(19)
(11)EP 3 406 341 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
21.08.2019 Bulletin 2019/34

(21)Application number: 17770561.3

(22)Date of filing:  17.03.2017
(51)International Patent Classification (IPC): 
B03C 1/10(2006.01)
B02C 17/16(2006.01)
H01M 10/052(2010.01)
H01M 4/62(2006.01)
B02C 19/18(2006.01)
(86)International application number:
PCT/KR2017/002946
(87)International publication number:
WO 2017/164591 (28.09.2017 Gazette  2017/39)

(54)

COMMINUTION DEVICE WITH INDUCED ELECTRIC FIELD

ZERKLEINERUNGSVORRICHTUNG MIT INDUZIERTEM ELEKTRISCHEM FELD

DISPOSITIF DE BROYAGE À CHAMP ÉLECTRIQUE INDUIT


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 23.03.2016 KR 20160034679

(43)Date of publication of application:
28.11.2018 Bulletin 2018/48

(73)Proprietor: LG Chem, Ltd.
Seoul 07336 (KR)

(72)Inventors:
  • SON, Jin Young
    Daejeon 34122 (KR)
  • CHO, Hyung Suk
    Daejeon 34122 (KR)
  • CHOY, Sang Hoon
    Daejeon 34122 (KR)
  • AHN, Byoung Hoon
    Daejeon 34122 (KR)
  • CHAE, Hyun Sik
    Daejeon 34122 (KR)

(74)Representative: Cabinet Plasseraud 
66, rue de la Chaussée d'Antin
75440 Paris Cedex 09
75440 Paris Cedex 09 (FR)


(56)References cited: : 
KR-A- 20120 033 766
KR-A- 20140 086 811
KR-A- 20150 142 735
KR-A- 20140 073 936
KR-A- 20150 085 923
US-A1- 2014 263 768
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    CROSS-REFERENCE TO RELATED APPLICATION



    [0001] The present application claims the benefit of the priority of Korean Patent Application No. 10-2016-0034679, filed on March 23, 2016.

    TECHNICAL FIELD



    [0002] The present invention relates to a grinder using induced electric fields, and more particularly, to a grinder using induced electric fields, which is improved in grinding efficiency of CNT and CNF that are highly dispersive conductive materials to improve dispersibility.

    BACKGROUND ART



    [0003] In general, conductive materials serve as moving paths of electrons in lithium secondary batteries. In recent years, carbon nano fibers (CNFs) or carbon nano tubes (CNTs), which have high conductivity and provide direct paths between active materials to realize similar resistance even when a small amount of CNFs or CNTs is used, are getting attention instead of existing carbon black.

    [0004] In case of the CNFs or the CNTs, it is conveyed in a compression manner because of poor processability and transportability due to a high specific surface area and structural characteristics. Also, a grinding process to facilitate dispersion when applied to secondary batteries has to be performed.

    [0005] Here, in the related art, a plurality of grinding operations are required to obtain a desired size and a desired dispersed state through the grinding process. To solve this problem, it is necessary to reduce a production time and to ensure uniformity of production quality through improvement of the process.

    [0006] However, in the grinder according to the related art, grinding characteristics in a predetermined size or less may be deteriorated due to the structural characteristic in which the grinding of the CNFs or the CNTs has directionality. As a result, there is a problem that the grinding extends in process time. US2014/263768 A1 relates to a horizontal-type mechanical grinding mill. KR 2015 0085923 A relates to a carbon nanotube distributing apparatus.

    DISCLOSURE OF THE INVENTION


    TECHNICAL PROBLEM



    [0007] An object of the present invention is to provide a grinder using induced electric fields so as to solve the above problems, and more particularly, to improve grinding efficiency of CNT and CNF that are highly dispersive conductive materials to improve dispersibility.

    TECHNICAL SOLUTION



    [0008] A grinder using induced electric fields, which disperses and grinds conductive materials, according to the present invention is defined by claim 1.

    [0009] The grinding unit may have a cylindrical spike mill structure and is rotatable.

    [0010] The conductive materials may comprise carbon nano fibers (CNFs) or carbon nano tubes (CNTs).

    [0011] The beads provided in the chamber may comprise zirconia beads.

    [0012] The chamber may have a function of grounding the grinding unit.

    [0013] The conductive materials may be aligned in a direction perpendicular to the grinding unit by the electric fields of the power unit and ground through the protrusions when the grinding unit rotates.

    ADVANTAGEOUS EFFECTS



    [0014] As described above, according to the present invention, the CNFs and the CNTs may be fixed in the direction perpendicular to the grinder through the electric fields to improve the grinding efficiency and thus to reduce the number of grinding processes, thereby reducing the process costs and time.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0015] 

    FIG. 1 is a view of a grinder using induced electric fields according to the present invention,

    FIG. 2 is a perspective view of the grinder using the induced electric fields according to the present invention, and

    FIGS. 3 and 4 are cross-sectional views illustrating an aligned state of conductive materials in the grinder using the induced electric fields according to the present invention.


    MODE FOR CARRYING OUT THE INVENTION



    [0016] Hereinafter, an exemplary embodiment of the present invention will be described in detail with reference to the accompanying drawings.

    [0017] As illustrated in FIGS. 1 to 4, a grinder using induced electric fields comprises a grinding unit 100 having protrusions 101, a power unit 110 generating electric fields, a chamber 120 comprising beads 121, and conductive materials having directionality by the electric fields.

    [0018] As illustrated in FIGS. 1 and 3, the grinding unit 100 may be a grinding device on which a plurality of protrusions 101 for cutting are disposed on an outer circumferential surface thereof.

    [0019] Here, the grinding unit 100 has a cylindrical spike mill structure and perform the grinding while rotating.

    [0020] As illustrated in FIGS. 1 and 2, the power unit 110 is disposed in the grinding unit 100 to generate the electric fields when power is applied thereto.

    [0021] The chamber 120 is disposed outside the grinding unit 100. The beads 121 are disposed in the chamber 120. Thus, when the grinding unit 100 rotates, the conductive materials 130 that will be described below may be physically ground by kinetic energy between the beads 121 and the protrusion 101.

    [0022] Also, the chamber 120 may have a grounding function so that the grinding unit 100 is grounded when the power is generated by the power unit 110.

    [0023] As illustrated in FIGS. 3 and 4, the conductive materials 130 may be disposed between the protrusions 101 of the grinding unit 100 and the beads 121 of the chamber 120 and have directionality by the electric fields of the power unit 110.

    [0024] Here, the conductive materials 130 may comprise carbon nano fibers (CNFs) or carbon nano tubes (CNTs).

    [0025] Also, the beads disposed on the chamber 120 may comprise zirconia beads, which are minerals having high refractive index, corrosion resistance, and melting point so that the beads 121 are not worn due to their high strength when the conductive materials 130 are ground.

    [0026] As described above, the conductive materials 130 are aligned in a direction perpendicular to the grinding unit 100 when induced electric fields are generated by the electric fields of the power unit 110. Thus, when the grinding unit 100 rotates, the conductive materials 130 are ground through the protrusions 101 in the state in which the conductive materials 130 are vertically disposed between the protrusions 101 of the grinding unit 100 and the beads 121 of the chamber 120.

    [0027] Here, a distance between each of the protrusions 101 of the grinding unit 100 and each of the beads 121 of the chamber 120 may be set to adjust a ground length of each of the conductive materials 130.

    [0028] That is, the grinder according to the present invention comprises the grinding unit 100 on which the protrusions 101 for the cutting are disposed on the outer circumferential surface thereof, the power unit 110 disposed in the grinding unit 100 to generate the electric fields, the chamber 120 disposed outside the grinding unit 100 and comprising the beads 121 therein, and the conductive materials 130 disposed between the protrusions 101 of the grinding unit 100 and the beads 121 of the chamber 120 and having the directionality by the electric fields of the power unit 110. Therefore, the CNFs and the CNTs may be fixed in the direction perpendicular to the grinder through the induced electric fields to improve the grinding efficiency of the conductive materials 130 and thus to reduce the number of grinding processes, thereby reducing the process costs and time.


    Claims

    1. A grinder using induced electric fields, adapted for dispersing and grinding conductive materials, the grinder comprising:

    a grinding unit (100) on which a plurality of protrusions (101) for cutting are disposed on an outer circumferential surface thereof;

    a power unit (110) disposed in the grinding unit (100) to generate electric fields and attach the conductive materials (130) to the grinding unit (100); and

    a chamber (120) disposed outside the grinding unit (100) and comprising beads (121) for dispersing and grinding the conductive materials (130) attached to the grinding unit (100),

    wherein the grinder is adapted to impart directionality to the conductive materials (130) by the electric fields of the power unit (110).


     
    2. The grinder of claim 1, wherein the grinding unit (100) has a cylindrical spike mill structure and is rotatable.
     
    3. The grinder of claim 1, wherein the beads (121) provided in the chamber (120) comprises zirconia beads.
     
    4. The grinder of claim 1, wherein the chamber (120) has a function of grounding the grinding unit (100).
     
    5. The grinder of claim 1, wherein the grinder is adapted to impart alignment to the conductive materials (130) in a direction perpendicular to the grinding unit (100) by the electric fields of the power unit (110) and to grind the conductive materials (130) through the protrusions (101) when the grinding unit (100) rotates.
     


    Ansprüche

    1. Induzierte elektrische Felder verwendende Zerkleinerungsvorrichtung, die dazu ausgelegt ist, leitfähige Materialien zu verteilen und zu zerkleinern, wobei die Zerkleinerungsvorrichtung aufweist:

    eine Zerkleinerungseinheit (100), auf deren Außenumfangsfläche eine Vielzahl von Vorsprüngen (101) zum Schneiden angeordnet sind;

    eine Leistungseinheit (110), die in der Zerkleinerungseinheit (100) angeordnet ist, um elektrische Felder zu erzeugen und die leitfähigen Materialien (130) an der Zerkleinerungseinheit (100) zu halten; und

    eine Kammer (120), die außerhalb der Zerkleinerungseinheit (100) angeordnet ist und Perlen (121) aufweist, um die an der Zerkleinerungseinheit (100) gehaltenen leitfähigen Materialien (130) zu verteilen und zu zerkleinern,

    wobei die Zerkleinerungseinheit dazu ausgelegt ist, durch die elektrischen Felder der Leistungseinheit (110) den leitfähigen Materialien (130) eine Direktionalität zu verleihen.


     
    2. Die Zerkleinerungsvorrichtung von Anspruch 1, wobei die Zerkleinerungseinheit (100) eine zylindrische Stachelmühlenstruktur hat und drehbar ist.
     
    3. Die Zerkleinerungsvorrichtung von Anspruch 1, wobei die in der Kammer (120) vorgesehenen Perlen (121) Zirkoniumoxidperlen aufweisen.
     
    4. Die Zerkleinerungsvorrichtung von Anspruch 1, wobei die Kammer (120) eine Zerkleinerungsfunktion der Zerkleinerungseinheit (100) aufweist.
     
    5. Die Zerkleinerungsvorrichtung von Anspruch 1, wobei die Zerkleinerungseinheit dazu ausgelegt ist, durch die elektrischen Felder der Leistungseinheit (110) den leitfähigen Materialien (130) eine Ausrichtung in Richtung orthogonal zur Zerkleinerungseinheit (100) zu verleihen, und um leitfähige Materialien (130) durch die Vorsprünge (101) zu zerkleinern, wenn sich die Zerkleinerungseinheit (100) dreht.
     


    Revendications

    1. Broyeur utilisant des champs électriques induits, adapté pour disperser et broyer des matériaux conducteurs, le broyeur comprenant :

    une unité de broyage (100) sur laquelle une pluralité de protubérances (101) destinées à la coupe sont disposées sur une surface circonférentielle extérieure de celle-ci ;

    une unité d'alimentation (110) disposée dans l'unité de broyage (100) pour générer des champs électriques et fixer les matériaux conducteurs (130) à l'unité de broyage (100) ; et

    une chambre (120) disposée à l'extérieur de l'unité de broyage (100) et comprenant des billes (121) pour disperser et broyer les matériaux conducteurs (130) fixés à l'unité de broyage (100),

    dans lequel le broyeur est adapté pour communiquer une orientation aux matériaux conducteurs (130) par les champs électriques de l'unité d'alimentation (110).


     
    2. Broyeur selon la revendication 1, dans lequel l'unité de broyage (100) comporte une structure de meule à pointe cylindrique et est rotative.
     
    3. Broyeur selon la revendication 1, dans lequel les billes (121) prévues dans la chambre (120) comprennent des billes en zircone.
     
    4. Broyeur selon la revendication 1, dans lequel la chambre (120) a pour fonction de mettre à la terre l'unité de broyage (100).
     
    5. Broyeur selon la revendication 1, dans lequel le broyeur est adapté pour communiquer un alignement aux matériaux conducteurs (130) dans une direction perpendiculaire à l'unité de broyage (100) par les champs électriques de l'unité d'alimentation (110) et pour broyer les matériaux conducteurs (130) par le biais des protubérances (101) lorsque l'unité de broyage (100) tourne.
     




    Drawing

















    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description