(19)
(11)EP 3 401 042 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
22.07.2020 Bulletin 2020/30

(21)Application number: 17170612.0

(22)Date of filing:  11.05.2017
(51)International Patent Classification (IPC): 
B23B 51/02(2006.01)
B23B 51/04(2006.01)
B23B 51/06(2006.01)

(54)

DRILL BODY AND DRILL

BOHRKÖRPER UND BOHRER

CORPS DE FORET ET FORET


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(43)Date of publication of application:
14.11.2018 Bulletin 2018/46

(73)Proprietor: Sandvik Intellectual Property AB
811 81 Sandviken (SE)

(72)Inventors:
  • HEMPH, Mr. Rasmus
    802 69 Gävle (SE)
  • CARLBERG, Håkan
    SE-811 35 SANDVIKEN (SE)

(74)Representative: Sandvik 
Sandvik Intellectual Property AB
811 81 Sandviken
811 81 Sandviken (SE)


(56)References cited: : 
EP-A1- 0 876 868
WO-A1-2017/073663
KR-A- 20040 086 960
EP-A2- 0 613 746
JP-A- 2003 048 110
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    TECHNICAL FIELD



    [0001] The invention relates to a drill body according to the preamble of claim 1 for a drill for metal cutting. An example of such a drill body is known from WO 2017/073663 A1. Furthermore, the invention relates to a drill comprising such a drill body.

    BACKGROUND



    [0002] A drill is configured for cutting holes in a workpiece. The present invention relates to drills for cutting workpieces using a manually operated machine, such as a drill press, or an automatically controlled machine, such as a CNC lathe, a CNC milling machine, or a CNC drilling machine.

    [0003] An indexable drill comprises a drill body and two or more indexable cutting inserts arranged in insert seats at a front end portion of the drill body. One of the cutting inserts may be configured for cutting a central portion of a hole and another cutting insert may be configured for cutting a peripheral portion of the hole. The cutting inserts are indexable, i.e. they each comprise more than one cutting edge, and are positionable in different positions in the insert seats for each cutting edge to engage with the workpiece.

    [0004] During drilling of a hole, cutting chips cut from the workpiece by the cutting inserts at the front end portion of the drill body must be removed from the hole. For this purpose, one or more chip flutes may extend along the drill body.

    [0005] EP 0 876 868 A1 discloses a drill, for chip removing machining, including a shank with a first tip forming end, with at least two cutting edges, and a second opposed end, two chip flutes extending from the tip forming end to the opposite end of the shank, and two cooling channels extending through the shank of the drill and terminating in the first tip forming end.

    [0006] US 8668409 discloses an indexable drill including a drill body having two chip flutes extending a distance along the drill body. Two indexable cutting inserts are fastened, radially offset in relation to one another, in respective insert seats of the drill body. Each chip flute, viewed cross-sectionally in a direction perpendicular to a longitudinal axis of the drill body, includes a first wall portion and a second wall portion. The first wall portion extends along a curve between a run-out edge and the second wall portion. The second wall portion extends in a straight line between a leading edge and the first wall portion. The first wall portion and the second wall portion are disposed adjoining one another and together define a J-shaped cross-sectional profile perpendicular to the longitudinal axis.

    [0007] The drilling of long holes, such as 4 times a diameter of the hole or longer, poses particular requirements on the relevant drill. While cutting chips must be transported all the way from the bottom of the hole, the drill must deflect minimally in a radial direction of the hole being drilled in order to achieve a high quality hole.

    SUMMARY



    [0008] It is an object of the invention to provide a drill body for a drill, which provides for efficient removal of cutting chips while being suited for drilling long holes. To better address one or more of these concerns, a drill body and a drill having the features defined in claim 1 and 15, respectively, is provided.

    [0009] According to the invention the object is achieved by a drill body for a drill according to claim 1.

    [0010] Since the central chip flute cross section has a maximum depth Dp within a range of Dp = 0.75 x D/2 to Dp = 0.90 x D/2, and a maximum width W within a range of W = 0.75 x D/2 to W = 0.90 x D/2, and since the maximum width W extends symmetrically about the centre line, cutting chips from the central cutting insert will readily fit inside the central chip flute, while a cross section of the drill body in the plane extending perpendicularly to the rotational axis provides high bending stiffness and torsional stiffness. Accordingly, high quality holes may be cut in a workpiece. As a result, the above mentioned object is achieved.

    [0011] Furthermore, the object is achieved by a drill for metal cutting comprising a drill body according to claim 1.

    [0012] As mentioned above, due to the maximum width and maximum depth of the central chip flute cross section, cutting chips from the central cutting insert will readily fit inside the central chip flute, while high bending stiffness and torsional stiffness is provided in the drill body of the drill.

    [0013] Since the bending stiffness is dependent on the second moment of area, also known as area moment of inertia, having a unit which is the fourth power of a length unit, e.g. m4, solid portions of the cross section of the drill body extending as far as possible from the rotational axis provide for a stiff drill body. The maximum depth and the maximum width of the central chip flute cross section, as defined above, provide for a large portion of the cross section of the drill body to extend a large radial distance from the rotational axis.

    [0014] Herein, the term maximum depth means the deepest part of the central chip flute cross section measured from the circumscribed circle of the drill body in the plane extending perpendicularly to the rotational axis. The depth at a point on the surface of the chip flute is the shortest distance between that point and the circumscribed circle. The term maximum width means the widest part of the central chip flute cross section.

    [0015] The drill body has a drilling length L, i.e. the length of the drill body used for drilling the maximum hole depth possible with the relevant drill, less the axial depth provided by the cutting inserts, i.e. the maximum hole depth less the axial extension of the cutting inserts beyond the drill body.

    [0016] According to embodiments, the central chip flute cross section may be symmetric about the centre line. In this manner, also the cross section of the drill body in the plane perpendicular to the rotational axis may be symmetric about the central chip flute.

    [0017] According to embodiments, the central chip flute may have a cross sectional shape corresponding to the central chip flute cross section along a partial length of the drill body. In this manner, the above discussed properties of the drill body may be provided at least along the said partial length of the drill body, since the central chip flute has the above defined central chip flute cross section along said partial length.

    [0018] According to embodiments, the central chip flute may have a cross sectional shape corresponding to the central chip flute cross section from a distance within a range of 0.25 x D to 1 x D from a front end of the drill body to a rear end of the drilling length L. In this manner, the central chip flute has a cross sectional shape corresponding to the central chip flute cross section defined above along a substantial length of the drill body, at least for drills having a drilling length L ≥ 2 x D.

    [0019] According to embodiments, the drill body may comprise at least one coolant channel. In this manner, a coolant may be provided in a proximity of the cutting inserts during drilling with the drill. Thus, in addition to cooling the workpiece and the cutting inserts, the coolant may assist in transporting cutting chips in the central chip flute and/or the peripheral chip flute, from the front end portion of the drill body and out of the hole being drilled.

    [0020] Suitably, the at least one coolant channel is provided with an opening at the front end portion of the drill body.

    [0021] According to embodiments, the drill body may comprise two coolant channels, and wherein each of the coolant channels has a diameter Df within a range of Df = 0.4 x D3/5 to Df = 0.7 x D3/5, seen in the plane extending perpendicularly to the rotational axis. In this manner, an adequate flow of coolant to the front end portion of the drill body in order to transport cutting chips from the front end portion of the drill body out of the hole may be achieved at a normal coolant pressure, e.g. 4 Bar.

    [0022] According to embodiments, the peripheral chip flute has a peripheral chip flute cross section in a plane extending perpendicularly to the rotational axis. The peripheral chip flute cross section is formed within a circumscribed circle of the drill body in the plane extending perpendicularly to the rotational axis. The peripheral chip flute cross section has a centre line extending in the plane and through the rotational axis, wherein the peripheral chip flute cross section has a radially inner side extending perpendicularly to the centre line, and a first lateral side and an opposite second lateral side connecting to the radially inner side. The radially inner side may have a length L1 within a range of L1 = 0.95 x D/4 to L1 = 1.2 x D/4, wherein each of the first and second lateral sides may have a length LS1, LS2 within a range of D/4 to 1.3 x D/4, wherein the radially inner side may extend symmetrically about the centre line of the peripheral chip flute cross section, and wherein the first and second lateral sides diverge from each other in a direction radially outwards from the inner side. In this manner, cutting chips which are cut by the peripheral cutting insert may readily fit inside the peripheral chip flute, while a cross section of the drill body in the plane extending perpendicularly to the rotational axis provides high bending stiffness and torsional stiffness. Accordingly, high quality holes may be cut in a workpiece, with a drill comprising a drill body provided with two chip flutes.

    [0023] According to embodiments, the first and second lateral sides may diverge from the each other in a direction radially outwards from the radially inner side, and the first and second lateral sides may diverge symmetrically from each other about the centre line. In this manner, cutting chips from the peripheral cutting insert, which cutting chips have an approximately isosceles trapezium shaped seen in a top view of the cutting chips, are easily transported through the peripheral chip flute.

    [0024] According to embodiments, at a front end of the drill body an angle between a radially extension of a cutting edge of the central cutting insert and an opposite wall of the central chip flute is approximately 100°, seen in a view along the rotational axis. In this manner, a reduced diameter of the helically shaped cutting chips from the central cutting insert may be provided for fitting the cutting chips through the central chip flute.

    [0025] Further features of, and advantages with, the invention will become apparent when studying the appended claims and the following detailed description.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0026] Various embodiments of the invention, including its particular features and advantages, will be readily understood from the example embodiments discussed in the following detailed description and the accompanying drawings, in which:

    Figs. 1a - 1e illustrate views of a drill comprising a drill body according to a first embodiment,

    Figs. 2a and 2b illustrate two views of the drill body of Figs. 1a - 1e,

    Figs. 2c and 2d illustrate cross sectional views through the drill body along lines IIc - IIc and IId - IId in Fig. 2a,

    Figs. 3a and 3c show enlarged cross sections of the central and the peripheral chip flute of the first embodiment,

    Fig. 3b shows an enlarged cross section of the central chip flute of a second embodiment.


    DETAILED DESCRIPTION



    [0027] Embodiments of the invention will now be described more fully. Like numbers refer to like elements throughout. Well-known functions or constructions will not necessarily be described in detail for brevity and/or clarity.

    [0028] Figs. 1a -1e illustrate views of a drill 2 comprising a drill body 4 according to a first embodiment. The drill 2 is configured for metal cutting, i.e. for drilling holes in a metal workpiece. The drill 2 further comprises a central cutting insert 6, and a peripheral cutting insert 8. The central cutting insert 6 and the peripheral cutting insert 8 are indexable, i.e. comprise more than one cutting edge, wherein an active cutting position of a cutting edge corresponds to an index position of the cutting insert. The drill body 4 has a rotational axis 10 and is provided with a central insert seat 12 and a peripheral insert seat 14 at a front end portion 18 of the drill body 4. The front end portion 18 forms a portion of the drill body 4 adjacent to a front end 16 of the drill body 4. The central cutting insert 6 is configured for cutting a central portion of a hole, and the peripheral cutting insert 8 is configured for cutting a peripheral portion of the hole. The central cutting insert 6 is arranged in the central insert seat 12, and the peripheral cutting insert 8 is arranged in the peripheral insert seat 14. Accordingly, the central insert seat 12 is configured for receiving the central cutting insert 6, and the peripheral insert seat 14 is configured for receiving the peripheral cutting insert 8.

    [0029] The drill 2 is arranged for cutting by being rotated in the direction R, indicated in Fig. 1c. The drill 2 is configured for drilling a hole having a diameter D. That is, together, the central and peripheral cutting inserts 6, 8 provide cutting edges for cutting a hole having the diameter D.

    [0030] Mentioned purely as an example, the diameter D may be within a range of
    D = 15 - 65 mm.

    [0031] According to embodiments, the central cutting insert 6 may be configured for cutting in an axial direction of the hole with a cutting length in a radial direction of approximately D/4, and the peripheral cutting insert 8 may be configured for cutting in the axial radial direction of the hole with a cutting length in the radial direction of approximately D/4. In this manner, cutting forces acting on the cutting inserts 6, 8 may be balanced between the two cutting inserts 6, 8.

    [0032] According to embodiments, the drill body 4 may have a drilling length, L, within a range of 1 x D to 8 x D. The drilling length of the drill body 4 corresponds to the maximum hole depth to be drilled with the drill, less the axial depth provided by the cutting inserts 12, 14. The cross sectional areas of the central chip flute and the peripheral chip flute discussed herein are particularly advantageous in drills having drilling bodies 4 with a drilling length L in the upper portion of the range. Thus, according to some embodiments, the drill body 4 may have a drilling length L within a range of L = 3 x D to L = 8 x D, or within a range of L = 4 x D to L = 8 x D.

    [0033] The drilling length L of the illustrated first embodiment is approximately, L = 4 x D. The drill body 4 comprises a shank 19 for securing the drill 2 in a machine, such as in a chuck of a machine.

    [0034] The drill body 4 comprises a central chip flute 20 extending from the central insert seat 12 along a periphery of the drill body 4. The drill body 4 comprises a peripheral chip flute 22 extending from the peripheral insert seat 14 along a periphery of the drill body 4.

    [0035] In this embodiment, the central chip flute 20 as well as the peripheral chip flute 22 comprises a helical portion, extending from the front end 16 partially along the drill body 4 towards a rear end 24 of the drilling length of the drill body 4. At the rear end 24 of the drilling length of the drill body 4, the central chip flute 20 and the peripheral chip flute 22 each extend straight along the drill body 4, in parallel with the rotational axis 10.

    [0036] In alternative embodiments, the helical portions may be shorter or longer than in the illustrated embodiment. According to some embodiments, the chip flutes do not comprise any straight portions, but are helical along the entire drilling length.

    [0037] Figs. 2a and 2b illustrate two views of the drill body 4 of Figs. 1a - 1e. In the views of Figs. 2a and 2b the central chip flute 20 and the peripheral chip flute 22 are clearly shown. Moreover, Figs. 2c and 2d illustrate two cross sectional views through the drill body 4 along lines IIc - IIc and IId - lid in Fig. 2a.

    [0038] The drill body 4 has a cross sectional shape, seen perpendicularly to the rotational axis 10. The cross sectional shape of the drill body 4 varies depending on where along the drilling length the cross section is positioned. Naturally, the cross sectional shape of the drill body 4 depends on the cross sectional shapes of the central chip flute 20 and the peripheral chip flute 22. At the front end portion 18 and briefly past the insert seats, the cross sectional shape of the drill body 4 is distinctly different from the cross sectional shape farther away from the front end portion 18. This depends on the chip flutes 20, 22 having wide openings at the cutting inserts. Past the front end portion 18, the chip flutes 20, 22 are adapted for leading cutting chips along the drill body 4 out of a hole being drilled.

    [0039] According to the invention, the central chip flute 20 is configured for a smooth guiding of the cutting chips from the central cutting insert, while providing a cross sectional shape of the drill body 4 which has high bending and torsional stiffness.

    [0040] Also the peripheral chip flute 22 is configured for a smooth guiding of the cutting chips from the peripheral cutting insert, while providing a cross sectional shape of the drill body which has high bending and torsional stiffness.

    [0041] The central chip flute 20 has a central chip flute cross section in a plane extending perpendicularly to the rotational axis 10. In Figs. 2c and 2d the central chip flute cross section is shown with single line hatching. The central chip flute cross section is formed within a circumscribed circle of the drill body 4 in the plane extending perpendicularly to the rotational axis, as indicated by broken lines in Figs. 2c and 2d. The cross sections illustrated in Figs. 2c and 2d are examples of such a plane extending perpendicularly to the rotational axis 10. Approximately, from the cross section shown in Fig. 2d and rearwardly towards the rear end 24, the central chip flute cross section is the same as shown in Figs. 2c and 2d. The peripheral chip flute 22 has a peripheral chip flute cross section in a plane extending perpendicularly to the rotational axis 10. In Figs. 2c and 2d the peripheral chip flute cross section is shown with cross line hatching. The peripheral chip flute cross section is formed within a circumscribed circle of the drill body 4 in the plane extending perpendicularly to the rotational axis 4, as indicated by broken lines in Figs. 2c and 2d. As mentioned above, the cross sections illustrated in Figs. 2c and 2d are examples of such a plane extending perpendicularly to the rotational axis 10. Approximately, from the cross section shown in Fig. 2d and rearwardly towards the rear end 24, the peripheral chip flute cross section is the same as shown in Figs. 2c and 2d.

    [0042] Fig. 3a shows an enlargement of the central chip flute 20 and the central chip flute cross section of Figs. 2c and 2d. The central chip flute cross section has a centre line 26 extending in the plane extending perpendicularly to the rotational axis 10, and extending through the rotational axis 10. The central chip flute cross section has a maximum depth, seen along the centre line 26, and a maximum width, seen perpendicularly to the centre line 26.

    [0043] The central chip flute cross section has a maximum depth Dp within a range of Dp = 0.75 x D/2 to Dp = 0.90 x D/2, and a maximum width W within a range of W = 0.75 x D/2 to W = 0.90 x D/2. The maximum width W extends symmetrically about the centre line 26, i.e. the maximum width W extends equal distances from the centre line 26. According to some embodiments the central chip flute cross section has a maximum depth Dp within a range of Dp = 0.8 x D/2 to Dp = 0.86 x D/2, and a maximum width W within a range of W = 0.8 x D/2 to W = 0.86 x D/2.

    [0044] Since the central chip flute cross section has a maximum depth and a maximum width within ranges as defined above, the cross section of the drill body 4 includes material at a radial distance far from the rotational axis 10, compared to the cross sections of many prior art drill bodies, such as e.g. of the drill having chip flutes with J-shaped cross sections, described in the above mentioned US 8668409. Thus, the cross section in the plane extending perpendicularly to the rotational axis 10 of present drill body 4 provides high bending stiffness and torsional stiffness. Moreover, since the maximum width extends symmetrically about the centre line 26, the cross section of the drill body 4 extends substantially the same radial distance from the rotational axis 10 on both sides of the central chip flute 20. Also for this reason, the cross section of the present drill body 4, in the plane extending perpendicularly to the rotational axis 10, provides high bending and torsional stiffness.

    [0045] Since the central chip flute 20 has this cross section along a substantial part of the drill body 4, the bending and torsional stiffness of the drill body 4 and thus, also of the drill, is high.

    [0046] A diameter of helically shaped cutting chips from the central cutting insert may be within a range of 0.7 - 0.8 times a radius of the hole being drilled, i.e. D/2. Thus, the cutting chips will readily fit inside the central chip flute having dimensions as discussed above, for being guided therein out of the hole being drilled.

    [0047] In the illustrated first embodiment, the central chip flute cross section has a radially inner side 28 extending perpendicularly to the centre line 26 and forming a substantially straight portion, and lateral sides 30, 30' extending substantially in parallel with each other along at least a portion of the centre line 26. The transitions between the radially inner side 28 and the lateral sides 30, 30' may be rounded at a smaller or larger degree. In order to avoid concentration of stress at the transitions, a sharp corner may be avoided. Fully rounded transitions mean that the central chip flute cross section is U-shaped, see below with reference to Fig. 3b.

    [0048] The lateral sides 30, 30' extending substantially in parallel with each other means that each of the lateral sides 30, 30' extends at an angle within a range of 0 - 5 degrees to the centre line 26.

    [0049] The central chip flute cross section is symmetric about the centre line 26. Thus, also the cross section of the drill body 4 in the plane perpendicular to the rotational axis 10 is symmetric about the centre line 26 adjacent to the central chip flute 20, and the cross section of the drill body 4 extends the same radial distance from the rotational axis 10 on both sides of the central chip flute 20. As mentioned above, thus, the cross section of the drill body 4, in the plane extending perpendicularly to the rotational axis 10, provides high bending and torsional stiffness.

    [0050] Fig. 3b shows a second embodiment of the drill body 4, wherein the central chip flute cross section is substantially U-shaped. Accordingly, in alternative embodiments of the drill body 4 shown in Figs. 1a - 2b, the central chip flute 20 may have a U-shaped central chip flute cross section. Again, the central chip flute cross section has a centre line 26 extending in the plane extending perpendicularly to the rotational axis 10, and extending through the rotational axis 10. The central chip flute cross section has a maximum depth, seen along the centre line 26, and a maximum width, seen perpendicularly to the centre line 26.

    [0051] Also in these embodiments, the central chip flute cross section has a maximum depth Dp within a range of Dp = 0.75 x D/2 to Dp = 0.90 x D/2, and a maximum width W within a range of W = 0.75 x D/2 to W = 0.90 x D/2. The maximum width W extends symmetrically about the centre line 26.

    [0052] Again, the central chip flute cross section is symmetric about the centre line 26. Thus, also the cross section of the drill body 4 in the plane perpendicular to the rotational axis 10 is symmetric about the centre line 26 adjacent to the central chip flute 20, and the cross section of the drill body 4 extends the same radial distance from the rotational axis 10 on both sides of the central chip flute 20. As mentioned above, thus, the cross section of the drill body 4, in the plane extending perpendicularly to the rotational axis 10, provides high bending stiffness and torsional stiffness.

    [0053] The lateral sides 30, 30' of the U-shaped cross section may extend at an angle within a range of 0 - 5 degrees to the centre line 26.

    [0054] Fig. 1c illustrates a view of the drill 2 along the rotational axis 10 towards the front end 16 of the drill body 4. In this view, at the front end 16 of the drill body 4 an angle α between a radially extension of a cutting edge 27 of the central cutting insert 6 and an opposite wall 29 of the central chip flute 20 is approximately 100°. Thus, a diameter of cutting chips, forming a substantially constant diameter helix, from the central cutting insert 6 may be formed during drilling, suitable for leading the cutting chips through the central chip flute 20 of the above discussed dimensions.

    [0055] Returning to Figs. 1a, 1b, 2a, and 2b, the central chip flute 20 has a cross sectional shape corresponding to the central chip flute cross section discussed in connection with Figs. 2c, 2d, 3a or, 3b extending along a partial length of the drill body 4, e.g. from the cross section indicated with arrows IId - IId in Fig. 2a to the rear end 24 of the drilling length L.

    [0056] According to some embodiments, the central chip flute 20 may have a cross sectional shape corresponding to the central chip flute cross section along at least half the drilling length L. The central chip flute cross section is the central chip flute cross section discussed in connection with Figs. 2c, 2d, 3a, or 3b.

    [0057] The central chip flute 20 may have a cross sectional shape corresponding to the central chip flute cross section from a distance within a range of 0.25 x D to 1 x D from the front end 16 of the drill body 4 to the rear end 24 of the drilling length L.

    [0058] Fig. 3c shows an enlargement of the peripheral chip flute 22 and the peripheral chip flute cross section of Figs. 2c and 2d. The peripheral chip flute cross section has a centre line 26' extending in the plane extending perpendicularly to the rotational axis 10, and through the rotational axis 10. The peripheral chip flute cross section has a radially inner side 32 extending perpendicularly to the centre line 26, and a first lateral side 34 and an opposite second lateral side 34' connecting to the radially inner side 32. The radially inner side 32 may be substantially straight, and the first and second lateral sides 34, 34' may be substantially straight. The transitions between the radially inner side 32 and the first and second lateral sides 34, 34' may be rounded in order to avoid concentration of stress in the drill body 4.

    [0059] The radially inner side 32 may have a length L1 within a range of L1 = 0.95 x D/4 to L1 = 1.2 x D/4, wherein each of the first and second lateral sides 34, 34' may have a length LS1, LS2 within a range of LS1 (LS2) = D/4 to LS1 (LS2) = 1.3 x D/4, and wherein the first and second lateral sides 34, 34' diverge from each other in a direction radially outwards from the inner side 32. The radially inner side 32 extends symmetrically about the centre line 26' of the peripheral chip flute cross section. The first and second lateral sides 34, 34' may have the same length, but need not have the same lengths. The cross section of a drill body drill body 4 being provided with a peripheral chip flute 22 having the above discussed dimensions, provides high bending stiffness and torsional stiffness. Again, the cross section of the drill body 4 extending a far distance radially from the rotational axis 10 provides high bending stiffness and torsional stiffness. The peripheral chip flute 22 having the above discussed dimensions, provides for the cross section of the drill body 4 to extend the maximum radial distance available within the drill body 4 adjacent to the peripheral chip flute 22.

    [0060] The cutting chips from the peripheral cutting insert may have an approximately isosceles trapezium shape when seen in a top view of a cutting chip, with approximate measures as follows: side lengths D/4, long base edge 1.9 x D/4, and short base edge 0.9 x D/4. The long base edge of a cutting chip faces outwardly seen in a top view of the peripheral chip flute.

    [0061] Thus, the cutting chips will readily fit inside the peripheral chip flute having dimensions as discussed above, for being guided therein out of the hole being drilled.

    [0062] The first and second lateral sides 34, 34' may diverge symmetrically from each other about the centre line 26'. In such an embodiment the first and second lateral sides 34, 34' have the same length. Thus, cutting chips from the peripheral cutting insert may be readily guided along the peripheral chip flute 22 out of a hole being drilled.

    [0063] Ends of the first and second lateral sides 34, 34' opposite to the radially inner side 32 may be arranged at a distance L2 from each other within a range of L2 = 1.85 x D/4 to L2 = 2.5 x D/4. In this manner, the first and second lateral sides 34, 34' diverge from each other such that cutting chips from the peripheral cutting insert fit well in the peripheral chip flute 22, and may be easily guided along the peripheral chip flute 22 out of a hole being drilled.

    [0064] The lengths L1, LS1, LS2, L2 are measured between the intersection points between the respective distances.

    [0065] The peripheral chip flute 22 may have this cross section along a substantial part of the drill body 4. For instance, over the same exemplified distances of the drilling length as the central chip flute 20 has the central chip flute cross section according to embodiments discussed herein. Thus, the bending and torsional stiffness of the drill body 4 and thus, also of the drill, is high.

    [0066] Returning to Figs. 2a and 2c, the central chip flute cross section may be arranged opposite to the peripheral chip flute cross section, the central chip flute cross section and the peripheral chip flute cross section having the same centre line. Along the portion of the drill body 4 where the central chip flute cross section is arranged opposite to the peripheral chip flute cross section, the central chip flute cross section and the peripheral chip flute cross section may have the same centre line 26, 26', i.e. the centre lines 26, 26' of each of the central chip flute cross section and the peripheral chip flute cross section, may be collinear. In these embodiments, the central chip flute cross section is arranged opposite to the peripheral chip flute cross section along the portion of the drill body 4, where the central chip flute 20 and the peripheral chip flute 22 extend straight along the drill body 4, in parallel with the rotational axis 10.

    [0067] The web thickness of the drill body 4, as seen in the cross section where the central chip flute 20 is arranged opposite to the peripheral chip flutes 22, may be within a range of 0.20 x D to 0.30 x D. The web is the material in between the central chip flute 20 and the peripheral chip flute 22.

    [0068] In Fig. 2c two angles β are shown. Each of the angles β extends over a portion of the cross section of the drill body 4 where the radial distance of the drill body 4 extends the maximum radial distance possible with respect to the diameter of the drill body 4. These angles β are considerably wider than in drill bodies of prior art drills. Thus, the cross section of the drill body 4, in the plane extending perpendicularly to the rotational axis 10, provides high bending stiffness and torsional stiffness. According to some embodiments, each of the angles β is within a range of 110 - 120 degrees. According to some embodiments, both angles β are of the same size.

    [0069] The lateral sides 30, 30' of the central chip flute cross section, see Figs. 3a and 3b, intersect with the circumscribed circle of the drill body 4 in the plane extending perpendicularly to the rotational axis 10 at respective intersection points 40, 40'. The first and second lateral sides 34, 34' of the peripheral chip flute cross section, see Fig. 3c, intersect with the circumscribed circle of the drill body 4 in the plane extending perpendicularly to the rotational axis 10 at respective junction points 42, 42'. Each of the angles β may be defined as an angle β extending between an intersection point 40, 40' and a circumferentially adjacent junction point 42, 42'.

    [0070] The drill body 4 comprises at least one coolant channel 36, 36'. The at least one coolant channel 36, 36' leads from the shank 19 of the drill body 4 to an opening, or openings, at the front end portion 18 of the drill body 4.

    [0071] In these embodiments, the drill body 4 comprises two coolant channels 36, 36'. Each of the coolant channels has a diameter Df within a range of Df = 0.4 x D3/5 to Df = 0.7 x D3/5, seen in the plane extending perpendicularly to the rotational axis 10. Thus, the flow of coolant through the coolant channels 36, 36' may be sufficient for transporting cutting chips from the front end portion of the drill body 4 out of the hole being drilled, at a normal coolant pressure of e.g. 4 Bar.

    [0072] The above discussed dimensions of the central chip flute cross section and the peripheral chip flute cross section provides for the coolant channels 36, 36' to be arranged within the drill body 4 at a distance from the central chip flute 20 and the peripheral chip flute 22 such that the coolant channels 36, 36' are neither punctured during manufacturing of the drill body 4, nor punctured during use of the drill 2 as cutting chips may wear down the central and/or peripheral chip flute 20, 22.

    [0073] Each of the two coolant channels 36, 36' may be arranged at a distance dc within a range of dc = 0.20 x D to dc = 0.35 x D from the centre line 26' of the peripheral chip flute cross section, see Fig. 2d. Thus, the coolant channels 36, 36' may be arranged at a safe distance from the peripheral chip flute to ensure that the coolant channels 36, 36' remain undamaged during manufacturing of the drill body and during use of the drill. The distance dc is measured perpendicularly to the centre line 26' of the peripheral chip flute cross section.

    [0074] Just mentioned briefly, during manufacturing of the drill body the coolant channels are drilled as straight holes. Then, the drill body is twisted about the rotational axis. Thereafter, the central and peripheral chip flutes are milled, including their helical portions, in the drill body.

    [0075] It is to be understood that the foregoing is illustrative of various example embodiments and that the invention is defined only by the appended claims. A person skilled in the art will realize that the example embodiments may be modified, and that different features of the example embodiments may be combined to create embodiments other than those described herein, without departing from the scope of the invention, as defined by the appended claims.


    Claims

    1. A drill body (4) for a drill (2), the drill body (4) having a rotational axis (10) and being provided with a central insert seat (12) and a peripheral insert seat (14) at a front end portion (18) of the drill body (4), wherein
    the central insert seat (12) is configured for receiving a central cutting insert (6) for cutting a central portion of a hole having a hole diameter D, and the peripheral insert seat (14) is configured for receiving a peripheral cutting insert (8) for cutting a peripheral portion of the hole, wherein
    the drill body (4) comprises a central chip flute (20) extending from the central insert seat (12) along a periphery of the drill body (4) and a peripheral chip flute (22) extending from the peripheral insert seat (14) along a periphery of the drill body (4), and wherein
    the central chip flute (20) has a central chip flute cross section in a plane extending perpendicularly to the rotational axis (10), the central chip flute cross section being formed within a circumscribed circle of the drill body (4) in the plane extending perpendicularly to the rotational axis (10),
    the central chip flute cross section has a centre line (26) extending in the plane and through the rotational axis (10), wherein the central chip flute cross section has a maximum depth, seen along the centre line (26), and a maximum width, seen perpendicularly to the centre line (26), wherein
    the maximum depth Dp is within a range of Dp = 0.75 x D/2 to Dp = 0.90 x D/2, characterised in that the maximum width is within a range of W = 0.75 x D/2 to W = 0.90 x D/2, wherein the maximum width W extends symmetrically about the centre line (26).
     
    2. The drill body (4) according to claim 1, wherein the central chip flute cross section is symmetric about the centre line (26).
     
    3. The drill body (4) according to claim 1 or 2, wherein the central chip flute cross section is substantially U-shaped.
     
    4. The drill body (4) according to claim 1 or 2, wherein the central chip flute cross section has a radially inner side (28) extending perpendicularly to the centre line (26) and forming a substantially straight portion, and lateral sides (30, 30') extending substantially in parallel with each other along at least a portion of the centre line (26).
     
    5. The drill body (4) according to any one of the preceding claims, wherein the central chip flute (20) has a cross sectional shape corresponding to the central chip flute cross section along a partial length of the drill body (4).
     
    6. The drill body (4) according to any one of the preceding claims, wherein the drill body (4) has a drilling length, L, within a range of 1 x D to 8 x D.
     
    7. The drill body (4) according to claim 6, wherein the central chip flute (20) has a cross sectional shape corresponding to the central chip flute cross section along at least half the drilling length L.
     
    8. The drill body (4) according to claim 6 or 7, wherein the central chip flute (20) has a cross sectional shape corresponding to the central chip flute cross section from a distance within a range of 0.25 x D to 1 x D from a front end (16) of the drill body (4) to a rear end (24) of the drilling length L.
     
    9. The drill body (4) according to any one of the preceding claims, wherein the drill body (4) comprises at least one coolant channel (36, 36').
     
    10. The drill body (4) according to any one of the preceding claims, wherein the drill body (4) comprises two coolant channels (36, 36'), and wherein each of the coolant channels (36, 36') has a diameter Df within a range of Df = 0.4 x D3/5 to Df = 0.7 x D3/5, seen in the plane extending perpendicularly to the rotational axis (10).
     
    11. The drill body (4) according to any one of the preceding claims, wherein the peripheral chip flute (22) has a peripheral chip flute cross section in a plane extending perpendicularly to the rotational axis (10), wherein
    the peripheral chip flute cross section is formed within a circumscribed circle of the drill body (4) in the plane extending perpendicularly to the rotational axis (10), wherein
    the peripheral chip flute cross section has a centre line (26') extending in the plane and through the rotational axis (10), wherein the peripheral chip flute cross section has a radially inner side (32) extending perpendicularly to the centre line (26'), and a first lateral side (34) and an opposite second lateral side (34') connecting to the radially inner side (32), wherein
    the radially inner side (32) has a length L1 within a range of L1 = 0.95 x D/4 to L1 = 1.2 x D/4, wherein
    each of the first and second lateral sides (34, 34') has a length LS1, LS2 within a range of D/4 to 1.3 x D/4, wherein
    the radially inner side (32) extends symmetrically about the centre line (26) of the peripheral chip flute cross section, and wherein
    the first and second lateral sides (34, 34') diverge from each other in a direction radially outwards from the inner side (32).
     
    12. The drill body (4) according to claim 11, wherein the first and second lateral sides (34, 34') diverge symmetrically from each other about the centre line (26').
     
    13. The drill body (4) according to claim 11 or 12, wherein ends of the first and second lateral sides (34, 34') opposite to the radially inner side (32) are arranged at a distance L2 from each other within a range of L2 = 1.85 x D/4 to L2 = 2.5 x D/4.
     
    14. The drill body (4) according to any one of the preceding claims, wherein the central chip flute cross section is arranged opposite to the peripheral chip flute cross section, the central chip flute cross section and the peripheral chip flute cross section having the same centre line (26, 26').
     
    15. A drill (2) for metal cutting comprising a drill body (4) having a rotational axis (10) and being provided with a central insert seat (12) and a peripheral insert seat (14) at a front end portion (18) of the drill body (4), a central cutting insert (6) for cutting a central portion of a hole having a hole diameter D arranged in the central insert seat (12), and a peripheral cutting insert (8) for cutting a peripheral portion of the hole arranged in the peripheral insert seat (14),
    characterised in that
    the drill body (4) is a drill body (4) according to any one of the preceding claims.
     
    16. The drill (2) according to claim 15, wherein the central cutting insert (6) is configured for cutting in an axial direction of the hole with a cutting length in a radial direction of approximately D/4, and wherein the peripheral cutting insert (8) is configured for cutting in the axial radial direction of the hole with a cutting length in the radial direction of approximately D/4.
     
    17. The drill (2) according to claim 15 or 16, wherein at the front end of the drill body (4) an angle between a radially extension of a cutting edge (27) of the central cutting insert (6) and an opposite wall (29) of the central chip flute (20) is approximately 100°, seen in a view along the rotational axis (10).
     


    Ansprüche

    1. Bohrerkörper (4) für einen Bohrer (2), wobei der Bohrerkörper (4) eine Rotationsachse (10) hat und an einem vorderen Endabschnitt (18) des Bohrerkörpers (4) mit einem zentralen Einsatz sitz (12) und einem peripheren Einsatzsitz (14) versehen ist, wobei
    der zentrale Einsatzsitz (12) dafür ausgelegt ist, einen zentralen Schneideinsatz (6) aufzunehmen, um einen zentralen Bereich der Bohrung zu schneiden, welche einen Bohrungsdurchmesser D hat, und der periphere Einsatzsitz (14) so ausgelegt ist, dass er einen peripheren Schneideinsatz (8) zum Schneiden eines peripheren Bereiches der Bohrung aufnimmt, wobei
    der Bohrerkörper (4) eine zentrale Spannut (20) aufweist, welche sich von dem zentralen Einsatzsitz (12) entlang des Umfangs des Bohrerkörpers (4) erstreckt, und eine periphere Spannut (22) aufweist, die sich von dem peripheren Einsatzsitz (14) entlang des Umfangs des Bohrkörpers (4) erstreckt, und wobei
    die zentrale Spannut (20) in einer senkrecht zur Rotationsachse (10) verlaufenden Ebene einen Querschnitt der zentralen Spannut hat, wobei der Querschnitt der zentralen Spannut innerhalb eines den Bohrerkörper (4) umschreibenden Kreises in der Ebene, welche sich senkrecht zu der Rotationsachse (10) erstreckt, gebildet wird, wobei
    der Querschnitt der zentralen Spannut eine zentrale Linie (26) hat, die sich in der Ebene und durch die Rotationsachse (10) hindurch erstreckt, wobei der Querschnitt der zentralen Spannut, gesehen entlang der zentralen Linie (26) eine maximale Tiefe hat und senkrecht zu der zentralen Linie (26) gesehen eine maximale Breit hat, wobei
    die maximale Tiefe Dp innerhalb des Bereiches von
    Dp = 0,75 x D/2 bis Dp = 0,90 x D/2 liegt, dadurch gekennzeichnet, dass die maximale Breite innerhalb eines Bereiches von W = 0,75 x D/2 bis W = 0,90 x D/2 liegt, und wobei die maximale Breite sich bezüglich der zentralen Linie (26) symmetrisch erstreckt.
     
    2. Bohrerkörper (4) nach Anspruch 1, wobei der Querschnitt der zentralen Spannut bezüglich der zentralen Linie (26) symmetrisch ist.
     
    3. Bohrerkörper (4) nach Anspruch 1 oder 2, wobei der Querschnitt der zentralen Spannut im Wesentlichen U-förmig ist.
     
    4. Bohrerkörper (4) nach Anspruch 1 oder 2, wobei der Querschnitt der zentralen Spannut eine radial innere Seite (28) hat, die sich senkrecht zu der zentralen Linie (26) erstreckt und einen im Wesentlichen geraden Abschnitt bildet, sowie seitliche Flanken (30, 30'), die sich im Wesentlichen parallel zueinander entlang zumindest eines Teiles der zentralen Linie (26) erstrecken.
     
    5. Bohrerkörper (4) nach einem der vorstehenden Ansprüche, wobei die zentrale Spannut (20) eine Querschnittsform hat, welche dem Querschnitt der zentralen Spannut entlang einer Teillänge des Bohrerkörpers (4) entspricht.
     
    6. Bohrerkörper (4) nach einem der vorstehenden Ansprüche, wobei der Bohrerkörper (4) eine Bohrlänge, L, innerhalb eines Bereiches von 1 x D bis 8 x D hat.
     
    7. Bohrerkörper (4) nach Anspruch 6, wobei die zentrale Spannut (20) eine Querschnittsform hat, die entlang zumindest der Hälfte der Bohrlänge L dem Querschnitt der zentralen Spannut entspricht.
     
    8. Bohrerkörper (4) nach Anspruch 6 oder 7, wobei die zentrale Spannut (20) eine Querschnittsform hat, welche dem Querschnitt der zentralen Spannut über eine Strecke innerhalb des Bereiches von 0,25 x D bis 1 x D entspricht, gemessen von einem vorderen Ende (16) des Bohrerkörpers (4) zu einem hinteren Ende (24) der Bohrlänge L.
     
    9. Bohrerkörper (4) nach einem der vorstehenden Ansprüche, wobei der Bohrerkörper (4) zumindest einen Kühlmittelkanal (36, 36') aufweist.
     
    10. Bohrerkörper (4) nach einem der vorstehenden Ansprüche, wobei der Bohrerkörper (4) zwei Kühlmittelkanäle (36, 36') aufweist und wobei jeder der Kühlmittelkanäle (36, 36') einen Durchmesser Df innerhalb eines Bereiches von Df = 0,4 x D3/5 bis Df = 0,7 x D3/5 haben, gesehen in einer Ebene, welche sich senkrecht zu der Rotationsachse (10) erstreckt.
     
    11. Bohrerkörper (4) nach einem der vorstehenden Ansprüche, wobei die periphere Spannut (22) in einer Ebene, welche sich senkrecht zu der Rotationsachse (10) erstreckt, einen Querschnitt der peripheren Spannut hat, wobei
    der Querschnitt der peripheren Nut innerhalb eines umschriebenen Kreises des Bohrerkörpers (4) in der Ebene gebildet ist, welche sich senkrecht zu der Rotationsachse (10) erstreckt, wobei
    der Querschnitt der peripheren Spannut eine zentrale Linie (26') hat, welche sich in der Ebene und durch die Rotationsachse (10) hindurch erstreckt, wobei der Querschnitt der peripheren Spannut eine radial innere Seite (32) hat, die sich senkrecht zu der zentralen Linie (26') erstreckt und eine erste Seitenflanke (34) sowie eine entgegengesetzte zweite Seitenflanke (34') hat, welche an die radial innere Seite (32) anschließen, wobei
    die radial innere Seite (32) eine Länge L1 innerhalb eines Bereiches von L1 = 0,95 x D/4 bis L1 = 1,2 X D/4 hat, wobei
    jede der ersten und zweiten Seitenflanken (34, 34') eine Länge LS1, LS2 innerhalb eines Bereiches von D/4 bis 1,3 x D/4 hat, wobei
    die radial innere Seite (32) sich bezüglich der zentralen Linie (26') des peripheren Spannutquerschnittes symmetrisch erstreckt und wobei
    die ersten und zweiten seitlichen Flanken (34, 34') in einer Richtung von der inneren Seite (32) radial nach außen voneinander divergieren.
     
    12. Bohrerkörper (4) nach Anspruch 11, wobei die ersten und zweiten Seitenflanken (34, 34') bezüglich der zentralen Linie (26') symmetrisch voneinander divergieren.
     
    13. Bohrerkörper (4) nach Anspruch 11 oder 12, wobei die Enden der ersten und zweiten Seitenflanken (34, 34') welche von der radial inneren Seite (32) abgelegen sind, unter einem Abstand L2 voneinander angeordnet sind, wobei L2 innerhalb eines Bereiches von L2 = 1,85 x D/4 bis L2 = 2,5 x D/4 liegt.
     
    14. Bohrerkörper (4) nach einem der vorstehenden Ansprüche, wobei der Querschnitt der zentralen Spannut gegenüber von dem Querschnitt der peripheren Spannut angeordnet ist, wobei der Querschnitt der zentralen Spannut und der Querschnitt der peripheren Spannut dieselbe zentrale Linie (26, 26') haben.
     
    15. Bohrer (2) für das Schneiden von Metall, welcher einen Bohrerkörper (4) aufweist, der eine Rotationsachse (10) aufweist und der mit einem zentralen Einsatzsitz (12) und einem peripheren Einsatzsitz (14) an einem vorderen Endabschnitt (18) des Bohrerkörpers (4) versehen ist, mit einem zentralen Schneideinsatz (6) zum Schneiden eines zentralen Bereiches einer Bohrung, welcher einen Bohrungsdurchmesser D hat, wobei der zentrale Schneideinsatz in dem zentralen Einsatzsitz (12) angeordnet ist, und einen peripheren Schneideinsatz (8) für das Schneiden eines peripheren Bereiches der Bohrung, welcher in dem peripheren Einsatzsitz (14) angeordnet ist,
    dadurch gekennzeichnet, dass
    der Bohrerkörper (4) ein Bohrerköprer (4) nach einem der vorstehenden Ansprüche ist.
     
    16. Bohrer (2) nach Anspruch 15, wobei der zentrale Schneideinsatz (6) für das Schneiden in axialer Richtung der Bohrung mit einer Schneidlänge in radialer Richtung von etwa D/4 ausgelegt ist und wobei der periphere Schneideinsatz (8) für das Schneiden in axialer Richtung der Bohrung mit einer Schneidlänge in radialer Richtung von etwa D/4 ausgelegt ist.
     
    17. Bohrer (2) nach Anspruch 15 oder 16, wobei am vorderen Ende des Bohrerkörpers (4) ein Winkel zwischen einer radialen Erstreckung der Schneidkante (27) des zentralen Schneideinsatzes (6) und einer gegenüberliegenden Wand (29) der zentralen Spannut (20), gesehen in einer Ansicht entlang der Rotationsachse (10), näherungsweise 100° beträgt.
     


    Revendications

    1. Corps de foret (4) d'un foret (2), le corps de foret (4) présentant un axe de rotation (10) et étant doté d'un siège de plaquette central (12) et d'un siège de plaquette périphérique (14) au niveau d'une partie d'extrémité avant (18) du corps de foret (4), où
    le siège de plaquette central (12) est configuré pour recevoir une plaquette de coupe centrale (6) destinée à la découpe d'une partie centrale d'un trou présentant un diamètre de trou D, et le siège de plaquette périphérique (14) est configuré pour recevoir une plaquette de coupe périphérique (8) destinée à la découpe d'une partie périphérique du trou, où
    le corps de foret (4) comprend une goujure à copeaux centrale (20) s'étendant depuis le siège de plaquette central (12) le long d'une périphérie du corps de foret (4) et une goujure à copeaux périphérique (22) s'étendant depuis le siège de plaquette périphérique (14) le long d'une périphérie du corps de foret (4), et où
    la goujure à copeaux centrale (20) présente une section transversale de goujure à copeaux centrale dans un plan s'étendant perpendiculairement à l'axe de rotation (10), la section transversale de goujure à copeaux centrale étant formée à l'intérieur d'un cercle circonscrit du corps de foret (4) dans le plan s'étendant perpendiculairement à l'axe de rotation (10),
    la section transversale de goujure à copeaux centrale présente un axe central (26) s'étendant dans le plan et croisant l'axe de rotation (10), où la section transversale de goujure à copeaux centrale présente une profondeur maximale, selon une vue d'observation le long de l'axe central (26), et une largeur maximale, selon une vue d'observation perpendiculairement à l'axe central (26), où
    la profondeur maximale Dp se situe dans une plage allant de Dp = 0,75 x D/2 à Dp = 0,90 x D/2, caractérisé en ce que la largeur maximale se situe dans une plage allant de W = 0,75 x D/2 à W = 0,90 x D/2, où la largeur maximale W s'étend symétriquement autour de l'axe central (26).
     
    2. Corps de foret (4) selon la revendication 1, dans lequel la section transversale de goujure à copeaux centrale est symétrique autour de l'axe central (26).
     
    3. Corps de foret (4) selon la revendication 1 ou 2, dans lequel la section transversale de goujure à copeaux centrale est sensiblement en forme de U.
     
    4. Corps de foret (4) selon la revendication 1 ou 2, dans lequel la section transversale de goujure à copeaux centrale présente un côté radialement intérieur (28) s'étendant perpendiculairement à l'axe central (26) et formant une partie sensiblement droite, et des côtés latéraux (30, 30') s'étendant sensiblement parallèlement l'un par rapport à l'autre le long d'au moins une partie de l'axe central (26).
     
    5. Corps de foret (4) selon l'une quelconque des revendications précédentes, dans lequel la goujure à copeaux centrale (20) présente une forme en section transversale correspondant à la section transversale de goujure à copeaux centrale sur une longueur partielle du corps de foret (4).
     
    6. Corps de foret (4) selon l'une quelconque des revendications précédentes, où le corps de foret (4) présente une longueur de perçage, L, dans une plage allant de 1 x D à 8 x D.
     
    7. Corps de foret (4) selon la revendication 6, dans lequel la goujure à copeaux centrale (20) présente une forme en section transversale correspondant à la section transversale de goujure à copeaux centrale sur au moins la moitié de la longueur de perçage L.
     
    8. Corps de foret (4) selon la revendication 6 ou 7, dans lequel la goujure à copeaux centrale (20) présente une forme en section transversale correspondant à la section transversale de goujure à copeaux centrale à une distance dans une plage allant de 0,25 x D à 1 x D d'une extrémité avant (16) du corps de foret (4) jusqu'à une extrémité arrière (24) de la longueur de perçage L.
     
    9. Corps de foret (4) selon l'une quelconque des revendications précédentes, où le corps de foret (4) comprend au moins un canal à réfrigérant (36, 36').
     
    10. Corps de foret (4) selon l'une quelconque des revendications précédentes, où le corps de foret (4) comprend deux canaux à réfrigérant (36, 36'), et où chacun des canaux à réfrigérant (36, 36') présente un diamètre Df dans une plage allant de Df = 0,4 x D3/5 à Df = 0,7 x D3/5, selon une vue d'observation dans le plan s'étendant perpendiculairement à l'axe de rotation (10).
     
    11. Corps de foret (4) selon l'une quelconque des revendications précédentes, dans lequel la goujure à copeaux périphérique (22) présente une section transversale de goujure à copeaux périphérique dans un plan s'étendant perpendiculairement à l'axe de rotation (10), où
    la section transversale de goujure à copeaux périphérique est formée à l'intérieur d'un cercle circonscrit du corps de foret (4) dans le plan s'étendant perpendiculairement à l'axe de rotation (10), où
    la section transversale de goujure à copeaux périphérique présente un axe central (26') s'étendant dans le plan et croisant l'axe de rotation (10), où la section transversale de goujure à copeaux périphérique présente un côté radialement intérieur (32) s'étendant perpendiculairement à l'axe central (26'), et un premier côté latéral (34) et un second côté latéral opposé (34') rejoignant le côté radialement intérieur (32), où
    le côté radialement intérieur (32) présente une longueur L1 dans une plage allant de L1 = 0,95 x D/4 à L1 = 1,2 x D/4, où
    chacun des premier et second côtés latéraux (34, 34') présente une longueur LS1, LS2 dans une plage allant de D/4 à 1,3 x D/4, où
    le côté radialement intérieur (32) s'étend symétriquement autour de l'axe central (26') de la section transversale de goujure à copeaux périphérique, et où
    les premier et second côtés latéraux (34, 34') s'écartent l'un de l'autre selon une direction radialement vers l'extérieur depuis le côté intérieur (32).
     
    12. Corps de foret (4) selon la revendication 11, dans lequel les premier et second côtés latéraux (34, 34') s'écartent symétriquement l'un de l'autre autour de l'axe central (26').
     
    13. Corps de foret (4) selon la revendication 11 ou 12, dans lequel des extrémités des premier et second côtés latéraux (34, 34') opposées au côté radialement intérieur (32) sont agencées à une distance L2 l'une de l'autre dans une plage allant de L2 = 1,85 x D/4 à L2 = 2,5 x D/4.
     
    14. Corps de foret (4) selon l'une quelconque des revendications précédentes, dans lequel la section transversale de goujure à copeaux centrale est agencée à l'opposé de la section transversale de goujure à copeaux périphérique, la section transversale de goujure à copeaux centrale et la section transversale de goujure à copeaux périphérique ayant le même axe central (26, 26').
     
    15. Foret (2) destiné à la découpe de métal comprenant un corps de foret (4) présentant un axe de rotation (10) et étant doté d'un siège de plaquette central (12) et d'un siège de plaquette périphérique (14) au niveau d'une partie d'extrémité avant (18) du corps de foret (4), une plaquette de coupe centrale (6) destinée à la découpe d'une partie centrale d'un trou présentant un diamètre de trou D agencée dans le siège de plaquette central (12), et une plaquette de coupe périphérique (8) destinée à la découpe d'une partie périphérique du trou agencée dans le siège de plaquette périphérique (14),
    caractérisé en ce que
    le corps de foret (4) est un corps de foret (4) selon l'une quelconque des revendications précédentes.
     
    16. Foret (2) selon la revendication 15, dans lequel la plaquette de coupe centrale (6) est configurée pour réaliser une découpe dans une direction axiale du trou avec une longueur de coupe dans une direction radiale d'approximativement D/4, et où la plaquette de coupe périphérique (8) est configurée pour réaliser une découpe dans une direction radiale axiale du trou avec une longueur de coupe dans la direction radiale d'approximativement D/4.
     
    17. Foret (2) selon la revendication 15 ou 16, dans lequel au niveau de l'extrémité avant du corps de foret (4), un angle entre une étendue de manière radiale d'une arête de coupe (27) de la plaquette de coupe centrale (6) et une paroi opposée (29) de la goujure à copeaux centrale (20) est d'approximativement 100°, selon une vue d'observation le long de l'axe de rotation (10).
     




    Drawing




















    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description