(19)
(11)EP 3 397 799 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
22.07.2020 Bulletin 2020/30

(21)Application number: 16822256.0

(22)Date of filing:  23.12.2016
(51)International Patent Classification (IPC): 
D02G 3/44(2006.01)
G06K 19/02(2006.01)
(86)International application number:
PCT/GB2016/054061
(87)International publication number:
WO 2017/115083 (06.07.2017 Gazette  2017/27)

(54)

ELECTRONIC STRIP YARN

ELEKTRONISCHES STREIFENGARN

FIL DE BANDE ÉLECTRONIQUE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 30.12.2015 GB 201523093

(43)Date of publication of application:
07.11.2018 Bulletin 2018/45

(73)Proprietor: Nottingham Trent University
Nottingham NG1 4FQ (GB)

(72)Inventor:
  • DIAS, Tilak Kithsiri
    Nottingham NG11 7GE (GB)

(74)Representative: Potter Clarkson 
The Belgrave Centre Talbot Street
Nottingham NG1 5GG
Nottingham NG1 5GG (GB)


(56)References cited: : 
WO-A1-2011/001323
US-A- 6 140 146
US-A1- 2004 188 531
GB-A- 2 472 026
US-A1- 2004 009 729
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description


    [0001] This invention relates to the manufacture of yarns incorporating electronic devices. It has particular application to such yarns in which the devices and electrical connections thereto are protected. A preferred use of the yarns is incorporation into fabric products for example, although other uses are contemplated.

    [0002] International Patent publication Nos. WO2006/123133 and WO2011/010093 disclose multifilament yarns including operative devices confined between the yarn filaments, and a method for its manufacture. The filaments of the yarns disclosed may be textile fibres such as polyester, polyethylene, polypropylene or polyamide. One or more of the yarn filaments could be electrically conductive and coupled to a confined device to form an electrical connection thereto. These filaments can be fine metal filament wires or in the form of a polymeric monofilament yarn plated with a thin film of either copper, nickel, gold or silver. The device or devices may take any of various forms, such as a silicone chip, a ferro-magnetic polymeric chip or a phase change chip.

    [0003] Reference is also directed to Japanese Patent specification No. 2013189718A and US Patent publication No. 2013/092742. Both describe yarns carrying electronic devices within a protective outer layer or sheath. Yarns of the above International Publication are effective and can be used in fabric products. However, where the device has an electrical connection the connection will be exposed on the yarn surface and thereby compromised by contact with other yarns or elements, or by external conditions. The Japanese and US references go some way towards addressing this issue, but do not provide a resolution.

    [0004] US Patent publication No. 2004/009729 discloses a woven article comprising a plurality of electrically insulating and/or electrically conductive yarn in the warp and a plurality of electrically insulating and/or electrically conductive yarn in the weft interwoven with the yarn in the warp. A functional yarn in the warp and/or the weft comprises an elongate substrate including at least one electrical conductor and at least one electronic device thereon, wherein the at least one electrical conductor provides directly and/or indirectly an electrical contact for connecting to the electronic device.

    [0005] US Patent publication No. 2004/188531 discloses a Radio Frequency Identification (RFID) tag. The RFID tag comprises a flexible substrate and an integrated circuit embedded within the flexible substrate. The top surface of the integrated circuit is coplanar with the flexible substrate. At least one conductive element is formed on the flexible substrate. The conductive element is electrically connected to the integrated circuit. The conductive element serves as an antenna for the RFID tag.

    [0006] US Patent publication No. 6140146 discloses processes and an apparatus for manufacturing radio frequency transponders having substrates formed from a flexible tape or film. The RF transponders are formed on the tape so that their longest dimension (e.g., their length ("L")) is oriented parallel to the length of the tape. This layout places few or no constraints in the transponder's length allowing the length of the transponder's antenna circuit to be adjusted to satisfy the requirements of various applications.

    [0007] International Patent publication No. WO2011/001323 discloses a fiber suitable for incorporation into a woven, knitted, braided or crocheted fabric or a fiberglass laminate structure. The fiber comprising an elongate substrate arrangement having a length direction parallel to the axis of the fiber, the elongate substrate arrangement including a substrate formed of a plastics material and thin film electronic elements arranged over the substrate. The fiber also comprises a cladding layer formed of a plastics material and encapsulating the substrate arrangement. The substrate and the electronic elements are surrounded by the cladding layer along at least a portion of the length of the substrate arrangement, the cladding layer defining a rounded outer cross sectional shape. The substrate may be twisted about the fiber axis, in which case the fiber cross-section may be round. The cladding layer may be electrically conductive in discrete regions corresponding to positions of contact pads along the length of the substrate arrangement.

    [0008] In our International Patent Application published under No. WO2016/038342 (hereinafter referred to as "our International Application"), we disclose an electronically functional yarn comprising a plurality of carrier fibres forming a core; a series of electronic devices mounted on the core with conductive interconnects extending along the core; a plurality of packing fibres around the core, the devices and the interconnects; and a retaining sleeve around the packing fibres, wherein the core, the devices and the interconnects are confined within the plurality of packing fibres retained in the sleeve. The interconnects can comprise at least one conductor that extends the length of the yarn. By mounting the devices and interconnects on carrier fibres they are more easily retained in the body of the yarn and within the packing fibres.

    [0009] The present invention is also directed at the use of carriers bearing mounted electronic devices for use as a yarn or in yarns of the kind described in the Patent publications referred to above.

    [0010] Particularly it is directed at the manufacture of such yarns or filament fibres. According to the present invention electronic devices are mounted in sequence or series along a plurality of laterally spaced discrete lines on a sheet of non-conductive flexible planar support material; and the sheet is slit or stripped between said lines to create at least two yarns or filament fibres each in the form of a strip bearing a series of said devices. The width of each strip can be substantially the same as that of the mounted device or devices; less than twice that of the device or devices. Thus, with the thickness of the support material being normally no more than 10µm, and with the width of the devices typically being no more than 800µm, a strip bearing the devices can thus be used as a yarn or strip for use in many applications, both functional and decorative, either alone or within a sleeve.

    [0011] The support material can be provided in the form of a continuous length which is drawn through a mounting station where the series of electronic devices are installed in discrete lines substantially parallel to the direction of passage of the material. The drawn material can then be rewound onto a roll for subsequent slitting or stripping, or passed directly to a cutting device in which it is divided into the strips. Lines of weakness may be formed between the lines of devices to facilitate subsequent slitting or stripping if the material is not to be slit or stripped directly after the electronic devices have been mounted. The support material will normally itself be drawn as a tape from a roll, but might be delivered from another source; for example, directly from its own manufacture.

    [0012] Yarns or filament fibres in the form of strips made according to the invention can be supplemented with means such as buttons; buttonholes; hooks or eyes, for attaching it to another surface or body. Where there are a plurality of devices on the length of material, they will normally be mounted on the same side. This arrangement means that the opposite side can for example, bear an adhesive enabling the strip to be readily attached to another surface. In some embodiments, the planar material may be coated with a conductive material on its face opposite the face upon which the devices are mounted. Such a layer may itself be in the form of a separate sheet, strip or multiple strips. However, devices may of course be mounted on both sides of the material, and this can facilitate the mounting process when different forms of device are being used.

    [0013] The planar support material used in the invention is thin (typically 2.0 - 7.0 µm thick), and preferred materials are polymer sheet or tape, typically polyester. Other options are polyamides, polyethylene, polyetheretherketone (PEEK), poly-oxydiphenylene-pyromellitimide (Kapton), polybenzimidazole or aramid based materials. The material should have a high melting point, typically above 350°C, and have a high level of thermal and chemical stability. The reason for this is to ensure it can withstand the heat generated when interconnects are coupled to the electronic devices.

    [0014] The strips with electronic devices mounted thereon made according to the invention can be used alone, or as the basis for a yarn or filament fibre in which the strip (bearing the devices) is enclosed in a sleeve. Such a yarn or fibre may be incorporated in a fabric. In one example, the strip may form the core in a yarn of the kind described in our International Application. According to the invention as claimed the packing fibres can be untwisted; i.e. extend generally parallel to the yarn axis, but may be selectively bunched or twisted to fill spaces between the devices. A separate filler material may also be used for this purpose. These options can serve to preserve a substantially uniform cross-section along the length of the yarn and between the devices. The packing fibres, and a filler material if used, may be selected to either encourage or discourage the absorption of moisture by the composite yarn.

    [0015] The electronic devices incorporated in yarns embodying the invention can take many forms, including operative devices such as a silicon chip signaling devices; light, sound or symbol generators; micro-controllers and energy harvesting devices. Particularly suitable for use in yarns of the present invention are ultra thin electronic dice. The present invention is also suitable for radio frequency identification devices (RFIDs) with antennas extending along the length of material on both sides of the RFID chip. Such antennas, or interconnects coupled to the devices can be mounted on the material before the devices, such as by digital printing, and the devices then mounted thereover.

    [0016] The invention will now be described by way of example and with reference to the accompanying schematic drawings wherein:

    Figure 1 is an enlarged plan view of a strip of planar material bearing electronic devices forming a yarn or filament fibre made according to the invention;

    Figure 2, also not to scale, is a plan view of a sheet of material bearing electronic devices according to the invention;

    Figure 3 illustrates a procedure for mounting electronic devices and conductive interconnects on a planar material in accordance with the invention;

    Figure 4 illustrates a procedure for incorporating a strip in a composite yarn of the kind described in our International Application;

    Figure 5 shows a planar support material drawn from a roll through a mounting and cutting station in a method according to the invention; and

    Figure 6 shows a variation of the method shown in Figure 5 in which the support material bearing the devices is rewound on a second roll.



    [0017] The length of non-conductive planar material shown in Figure 1 takes the form of an endless strip or tape 2 which is typically of polyester but other materials can be used as noted herein. Mounted on the strip are electronic devices 4, each with conductive interconnects 6 extending therefrom in either direction along the strip 2. The devices are secured to the material by adhesive, and as is described below, the interconnects 6 are attached to the devices 4 between the devices and the material, and extend along the surface of the material. They will also normally be adhered to the material. The width of the strip will normally be as close as possible to that of the widest of the devices on the strip having regard to the eventual use of the strip, and is no more than twice that of the widest device. For example, if the width of the widest device is 400µm, the width of the tape or strip will be no more than 800µm. The overall thickness of the strip where the device is mounted is preferably no greater than its width; in other words no greater than 800µm. The strip can be used as a yarn or filament fibre alone or in fabrics for functional or decorative purposes.

    [0018] Figure 2 illustrates how a plurality of strips of the kind shown in Figure 1 can be created on a sheet of non-conductive planar material. A plurality of electronic devices are mounted on the sheet, arranged in lines 10. The devices need not be all the same; some (8) may have interconnects 12 attached; others may not, and the devices may be differently spaced along their respective lines. The sheet may also be formed with lines 14 of weakness to facilitate division of the sheet into strips of the kind shown in Figure 1. Multiple strips can therefore be manufactured in a single process, and cut, stripped or torn therefrom for use as required. It will be understood that the sheet may itself be part of an endless length of material passing through a mounting station which is then cut to define the desired length of the strips, and divided or slit to create the strips themselves.

    [0019] If desired, a strip of the kind described above can be supplemented with means for attaching it to another body or surface as part of the manufacturing or assembly process. Possibly most simply, when devices are mounted on one side of the planar material, a layer of adhesive can be applied to the other. The strip with the devices uppermost can then be easily secured on a surface for identification or ornamental purposes. Other forms of attachment, such as buttons; buttonholes; hooks, and eyes, can also be fitted to match complementary forms on the other body or surface. Such supplementation can be accomplished on separated strips or on a sheet or continuous length of the planar material before or after the devices are mounted thereon.

    [0020] Figure 3 illustrates how each electronic device 4 with attached interconnects 6 may be mounted on the sheet in Figure 2. The interconnects 6 are attached to each device 4 by solder pads 16, and a button 18 of adhesive is applied to each device between the solder pads 16. The device and interconnects are laid on the strip or sheet, and the adhesive either cured or allowed to cure to secure the position of the respective device. Adhesive will normally also be used to hold the interconnects in place. In a different procedure, the interconnects 6 can first be mounted on the strip or sheet, for example by digital printing and the devices 4 then located and held in place with sufficient heat and pressure to both cure the adhesive 18 and melt the solder 16 to complete the mount and the connection between the interconnects and the respective devices. This procedure does though, require the material of the strip or sheet to tolerate the applied heat and pressure. Polyester fulfils the requirements in this respect. Other suitable materials are polybenzimidazole or aramid based such as PBI, Vectran, Kapton or Nomex. After mounting, each device 4, with its adjacent length of strip 2 and proximal ends of the interconnects 6, can be enclosed in a polymeric micro-pod 20 which then becomes part of the device defining its dimensions.

    [0021] Figure 4 illustrates a technique, similar to that described in our International Application, for enclosing a strip of the kind described above bearing electronic devices in a sleeve with packing fibres. A strip 22 carrying the devices 24; in their micro-pods and with their interconnects if used, is fed centrally around a first guide roller 26 to a central opening in a disc 28. Sleeve fibres 30 and packing fibres 32 are fed from respective second and third guide rollers 34 to alternate openings 36 and 38 around the periphery of the disc 28. From the disc 28 the packing fibres 32 are fed to a central duct 40 which also receives the strip 22 carrying the devices. The sleeve fibres 30 pass through a stationary yarn guide tube 42, and then though a rotatable cylindrical yarn guide 44 to a needle cylinder 46 where the fibres are interlooped to form the sleeve. The completed composite yarn is drawn from the needle cylinder 46 at a rate commensurate with the knitting process. Suitable materials for the packing fibres are polyester, polyamide, polybenzimidazole or aramid based such as PBI, Vectran or Nomex. The material of the sleeve fibres is normally textile based, and selected on the basis of the eventual intended use of the composite yarn.

    [0022] The drawings show the mounted electronic devices quite closely spaced in their respective series or sequences on the support material. It will though, be appreciated that this spacing can of course be selected according to the intended ultimate use of the resulting strip or yarn. If the yarn is to be used in a fabric the distances between devices along the yarn can be quite large, and selected to locate respective devices in the fabric.

    [0023] As noted above, devices that might be used in the practice of the invention typically have a width up to 800µm, normally at least 100µm. Some chips have a width of around 400µm, but smaller dimensions are possible. Normally, the devices will be arranged in straight lines to facilitate slitting or otherwise dividing the sheet into strips, but it will be appreciated that shaped lines can easily be created and cut. One product of the process is a sheet bearing the arranged lines of devices as shown in Figure 2. However the process can be adapted to mount devices on a continuous sheet or tape which can be cut and slit as required to produce multiple strips of whatever length is needed. Individual sheets can be manufactured in this way, but devices may be mounted on a continuous length of material; for example taken from a roll, and sections cut or stripped therefrom of whatever length is required for a particular purpose. This technique can be used to create individual strips, or multiple adjacent strips. Methods according to the invention for accomplishing this are illustrated in Figures 5 and 6.

    [0024] Figure 5 shows how the mounting of the electronic devices and interconnects can be mounted on planar support material 50 drawn from a roll 52. The material is drawn through a station 54 where the devices and interconnects are mounted in the manner described above with reference to Figure 3. The material proceeds directly to a curing station 56, and then to a cutting device 58 where the material is slit into a plurality of strips 60, each bearing a series of electronic devices as described above. The station 54 can be operated to mount selected devices spaced along the respective lines according to the intended use of the resulting respective strips. In some circumstances this spacing can be substantial. It will be appreciated that the mounting and curing stations, and the cutting device can be computer driven, and thereby programmed to create yarns with the required devices and spacing in an efficient manufacturing process.

    [0025] The cutting device may be replaced by a scoring device creating lines of weakness which results in the material leaving in the form of a tape which can be readily torn into strips. Each strip can then itself be used as a yarn or filament fibre for use in fabrics for example, in which the electronic devices can function, or lengths thereof can be used as attachments to products for identification or other purposes. They can also be used in the formation of a composite yarn of the kind described above with reference to Figure 4. Figure 6 shows a mounting procedure similar to that of Figure 5, but with a scoring device 62 in place of the cutting device 58. The scored material bearing the devices and interconnects is rewound onto a second roll 64 for storage and subsequent use. The scores create lines of weakness which enables individual strips to be torn from the material as required. The scoring device may of course be omitted in which case the material must be slit in a separate operation when required into strips for use as described above. In another option, strips slit or torn from the material can be separately wound onto individual rolls for their own storage and subsequent use.


    Claims

    1. A method of manufacturing an electronically functional composite yarn incorporating electronic devices (4, 24) comprising mounting said devices in series along a plurality of laterally spaced discrete lines (10) on a sheet of non-conductive flexible planar support material (50); and stripping the sheet between said lines to create at least two strips (2, 22) each bearing a series of said devices, the width of the strip being no more than twice that of the widest of the devices;
    characterised in that a said strip (2, 22) bearing the devices (4, 24) is fed centrally through a channel with packing fibres (32) around the sides thereof to form a fibre assembly around the strip, which packing fibres extend generally parallel to the yarn axis or are bunched or twisted to fill spaces between the devices to preserve a substantially uniform cross-section along the length of the yarn and between the devices; and the fibre assembly with the strip is fed into a sleeve forming unit in which a sleeve (30) is formed around the assembly to form a composite yarn; and withdrawing the composite yarn from the sleeve forming unit.
     
    2. A method according to Claim 1 wherein the sheet of support material (50) is in the form of a continuous length, preferably drawn from a roll (52), passing through a mounting station (54), and on which series of the electronic devices (4, 24) are mounted in said lines substantially parallel to the direction of passage of the material.
     
    3. A method according to Claim 2 wherein the electronic devices (4, 24) are mounted on the support material (50) prior to its formation into a roll (64).
     
    4. A method according to any preceding Claim wherein the devices include conductive interconnects (6) connected thereto and oriented to extend along each strip (2, 22) in opposite directions from each device (4, 24).
     
    5. A method according to any of Claim 4 wherein the conductive interconnects are antennas.
     
    6. A method according to Claim 4 or Claim 5 wherein the interconnects (6) are mounted on the surface of the planar support material (50) prior to mounting of the devices (4, 24) thereover.
     
    7. A method according to Claim 6 wherein the interconnects (6) are printed on the surface of the planar support material (50).
     
    8. A method according to any of Claims 4 to 7 wherein the connection of the interconnects (6) to each device (4, 24) is between the device and the planar support material (50).
     
    9. An electronically functional composite yarn comprising a strip (2, 22) of electronically non-conductive flexible planar support material (50) with a plurality of electronic devices (4, 24) mounted thereon, wherein the width of the strip is no more than twice the width of the widest of the devices, which strip bearing the devices is a strip from a length of said material bearing sequences of said electronic devices in spaced lines thereon;
    characterised in that a plurality of packing fibres (32) are disposed around the strip and devices, which packing fibres extend generally parallel to the yarn axis, or are bunched or twisted to fill spaces between the devices to preserve a substantially uniform cross-section along the length of the yarn and between the devices; and a retaining sleeve (30) around the packing fibres, wherein the strip (2, 22) is confined within the plurality of packing fibres (32) retained in the sleeve.
     
    10. A yarn according to Claim 9 wherein conductive interconnects (6) extend along the strip in opposite directions from each device (4, 24).
     
    11. A yarn according to Claim 10 wherein the interconnects (6) comprise antennas.
     
    12. A yarn according to any of Claims 9 to 11 wherein each device (4, 24) is enclosed in a protective polymeric micro pod (20).
     


    Ansprüche

    1. Verfahren zur Herstellung eines elektronisch funktionellen Verbundgarns mit elektronischen Komponenten (4, 24), umfassend Montieren der Komponenten in Reihe entlang mehrerer seitlich beabstandeter diskreter Linien (10) auf einer Bahn aus nichtleitendem, flexiblem, ebenem Trägermaterial (50); und

    Abstreifen der Bahn zwischen den Linien, um mindestens zwei Streifen (2, 22) zu erzeugen, die jeweils eine Reihe der Komponenten tragen, wobei die Breite des Streifens nicht mehr als das Doppelte der Breite der breitesten der Komponenten beträgt;

    dadurch gekennzeichnet, dass ein die Komponenten (4, 24) tragender Streifen (2, 22) zentral durch einen Kanal mit Packungsfasern (32) um seine Seiten herum geführt wird, um eine Faseranordnung um den Streifen herum zu bilden, wobei sich die Packungsfasern im Allgemeinen parallel zur Garnachse erstrecken oder gebündelt oder verdreht sind, um Räume zwischen den Komponenten zu füllen, um einen im Wesentlichen gleichmäßigen Querschnitt entlang der Länge des Garns und zwischen den Komponenten zu erhalten; und

    wobei die Faseranordnung mit dem Streifen in eine Hülsenbildungseinheit eingeführt wird, in der eine Hülse (30) um die Anordnung herum gebildet ist, um ein Verbundgarn zu bilden; und

    Herausziehen des Verbundgarns aus der Hülsenbildungseinheit.


     
    2. Verfahren nach Anspruch 1, wobei die Bahn aus Trägermaterial (50) in Form einer kontinuierlichen Länge vorliegt, die vorzugsweise von einer Rolle (52) abgezogen wird und eine Montagestation (54) durchläuft, und auf die eine Reihe von elektronischen Komponenten (4, 24) in den Linien im Wesentlichen parallel zur Durchlaufrichtung des Materials montiert werden.
     
    3. Verfahren nach Anspruch 2, wobei die elektronischen Komponenten (4, 24) auf dem Trägermaterial (50) montiert werden, bevor es zu einer Rolle (64) geformt wird.
     
    4. Verfahren nach einem der vorhergehenden Ansprüche, wobei die Komponenten leitende Zwischenverbindungen (6) aufweisen, die damit verbunden sind und so ausgerichtet sind, dass sie sich entlang jedes Streifens (2, 22) in entgegengesetzten Richtungen von jeder Komponente (4, 24) aus erstrecken.
     
    5. Verfahren nach einem der Ansprüche 4, wobei die leitenden Zwischenverbindungen
     
    6. Verfahren nach Anspruch 4 oder Anspruch 5, wobei die Zwischenverbindungen (6) auf der Oberfläche des ebenen Trägermaterials (50) montiert werden, bevor die Komponenten (4, 24) darüber montiert werden.
     
    7. Verfahren nach Anspruch 6, wobei die Zwischenverbindungen (6) auf die Oberfläche des ebenen Trägermaterials (50) gedruckt werden.
     
    8. Verfahren nach einem der Ansprüche 4 bis 7, wobei die Verbindung der Zwischenverbindungen (6) zu jeder Komponente (4, 24) zwischen der Komponente und dem ebenen Trägermaterial (50) erfolgt.
     
    9. Elektronisch funktionelles Verbundgarn, umfassend einen Streifen (2, 22) aus elektronisch nichtleitendem, flexiblem, ebenem Trägermaterial (50) mit mehreren darauf montierten elektronischen Komponenten (4, 24), wobei die Breite des Streifens nicht mehr als das Doppelte der Breite der breitesten der Komponenten beträgt, wobei der die Komponenten tragende Streifen ein Streifen aus einer Länge des Materials ist, der Sequenzen der elektronischen Komponenten in beabstandeten Linien darauf trägt;

    dadurch gekennzeichnet, dass mehrere Packungsfasern (32) um den Streifen und die Komponenten herum angeordnet sind, wobei sich die Packungsfasern im Allgemeinen parallel zur Garnachse erstrecken oder gebündelt oder verdreht sind, um Räume zwischen den Komponenten zu füllen, um einen im Wesentlichen gleichmäßigen Querschnitt entlang der Länge des Garns und zwischen den Komponenten zu erhalten; und

    eine Haltehülse (30) um die Packungsfasern herum, wobei der Streifen (2, 22) innerhalb der mehreren in der Hülse gehaltenen Packungsfasern (32) gehalten wird.


     
    10. Garn nach Anspruch 9, wobei sich leitende Zwischenverbindungen (6) entlang des Streifens in entgegengesetzten Richtungen von jeder Komponente (4, 24) aus erstrecken.
     
    11. Garn nach Anspruch 10, wobei die Zwischenverbindungen (6) Antennen umfassen.
     
    12. Garn nach einem der Ansprüche 9 bis 11, wobei jede Komponente (4, 24) in einer schützenden polymeren Mikrohülse (20) eingeschlossen ist.
     


    Revendications

    1. Procédé de fabrication d'un fil composite à fonctionnalité électronique incorporant des dispositifs électroniques (4, 24) consistant à monter lesdits dispositifs en série le long d'une pluralité de lignes discrètes espacées latéralement (10) sur une feuille de matériau de support plat souple non conducteur (50) ; et à

    dénuder la feuille entre lesdites lignes pour créer au moins deux bandes (2, 22) portant chacune une série desdits dispositifs, la largeur de la bande ne dépassant pas le double de celle du plus large des dispositifs ;

    caractérisé en ce que ladite bande (2, 22) portant les dispositifs (4, 24) est alimentée au centre à travers un canal par des fibres d'emballage (32) autour de ses côtés pour former un ensemble de fibres autour de la bande, lesquelles fibres d'emballage s'étendent généralement de façon parallèle à l'axe du fil ou sont regroupées ou torsadées pour remplir les espaces entre les dispositifs afin de conserver une section transversale sensiblement uniforme le long de la longueur du fil et entre les dispositifs ; et

    l'ensemble de fibres comportant la bande est introduit dans une unité de formation de manchon dans laquelle un manchon (30) est formé autour de l'ensemble pour former un fil composite ; et à

    retirer le fil composite de l'unité de formation de manchon.


     
    2. Procédé selon la revendication 1, dans lequel la feuille de matériau de support (50) est sous la forme d'une longueur continue, de préférence tirée d'un rouleau (52), traversant une station de montage (54), et sur laquelle série des dispositifs électroniques (4, 24) sont montés dans lesdites lignes sensiblement parallèles à la direction de passage du matériau.
     
    3. Procédé selon la revendication 2, dans lequel les dispositifs électroniques (4, 24) sont montés sur le matériau de support (50) avant sa formation en un rouleau (64).
     
    4. Procédé selon l'une quelconque des revendications précédentes, dans lequel les dispositifs comprennent des interconnexions conductrices (6) connectées à ceux-ci et orientées pour s'étendre le long de chaque bande (2, 22) dans des directions opposées à chaque dispositif (4, 24).
     
    5. Procédé selon l'une quelconque des revendications 4, dans lequel les interconnexions conductrices sont des antennes.
     
    6. Procédé selon la revendication 4 ou la revendication 5, dans lequel les interconnexions (6) sont montées sur la surface du matériau de support plat (50) avant le montage des dispositifs (4, 24) sur celles-ci.
     
    7. Procédé selon la revendication 6, dans lequel les interconnexions (6) sont imprimées sur la surface du matériau de support plat (50).
     
    8. Procédé selon l'une quelconque des revendications 4 à 7, dans lequel la connexion des interconnexions (6) à chaque dispositif (4, 24) se fait entre le dispositif et le matériau de support plat (50).
     
    9. Fil composite à fonctionnalité électronique comprenant une bande (2, 22) de matériau de support plat souple électronique non conducteur (50) comportant une pluralité de dispositifs électroniques (4, 24) montés sur celle-ci, dans lequel la largeur de la bande ne dépasse pas deux fois la largeur du plus large des dispositifs, laquelle bande portant les dispositifs est une bande d'une longueur dudit matériau portant des séquences desdits dispositifs électroniques en lignes espacées sur celui-ci ;

    caractérisé en ce que plusieurs fibres d'emballage (32) sont disposées autour de la bande et des dispositifs, lesquelles fibres d'emballage s'étendent généralement de façon parallèle à l'axe de fil, ou sont regroupées ou torsadées pour remplir les espaces entre les dispositifs afin de conserver une section transversale sensiblement uniforme le long de la longueur du fil et entre les dispositifs ; et

    un manchon de retenue (30) autour des fibres d'emballage, dans lequel la bande (2, 22) est confinée à l'intérieur de la pluralité de fibres d'emballage (32) retenues dans le manchon.


     
    10. Fil selon la revendication 9, dans lequel des interconnexions conductrices (6) s'étendent le long de la bande dans des directions opposées à partir de chaque dispositif (4, 24).
     
    11. Fil selon la revendication 10, dans lequel les interconnexions (6) comprennent des antennes.
     
    12. Fil selon l'une quelconque des revendications 9 à 11, dans lequel chaque dispositif (4, 24) est enfermé dans une micropousse polymère de protection (20).
     




    Drawing














    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description