(19)
(11)EP 3 399 847 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
20.05.2020 Bulletin 2020/21

(21)Application number: 18158367.5

(22)Date of filing:  23.02.2018
(51)International Patent Classification (IPC): 
B23K 35/30(2006.01)
H05H 1/34(2006.01)
B23K 35/02(2006.01)
B23K 35/22(2006.01)
B23K 35/40(2006.01)

(54)

BRAZED ELECTRODE FOR PLASMA CUTTING TORCH

HARTGELÖTETE ELEKTRODE FÜR PLASMASCHNEIDBRENNER

ÉLECTRODE BRASÉ POUR TORCHE PLASMA


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 24.02.2017 US 201715442424

(43)Date of publication of application:
07.11.2018 Bulletin 2018/45

(73)Proprietor: Lincoln Global, Inc.
Santa Fe Springs, CA 90670 (US)

(72)Inventors:
  • Namburu, Praveen Krishna
    Mount Pleasant, SC South Carolina 29466 (US)
  • Matthews, William Thomas
    Chesterland, OH Ohio 44026 (US)

(74)Representative: Grosse Schumacher Knauer von Hirschhausen 
Patent- und Rechtsanwälte Frühlingstrasse 43A
45133 Essen
45133 Essen (DE)


(56)References cited: : 
EP-A2- 1 369 000
US-A1- 2012 193 332
WO-A2-2014/014551
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    FIELD OF THE INVENTION



    [0001] The invention is related to a composite plasma cutting electrode according to claim 1 and to a method of manufacturing a composite electrode according to claim 6. Systems and methods of the present invention relate to plasma cutting, and more specifically to a brazed electrode for arc plasma cutting.

    TECHNICAL BACKGROUND



    [0002] The use of plasma cutting systems in various industries has grown, and as a result there is an increasing need to increase the durability and longevity of torches and their components. This is particularly true with regarding to some internal torch parts, such as the electrode. A composite electrode for a plasma arc torch is for example described in WO 02/074023 A2 or in WO 2014/014551 A2. An electrode head for plasma cutting is for example described in US 2012/0193332 A1. As is generally known, plasma cutting involves the use of high current plasma jet which generates a large amount of heat during cutting and can generate spatter during piercing or arc starting. This high heat and spatter adversely affects the operational life of components in the torch, which then require replacement - causing downtime. Accordingly, improvements are needed which reduce this downtime and increase the operational life of torch components.

    [0003] Further limitations and disadvantages of conventional, traditional, and proposed approaches will become apparent to one of skill in the art, through comparison of such approaches with embodiments of the present invention as set forth in the remainder of the present application with reference to the drawings.

    DESCRIPTION



    [0004] In order to improve plasma cutting a composite plasma cutting electrode according to claim 1 is described and a method of manufacturing a composite electrode according to claim 6. Preferred embodiments are subject of the subclaims. Embodiments of the present invention include a brazed electrode and methods of manufacturing a brazed electrode having a silver tip portion and copper body, where the silver is brazed to the copper body. The use of the silver improves the heat dissipation characteristics of the electrode and the brazing allows the composite electrode to be manufactured easily and have optimal heat dissipation characteristics.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0005] The above and/or other aspects of the invention will be more apparent by describing in detail exemplary embodiments of the invention with reference to the accompanying drawings, in which:

    FIG. 1 is a diagrammatical representation of an exemplary embodiment of a torch head assembly which can utilize an electrode described herein;

    FIG. 2A is a diagrammatical representation of an initial stage of the manufacture of an exemplary electrode described herein; of an exemplary nozzle of the present invention;

    FIG. 2B is a diagrammatical representation of an exemplary embodiment of a finished electrode as described herein;

    FIG. 3A is a diagrammatical representation of a cross-section of the initial stage electrode shown in Figure 2A;

    FIG. 3B is a diagrammatical representation of a cross-section of the finished electrode shown in Figure 2B; and

    FIG. 4 is a diagrammatical representation a cross-section of a complete exemplary electrode described herein.


    DETAILED DESCRIPTION



    [0006] Exemplary embodiments of the invention will now be described below by reference to the attached Figures. The described exemplary embodiments are intended to assist the understanding of the invention, and are not intended to limit the scope of the invention in any way. Like reference numerals refer to like elements throughout.

    [0007] It is noted that for purposes of the following discussion, the electrode embodiments discussed herein will be described as liquid cooled electrodes which can be used in mechanized plasma arc cutting systems. However, exemplary embodiments are not limited to being used in such arc cutting systems, and embodiments can be used in hand held cutting systems as well as air cooled systems. Thus, the following discussions are intended to be exemplary and informative. Further, discussions below will use terminology such as "distal" and "downstream". In the context of this application it is understood that these terms mean closer to the end of the torch from which the plasma is emitted. For example, the distal end of the torch is the end of the torch from which the plasma jet is emitted to perform cutting. Further, is something is "downstream" of another component, it is closer to the distal end of the torch. Similarly, the use of the term "upstream" will generally indicate that something is further away from the distal end of the torch.

    [0008] Because the manufacture, assembly and use of arc cutting torches is generally known to those of skill in the art, the details of their assembly and components thereof will not be set forth herein.

    [0009] Turning now to Figure 1, Figure 1 depicts a cross-section of an exemplary torch head 301 that can be used with embodiments of the present invention. As generally known, the torch head 301 has a shield cap 303, which is held in position by an outer retaining cap 307. Internal to the shield cap 303 is a nozzle 200 which is held into position with an inner retaining cap 409. Between the inner retaining cap 409 and the shield cap 303 is a shield gas swirler 407 which channels and imparts a flow on the shield gas being directed between the inner retainer cap 409 and the shield cap 303.
    Upstream of the nozzle 200 is an electrode 500 and cooling tube 401, both of which collectively are inserted into the cavity of the nozzle 200. The plasma arc is generated from the electrode 500 and the cooling tube 401 is used to direct a cooling fluid to the electrode 500 to keep it at an acceptable operating temperature. Between the electrode 500 and the nozzle 200 is a plasma gas swirl ring 405 which imparts a swirl flow on the plasma gas that aids in maintaining a stable arc during cutting and to cool the nozzle
    200. The plasma gas swirl ring 405 has a distal end surface 405' which seats on an inner seating surface 240 of the nozzle 200.

    [0010] Embodiments of the present invention are directed to the electrode 500, which will be described in more detail below.

    [0011] It is generally known that the use of silver in plasma cutting electrodes can increase their cutting life. However, due to the cost of silver, electrodes using silver tend to be considerably shorter in length than the copper electrodes. Because of this users of these electrodes have to carry two different torch head assemblies, so that they can accommodate the use of silver and copper electrodes. Embodiments of the present invention obviate the need to accommodate two different electrode lengths by utilizing a composite silver-copper electrode, which achieves the benefits of the use of silver without the costs and size accommodations that need to be made with silver electrodes.
    The use of composite electrodes is also known, however, these electrodes are manufactured with very complex manufacturing processes such as thermal bonding or frictional welding. These processes are expensive and difficult to manufacture properly. Embodiments of the present invention alleviate these issues.

    [0012] Turning now to Figure 2A, an exemplary electrode 500' is shown in an uncompleted state. That is, the electrode 500' is shown prior to brazing and final machining which is explained further below. In exemplary embodiments of the present invention, the electrode 500' is comprised of a copper body portion 503' and a silver distal end portion 501' (or tip portion) where the copper body portion has a cavity 507' that is open on the upstream end of the body portion 503' and is open on the distal end such that a surface of the silver portion 501' interfaces with the cavity 507' as shown. The body portion has a wall which defines the cavity portion. This allows additional cooling of the silver 501' during operation. The distal end of the copper 503' has a shoulder portion 513 such that the silver 501' is inserted into the shoulder portion. That is, the diameter of the shoulder portion 513 in the body 503' is larger than that of the cavity 507'. Also, the portion 501' has a cavity on its distal end face (which is its distal most surface) into which a hafnium insert 505' is to be inserted. Each of the shoulder 513 and the silver portion 501' are manufactured and configured such that the upstream most face/surface 510 of the silver portion 501' rests on/makes contact with the shoulder surface 511 as shown in Figure 2A. These components rest onto each other such that there is no gap between the surfaces 510/511 when the components are assembled. However, when assembled together a gap G exists between a shoulder portion 515 of the silver portion 501' and the shoulder portion 513 of the copper. (As seen the shoulder portion 515 has a surface which corresponds to the distal end surface of the body 503 and a surface that extends upstream from the surface to extend to the upstream most end 511 of the tip portion and corresponds to a similar surface on the shoulder portion 513 of the body portion 503.) This gap G extends along both the horizontal and vertical adjacent surfaces of the shoulder portions. This gap G exists to allow for proper brazing of the components. That is, as shown, extending from the upstream most surface 510 of the body 503 is a wall surface extending toward the distal end face of the body portion 503'/503.

    [0013] That is, during manufacture each of the copper and silver portions are assembled with each other as shown and described. The silver portion 501' is centered, as much as possible, relative to the copper portion 503' such that the gap G around the shoulder portions is generally even/symmetrical. It is not that in some embodiments the gap G distance for each of the horizontal and vertical faces can be the same. However, in other exemplary embodiments, the horizontal gap can be larger than or, in some embodiments, smaller than the vertical gap G. The gap geometries should be chosen
    to maximize structural integrity and brazing flow as discussed below. Further, as shown the silver portion 501' can be chamfered at the outer edge of the gap G to influence braze flow into the gap G.

    [0014] Prior to the insertion of the hafnium insert 505' into the sliver 501' the silver and copper components are brazed to each other. This can be done using a silver braze, having silver as a primary component, and appropriate flux to ensure proper braze flow into the gaps G. The brazing can be done via known methods, such as an induction heater for example. The brazing operation should be accomplished such that the entirety of the gap G is filled with braze but that the contact surface 510/511 remain in contact with each other.

    [0015] After the conclusion of the brazing operation, the hafnium insert 505' can be inserted into the cavity in the silver portion 501'. By insertion after brazing there is no risk of damaging or compromising the hafnium during the brazing operation. Once brazed and assembled the assembly 500 can be machined to its final dimensions as shown in Figure 2B. Specifically, the outer surface of the assembly 500 are machined to achieve the final outside dimensions and shape of the electrode 500. Further, the cavity 507 is also machined as shown to the final diameter of the cavity. In some exemplary embodiments a cavity extension portion 517 (shaped liked an annulus) can be formed so as to increase the exposed surface area of the silver portion 501 of the electrode 500. When the final dimensions are achieved the assembly 500 provides an electrode with the performance of a silver electrode, but at a much reduced costs and the dimensions of a copper electrode.

    [0016] Figure 3A is a close-up view of the assembly shown in Figure 2A. As shown the surfaces 510/511 are in contact with each other, while the gap G exists along both the vertical and horizontal portions, as shown in this Figure - in this embodiment the gap G along the horizontal portion is larger than the vertical gap. In some exemplary embodiments the average gap G on the horizontal surface is in the range of 25.4 to 152.4 µm (0.001 to 0.006 in.). Further, in exemplary embodiments the vertical gap is in the range of 50.8 to 88.9 µm (0.002 to 0.0035 in.). In any event, the gap dimensions should be selected to promote proper brazing of the components. It is noted that while the surfaces of the shoulder portions of each of the tip and the body are shown horizontal and vertical, and meeting at a right angle, embodiments are not limited to this and the corners can be angled.

    [0017] Figure 3B depicts a close up view of the finished electrode 500 shown in Figure 2B. As shown, the distal end of the finished electrode 500 has a maximum outer diameter D (which may not necessarily be the largest outer diameter of the electrode 500) and the copper portion has a wall thickness (adjacent to the cavity 507) of W. In exemplary embodiments, the wall thickness W is in the range of 10 to 40 % of the diameter D, and in other embodiments, the wall thickness W is in the range of 14 to 25% of the diameter D. Additionally, the silver portion 501 has an insertion portion 520 as shown that is the portion inserted in the copper portion 503 as shown. In some embodiments, the insertion portion 520 has a wall thickness SW that is less than the thickness W. In exemplary embodiments, the wall thickness SW is in the range of 35 to 65% of the thickness W. Further, in exemplary embodiments, the insertion portion wall thickness 520 is in the range of 40 to 55% of the thickness W. With these ratios the thermal performance of the wall of the cavity 507 provides an optimal thermal performance, structural integrity, but at a manufacturing complexity and cost that is significantly improved over known solutions.

    [0018] Figure 4 depicts a cross-section of an exemplary electrode 500. While the upstream end 530 is depicted as shown, exemplary embodiments are not limited to this configuration and other configurations can be used without departing from the spirit or scope of the present invention. As shown, the electrode 500 has an overall length L - which includes the distal end face of the silver portion 501 and the upstream most end of the copper portion 503. The silver portion has a length SL that extends from its distal end face to its upstream most end, which is the end face of the insertion portion 520. In exemplary embodiments, the length SL is in the range of 10 to 20% of the overall length
    L. In other exemplary embodiments, the length SL is in the range of 12 to 17% of the length L. These ratios allow for desired thermal performance and maximize structural integrity of the assembly. For example, if the length of the silver portion 501 is too short the braze joint between the silver and copper will exist at a sufficient distance from the thermal gradients during cutting operations that the braze joints will not be thermally comprised during operation. If these joints are too close, overtime the braze joints can weaken and cause a failure of the assembly. Further, if the length is too long the structural integrity of the assembly can be compromised, and at a higher cost of manufacture and materials. For example, a longer silver length can result in less than desirable braze penetration during assembly, thus leaving gaps which can create thermal stress concentrations or otherwise adversely affect the thermal conductivity between components. Of course, minor deviations from the above ranges can be achieved depending on the configuration of the design, however, the above considerations must be considered to ensure proper, sustained operation. Particularly, the silver portion 501 should have a length sufficient to keep the majority, or all, of the braze joint out of the higher temperature gradients and bands that will be achieved during sustained cutting. It is acceptable for some portion of the joint to be in some of the temperature gradient bands, but the joints should not exist in the higher temperature gradient bands. Of course, this could also be affected by the brazing material used. In exemplary embodiments of the present invention, the maximum temperature experienced by the braze joint during torch operation is less than 235 °C, and the temperature differential across the joint (between the adjacent materials) is no more than 50 °C. Thus, embodiments of the present invention have a construction that optimizes the life of the electrode and optimizes its thermal effectiveness given its construction.

    [0019] In view of the foregoing, embodiments of the present invention provide a high performance cutting electrode, that is easy to manufacture and at a cost point which is considerably improved over known silver and silver composite electrodes.

    [0020] While the invention has been particularly shown and described with reference to exemplary embodiments thereof, the invention is not limited to these embodiments. It will be understood by those of ordinary skill in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined by the following claims.
    REFERENCE NUMBERS
    200 nozzle 505' insert
    240 surface 507 cavity
    301 torch head 507' cavity
    303 shield cap 510 surface
    307 retaining cap 511 shoulder surface
    401 cooling tube 513 shoulder portion
    405 plasma gas swirl ring 515 shoulder portion
    405' distal end surface 520 portion
    407 shield gas swirler 530 copper portion
    409 retainer cap D diameter
    500 electrode/ assembly G gap
    500' electrode L length
    501 silver portion SL length
    501' silver    
    503 body portion    
    503' body portion    



    Claims

    1. A composite plasma cutting electrode (500, 500'), comprising:

    a body portion (503, 503') made from a first material having a wall portion defining a cavity (507, 507') and a distal end having an distal end face and a first shoulder engagement portion (513, 515) which extends upstream from said distal end face, where said shoulder portion (513, 515) comprises first and second surfaces (510, 511); and

    a tip portion made from a second material, said tip portion having a distal end face and a tip cavity in said distal end face with an emissive insert (505') disposed in said tip cavity, an upstream end face, and a second shoulder engagement portion extending downstream from said upstream end face having a first and second surface, and

    wherein said upstream end face of said tip portion makes physical contact with said first surface (510, 511) of said first shoulder engagement portion (513, 515);

    characterized in that

    said second surface of said first shoulder engagement portion (513, 515) is adjacent to said second surface of said second shoulder portion (513, 515) such that a first gap (G) exists between said respective second surfaces,

    said first surface (510, 511) of said second shoulder engagement portion (513, 515) is adjacent to said distal end face of said body portion (503, 503') such that a second gap (G) exists between said first surface (510, 511) of said second shoulder engagement portion (513, 515) and said distal end face of said body portion (503, 503'), and

    each of said first and second gaps (G) are filled with a brazing material which secures said body portion (503, 503') is joined to said tip portion, and

    in that said second gap (G) is larger than said first gap.


     
    2. The electrode (500, 500') of any of the claims 1 characterized in that said wall portion has a first thickness which is upstream of said first shoulder engagement portion (513, 515) and a second thickness which is downstream of said second surface of said first shoulder engagement portion, where said second thickness is in the range of 35 to 65% of said first thickness, preferably wherein said wall portion has a first thickness which is upstream of said first shoulder engagement portion (513, 515) and a second thickness which is downstream of said second surface (510, 511) of said first shoulder engagement portion (513, 515), where said second thickness is in the range of 40 to 55% of said first thickness.
     
    3. The electrode (500, 500') of any of claim 1 or 2, characterized in that said first material is copper, said second material is silver and said brazing material having silver as a primary component.
     
    4. The electrode (500, 500') of any of the claim 1 to 3, characterized in that said electrode assembly has an overall length (L), and said tip portion has a length (SL), where said tip portion length (SL) is in the range of 10 to 20% of said overall length (L).
     
    5. The electrode (500, 500') of any of the claims 1 to 4, characterized in that said electrode assembly has an overall length (L), and said tip portion has a length (SL), where said tip portion length (SL) is in the range of 12 to 17% of said overall length (L).
     
    6. A method of manufacturing a composite electrode, comprising:

    providing a body portion made from a first material having a wall portion defining a cavity and a distal end having an distal end face and a first shoulder engagement portion which extends upstream from said distal end face, where said shoulder portion comprises first and second surfaces;

    providing a tip portion made from a second material, said tip portion having a distal end face and a tip cavity in said distal end face with an emissive insert disposed in said tip cavity, an upstream end face, and a second shoulder engagement portion extending downstream from said upstream end face having a first and second surface,

    characterised in inserting said tip portion into said distal end of said body portion such that said upstream end face of said tip portion makes physical contact with said first surface of said first shoulder engagement portion, where said second surface of said first shoulder engagement portion is adjacent to said second surface of said second shoulder portion such that a first gap exists between said respective second surfaces, and where said first surface of said second shoulder engagement portion is adjacent to said distal end face of said body portion such that a second gap exists between said first surface of said second shoulder engagement portion and said distal end face of said body portion; in

    brazing said tip portion to said body portion to join said body portion and said tip portion using a brazing material, wherein each of said first and second gaps are filled with said brazing material, and

    in that said second gap is larger than said first gap.


     
    7. The method of claim 6 characterized in that said wall portion has a first thickness which is upstream of said first shoulder engagement portion and a second thickness which is downstream of said second surface of said first shoulder engagement portion, where said second thickness is in the range of 35 to 65% of said first thickness.
     
    8. The method of claim 6 or 7 characterized in that said wall portion has a first thickness which is upstream of said first shoulder engagement portion and a second thickness which is downstream of said second surface of said first shoulder engagement portion, where said second thickness is in the range of 40 to 55% of said first thickness.
     
    9. The method of any of the claims 6 to 8 characterized in that said first material is copper, said second material is silver and said brazing material having silver as a primary component.
     
    10. The method of any of the claims 6 to 9, characterized in that said electrode assembly has an overall length (L), and said tip portion has a length (SL), where said tip portion length (SL) is in the range of 10 to 20% of said overall length (L).
     
    11. The method of any of the claims 6 to 10, characterized in that said electrode assembly has an overall length (L), and said tip portion has a length (SL), where said tip portion length (SL) is in the range of 12 to 17% of said overall length (L).
     


    Ansprüche

    1. Verbund-Plasmaschneidelektrode (500, 500'), die umfasst:

    einen Körperabschnitt (503, 503'), der aus einem ersten Material hergestellt ist, mit einem Wandabschnitt, der einen Hohlraum (507, 507') definiert, und einem distalen Ende mit einer distalen Endfläche und einem ersten Schultereingriffnahmeabschnitt (513, 515), der sich stromaufwärts von der distalen Endfläche erstreckt, wobei der Schulterabschnitt (513, 515) eine erste und eine zweite Fläche (510, 511) umfasst; und

    einen Spitzenabschnitt, der aus einem zweiten Material hergestellt ist, wobei der Spitzenabschnitt eine distale Endfläche und einen Spitzenhohlraum in der distalen Endfläche mit einem in dem Spitzenhohlraum angeordneten Emissionseinsatz (505'), eine stromaufwärts befindliche Endfläche und einen zweiten Schultereingriffnahmeabschnitt aufweist, der sich stromabwärts von der stromaufwärts befindlichen Endfläche erstreckt und eine erste und eine zweite Fläche aufweist, und

    wobei die stromaufwärtige Endfläche des Spitzenabschnitts in physischem Kontakt mit der ersten Fläche (510, 511) des ersten Schultereingriffnahmeabschnitts (513, 515) steht;

    dadurch gekennzeichnet, dass

    die zweite Fläche des ersten Schultereingriffnahmeabschnitts (513, 515) an die zweite Fläche des zweiten Schulterabschnitts (513, 515) grenzt, dergestalt, dass ein erster Spalt (G) zwischen den jeweiligen zweiten Flächen entsteht,

    wobei die erste Fläche (510, 511) des zweiten Schultereingriffnahmeabschnitts (513, 515) an die distale Endfläche des Körperabschnitts (503, 503') grenzt, dergestalt, dass ein zweiter Spalt (G) zwischen der ersten Fläche (510, 511) des zweiten Schultereingriffnahmeabschnitts (513, 515) und der distalen Endfläche des Körperabschnitts (503, 503') entsteht, und

    jeder der ersten und zweiten Spalte (G) mit einem Hartlotmaterial gefüllt ist, das den Körperabschnitt (503, 503') fest mit dem Spitzenabschnitt verbindet, und

    dass der zweite Spalt (G) größer ist als der erste Spalt.


     
    2. Elektrode (500, 500') nach einem der Ansprüche 1, dadurch gekennzeichnet, dass der Wandabschnitt eine erste Dicke aufweist, die sich stromaufwärts des ersten Schultereingriffnahmeabschnitts (513, 515) befindet, und eine zweite Dicke aufweist, die sich stromabwärts der zweiten Fläche des ersten Schultereingriffnahmeabschnitts befindet, wobei die zweite Dicke im Bereich von 35 bis 65 % der ersten Dicke liegt, wobei bevorzugt der Wandabschnitt eine erste Dicke aufweist, die sich stromaufwärts des ersten Schultereingriffnahmeabschnitts (513, 515) befindet, und eine zweite Dicke aufweist, die sich stromabwärts der zweiten Fläche (510, 511) des ersten Schultereingriffnahmeabschnitts (513, 515) befindet, wobei die zweite Dicke im Bereich von 40 bis 55 % der ersten Dicke liegt.
     
    3. Elektrode (500, 500') nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass das erste Material Kupfer ist, das zweite Material Silber ist und das Hartlotmaterial Silber als Hauptbestandteil aufweist.
     
    4. Elektrode (500, 500') nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Elektrodenbaugruppe eine Gesamtlänge (L) aufweist und der Spitzenabschnitt eine Länge (SL) aufweist, wobei die Länge (SL) des Spitzenabschnitts im Bereich von 10 bis 20 % der Gesamtlänge (L) liegt.
     
    5. Elektrode (500, 500') nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Elektrodenbaugruppe eine Gesamtlänge (L) aufweist und der Spitzenabschnitt eine Länge (SL) aufweist, wobei die Länge (SL) des Spitzenabschnitts im Bereich von 12 bis 17% der Gesamtlänge (L) liegt.
     
    6. Verfahren zur Herstellung einer Verbundelektrode, das umfasst:

    Bereitstellen eines Körperabschnitts, der aus einem ersten Material hergestellt ist, mit einem Wandabschnitt, der einen Hohlraum definiert, und einem distalen Ende mit einer distalen Endfläche und einem ersten Schultereingriffnahmeabschnitt, der sich stromaufwärts von der distalen Endfläche erstreckt, wobei der Schulterabschnitt eine erste und eine zweite Fläche umfasst; und

    Bereitstellen eines Spitzenabschnitts, der aus einem zweiten Material hergestellt ist, wobei der Spitzenabschnitt eine distale Endfläche und einen Spitzenhohlraum in der distalen Endfläche mit einem in dem Spitzenhohlraum angeordneten Emissionseinsatz, eine stromaufwärts befindliche Endfläche und einen zweiten Schultereingriffnahmeabschnitt aufweist, der sich stromabwärts von der stromaufwärts befindlichen Endfläche erstreckt und eine erste und eine zweite Fläche aufweist, und

    dadurch gekennzeichnet, dass der Spitzenabschnitt in das distale Ende des Körperabschnitts so eingeführt wird, dass die stromaufwärtige Endfläche des Spitzenabschnitts in physischem Kontakt mit der ersten Fläche des ersten Schultereingriffnahmeabschnitts steht, wobei die zweite Fläche des ersten Schultereingriffnahmeabschnitts an die zweite Fläche des zweiten Schulterabschnitts grenzt, dergestalt, dass ein erster Spalt zwischen den jeweiligen zweiten Flächen entsteht, und wobei die erste Fläche des zweiten Schultereingriffnahmeabschnitts an die distale Endfläche des Körperabschnitts grenzt, dergestalt, dass ein zweiter Spalt zwischen der ersten Fläche des zweiten Schultereingriffnahmeabschnitts und der distalen Endfläche des Körperabschnitts entsteht;

    dadurch, dass der Spitzenabschnitt an den Körperabschnitt hartgelötet wird, um den Körperabschnitt und den Spitzenabschnitt unter Verwendung eines Hartlotmaterials zu verbinden, wobei sowohl der erste als auch der zweite Spalt mit dem Hartlotmaterial gefüllt werden, und

    dadurch, dass der zweite Spalt größer ist als der erste Spalt.


     
    7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass der Wandabschnitt eine erste Dicke aufweist, die sich stromaufwärts des ersten Schultereingriffnahmeabschnitts befindet, und eine zweite Dicke aufweist, die sich stromabwärts der zweiten Fläche des ersten Schultereingriffnahmeabschnitts befindet, wobei die zweite Dicke im Bereich von 35 bis 65 % der ersten Dicke liegt.
     
    8. Verfahren nach Anspruch 6 oder 7, dadurch gekennzeichnet, dass der Wandabschnitt eine erste Dicke aufweist, die sich stromaufwärts des ersten Schultereingriffnahmeabschnitts befindet, und eine zweite Dicke aufweist, die sich stromabwärts der zweiten Fläche des ersten Schultereingriffnahmeabschnitts befindet, wobei die zweite Dicke im Bereich von 40 bis 55% der ersten Dicke liegt.
     
    9. Verfahren nach einem der Ansprüche 6 bis 8, dadurch gekennzeichnet, dass das erste Material Kupfer ist, das zweite Material Silber ist und das Hartlotmaterial Silber als Hauptbestandteil aufweist.
     
    10. Verfahren nach einem der Ansprüche 6 bis 9, dadurch gekennzeichnet, dass die Elektrodenbaugruppe eine Gesamtlänge (L) aufweist und der Spitzenabschnitt eine Länge (SL) aufweist, wobei die Länge (SL) des Spitzenabschnitts im Bereich von 10 bis 20 % der Gesamtlänge (L) liegt.
     
    11. Verfahren nach einem der Ansprüche 6 bis 10, dadurch gekennzeichnet, dass die Elektrodenbaugruppe eine Gesamtlänge (L) aufweist und der Spitzenabschnitt eine Länge (SL) aufweist, wobei die Länge (SL) des Spitzenabschnitts im Bereich von 12 bis 17% der Gesamtlänge (L) liegt.
     


    Revendications

    1. Electrode de découpe au plasma composite (500, 500'), comprenant :

    une portion de corps (503, 503') constituée d'un premier matériau ayant une portion de paroi définissant une cavité (507, 507') et une extrémité distale ayant une face d'extrémité distale et une première portion d'engagement d'épaulement (513, 515) qui s'étend en amont depuis ladite face d'extrémité distale, où ladite portion d'épaulement (513, 515) comprend des première et deuxième surfaces (510, 511) ; et

    une portion d'embout constituée d'un deuxième matériau, ladite portion d'embout ayant une face d'extrémité distale et une cavité d'embout dans ladite face d'extrémité distale avec un insert émissif (505') disposé dans ladite cavité d'embout, une face d'extrémité en amont, et une deuxième portion d'engagement d'épaulement s'étendant en aval depuis ladite face d'extrémité en amont ayant des première et deuxième surfaces, et

    dans laquelle ladite face d'extrémité en amont de ladite portion d'embout est en contact physique avec ladite première surface (510, 511) de ladite première portion d'engagement d'épaulement (513, 515) ;

    caractérisée en ce que

    ladite deuxième surface de ladite première portion d'engagement d'épaulement (513, 515) est adjacente à ladite deuxième surface de ladite deuxième portion d'épaulement (513, 515) de sorte qu'il existe un premier écartement (G) entre lesdites deuxièmes surfaces respectives,

    ladite première surface (510, 511) de ladite deuxième portion d'engagement d'épaulement (513, 515) est adjacente à ladite face d'extrémité distale de ladite portion de corps (503, 503') de sorte qu'il existe un deuxième écartement (G) entre ladite première surface (510, 511) de ladite deuxième portion d'engagement d'épaulement (513, 515) et ladite face d'extrémité distale de ladite portion de corps (503, 503'), et

    chacun desdits premier et deuxième écartements (G) est rempli d'un matériau de brasage qui fixe ladite portion de corps (503, 503') jointe à ladite portion d'embout, et

    ledit deuxième écartement (G) est plus grand que ledit premier écartement.


     
    2. Electrode (500, 500') selon la revendication 1, caractérisée en ce que ladite portion de paroi a une première épaisseur qui est en amont de ladite première portion d'engagement d'épaulement (513, 515) et une deuxième épaisseur qui est en aval de ladite deuxième surface de ladite première portion d'engagement d'épaulement, où ladite deuxième épaisseur est dans la plage de 35 à 65 % de ladite première épaisseur, de préférence dans laquelle ladite portion de paroi a une première épaisseur qui est en amont de ladite première portion d'engagement d'épaulement (513, 515) et une deuxième épaisseur qui est en aval de ladite deuxième surface (510, 511) de ladite première portion d'engagement d'épaulement (513, 515), où ladite deuxième épaisseur est dans la plage de 40 à 55 % de ladite première épaisseur.
     
    3. Electrode (500, 500') selon la revendication 1 ou 2, caractérisée en ce que ledit premier matériau est du cuivre, ledit deuxième matériau est de l'argent et ledit matériau de brasage a de l'argent comme composant principal.
     
    4. Electrode (500, 500') selon l'une quelconque des revendications 1 à 3, caractérisée en ce que ledit ensemble d'électrode a une longueur hors tout (L), et ladite portion d'embout a une longueur (SL), où ladite longueur de portion d'embout (SL) est dans la plage de 10 à 20 % de ladite longueur hors tout (L).
     
    5. Electrode (500, 500') selon l'une quelconque des revendications 1 à 4, caractérisée en ce que ledit ensemble d'électrode a une longueur hors tout (L), et ladite portion d'embout a une longueur (SL), où ladite longueur de portion d'embout (SL) est dans la plage de 12 à 17 % de ladite longueur hors tout (L).
     
    6. Procédé de fabrication d'une électrode composite, comprenant :

    la fourniture d'une portion de corps constituée d'un premier matériau ayant une portion de paroi définissant une cavité et une extrémité distale ayant une face d'extrémité distale et une première portion d'engagement d'épaulement qui s'étend en amont depuis ladite face d'extrémité distale, où ladite portion d'épaulement comprend des première et deuxième surfaces ;

    la fourniture d'une portion d'embout constituée d'un deuxième matériau, ladite portion d'embout ayant une face d'extrémité distale et une cavité d'embout dans ladite face d'extrémité distale avec un insert émissif disposé dans ladite cavité d'embout, une face d'extrémité en amont, et une deuxième portion d'engagement d'épaulement s'étendant en aval depuis ladite face d'extrémité en amont ayant des première et deuxième surfaces, et

    caractérisé par l'insertion de ladite portion d'embout dans ladite extrémité distale de ladite portion de corps de sorte que ladite face d'extrémité en amont de ladite portion d'embout soit en contact physique avec ladite première surface de ladite première portion d'engagement d'épaulement, où ladite deuxième surface de ladite première portion d'engagement d'épaulement est adjacente à ladite deuxième surface de ladite deuxième portion d'épaulement de sorte qu'il existe un premier écartement entre lesdites deuxièmes surfaces respectives, et où ladite première surface de ladite deuxième portion d'engagement d'épaulement est adjacente à ladite face d'extrémité distale de ladite portion de corps de sorte qu'il existe un deuxième écartement entre ladite première surface de ladite deuxième portion d'engagement d'épaulement et ladite face d'extrémité distale de ladite portion de corps ;

    le brasage de ladite portion d'embout sur ladite portion de corps pour joindre ladite portion de corps et ladite portion d'embout en utilisant un matériau de brasage, dans lequel chacun desdits premier et deuxième écartements est rempli dudit matériau de brasage, et

    ledit deuxième écartement est plus grand que ledit premier écartement.


     
    7. Procédé selon la revendication 6, caractérisé en ce que ladite portion de paroi a une première épaisseur qui est en amont de ladite première portion d'engagement d'épaulement et une deuxième épaisseur qui est en aval de ladite deuxième surface de ladite première portion d'engagement d'épaulement, où ladite deuxième épaisseur est dans la plage de 35 à 65 % de ladite première épaisseur.
     
    8. Procédé selon la revendication 6 ou 7, caractérisé en ce que ladite portion de paroi a une première épaisseur qui est en amont de ladite première portion d'engagement d'épaulement et une deuxième épaisseur qui est en aval de ladite deuxième surface de ladite première portion d'engagement d'épaulement, où ladite deuxième épaisseur est dans la plage de 40 à 55 % de ladite première épaisseur.
     
    9. Procédé selon l'une quelconque des revendications 6 à 8, caractérisé en ce que ledit premier matériau est du cuivre, ledit deuxième matériau est de l'argent et ledit matériau de brasage a de l'argent comme composant principal.
     
    10. Procédé selon l'une quelconque des revendications 6 à 9, caractérisé en ce que ledit ensemble d'électrode a une longueur hors tout (L), et ladite portion d'embout a une longueur (SL), où ladite longueur de portion d'embout (SL) est dans la plage de 10 à 20 % de ladite longueur hors tout (L).
     
    11. Procédé selon l'une quelconque des revendications 6 à 10, caractérisé en ce que ledit ensemble d'électrode a une longueur hors tout (L), et ladite portion d'embout a une longueur (SL), où ladite longueur de portion d'embout (SL) est dans la plage de 12 à 17 % de ladite longueur hors tout (L).
     




    Drawing

















    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description