formula 1 below within the range of 3.4 or less,

    (where each of [P], [Al], [B], and [Cr] is the weight percent (wt%) of the corresponding element);

    reheating the slab to a temperature within a range of 1050°C to 1250°C;

    hot rolling the reheated slab to obtain a hot-rolled steel material; and

    cooling the hot-rolled steel material.


    Reheating of slab



    [0059] A slab is reheated in a heating furnace to a temperature of 1050°C to 1250°C for a hot rolling process.

    [0060] If the reheating temperature is too low, that is, lower than 1050°C, the load acting on a rolling mill may be markedly increased, and alloying elements may not be sufficiently dissolved in the slab. Conversely, if the reheating temperature is too high, grains may excessively grow to cause a strength decrease, and the reheating temperature may be higher than the temperature of the solidus curve of the slab to cause poor rollability. Therefore, it may be preferable that the upper limit of the reheating temperature be 1250°C.

    Hot Rolling



    [0061] A hot rolling process is performed on the reheated slab to obtain a hot-rolled steel material.

    [0062] The hot rolling process may include a rough rolling process and a finish rolling process.

    [0063] The temperature of the hot finish rolling process is adjusted to be within the range of 800°C to 1050°C. If the hot rolling temperature is less than 800°C, a great rolling load may be applied, and if the hot rolling temperature is greater than 1050°C, an intended degree of strength may not be obtained because of coarse grains. Thus, the upper limit of the hot rolling temperature is set to be 1050°C.

    Cooling



    [0064] The hot-rolled steel material obtained through the hot rolling process is cooled.

    [0065] After the finish rolling process, the hot-rolled steel material is cooled at a sufficiently high cooling rate to suppress the formation of carbides along grain boundaries. If the cooling rate is less than 10°C/s, the formation of carbides may not be sufficiently suppressed, and thus carbides may precipitate along grain boundaries during cooling. This may cause problems such as premature fracture, a ductility decrease, and a wear resistance decrease. Therefore, the cooling rate may be adjusted to be as high as possible, and the upper limit of the cooling rate may not be limited to a particular value as long as the cooling rate is within an accelerated cooling rate range. However, since it is generally difficult to increase the cooling rate of accelerated cooling to be greater than 100°C/s, the upper limit of the cooling rate of the cooling process is set to be 100°C/s.

    [0066] When the hot-rolled steel material is cooled, a cooling stop temperature is set to be 600°C or less. Although the steel material is cooled at a high cooling rate, if the cooling of the steel material is stopped at a high temperature, carbides may be formed and grown in the steel material.

    [Mode for Invention]



    [0067] Hereinafter, the present disclosure will be described more specifically through examples. However, the following examples should be considered in a descriptive sense only and not for purpose of limitation. The scope of the present invention is defined by the appended claims, and modifications and variations reasonably made therefrom.

    (Examples)



    [0068] Slabs satisfying compositions shown in Table 1 below were reheated to 1200°C and were hot rolled under the hot finish rolling conditions shown in Table 1 below to manufacture hot-rolled steel materials having a thickness of 12 mm. Then, the hot-rolled steel materials were cooled to 300°C at a cooling rate of 20°C/s

    [0069] The grain size, yield strength, tensile strength, elongation, and crack sensitivity of the hot-rolled steel sheets (steel materials) manufactured as described above were measured, and results thereof are shown in Table 2 below.

    [0070] The crack sensitivity is a reference for checking the hot workability of the steel materials, and as shown in FIG. 2, the surface quality of a lateral edge, a leading edge, and an upper surface of each of the steel materials were measured to evaluate the crack sensitivity. The degree of sensitivity of each measurement portion was scored according to references shown in FIG. 1, and the product of scores of the three portions was shown as sensitivity in Table 2 below. In Table 2 below, if the sensitivity is 3 or less, it is determined as having good surface quality.

    [0071] In addition, Table 2 below shows a composition index of sensitivity which is -0.451+34.131P+111.152Al-799.483B+0.526Cr.

    [0072] In addition, a relationship between the sensitivity and the composition index of sensitivity which is-0.451+34.131P+111.152Al-799.483B+0.526Cr, shown in Table 2, is illustrated in FIG. 3.
    [Table 1]
    No.Composition (wt%)Finish rolling temperature (°C)
    CMnSiPSNAlBCr
    *E1 0.42 20.3 0.21 0.016 0.004 0.015 0.028 - - 870
    E2 0.46 25.0 0.29 0.016 0.004 0.020 0.026 0.0042 3.93 891
    E3 0.40 19.9 0.17 0.016 0.003 0.018 0.025 0.0023 2.05 930
    E4 0.39 21.6 0.19 0.017 0.007 0.019 0.025 0.0045 2.06 905
    E5 0.40 25.0 0.22 0.016 0.004 0.021 0.026 - - 885
    E6 0.40 22.1 0.21 0.016 0.004 0.016 0.021 0.0030 - 940
    E7 0.39 19.6 0.18 0.018 0.009 0.018 0.022 0.0038 2.03 938
    E8 1.10 17.9 0.21 0.018 0.004 0.018 0.028 0.0040 2.70 937
    *CE1 0.40 22.0 0.19 0.029 0.004 0.018 0.026 - - 922
    CE2 0.40 22.1 0.18 0.027 0.003 0.017 0.072 0.0037 - 938
    CE3 0.40 22.2 0.20 0.015 0.004 0.017 0.051 - - 894
    CE4 0.40 22.2 0.20 0.030 0.003 0.017 0.060 - - 933
    CE5 0.40 22.1 0.22 0.030 0.003 0.018 0.059 - - 885
    *E: Example, **CE: Comparative Example
    [Table 2]
    No.Surface qualityProperties
    Composition indexSensitivityGrain size (µm)Yield strength (MPa)Tensile strength (MPa)Elongation (%)
    *E1 3.21 1.00 28 371.4 977.4 50.9
    E2 1.70 1.00 37 427.1 871.5 59.3
    E3 2.11 1.00 32 350.6 946.0 55.9
    E4 0.39 1.00 33 358.9 905.3 57.1
    E5 2.98 1.50 26 360.5 918.0 27.0
    E6 0.03 1.50 43 329.9 896.6 56.0
    E7 0.64 1.50 29 344.1 933.7 45.9
    E8 1.50 2.25 31 508.3 1003.9 29.5
    **CE1 3.43 3.38 30 342.5 925.9 61.9
    CE2 5.52 3.38 40 325.5 887.0 53.1
    CE3 5.73 8.00 28 356.2 928.7 52.7
    CE4 7.24 8.00 35 339.0 920.0 61.4
    CE5 7.13 8.00 33 352.5 899.9 39.2
    *E: Example, **CE: Comparative Example


    [0073] As shown in Tables 1 and 2 above, Examples 1 to 8 had good surface quality because the sensitivity thereof was within the range of 3 or less as proposed in the present disclosure.

    [0074] Comparative Example 1, having a high content of phosphorus (P), had relatively high crack sensitivity, that is, a composition index of 3.43.

    [0075] Comparative Example 2 to which boron (B) was added had a decreased composition index because of a relatively high aluminum (Al) content and thus, decreased crack sensitivity. However, the composition index and crack sensitivity of Comparative Example 2 were outside of the ranges proposed in the present disclosure.

    [0076] Comparative Example 3, having an aluminum (Al) content outside of the range proposed in the present disclosure, had a composition index of 5.73 and a crack sensitivity of 8.00.

    [0077] Comparative Examples 4 and 5 had a relatively high composition index and crack sensitivity because of the addition of phosphorus (P) and aluminum (Al).

    [0078] In addition, as illustrated in FIG. 3, when the composition index of sensitivity expressed by-0.451+34.131P+111.152Al-799.483B+0.526Cr was 3.4 or less, sensitivity of 3 or less was obtained, that is, good surface quality was obtained.

    [0079] While embodiments have been shown and described above, it will be apparent to those skilled in the art that modifications and variations could be made without departing from the scope of the present invention as defined by the appended claims.


    Claims

    1. A non-magnetic steel material, the non-magnetic steel material comprising manganese (Mn): 15 wt% to 27 wt%, carbon (C) : 0.1 wt% to 1.1 wt%, silicon (Si): 0.05 wt% to 0.50 wt%, phosphorus (P): more than 0 wt% but less than or equal to 0.03 wt% , sulfur (S) : more than 0 wt% but less than or equal to 0.01 wt%, aluminum (Al): 0.021 wt% to 0.050 wt%, chromium (Cr): 5 wt% or less, boron (B) : 0.01 wt% or less, nitrogen (N) : more than 0 wt% but less than or equal to 0.1 wt%, and a balance of iron (Fe) and inevitable impurities, wherein the non-magnetic steel material has a composition index of sensitivity expressed by Formula 1 below within a range of 3.4 or less,

    where each of [P], [Al], [B], and [Cr] is a weight percent (wt%) of a corresponding element,
    wherein the non-magnetic steel material has a microstructure comprising austenite in an area fraction of 95% or greater, and one or more of precipitates and ε-martensite in an area fraction of 5% or less, and
    wherein the austenite has an average grain size of 10µm or greater.
     
    2. A method for manufacturing a non-magnetic steel material according to claim 1, the method comprising:

    preparing a slab, the slab comprising manganese (Mn): 15 wt% to 27 wt%, carbon (C) : 0.1 wt% to 1.1 wt%, silicon (Si): 0.05 wt% to 0.50 wt%, phosphorus (P): more than 0 wt% but less than or equal to 0.03 wt%, sulfur (S): more than 0 wt% but less than or equal to 0.01 wt%, aluminum (Al): 0.021 wt% to 0.050 wt%, chromium (Cr): 5 wt% or less, boron (B): 0.01 wt% or less, nitrogen (N): more than 0 wt% but less than or equal to 0.1 wt%, and a balance of iron (Fe) and inevitable impurities, the slab having a composition index of sensitivity expressed by Formula 1 below within a range of 3.4 or less,

    where each of [P], [Al], [B], and [Cr] is a weight percent (wt%) of a corresponding element;

    reheating the slab to a temperature within a range of 1050°C to 1250°C;

    hot rolling the reheated slab to obtain a hot-rolled steel material; and

    cooling the hot-rolled steel material,

    wherein the hot rolling of the reheated slab is performed at a hot finish rolling temperature of 800°C to 1050°C,

    wherein the cooling of the hot-rolled steel material is performed at a cooling rate of 10°C/s to 100°C/s, and

    wherein the cooling of the hot-rolled steel material is stopped at a cooling stop temperature of 600°C or less.


     
    3. The method of claim 2, wherein the steel material has a microstructure comprising austenite in an area fraction of 95% or greater.
     
    4. The method of claim 3, wherein the austenite has an average grain size of 10 µm or greater.
     


    Ansprüche

    1. Nichtmagnetisches Stahlmaterial, wobei das nichtmagnetische Stahlmaterial Mangan (Mn) umfasst:

    15 Gew.-% bis 27 Gew.-% Kohlenstoff (C):

    0,1 Gew.-% bis 1,1 Gew.-% Silizium (Si):

    0,05 Gew.-% bis 0,50 Gew.-% Phosphor (P):

    mehr als 0 Gew.-% aber weniger als oder gleich 0,03 Gew.-% Schwefel (S):

    mehr als 0 Gew.-% aber weniger als oder gleich 0,01 Gew.-% Aluminium (AI):

    0,021 Gew.-% bis 0,050 Gew.-% Chrom (Cr):

    5 Gew.-% oder weniger Bor (B):

    0,01 Gew.-% oder weniger Stickstoff (N):

    mehr als 0 Gew.-% aber weniger als oder gleich 0,1 Gew.-% und ein Rest von Eisen (Fe) und unvermeidlichen Verunreinigungen, wobei das nichtmagnetische Stahlmaterial einen Zusammensetzungsindex der Empfindlichkeit, ausgedrückt durch die Formel 1 unten, in einem Bereich von 3,4 oder weniger aufweist,

    wobei jedes von [P], [Al], [B] und [Cr] ein Gewichtsprozent (Gew.-%) eines entsprechenden Elements ist, wobei das nichtmagnetische Stahlmaterial eine Mikrostruktur aufweist, die Austenit in einem Flächenanteil von 95 % oder mehr umfasst und eines oder mehrere von Niederschlägen und ε-Martensit in einem Flächenanteil von 5 % oder weniger, wobei der Austenit eine durchschnittliche Korngröße von 10 µm oder mehr aufweist.


     
    2. Verfahren zur Herstellung eines nichtmagnetischen Stahlmaterials nach Anspruch 1, wobei das Verfahren umfasst:

    Herstellen einer Platte, wobei die Platte Mangan (Mn) umfasst:

    15 Gew.-% bis 27 Gew.-% Kohlenstoff (C):

    0,1 Gew.-% bis 1,1 Gew.-% Silizium (Si):

    0,05 Gew.-% bis 0,50 Gew.-% Phosphor (P):

    mehr als 0 Gew.-% aber weniger als oder gleich 0,03 Gew.-% Schwefel (S):

    mehr als 0 Gew.-% aber weniger als oder gleich 0,01 Gew.-% Aluminium (AI):

    0,021 Gew.-% bis 0,050 Gew.-% Chrom (Cr):

    5 Gew.-% oder weniger Bor (B):

    0,01 Gew.-% oder weniger Stickstoff (N):

    mehr als 0 Gew.-% aber weniger als oder gleich 0,1 Gew.-% und ein Rest von Eisen (Fe) und unvermeidlichen Verunreinigungen, wobei die Platte einen Zusammensetzungsindex der Empfindlichkeit, ausgedrückt durch die Formel 1 unten, in einem Bereich von 3,4 oder weniger aufweist,

    wobei jedes von [P], [Al], [B] und [Cr] ein Gewichtsprozent (Gew.-%) eines entsprechenden Elements ist;

    Wiedererhitzen der Platte auf eine Temperatur in einem Bereich von 1050 °C bis 1250 °C;

    Warmwalzen der wiedererwärmten Platte, um ein warmgewalztes Stahlmaterial zu erhalten; und

    Abkühlen des warmgewalzten Stahlmaterials, wobei das Warmwalzen der wiedererwärmten Platte bei einer Warmwalztemperatur von 800 °C bis 1050 °C durchgeführt wird, wobei das Abkühlen des warmgewalzten Stahlmaterials mit einer Abkühlgeschwindigkeit von 10 °C/s bis 100 °C/s durchgeführt wird, wobei das Abkühlen des warmgewalzten Stahlmaterials bei einer Abkühltemperatur von 600 °C oder weniger angehalten wird.


     
    3. Verfahren nach Anspruch 2, wobei das Stahlmaterial eine Mikrostruktur aufweist, die Austenit in einem Flächenanteil von 95 % oder mehr umfasst.
     
    4. Verfahren nach Anspruch 3, wobei der Austenit eine durchschnittliche Korngröße von 10 µm oder mehr aufweist.
     


    Revendications

    1. Matériau en acier non magnétique, le matériau en acier non magnétique comprenant : de 15 % en poids à 27 % en poids de manganèse (Mn) ; de 0,1 % en poids à 1,1 % en poids de carbone (C), de 0,05 % en poids à 0,50 % en poids de silicium (Si), plus de 0 % en poids mais pas plus de 0,03 % en poids de phosphore (P), plus de 0% en poids mais pas plus de 0,01 % en poids de soufre (S), de 0,021 % en poids à 0,050 % en poids d'aluminium (Al), jusqu'à 5 % en poids de chrome (Cr), jusqu'à 0,01 % en poids de bore (B), plus de 0 % en poids mais pas plus de 0,1 % en poids d'azote (N), le reste étant constitué de fer (Fe) et d'impuretés inévitables, le matériau en acier non magnétique présentant un indice de sensibilité de composition exprimé par la formule 1 ci-dessous dans une plage inférieure ou égale à 3,4,

    où chacun de [P], [Al], [B] et [Cr] est un pourcentage en poids (% en poids) d'un élément correspondant,
    le matériau en acier non magnétique présentant une microstructure comprenant de l'austénite dans une fraction de surface supérieure ou égale à 95 %, et un ou plusieurs précipités et de l'ε-martensite dans une fraction de surface supérieure ou égale à 5 %, et
    l'austénite présentant une dimension de grain moyenne d'au moins 10 µm.
     
    2. Procédé de fabrication d'un matériau en acier non magnétique selon la revendication 1, le procédé comprenant :

    la préparation d'une brame, la brame comprenant : de 15 % en poids à 27 % en poids de manganèse (Mn), de 0,1 % en poids à 1,1 % en poids de carbone (C), de 0,05 % en poids à 0,50 % en poids de silicium (Si), plus de 0 % en poids mais pas plus de 0,03 % en poids de phosphore (P), plus de 0% en poids mais pas plus de 0,01 % en poids de soufre (S), 0,021 % en poids à 0,050 % en poids d'aluminium (Al), pas plus de 5 % en poids de chrome (Cr), pas plus de 0,01 % en poids de bore (B), plus de 0 % en poids mais pas plus de 0,1 % en poids d'azote (N), le reste étant constitué de fer (Fe) et d'impuretés inévitables, la brame présentant un indice de sensibilité de composition exprimé par la formule 1 ci-dessous dans une plage inférieure ou égale à 3,4,

    où chacun de [P], [Al], [B] et [Cr] est un pourcentage en poids (% en poids) d'un élément correspondant ;

    le réchauffage de la brame à une température comprise dans une plage de 1050 °C à 1250 °C ;

    le laminage à chaud de la brame réchauffée pour obtenir un matériau en acier laminé à chaud ; et

    le refroidissement du matériau en acier laminé à chaud,

    le laminage à chaud de la brame réchauffée étant effectué à une température de laminage de finition à chaud de 800 °C à 1050 °C,

    le refroidissement du matériau en acier laminé à chaud étant effectué à une vitesse de refroidissement de 10 °C/s à 100 °C/s, et

    le refroidissement du matériau en acier laminé à chaud étant arrêté à une température d'arrêt de refroidissement inférieure ou égale à 600 °C.


     
    3. Procédé selon la revendication 2, dans lequel le matériau en acier présente une microstructure comprenant de l'austénite dans une fraction de surface d'au moins 95 %.
     
    4. Procédé selon la revendication 3, dans lequel l'austénite présente une dimension de grain moyenne d'au moins 10 µm.
     




    Drawing









    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description