(19)
(11)EP 3 396 851 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
17.06.2020 Bulletin 2020/25

(21)Application number: 15911104.6

(22)Date of filing:  23.12.2015
(51)International Patent Classification (IPC): 
H02P 21/14(2016.01)
(86)International application number:
PCT/CN2015/098458
(87)International publication number:
WO 2017/107105 (29.06.2017 Gazette  2017/26)

(54)

METHOD AND APPARATUS FOR ONLINE ESTIMATION OF INITIAL POSITION OF SURFACE PERMANENT MAGNET MOTOR

VERFAHREN UND VORRICHTUNG ZUR ONLINE-SCHÄTZUNG DER ANFÄNGLICHEN POSITION EINES OBERFLÄCHEN-PERMANENTMAGNETMOTORS

PROCÉDÉ ET APPAREIL D'ESTIMATION EN LIGNE DE POSITION INITIALE DE MOTEUR À AIMANT PERMANENT EN SURFACE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(43)Date of publication of application:
31.10.2018 Bulletin 2018/44

(73)Proprietor: Robert Bosch GmbH
70442 Stuttgart (DE)

(72)Inventors:
  • MAO, Yongle
    70442 Stuttgart (DE)
  • ZHANG, Wei
    70442 Stuttgart (DE)
  • ZANG, Xiaoyun
    70442 Stuttgart (DE)


(56)References cited: : 
EP-A2- 2 061 147
CN-A- 103 501 151
CN-A- 103 986 395
CN-A- 104 660 140
CN-A- 101 340 169
CN-A- 103 780 193
CN-A- 103 986 395
CN-A- 104 660 140
  
  • ZHAOBIN HUANG ET AL: "Sensorless initial rotor position identification for non-salient permanent magnet synchronous motors based on dynamic reluctance difference", IET POWER ELECTRO, IET, UK, vol. 7, no. 9, 1 September 2014 (2014-09-01), pages 2336-2346, XP006049591, ISSN: 1755-4535, DOI: 10.1049/IET-PEL.2013.0720
  • LIU BING ET AL: "A rotor initial position estimation method for sensorless control of SPMSM", IECON 2014 - 40TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, IEEE, 29 October 2014 (2014-10-29), pages 354-359, XP032739281, DOI: 10.1109/IECON.2014.7048524 [retrieved on 2015-02-24]
  • LIN T C ET AL: "Sensorless Operation Capability of Surface-Mounted Permanent-Magnet Machine Based on High-Frequency Signal Injection Methods", IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, IEEE SERVICE CENTER, PISCATAWAY, NJ, US, vol. 51, no. 3, 1 May 2015 (2015-05-01), pages 2161-2171, XP011581555, ISSN: 0093-9994, DOI: 10.1109/TIA.2014.2382762 [retrieved on 2015-05-15]
  • HUH K-K ET AL: "A Novel Method for Initial Rotor Position Estimation for IPM Synchronous Machine Drives", IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, IEEE SERVICE CENTER, PISCATAWAY, NJ, US, vol. 40, no. 5, 1 September 2004 (2004-09-01), pages 1369-1378, XP011119291, ISSN: 0093-9994, DOI: 10.1109/TIA.2004.834091
  
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description

Technical field



[0001] The embodiments of the present invention relate to the field of surface permanent magnet electric machine control, in particular to a method for on-line estimation of an initial position of a surface permanent magnet electric machine in a stationary state or at a first speed, and an apparatus for on-line estimation of an initial position of a surface permanent magnet electric machine in a stationary state or at a first speed.

Background art



[0002] To drive a surface permanent magnet synchronous electric machine (SPMSM/SPM: Surface Permanent Magnet Synchronous Motor), it is necessary to acquire rotor position in order to realize vector control (FOC: Field Oriented Control). Without a rotor position sensor, rotor position can be estimated by extracting position information from measured phase currents. When the synchronous electric machine is operating at zero speed or at a low speed (generally 10% of the rated speed), the back emf is very small because the speed is also very small. In such a situation, a method of High Frequency Pulsating Voltage Injection (HFPVI) is generally used to extract rotor position information.

[0003] In principle, the HFPVI method only tracks the position of a rotor salient pole; this position does not include rotor position polarity. If the estimated rotor position polarity is not accurate, then electromagnetic torque will be opposite to reference torque, and this will lead to failure of pole control. A prior method for estimating rotor position polarity is to inject voltage pulses from positive and negative directions of the d-axis respectively and determine rotor polarity according to a measured current amplitude difference. However, the method requires the injection of voltage signals at least twice, and a long time (of the order of hundreds of milliseconds) must be consumed before rotor polarity is determined; moreover, the method must determine rotor polarity when the pole is in a stationary state. Thus, such a method is an off-line method, and so cannot be used for starting an electric machine having a certain initial speed.

[0004] The IEEE publication "A rotor initial position estimation method for sensorless control of SPMSM" by Liu Bing; Zhou Bo; Wei Jiadan; Liu Haidong; Li Jie; Wang Long , 29.10.2014 discloses rotor initial position estimation method based on band-pass filtered second harmonic of d-axis current response, the d-axis current is band-pass filtered to output the second harmonic which is multiplied with a cosine, low pass filtered and polarity deteremined.

Content of the invention



[0005] In order to realize on-line rotor position determination, in particular rotor position determination of an electric machine having a certain speed, an innovative method is provided according to the present invention; the method is an on-line method, and can be used on an electric machine that is started at zero speed or a low first speed. The method is realized on the basis of a second harmonic of a high-frequency current on a d-axis. The method can compensate for the effects of stator impedance and PWM delay, and can thereby maximize rotor position error carrier current and the signal-to-noise ratio of the rotor position carrier current. Thus, the precision of rotor position estimation when in a stationary state or a low-speed state can be improved.

[0006] According to the present invention, a method for on-line estimation of an initial position of a surface permanent magnet electric machine in a stationary state or at a first speed is proposed, the method comprising:

injecting a high-frequency pulsating voltage signal;

acquiring a d-axis high-frequency current signal responding to the high-frequency pulsating voltage signal; and

estimating an initial position of the surface permanent magnet electric machine on the basis of a second harmonic of the d-axis high-frequency current signal.



[0007] According to the present invention, innovative use is made of the second harmonic of the d-axis high-frequency current signal to estimate the initial position of the surface permanent magnet electric machine, so that the initial position of the surface permanent magnet electric machine can be estimated accurately even in cases where the surface permanent magnet electric machine has a certain initial speed, e.g. the first speed, thereby realizing on-line estimation of the initial position of the surface permanent magnet electric machine.

[0008] In one embodiment of the present invention, the high-frequency pulsating voltage signal is subjected to phase compensation, in order to compensate for stator impedance and pulse width modulation delay. Through such phase compensation, the stator impedance and pulse width modulation delay can be compensated for, and the accuracy of the estimated initial position of the surface permanent magnet electric machine can thereby be increased.

[0009] In one embodiment of the present invention, the first speed does not exceed 10% of a rated rotation speed of the surface permanent magnet electric machine.

[0010] According to the present invention, the initial position comprises a rotor salient pole position and a rotor position polarity. In this way, the method according to the present invention can realize estimation of an initial position, which includes a rotor salient pole position and a rotor position polarity, by injecting just one single high-frequency pulsating voltage signal, so can not only reduce the time taken to estimate initial position and improve system performance, but can also additionally acquire rotor position polarity information, thereby providing necessary and useful information for subsequent vector control.

[0011] According to the present invention, the step of estimating an initial position of the surface permanent magnet electric machine on the basis of a second harmonic of the d-axis high-frequency current signal further comprises:

converting the d-axis high-frequency current signal to a d-q coordinate system so as to obtain a first component and a second component;

subjecting the first component to band-pass filtering, sine processing, low-pass filtering, and observation using a Luenberger observer or phase-locked loop circuit, so as to obtain a rotor salient pole position of the surface permanent magnet electric machine; and

subjecting the second component to band-pass filtering, cosine processing, low-pass filtering and polarity determination so as to obtain a rotor position polarity of the surface permanent magnet electric machine.



[0012] Those skilled in the art should understand that the method according to the present invention comprises but is not limited to the above processing steps, and the estimation of the initial position of the surface permanent magnet electric machine by means of the the second harmonic of the d-axis high-frequency current signal could also be realized by other suitable technical means.

[0013] In addition, according to the present invention, an apparatus for on-line estimation of an initial position of a surface permanent magnet electric machine in a stationary state or at a first speed is also provided, the apparatus comprising:

a voltage injection unit, configured to inject a high-frequency pulsating voltage signal;

a current acquisition unit, configured to acquire a d-axis high-frequency current signal responding to the high-frequency pulsating voltage signal; and

an analysis unit, configured to analyse a second harmonic of the d-axis high-frequency current signal, so as to estimate an initial position of the surface permanent magnet electric machine.



[0014] In one embodiment of the present invention, the voltage injection unit is further configured to subject the high-frequency pulsating voltage signal to phase compensation, in order to compensate for stator impedance and pulse width modulation delay.

[0015] In one embodiment of the present invention, the first speed does not exceed 10% of a rated rotation speed of the surface permanent magnet electric machine.

[0016] According to the present invention, the initial position comprises a rotor salient pole position and a rotor position polarity.

[0017] According to the present invention, the analysis unit further comprises:

a coordinate system conversion unit, configured to convert the d-axis high-frequency current signal to a d-q coordinate system so as to obtain a first component and a second component;

a first processing unit, comprising a first band-pass filter, a sine processing unit, a first low-pass filter and a Luenberger observer or phase-locked loop circuit, and being configured to subject the first component to band-pass filtering, sine processing, low-pass filtering, and observation using the Luenberger observer or phase-locked loop circuit, so as to obtain a rotor salient pole position of the surface permanent magnet electric machine; and

a second processing unit, comprising a second band-pass filter, a cosine processing unit, a second low-pass filter and a polarity determination circuit, and being configured to subject the second component to band-pass filtering, cosine processing, low-pass filtering and polarity determination so as to obtain a rotor position polarity of the surface permanent magnet electric machine.



[0018] In one embodiment of the present invention, the second low-pass filter is a self-adaptive filter with zero delay, in order to compensate for a phase shift introduced by the second low-pass filter.

[0019] Compared with an existing method, the method of the present invention mainly has the following advantages:

First of all, the method realizes on-line rotor position polarity determination, and can realize rotor position polarity determination when starting is performed at a low speed, so has a significant comparative advantage over an off-line method in the prior art which can only be used when the rotor is in a stationary state.

Secondly, compared with a conventional off-line method, the method of the present invention can shorten the time taken to determine rotor position; the time needed in the method is only about 20 to 40 milliseconds, and can at the same time compensate for stator impedance and PWM delay, and thereby improve the precision of rotor position estimation.


Description of the accompanying drawings



[0020] The following detailed description of non-limiting embodiments with reference to the accompanying drawings will make other features, objectives and advantages of the present invention more obvious.

Fig. 1 shows schematically a flow chart of a method 100 according to the present invention for on-line estimation of an initial position of a surface permanent magnet electric machine in a stationary state or at a first speed;

fig. 2 shows schematically a block diagram of an apparatus 200 according to the present invention for on-line estimation of an initial position of a surface permanent magnet electric machine in a stationary state or at a first speed; and

fig. 3 shows schematically a block diagram of an analysis unit 230 according to the present invention.



[0021] Throughout the figures, identical or similar reference labels represent identical or similar apparatuses (modules) or steps.

Particular embodiments



[0022] In the specific description of the preferred embodiments below, reference will be made to the accompanying drawings, which form part of the present invention. The accompanying drawings show, by means of demonstration, specific embodiments capable of realizing the present invention. The demonstrative embodiments are not intended to exhaust all the embodiments according to the present invention. It can be understood that other embodiments may be utilized on condition that the scope of the present invention is not departed from, and structural or logical amendments may be made. Thus, the following specific description is not limiting, and the scope of the present invention is defined by the attached claims.

[0023] In theory, the relationship between d-axis magnetic flux and d-axis current is as follows: when the d-axis current is positive, the d-axis armature reaction magnetic flux is in the same direction as the permanent magnet magnetic flux, and this will cause further saturation of the d-axis magnetic circuit, and cause the d-axis inductance to fall; correspondingly, when the d-axis current is negative, the d-axis armature reaction magnetic flux is in the opposite direction to the permanent magnet magnetic flux, and this will cause the saturation level of the d-axis magnetic circuit to drop, and cause the d-axis inductance to rise. The N pole and S pole of the rotor can thus be distinguished via the above inductance saturation effect.

[0024] It can be seen from the above discussion that the d-axis current is a function of the d-axis magnetic flux, and a second-order Taylor series obtained by omitting a Lagrange remainder from the function at the position (ψm,0) is as follows:

where



and



[0025] If the following high-frequency pulsating voltage signal is injected in an estimated d-q coordinate system:

then, taking into account stator impedance and PWM delay, a high-frequency response current can be expressed as:

where zdh = Rs + jωhLd, zqh = Rs + jωhLq, and

φ1 = arctan(Rs/ωhLd), φ2 = arctan(Rs/ωhLq), φ3 is phase shift caused by PWM delay.



[0026] Rotor salient pole position can be extracted by means of the first term in formula (3) above, and the following information can be extracted from the second term in formula (3): whether the rotor position is tending towards the N pole or the S pole. The specific extraction method will be described in detail in the next section.

[0027] The following rotor position error signal can be obtained by a corresponding method:

where



[0028] A rotor position polarity error signal is:



[0029] If a rotor position estimation error is δθe or δθe + π, then a polarity carrier signal amplitude is:

where



[0030] It can be seen from formulae (4) and (6) above that an initial position of a surface permanent magnet electric machine can be estimated by the method according to the present invention for on-line estimation of an initial position of a surface permanent magnet electric machine in a stationary state or at a first speed; specifically, fig. 1 shows a flow chart 100 of a method for on-line estimation of an initial position of a surface permanent magnet electric machine in a stationary state or at a first speed, and it can be seen from fig. 1 that the method comprises the following steps:

First of all, a high-frequency pulsating voltage signal will be injected in step 110;

then, in the next step 120, a d-axis high-frequency current signal responding to the high-frequency pulsating voltage signal will be acquired; and

finally, in step 130, an initial position of the surface permanent magnet electric machine is estimated on the basis of a second harmonic of the d-axis high-frequency current signal.



[0031] Optionally or additionally, the first speed does not exceed 10% of a rated rotation speed of the surface permanent magnet electric machine.

[0032] In the above formulation, the initial position may comprise a rotor salient pole position and a rotor position polarity. In this way, the method according to the present invention can realize estimation of an initial position, which includes a rotor salient pole position and a rotor position polarity, by injecting just one single high-frequency pulsating voltage signal, so can not only reduce the time taken to estimate initial position and improve system performance, but can also additionally acquire rotor position polarity information, thereby providing necessary and useful information for subsequent vector control.

[0033] Step 130 above, in which an initial position of the surface permanent magnet electric machine is estimated on the basis of a second harmonic of the d-axis high-frequency current signal, may further comprise:

converting the d-axis high-frequency current signal to a d-q coordinate system so as to obtain a first component and a second component;

subjecting the first component to band-pass filtering, sine processing, low-pass filtering and observation using a Luenberger observer LO or phase-locked loop circuit so as to obtain a rotor salient pole position of the surface permanent magnet electric machine; and

subjecting the second component to band-pass filtering, cosine processing, low-pass filtering and polarity determination so as to obtain a rotor position polarity of the surface permanent magnet electric machine.



[0034] Implementation steps of the method according to the present invention will now be further expounded with reference to the apparatus block diagram 200 of fig. 2 and the detailed block diagram 300 of the relevant analysis apparatus of fig. 3.

[0035] Specifically, fig. 2 shows a block diagram of an apparatus 200 according to the present invention for on-line estimation of an initial position of a surface permanent magnet electric machine in a stationary state or at a first speed, and fig. 3 shows a block diagram of an analysis unit 230 according to the present invention.

[0036] It can be seen from fig. 2 that the apparatus 200 according to the present invention for on-line estimation of an initial position of a surface permanent magnet electric machine in a stationary state or at a first speed comprises the following parts:

a voltage injection unit 210, configured to inject a high-frequency pulsating voltage signal;

a current acquisition unit 220, configured to acquire a d-axis high-frequency current signal responding to the high-frequency pulsating voltage signal; and

an analysis unit 230, configured to analyse a second harmonic of the d-axis high-frequency current signal, so as to estimate an initial position of the surface permanent magnet electric machine.



[0037] Optionally or additionally, the first speed does not exceed 10% of a rated rotation speed of the surface permanent magnet electric machine. In one embodiment of the present invention, the initial position comprises a rotor salient pole position and a rotor position polarity.

[0038] More specifically, the analysis unit 230 further comprises:

a coordinate system conversion unit 232, configured to convert the d-axis high-frequency current signal to a d-q coordinate system so as to obtain a first component and a second component;

a first processing unit 234, comprising a first band-pass filter, a sine processing unit, a first low-pass filter and a Luenberger observer or phase-locked loop circuit, and being configured to subject the first component to band-pass filtering, sine processing, low-pass filtering, and observation using the Luenberger observer or phase-locked loop circuit, so as to obtain a rotor salient pole position of the surface permanent magnet electric machine; and

a second processing unit 236, comprising a second band-pass filter, a cosine processing unit, a second low-pass filter and a polarity determination circuit, and being configured to subject the second component to band-pass filtering, cosine processing, low-pass filtering and polarity determination so as to obtain a rotor position polarity of the surface permanent magnet electric machine. Preferably, the second low-pass filter is a self-adaptive filter with zero delay, in order to compensate for a phase shift introduced by the second low-pass filter.



[0039] However, the stator impedance and PWM delay (expressed as φ1 and φ3 respectively in formulae (4) and (6)) will reduce position error amplitude and polarity carrier signal amplitude, and thereby reduce the signal-to-noise ratio. In order to maximize the signal-to-noise ratio of a position carrier signal and a polarity carrier signal, it is necessary to compensate for the stator impedance and PWM delay. Preferably, the high-frequency pulsating voltage signal may be subjected to phase compensation, in order to compensate for stator impedance and pulse width modulation delay. Then the injected high-frequency pulsating voltage signal should be:



[0040] As a result of the injected high-frequency pulsating voltage signal being subjected to phase compensation, the position error amplitude and polarity carrier signal amplitude obtained should correspondingly be:





[0041] It can be seen from formulae (8) and (9) above that the stator impedance and PWM delay (φ1 and φ3) have both already been eliminated in the position error amplitude and polarity carrier signal amplitude above. Thus, the rotor position estimation error

substantially tends towards zero, and the signal-to-noise ratio of the rotor position carrier signal is maximized. In other words, through such phase compensation, the stator impedance and pulse width modulation delay can be compensated for, and the accuracy of the estimated initial position of the surface permanent magnet electric machine can thereby be increased.


Claims

1. Method (100) for on-line estimation of an initial position of a surface permanent magnet electric machine in a stationary state or at a first speed, the method (100) comprising:

injecting (110) a high-frequency pulsating voltage signal;

acquiring (120) a d-axis high-frequency current signal responding to the high-frequency pulsating voltage signal; and

estimating (130) an initial position of the surface permanent magnet electric machine on the basis of a second harmonic of the d-axis high-frequency current signal, wherein the initial position comprises a rotor salient pole position and a rotor position polarity, and wherein the step of estimating (130) an initial position of the surface permanent magnet electric machine on the basis of a second harmonic of the d-axis high-frequency current signal further comprises:

converting the d-axis high-frequency current signal to a d-q coordinate system so as to obtain a first component (iq) and a second component (id); and

subjecting the second component (id) to band-pass filtering, cosine processing, low-pass filtering and polarity determination so as to obtain a rotor position polarity of the surface permanent magnet electric machine, characterized by

subjecting the first component (iq) to band-pass filtering, sine processing, low-pass filtering, and observation using a Luenberger observer (LO) or phase-locked loop circuit, so as to obtain a rotor salient pole position of the surface permanent magnet electric machine.


 
2. Method according to Claim 1, wherein the high-frequency pulsating voltage signal is subjected to phase compensation, in order to compensate for stator impedance and pulse width modulation delay.
 
3. Method according to Claim 1 or 2, wherein the first speed does not exceed 10% of a rated rotation speed of the surface permanent magnet electric machine.
 
4. Apparatus (200) for on-line estimation of an initial position of a surface permanent magnet electric machine in a stationary state or at a first speed, the apparatus (200) comprising:

a voltage injection unit (210), configured to inject a high-frequency pulsating voltage signal;

a current acquisition unit (220), configured to acquire a d-axis high-frequency current signal responding to the high-frequency pulsating voltage signal; and

an analysis unit (230), configured to analyse a second harmonic of the d-axis high-frequency current signal, so as to estimate an initial position of the surface permanent magnet electric machine, wherein the initial position comprises a rotor salient pole position and a rotor position polarity, wherein the analysis unit (230) further comprises:

a coordinate system conversion unit (232), configured to convert the d-axis high-frequency current signal to a d-q coordinate system so as to obtain a first component (iq) and a second component (id); and

a second processing unit (236), comprising a second band-pass filter, a cosine processing unit, a second low-pass filter and a polarity determination circuit, and being configured to subject the second component (id) to band-pass filtering, cosine processing, low-pass filtering and polarity determination so as to obtain a rotor position polarity of the surface permanent magnet electric machine, characterized by

a first processing unit (234), comprising a first band-pass filter, a sine processing unit, a first low-pass filter and a Luenberger observer or phase-locked loop circuit, and being configured to subject the first component (iq) to band-pass filtering, sine processing, low-pass filtering, and observation using the Luenberger observer or phase-locked loop circuit, so as to obtain a rotor salient pole position of the surface permanent magnet electric machine.


 
5. Apparatus (200) according to Claim 4, wherein the voltage injection unit is further configured to subject the high-frequency pulsating voltage signal to phase compensation, in order to compensate for stator impedance and pulse width modulation delay.
 
6. Apparatus (200) according to Claim 4 or 5, wherein the first speed does not exceed 10% of a rated rotation speed of the surface permanent magnet electric machine.
 
7. Apparatus according to Claim 4, wherein the second low-pass filter is a self-adaptive filter with zero delay.
 


Ansprüche

1. Verfahren (100) zum Online-Schätzen einer anfänglichen Position einer elektrischen Oberflächenpermanentmagnet-Maschine in einem stationären Zustand oder bei einer ersten Geschwindigkeit, wobei das Verfahren (100) Folgendes umfasst:

Einspeisen (110) eines pulsierenden Hochfrequenz-Spannungssignals,

Erfassen (120) eines d-Achsen-Hochfrequenz-Stromsignals in Reaktion auf das pulsierende Hochfrequenz-Spannungssignal, und

Schätzen (130) einer anfänglichen Position der elektrischen Oberflächenpermanentmagnet-Maschine auf der Basis einer zweiten Harmonischen des d-Achsen-Hochfrequenz-Stromsignals, wobei die anfängliche Position eine Rotor-Schenkelpolposition und eine Rotorpositionspolarität umfasst und wobei der Schritt des Schätzens (130) einer anfänglichen Position der elektrischen Oberflächenpermanentmagnet-Maschine auf der Basis einer zweiten Harmonischen des d-Achsen-Hochfrequenz-Stromsignals ferner Folgendes umfasst:

Umwandeln des d-Achsen-Hochfrequenz-Stromsignals in ein d-q-Koordinatensystem, um eine erste Komponente (iq) und eine zweite Komponente (id) zu erhalten, und

Unterziehen der zweiten Komponente (id) einer Bandpassfilterung, Cosinus-Verarbeitung, Tiefpassfilterung und Polaritätsbestimmung, um eine Rotorpositionspolarität der elektrischen Oberflächenpermanentmagnet-Maschine zu erhalten, gekennzeichnet durch

Unterziehen der ersten Komponente (iq) einer Bandpassfilterung, Sinus-Verarbeitung, Tiefpassfilterung und Beobachtung unter Verwendung eines Luenberger-Beobachters (LO) oder eines Phasenregelkreises, um eine Rotor-Schenkelpolposition der elektrischen Oberflächenpermanentmagnet-Maschine zu erhalten.


 
2. Verfahren nach Anspruch 1, wobei das pulsierende Hochfrequenz-Spannungssignal einem Phasenausgleich unterzogen wird, um eine Statorimpedanz und eine Pulsweitenmodulationsverzögerung auszugleichen.
 
3. Verfahren nach Anspruch 1 oder 2, wobei die erste Geschwindigkeit 10 % einer Nenndrehzahl der elektrischen Oberflächenpermanentmagnet-Maschine nicht überschreitet.
 
4. Vorrichtung (200) zum Online-Schätzen einer anfänglichen Position einer elektrischen Oberflächenpermanentmagnet-Maschine in einem stationären Zustand oder bei einer ersten Geschwindigkeit, wobei die Vorrichtung (200) Folgendes umfasst:

eine Spannungseinspeisungseinheit (210), die dazu gestaltet ist, ein pulsierendes Hochfrequenz-Spannungssignal einzuspeisen,

eine Stromerfassungseinheit (220), die dazu gestaltet ist, ein d-Achsen-Hochfrequenz-Stromsignal in Reaktion auf das pulsierende Hochfrequenz-Spannungssignal zu erfassen, und

eine Analyseeinheit (230), die dazu gestaltet ist, eine zweite Harmonische des d-Achsen-Hochfrequenz-Stromsignals zu analysieren, um eine anfängliche Position der elektrischen Oberflächenpermanentmagnet-Maschine zu schätzen, wobei die anfängliche Position eine Rotor-Schenkelpolposition und eine Rotorpositionspolarität umfasst, wobei die Analyseeinheit (230) ferner Folgendes umfasst:

eine Koordinatensystem-Umwandlungseinheit (232), die dazu gestaltet ist, das d-Achsen-Hochfrequenz-Stromsignal in ein d-q-Koordinatensystem umzuwandeln, um eine erste Komponente (iq) und eine zweite Komponente (id) zu erhalten, und

eine zweite Verarbeitungseinheit (236), die ein zweites Bandpassfilter, eine Cosinus-Verarbeitungseinheit, ein zweites Tiefpassfilter und eine Polaritätsbestimmungseinheit umfasst und dazu gestaltet ist, die zweite Komponente (id) einer Bandpassfilterung, Cosinus-Verarbeitung, Tiefpassfilterung und Polaritätsbestimmung zu unterziehen, um eine Rotorpositionspolarität der elektrischen Oberflächenpermanentmagnet-Maschine zu erhalten, gekennzeichnet durch

eine erste Verarbeitungseinheit (234), die ein erstes Bandpassfilter, eine Sinus-Verarbeitungseinheit, ein erstes Tiefpassfilter und einen Luenberger-Beobachter oder einen Phasenregelkreis umfasst und dazu gestaltet ist, die erste Komponente (iq) einer Bandpassfilterung, Sinus-Verarbeitung, Tiefpassfilterung und Beobachtung unter Verwendung des Luenberger-Beobachters oder des Phasenregelkreises zu unterziehen, um eine Rotor-Schenkelpolposition der elektrischen Oberflächenpermanentmagnet-Maschine zu erhalten.


 
5. Vorrichtung (200) nach Anspruch 4, wobei die Spannungseinspeisungseinheit ferner dazu gestaltet ist, das Hochfrequenz-Spannungssignal einem Phasenausgleich zu unterziehen, um eine Statorimpedanz und eine Pulsweitenmodulationsverzögerung auszugleichen.
 
6. Vorrichtung (200) nach Anspruch 4 oder 5, wobei die erste Geschwindigkeit 10 % einer Nenndrehzahl der elektrischen Oberflächenpermanentmagnet-Maschine nicht überschreitet.
 
7. Vorrichtung nach Anspruch 4, wobei das zweite Tiefpassfilter ein selbstadaptives Filter mit Null-Verzögerung ist.
 


Revendications

1. Procédé (100) pour l'estimation en ligne d'une position initiale d'une machine électrique à aimant permanent de surface dans un état stationnaire ou à une première vitesse, le procédé (100) comprenant les étapes consistant à :

injecter (110) un signal de tension pulsatoire haute fréquence ;

acquérir (120) un signal de courant haute fréquence d'axe d en réponse au signal de tension pulsatoire haute fréquence ; et

estimer (130) une position initiale de la machine électrique à aimant permanent de surface d'après une deuxième harmonique du signal de courant haute fréquence d'axe d, la position initiale comprenant une position de pôle saillant de rotor et une polarité de position de rotor, et l'étape d'estimation (130) d'une position initiale de la machine électrique à aimant permanent de surface d'après une deuxième harmonique du signal de courant haute fréquence d'axe d comprenant également les étapes consistant à :

convertir le signal de courant haute fréquence d'axe d vers un système de coordonnées d-q afin d'obtenir une première composante (iq) et une deuxième composante (id) ; et

soumettre la deuxième composante (id) à un filtrage passe-bande, un traitement de fonction cosinus, un filtrage passe-bas et une détermination de polarité afin d'obtenir une polarité de position de rotor de la machine électrique à aimant permanent de surface, caractérisé par l'étape consistant à

soumettre la première composante (iq) à un filtrage passe-bande, un traitement de fonction sinus, un filtrage passe-bas et une observation à l'aide d'un observateur de Luenberger (LO) ou d'un circuit de boucle à phase asservie, afin d'obtenir une position de pôle saillant de rotor de la machine électrique à aimant permanent de surface.


 
2. Procédé selon la revendication 1, dans lequel le signal de tension pulsatoire haute fréquence est soumis à une compensation de phase, afin de compenser l'impédance de stator et le retard de modulation de largeur d'impulsion.
 
3. Procédé selon la revendication 1 ou 2, dans lequel la première vitesse ne dépasse pas 10 % d'une vitesse de rotation assignée de la machine électrique à aimant permanent de surface.
 
4. Appareil (200) pour l'estimation en ligne d'une position initiale d'une machine électrique à aimant permanent de surface dans un état stationnaire ou à une première vitesse, l'appareil (200) comprenant :

une unité d'injection de tension (210), configurée pour injecter un signal de tension pulsatoire haute fréquence ;

une unité d'acquisition de courant (220), configurée pour acquérir un signal de courant haute fréquence d'axe d en réponse au signal de tension pulsatoire haute fréquence ; et

une unité d'analyse (230), configurée pour analyser une deuxième harmonique du signal de courant haute fréquence d'axe d, afin d'estimer une position initiale de la machine électrique à aimant permanent de surface, la position initiale comprenant une position de pôle saillant de rotor et une polarité de position de rotor, l'unité d'analyse (230) comprenant également :

une unité de conversion de système de coordonnées (232), configurée pour convertir le signal de courant haute fréquence d'axe d vers un système de coordonnées d-q afin d'obtenir une première composante (iq) et une deuxième composante (id) ; et

une deuxième unité de traitement (236), comprenant un deuxième filtre passe-bande, une unité de traitement de fonction cosinus, un deuxième filtre passe-bas et un circuit de détermination de polarité, et étant configurée pour soumettre la deuxième composante (id) à un filtrage passe-bande, un traitement de fonction cosinus, un filtrage passe-bas et une détermination de polarité afin d'obtenir une polarité de position de rotor de la machine électrique à aimant permanent de surface, caractérisé par

une première unité de traitement (234), comprenant un premier filtre passe-bande, une unité de traitement de fonction sinus, un premier filtre passe-bas et un observateur de Luenberger ou un circuit de boucle à phase asservie, et étant configurée pour soumettre la première composante (iq) à un filtrage passe-bande, un traitement de fonction sinus, un filtrage passe-bas, et une observation à l'aide de l'observateur de Luenberger ou d'un circuit de boucle à phase asservie, afin d'obtenir une position de pôle saillant de rotor de la machine électrique à aimant permanent de surface.


 
5. Appareil (200) selon la revendication 4, dans lequel l'unité d'injection de tension est également configurée pour soumettre le signal de tension pulsatoire haute fréquence à une compensation de phase, afin de compenser l'impédance de stator et le retard de modulation de largeur d'impulsion.
 
6. Appareil (200) selon la revendication 4 ou 5, dans lequel la première vitesse ne dépasse pas 10 % d'une vitesse de rotation assignée de la machine électrique à aimant permanent de surface.
 
7. Appareil selon la revendication 4, dans lequel le deuxième filtre passe-bas est un filtre auto-adaptatif à retard nul.
 




Drawing











Cited references

REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Non-patent literature cited in the description