(19)
(11)EP 3 406 019 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
06.05.2020 Bulletin 2020/19

(21)Application number: 17704315.5

(22)Date of filing:  19.01.2017
(51)Int. Cl.: 
H02K 1/30  (2006.01)
H02K 9/19  (2006.01)
H02K 7/14  (2006.01)
H02K 11/33  (2016.01)
(86)International application number:
PCT/NL2017/050034
(87)International publication number:
WO 2017/126965 (27.07.2017 Gazette  2017/30)

(54)

WHEEL FOR A ROAD VEHICLE

RAD FÜR EIN STRASSENFAHRZEUG

ROUE POUR VÉHICULE ROUTIER


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 20.01.2016 NL 2016127

(43)Date of publication of application:
28.11.2018 Bulletin 2018/48

(73)Proprietor: E-traction Europe B.V.
7324 AH Apeldoorn (NL)

(72)Inventors:
  • VAN DER WAL, Reinhard Peter
    3207 GH Spijkenisse (NL)
  • SEVENTER, Timothy
    6823 HW Arnhem (NL)

(74)Representative: Nederlandsch Octrooibureau 
P.O. Box 29720
2502 LS The Hague
2502 LS The Hague (NL)


(56)References cited: : 
EP-A1- 0 249 808
EP-A1- 1 433 242
WO-A1-2009/128581
WO-A2-2014/207638
CN-A- 102 044 932
CN-U- 201 869 070
DE-A1-102011 082 117
GB-A- 2 518 028
JP-A- 2007 182 194
US-A- 5 894 902
US-A1- 2010 194 180
US-B2- 9 073 425
EP-A1- 1 380 459
EP-A1- 1 935 082
WO-A2-2006/076321
CN-A- 1 852 008
CN-U- 201 745 428
CN-U- 202 006 723
GB-A- 2 461 168
JP-A- 2005 333 706
JP-A- 2013 085 388
US-A1- 2004 021 437
US-A1- 2013 257 327
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    FIELD OF THE INVENTION



    [0001] a road vehicle wheel with an in-wheel electric motor, the wheel comprising a rim and a rotor with permanent magnets and a stator with electromagnets.

    BACKGROUND OF THE INVENTION



    [0002] Wheels driven by an electric motor are known. The electric motor can be provided in the car and drive the axis of the wheel to rotate the wheel. This requires the electric motor to be located in the car. Another possibility is to position the electric motor in the wheel itself. Such wheels having an in-wheel electric motor are known as well. For example, CN 202006723 discloses a hub motor with stator coils that are fixed on a hollow axis. A rotating bracket is mounted on the road side of the axis and carries permanent magnets that are spaced from the electromagnets such that an axially oriented air gap is formed. The bracket carries a rim for receiving a single tire. In a further example, WO 2009/128581 discloses an in-wheel motor in which the permanent magnets that are fixed to the rotor are spaced at a radially oriented air gap from the stator coils. A rim for mounting a single tire is fixed to the road side part of the housing to which the permanent magnets are attached. Thus, part of the electric motor is generally coupled to the rim of the wheel, the rim carrying the tire of the wheel. Another part of the in-wheel electric motor is generally positioned centrally in the wheel and will constitute a non-rotating part of the wheel. The non-rotating part of the electric motor and part of the electric motor coupled to the rim are generally referred to as stator and rotor, respectively. The interaction between rotor and stator is of magnetic nature, at least one of the rotor and stator comprising electromagnets. US 2010/0194180 discloses a hub and tire mount for off-road vehicles, such as large haulage trucks for mining operations. In each large size-wheel, an electric wheel motor is accommodated having a rotating central axis that connects to a gearcase, and a stationary housing. The gearcase is supported by a spindle provided with bearings carrying a hub mount with two tire mounts for each receiving a tire

    [0003] Their mutual distance should be small enough for the electric motor to be able to deliver enough power and torque to the wheel, and preferably as small as practically possible. On the other hand, their mutual distance should be large enough to be able to absorb loads and mechanical impacts on the wheel. Further, large currents are required to provide the necessary power and torque to the motor. This causes a temperature rise of the electric motor and wheel, and cooling is required to limit the temperature rise. Having a maximum of torque available for a given electrical current is very advantageous. Various solutions have been proposed, but they are all quite complicated.

    SUMMARY OF THE INVENTION



    [0004] It is an objective of the invention to provide a wheel for a road vehicle having an in-wheel electric motor that can provide a high torque but takes a relatively small space as compared to known in-wheel electric motors.

    [0005] It is another or alternative objective of the invention to provide a wheel having an in-wheel electric motor that can provide a high torque but is still sized to allow mounting of tires that are standard for the specific application, such as for buses or cars.

    [0006] It is yet another or alternative objective of the invention to provide a road vehicle wheel with in-wheel electric motor which can carry high mechanical loads.

    [0007] At least one of the above objectives is achieved by a road vehicle wheel with an in-wheel electric motor as claimed in claim 1.

    [0008] The rotor of the wheel according to the invention does not carry any loads from the rim. An air gap between rotor and stator can therefore be kept very small, which is highly advantageous for an increased efficiency of the electric motor. The rotor on which the permanent magnets are mounted need not be designed for mechanical strength and can therefore be kept very thin. The internal diameter of the rotor can thus be chosen larger at a same external diameter, the rotor can thus effectively be positioned further from the rotation axis, so as to provide a larger internal surface and thus a larger area for magnetic interaction between rotor and stator for a more efficient generation of torque by the electric motor, further enhancing the efficiency of the motor.

    [0009] In an embodiment the rim is supported such that any forces exerted on the rim are directly born by the rim support. Any load on the rim is directly channelled into the rim support to prevent any load to be exerted on the rotor.

    [0010] In an embodiment the rim is not in direct contact with the rotor to further lower any risk of forces to be exerted on the rotor by external influences.

    [0011] In an embodiment there is a gap between the rotor and the rim, especially the gap being filled with a gas, especially air. By having a gap, especially an air gap between rotor and rim the rim may deform due to external forces without coming into contact with the rotor.

    [0012] In an embodiment the non-rotating part comprises a shaft supporting the rim support, especially through a bearing.

    [0013] In an embodiment the rim has first and second ends along a rotation axis of the wheel, the rim support being associated with the first and second ends of the rim. Both ends of the rim are in such configuration supported, which is efficient to limit any deformation of the rim.

    [0014] In an embodiment the rim support comprises first and second plates associated with the first and second ends of the rim, and the rotor being supported by and provided in between the first and second plates. The plates prove to be an efficient means for supporting the rim and to provide a support for the rotor as well. The plates very effectively pass any loads to the shaft. They can easily be configured such that they will not deform under any load.

    [0015] In an embodiment the rotor comprises a magnet holding element that is supported on the rim support, the magnet holding element being manufactured from a material that is selected for its optimum magnetic flux guiding properties. Since the material of the rotor need not be selected for its mechanical strength it can be selected for optimum flux-guiding properties to increase efficiency of the electric motor.

    [0016] In an embodiment the material of the magnet holding arrangement has a relative magnetic permeability of at least 100, especially in the range of 200 to 8,000, more especially in the range of 1,000 to 8,000.

    [0017] In an embodiment the shaft is a hollow shaft, which reduces weight of the wheel and provides a space for providing required facilities for the electric motor.

    [0018] In an embodiment the stator is supported on the hollow shaft, which provides a very good and stable support to the stator.

    [0019] In an embodiment a cooling arrangement comprising a cooling space is provided in between the hollow shaft and the stator, and cooling conduits for providing a cooling fluid to the cooling arrangement are guided through the hollow shaft.

    [0020] In an embodiment the hollow shaft defines an electronics compartment holding electronics for controlling the electric motor, and electrical connections for the electronics are guided through the hollow shaft, especially the electronics compartment being provided in a space surrounded by the stator.

    [0021] In an embodiment the electronics compartment is a sealed compartment, especially meeting IP67 or higher standards.

    [0022] In an embodiment the electronics compartment comprises a connector plate configured for providing electrical connections for the electronics and electric motor, and for the cooling arrangement.

    [0023] In an embodiment the connector plate comprises a connector for a CAN bus.

    [0024] In an embodiment the stator, rotor and electronics cooperate to provide a peak torque to the rim in a range of 3,000 Nm to 15,000 Nm, especially in the range of 6,500 Nm to 11,000 Nm.

    [0025] In an embodiment the electromagnets comprise a paramagnetic core between coil windings.

    [0026] In an embodiment the rim is sized and configured for mounting two tires, especially standard size tires.

    [0027] In an embodiment the wheel further comprising a brake disc rigidly connected to the rotor, especially to the back plate.

    [0028] In an embodiment the electronics comprise a DC capacitor bloc comprising high voltage foil capacitors.

    [0029] In an embodiment the electronics comprise IGBT modules mounted on a cooling plate.

    [0030] In an embodiment the IGBT modules provide a peak current in the range of from 700 Amperes to 1,000 Amperes.

    [0031] In an embodiment the electronics comprise a monitoring device for ensuring ASIL compliance.

    [0032] In an embodiment the monitoring device ensures ASIL C and/or ASIL D compliance.

    [0033] In an embodiment the wheel allows free ingress and egress of water, wherein moisture sensitive components, especially at least one of the permanent magnets and the electromagnets, are coated with a hermetically sealing coating, especially a powder coating.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0034] Further features and advantages of the invention will become apparent from the description of the invention by way of non-limiting and non-exclusive embodiments. These embodiments are not to be construed as limiting the scope of protection. The person skilled in the art will realize that other alternatives and equivalent embodiments of the invention can be conceived and reduced to practice without departing from the scope of the present invention. Embodiments of the invention will be described with reference to the accompanying drawings, in which like or same reference symbols denote like, same or corresponding parts, and in which

    Figure 1 shows a cross-section of a wheel according to the invention; and

    Figure 2 shows a detail of the rotor with the permanent magnets.


    DETAILED DESCRIPTION OF EMBODIMENTS



    [0035] A wheel 10 for a road vehicle, such as a car, bus or truck, is shown in figure 1 and comprises a rotating part 100 and a static, non-rotating part 200. An electric motor 12 is arranged inside the wheel to provide for an in-wheel electric motor. Two tires 11 are mounted on a rim 120 of the wheel. In other embodiments one or more tires may be mounted on a suitable rim of the wheel, which can be standard size tires for the intended application of the wheel, such as for buses or cars. A first (front) plate 121 and a second (back) plate 122 together with their annular extensions 121a, 122a provide a rim support and are rigidly attached to the rim. The rim 120, the front and back plates 121, 122 and annular extensions 121a, 122a are rotating parts of the wheel and the rim is supported by the front and back plates and their annular extensions. The rim 120 has first and second ends 120.1, 120.2 along a rotation axis R of the wheel. The first/front plate 121 is associated with the first end 120.1 of the rim 120 and the second/back plate 122 is associated with the second end 120.2 of the rim. Bearings 13.1, 13.2 are provided in between the front (first) and back (second) plates of the rim support of the rotating part 100 and a hollow shaft 220 of the static part 200.

    [0036] The electric motor comprises a rotor 110 arranged on the rotating part 100 and a stator 210 arranged on the static part 200. A detail of stator and rotor is shown in figure 2. The rotor 110 is provided with permanent magnets 111 on an internal cylindrical surface of a magnet holding element 112, and the stator 210 is provided with electromagnets that are generally provided with coil windings 211. A paramagnetic core 210a can be provided between the windings. An air gap 101 is present between the permanent magnets of the rotor and the electromagnets of the stator. A phase and direction of electrical currents through the electromagnets is controlled so as to provide forces between the electromagnets of the stator and the permanent magnets of the rotor to induce rotation of the rotor with respect to the stator. Such techniques are generally known and will not be further explained in the present description.

    [0037] The rotor 110 is configured for providing a strong magnetic field for interaction with the magnetic field provided by the electromagnet. Strong permanent magnets 111 are arranged on the magnet holding element 112. The material of the permanent magnets is selected for its strong magnetic properties. The height H1 of the permanent magnetics can therefore be kept smaller in comparison with permanent magnets from a magnetic material having less strong magnetic properties. The efficiency of the rotor is further dependent on the flux guiding properties of the magnet holding element 112. The element 112 does not bear any forces exerted on the rim, since such forces are directly channeled to the front and back plates 121, 122 and a gap 120a filled with air is provided in between the rotor and the rim. Therefore, the material of the magnet holding element 112 need not be selected on its mechanical strength but can be selected for optimum flux guiding properties. To achieve good magnetic flux guiding properties a material having a relative magnetic permeability larger than 100, especially in the range of 200 to 8,000, more especially in the range of 1,000 to 8,000 is selected for the magnet holding element 112. The permanent magnets 111 may be glued and/or mechanically fixed, such as by appropriate bolts, to the magnet holding element 112. The height H2 of the magnet holding element can therefore also be selected relatively small to allow bringing the air gap in between rotor and stator further away from the rotational axis, which improves efficiency and the ability to deliver torque. The torque provided by the electric motor is amongst others dependent on the strength of the permanent magnets, the magnetic flux guiding abilities of the magnet holding element and the internal circumferential length of the rotor, of which the rotor internal circumferential length plays a very crucial role. The rotor internal circumferential length is increased by bringing it further outwards since it is dependent on the internal diameter of the rotor. On the other hand the diameter is restricted by the size of the tires that should fit on the rim. By having strong permanent magnets 111 and an excellent flux guiding magnet holding element 112 one is allowed to make the magnet holding element thin and thus achieve a maximum internal diameter of the rotor within a given rim size.

    [0038] The rotor with magnet holding element 112 and permanent magnets 111 and the electromagnets can be coated with a hermetically sealing coating 300 to protect them against corrosion. During manufacturing a powder coating is applied over these parts, which is subsequently cured at the required temperature to yield the hermetically sealing coating over the magnets.

    [0039] The static part 200 further comprises a hollow shaft 220 that is configured for carrying the weight of the wheel and part of the vehicle on which the wheel is mounted. The hollow shaft may be mounted by any suitable mounting means to the suspension of the vehicle or to a sub frame or axle of the vehicle. Electronics 230 for controlling and driving the electric motor 12 are provided in an electronics compartment 221 of the hollow shaft and electronics cables 231 for the electronics 230 are guided through the hollow shaft 220 from the vehicle onto which the wheel is mounted. The electronics compartment 221 of the hollow shaft is a somewhat larger diameter part of the hollow shaft 220 in the embodiment shown, and is provided in a space surrounded by the stator 210 to have short electrical connections to the electromagnets. The electronics compartment 221 provides for a sealed housing for the electronics 230, for instance, compliant with IP67 standards. The sealed electronics housing may comprise connector plate 222 for providing connections for the electrical connections of the electronics and electric motor, especially for a CAN bus, and for the cooling space 240. The electronics comprise a DC capacitor bloc comprising high voltage foil capacitors, and IGBT modules mounted on a cooling plate. The IGBT modules provide a peak current in the range of 700 to 1,000 Amperes. The electronics also may comprise a monitoring module for ensuring ASIL compliance, especially ASIL-C or ASIL-D compliance.

    [0040] A bearing 13.1 is provided internally of the hollow shaft 220 between the hollow shaft and the front plate 121 of the rotating part 100. Another bearing 13.2 is provided externally of the hollow shaft 220 between the hollow shaft and the back plate 122 of the rotating part. Any load on the tires and the rim is channeled via the front and back plates 121, 122 via the bearings 13.1, 13.2 onto the shaft 220. The load does not provide any force on the rotor 110 supported by the front and back plates, since there is no direct contact between the rim 120 and the rotor 110. A position sensor with position sensor parts 235.1, 235.2 is mounted on the front plate and inside the hollow shaft to sense a position of the rotating part 100 with respect to the static part 200. Any suitable position sensor can be employed.

    [0041] The electromagnets 210 are mounted externally on the hollow shaft 220 with some spacing in between to allow a cooling liquid to be provided in this cooling space or labyrinth 240. The cooling space 240 can be configured such as to provide a continuous cooling layer or such as to provide a number of channels for the cooling liquid. Cooling conduits 241 is provided in the hollow shaft in connection with the cooling space to allow circulation of cooling liquid through the cooling space 241.

    [0042] Figure 1 further shows a brake disc 250 that is rigidly connected to the rotating part, especially the back plate 122 of the rotating part. The brake disc cooperates with further parts of a brake arrangement that is not shown in the drawings.


    Claims

    1. A road vehicle wheel (10) with an in-wheel electric motor (12), the wheel comprising

    - a rotation axis (R);

    - a rim (120) configured for mounting at least one tire (11) on the rim, wherein the rim (120) has first and second ends (120.1, 120.2) along the axis (R);

    - a rim support (121,121 a,122,122a) configured for supporting the rim on a non-rotating wheel part (200) such as to allow rotation of the rim with respect to the non-rotating wheel part wherein the rim support comprises first and second plates (121,122) associated with the first and second ends (120.1, 120.2) of the rim (120) so that the rim is supported by the first and second plates (121, 122);

    - a stator (210) of the in-wheel electric motor, the stator comprising electromagnets (211) and being supported on the non-rotating wheel part, and

    - a rotor (110) of the in-wheel electric motor, the rotor comprising permanent magnets (111) and being supported on the stator via at least one bearing (13.1,13.2),

    - an air gap (101) extending in the axial direction between the electromagnets (211) and the permanent magnets (111),
    wherein,

    - the rotor is supported by and provided in between the first and second plates (121,122),

    - the rim is sized and configured for mounting two tires,

    - the non-rotating wheel part (200) comprises a hollow shaft (220) and bearings (13.1, 13.2) are provided in between the first and second plates (121,122) of the rim support (120) and the hollow shaft (220), and

    - wherein the rim at each tire position axially extends along the rotor, is supported such that any forces exerted on the rim are directly born by the rim support (121,121a,122,122a) and is not in direct contact with the rotor (110).


     
    2. Wheel according to claim 1 wherein the hollow shaft (220) comprises a cylindrical electronics compartment (221) that is at the road side with an inner surface attached to the bearing (13.1), the bearing supporting an axially extending cylindrical stub of the rim support.
     
    3. Wheel according to claim 2, the electronics compartment (221) being provided in a space surrounded by the stator (210) holding electronics (230) for controlling the electric motor (12) and electrical connections (231) for the electronics are guided through the hollow shaft to the electronics compartment.
     
    4. Wheel according to any of the preceding claims, wherein there is a gap (120a) between the rotor (110) and the rim (120), the gap being filled with a gas, especially air.
     
    5. Wheel according to any one of the preceding claims, wherein the rotor (110) comprises a magnet holding element (112) that is supported on the rim support (121,122), the magnet holding element being manufactured from a material that is selected for its optimum magnetic flux guiding properties.
     
    6. Wheel according to claim 5, wherein the material of the magnet holding element (112) has a relative magnetic permeability of at least 100, especially in the range of 200 to 8,000, more especially in the range of 1,000 to 8,000.
     
    7. Wheel according to any of the preceding claims, the stator (210) being supported on the hollow shaft (220), wherein a cooling arrangement with a cooling space (240) is provided in between the hollow shaft (22) and the stator (210), and cooling conduits (241) for providing a cooling fluid to the cooling arrangement are guided through the hollow shaft.
     
    8. Wheel according to any of the preceding claims, wherein the stator (210), rotor (110) and electronics (230) cooperate to provide a peak torque to the rim (120) in a range of 3,000 Nm to 15,000 Nm, especially in the range of 6,500 Nm to 11,000 Nm.
     
    9. Wheel according to any of the preceding claims, wherein the electromagnets (230) comprise a paramagnetic core (210a) between coil windings (211).
     
    10. Wheel according to any of the preceding claims, further comprising a brake disc (250) rigidly connected to the rotor (100), especially to the back plate (122).
     
    11. Wheel according to any one of the preceding claims, allowing free ingress of water, wherein moisture sensitive components, especially at least one of the permanent magnets and electromagnets, are coated in a hermetically sealing coating, especially a powder coating.
     


    Ansprüche

    1. Straßenfahrzeugrad (10) mit einem Elektromotor (12) im Rad, wobei das Rad umfasst

    - eine Drehachse (R);

    - eine Felge (120), welche zum Montieren wenigstens eines Reifens (11) an der Felge konfiguriert ist, wobei die Felge (120) entlang der Achse (R) ein erstes und ein zweites Ende (120.1, 120.2) aufweist;

    - eine Felgenhalterung (121, 121a, 122, 122a), welche zum Haltern der Felge an einem nicht-drehenden Radteil (200) konfiguriert ist, um ein Drehen der Felge in Bezug auf das nicht-drehende Radteil zu erlauben, wobei die Felgenhalterung eine erste und eine zweite Platte (121, 122) umfasst, welche dem ersten und dem zweiten Ende (120.1, 120.2) der Felge (120) derart zugeordnet sind, dass die Felge mittels der ersten und der zweiten Platte (121, 122) gehaltert ist;

    - einen Stator (210) des Elektromotors im Rad, wobei der Stator Elektromagneten (211) umfasst und an dem nicht-drehenden Radteil gehaltert ist, und

    - einen Rotor (110) des Elektromotors im Rad, wobei der Rotor Permanentmagneten (111) umfasst und über mindestens ein Lager (13.1, 13.2) an dem Stator gehaltert ist,

    - einen Luftspalt (101), welcher sich zwischen den Elektromagneten (211) und den Permanentmagneten (111) in der axialen Richtung erstreckt,
    wobei

    - der Rotor mittels der ersten und der zweiten Platte (121, 122) gehaltert und zwischen diesen bereitgestellt ist,

    - die Felge zum Montieren zweier Reifen dimensioniert und konfiguriert ist,

    - der nicht-drehende Radteil (200) eine Hohlwelle (220) umfasst und Lager (13.1, 13.2) zwischen der ersten und der zweiten Platte (121, 122) der Felgenhalterung (120) und der Hohlwelle (220) bereitgestellt sind, und

    - wobei die Felge, welche sich bei jeder Reifenposition axial entlang des Rotors erstreckt, derart gehaltert ist, dass jegliche auf die Felge ausgeübten Kräfte direkt von der Felgenhalterung (121, 121a, 122, 122a) getragen werden, und nicht in direktem Kontakt mit dem Rotor (110) steht.


     
    2. Rad nach Anspruch 1, wobei die Hohlwelle (220) einen zylindrischen Elektronikabschnitt (221) umfasst, welcher an der Straßenseite mit einer Innenfläche an dem Lager (13.1) angebracht ist, wobei das Lager einen sich axial erstreckenden zylindrischen Stutzen der Felgenhalterung haltert.
     
    3. Rad nach Anspruch 2, wobei der Elektronikabschnitt (221) in einem durch den Stator (210) umgebenen Raum bereitgestellt ist, welcher Elektronik (230) zum Steuern/Regeln des Elektromotors (12) aufnimmt, und elektrische Verbindungen (231) für die Elektronik durch die Kurbelwelle zu dem Elektronikabschnitt geführt sind.
     
    4. Rad nach einem der vorhergehenden Ansprüche, wobei ein Spalt (120a) zwischen dem Rotor (110) und der Felge (120) vorhanden ist, wobei der Spalt mit einem Gas, vorzugsweise Duft, gefüllt ist
     
    5. Rad nach einem der vorhergehenden Ansprüche, wobei der Rotor (110) ein Magnetaufnahmeelement (112) umfasst, welches an der Felgenhalterung (121, 122) gehaltert ist, wobei das Magnetaufnahmeelement aus einem Material hergestellt ist, welches nach seinen optimalen Magnetfluss-Führungseigenschaften ausgewählt ist
     
    6. Rad nach Anspruch 5, wobei das Material des Magnetaufnahmeelements (112) eine relative magnetische Permeabilität von mindestens 100, vorzugsweise in dem Bereich von 200 bis 8.000, noch bevorzugter in dem Bereich von 1.000 bis 8.000, aufweist.
     
    7. Rad nach einem der vorhergehenden Ansprüche, wobei der Stator (210) an der Hohlwelle (220) gehaltert ist, wobei eine Kühlanordnung mit einem Kühlraum (240) zwischen der Hohlwelle (22) und dem Stator (210) bereitgestellt ist und Kühlleitungen (241), um der Kühlanordnung Kühlfluid bereitzustellen, durch die Hohlwelle geführt sind.
     
    8. Rad nach einem der vorhergehenden Ansprüche, wobei der Stator (210), der Rotor (110) und die Elektronik (230) zusammenwirken, um der Felge (120) ein Spitzendrehmoment in einem Bereich von 3.000 Nm bis 15.000 Nm, vorzugsweise in dem Bereich von 6.500 Nm bis 11.000 Nm, bereitzustellen.
     
    9. Rad nach einem der vorhergehenden Ansprüche, wobei die Elektromagneten (230) einen paramagnetischen Kern (210a) zwischen Spulenwicklungen (211) umfassen.
     
    10. Rad nach einem der vorhergehenden Ansprüche, welches ferner eine Bremsscheibe (250) umfasst, welche mit dem Rotor (100), insbesondere mit der Rückplatte (122), fest verbunden ist.
     
    11. Rad nach einem der vorhergehenden Ansprüche, welches ein freies Eindringen von Wasser erlaubt, wobei feuchtigkeitsempfindliche Komponenten, insbesondere wenigstens eines aus den Permanentmagneten und den Elektromagneten, mit einer hermetisch dichtenden Beschichtung, insbesondere einer Pulverbeschichtung, beschichtet sind.
     


    Revendications

    1. Roue de véhicule routier (10) comprenant un moteur électrique (12) incorporé dans la roue, la roue comprenant

    - un axe de rotation (R) ;

    - une jante (120) configurée pour le montage d'au moins un pneumatique (11) sur la jante dans laquelle la jante (120) a des première et deuxième extrémités (120.1, 120.2) le long de l'axe (R) ;

    - un support de jante (121, 121a, 122, 122a) configuré pour supporter la jante sur une partie de roue non-rotative (200) de manière à permettre la rotation de la jante par rapport à la partie de roue non-rotative dans lequel le support de jante comprend des première et deuxième plaques (121, 122) associées aux première et deuxième extrémités (120.1, 120.2) de la jante (120) de sorte que la jante soit supportée par les première et deuxième plaques (121, 122) ;

    - un stator (210) du moteur électrique incorporé dans la roue, le stator comprenant des électroaimants (211) et étant supporté par la partie de roue non-rotative, et

    - un rotor (110) du moteur électrique incorporé dans la roue, le rotor comprenant des aimants permanents (111) et étant supporté par le stator par le biais d'au moins un palier (13.1, 13.2),

    - un entrefer (101) s'étendant dans la direction axiale entre les électroaimants (211) et les aimants permanents (111) ,
    Dans lequel

    - le rotor est supporté par les première et deuxième plaques (121, 122) et étant placé entre celles-ci,

    - la jante est dimensionnée et configurée pour le montage de deux pneumatiques,

    - la partie de roue non-rotative (200) comprend un arbre creux (220) et des paliers (13.1, 13.2) sont prévus entre les première et deuxième plaques (121, 122) du support de jante (120) et l'arbre creux (220) , et

    - dans laquelle la jante s'étend, à chaque position de pneumatique, axialement le long du rotor, est supportée de telle sorte que toute force exercée sur la jante est générée directement par le support de jante (121, 121a, 122, 122a) et n'est pas en contact direct avec le rotor (110).


     
    2. Roue selon la revendication 1, dans laquelle l'arbre creux (220) comprend un compartiment d'électronique cylindrique (221) qui est pourvu côté route avec une surface intérieure fixée au palier (13.1), le palier supportant un tronçon cylindrique, s'étendant axialement, du support de jante.
     
    3. Roue selon la revendication 2, le compartiment d'électronique (221) étant prévu dans un espace entouré par le stator (210) contenant l'électronique (230) pour commander le moteur électrique (12) et les liaisons électriques (231) pour l'électronique sont guidées à travers l'arbre creux jusqu'au compartiment d'électronique.
     
    4. Roue selon l'une quelconque des revendications précédentes, dans laquelle un espace (120a) est ménagé entre le rotor (110) et la jante (120), l'espace étant rempli d'un gaz, notamment de l'air.
     
    5. Roue selon l'une quelconque des revendications précédentes, dans laquelle le rotor (110) comprend un élément de retenue d'aimant (112) qui est supporté par le support de jante (121, 122), l'élément de retenue d'aimant étant fabriqué à partir d'un matériau qui est sélectionné pour ses propriétés optimales de guidage du flux magnétique.
     
    6. Roue selon la revendication 5, dans laquelle le matériau de l'élément de retenue d'aimant (112) a une perméabilité magnétique relative d'au moins 100, notamment dans la plage de 200 à 8000, plus particulièrement dans la plage de 1000 à 8000.
     
    7. Roue selon l'une quelconque des revendications précédentes, le stator (210) étant supporté par l'arbre creux (220), dans laquelle un ensemble de refroidissement avec un espace de refroidissement (240) est prévu entre l'arbre creux (22) et le stator (210) et des conduits de refroidissement (241) pour fournir un fluide de refroidissement à l'ensemble de refroidissement sont guidés à travers l'arbre creux.
     
    8. Roue selon l'une quelconque des revendications précédentes, dans laquelle le stator (210), le rotor (110) et l'électronique (230) coopérent pour fournir un couple de pointe à la jante (120) dans une plage de 3000 Nm à 15000 Nm, en particulier dans la plage de 6500 Nm à 11000 Nm.
     
    9. Roue selon l'une quelconque des revendications précédentes, dans laquelle les électroaimants (230) comprennent un noyau paramagnétique (210a) entre des enroulements de bobine (211).
     
    10. Roue selon l'une quelconque des revendications précédentes, comprenant en outre un disque de frein (250) relié rigidement au rotor (100), notamment à la plaque arrière (122).
     
    11. Roue selon l'une quelconque des revendications précédentes, permettant la libre pénétration de l'eau, dans laquelle les composants sensibles à l'humidité, en particulier au moins un des aimants permanents et des électroaimants est revêtu d'un revêtement hermétiquement étanche, notamment d'un revêtement de poudre.
     




    Drawing









    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description