(19)
(11)EP 3 408 942 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
20.05.2020 Bulletin 2020/21

(21)Application number: 16886864.4

(22)Date of filing:  25.01.2016
(51)International Patent Classification (IPC): 
H04B 1/04(2006.01)
H03F 3/24(2006.01)
H03F 1/30(2006.01)
H03F 1/02(2006.01)
H04B 1/16(2006.01)
H04B 1/44(2006.01)
H03F 3/19(2006.01)
H03F 3/72(2006.01)
(86)International application number:
PCT/CN2016/071971
(87)International publication number:
WO 2017/127977 (03.08.2017 Gazette  2017/31)

(54)

CIRCUITRY AND METHOD FOR CONTROLLING A POWER AMPLIFIER IN A TRANSMIT/RECEIVE SWITCHING SYSTEM

SCHALTUNGSANORDNUNG UND VERFAHREN ZUR STEUERUNG EINES LEISTUNGSVERSTÄRKERS IN EINEM SENDE-/EMPFANGSVERMITTLUNGSSYSTEM

ENSEMBLE DE CIRCUITS ET PROCÉDÉ DE COMMANDE D'UN AMPLIFICATEUR DE PUISSANCE DANS UN SYSTÈME DE COMMUTATION ÉMISSION/RÉCEPTION


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(43)Date of publication of application:
05.12.2018 Bulletin 2018/49

(73)Proprietor: Telefonaktiebolaget LM Ericsson (PUBL)
164 83 Stockholm (SE)

(72)Inventors:
  • YUE, Xiaolong
    Beijing 100102 (CN)
  • ZHANG, Lei
    Beijing 100102 (CN)
  • WU, Zhanyu
    Beijing 100102 (CN)
  • PENG, Jiangyan
    Beijing 100102 (CN)

(74)Representative: Zacco Sweden AB 
Valhallavägen 117 Box 5581
114 85 Stockholm
114 85 Stockholm (SE)


(56)References cited: : 
EP-A2- 0 607 614
US-A1- 2015 222 318
US-B1- 7 633 277
CN-A- 104 600 984
US-A1- 2015 326 285
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    TECHNICAL FIELD



    [0001] The present disclosure generally relates to wireless communication technologies, and more particularly to circuitry and method for controlling a power amplifier in a transmit/receive switching system (e.g., a Time Division Duplex (TDD) system). The present disclosure also relates to a transmitter, and to a transmit/receive switching system comprising the transmitter.

    BACKGROUND



    [0002] A transmit/receive (TX/RX) switching system, such as a TDD system, does not allow simultaneous transmission and reception of signals as in a Frequency Division Duplex (FDD) system. This enables a simple design of devices, such as eNBs and UEs. However, fast TX/RX switching is quite a challenge for linear operation of a power amplifier (PA) that is used to amplify the signal to be transmitted, since a variation in load of the system due to switching between TX and RX modes typically causes a swing of a power supply voltage of the PA, which swing, in turn, leads to an undesired modulation of the signal being amplified by the PA for transmission.

    [0003] Fig. 1 illustrates a conventional circuit for controlling a power amplifier in a TX/RX switching system. As is shown, a PA switch 20 is provided to supply a gate bias terminal of the PA 10 with either a gate bias voltage Vgate (which enables the PA) or a turn-off voltage Voff (which disables the PA). Upon switching of the system from the RX mode to the TX mode, the PA 10 is turned on when the transmission is initiated, by causing the PA switch 20 to couple the gate bias terminal of the PA 10 to the gate bias voltage Vgate, instead of to the turn-off voltage Voff. At this point, the signal to be transmitted is input to the PA 10 for amplification. Fig. 2 is a sequence diagram schematically illustrating operation states of the power amplifier circuit as shown in Fig. 1 during switching of the TX/RX switching system from the RX mode to the TX mode. As illustrated, a swing of a power supply voltage (i.e., Vdd) occurs when the PA 10 is turned on, due to a variation in the load of the TX/RX switching system. This Vdd swing, in turn, brings the PA 10 into non-linear operation, thereby imposing an undesired modulation on the TX signal.

    [0004] One solution to this problem may be turning on the PA in advance. Fig. 3 schematically illustrates a power amplifier control scheme in the prior art. As illustrated, reception and transmission of data are conducted alternately, with a Guard Period (GP) provided between each reception and transmission for protection of the switching. In particular, a protection time is provided before initiation of each transmission of the data, meaning that the gate bias voltage is supplied in advance to the PA, such that the PA is well turned on and operates in a linear manner when the transmission is initiated. This way, the TX signal would not be affected by the Vdd swing. US 2015/326285 A1 describes low cost radio frequency (RF) chains that avoid analog to digital converters and have constant power amplifiers and simple RF filters.

    [0005] Further, US 2015/222318 A1 describes a transmit-receive (TR) front end that utilizes a single ended low-noise amplifier (LNA) and asymmetric 2 series switches in the LNA side to enhance isolation from a power amplifier (PA) to the LNA during transmission interval and eliminate power loss of the PA.

    [0006] Further, EP 0 607 614 A2 describes a sense circuit that is suitable to perform operations at low supply voltage.

    [0007] Further, US 7 633 277 B1 describes a method for testing the worst-case transients in the output Voltage produced by a Switching-mode power Supply (SMPS).

    [0008] Furthermore, CN 104 600 984 A describes a switching power supply voltage regulator to reduce the output voltage swing.

    SUMMARY



    [0009] The Applicant has appreciated that a problem with this control scheme is that the reception of the data may be corrupted due to actuation of the PA ahead of schedule. Especially, the PA still suffers from the Vdd swing and thus experiences non-linear operation.

    [0010] Thus, it would be desirable to provide an alternative scheme for controlling the power amplifier in the transmit/receive switching system, such as a TDD system.

    [0011] According to one aspect of the present disclosure, there is provided circuitry for controlling a power amplifier in a transmit/receive switching system. The circuitry comprises a load circuit for at least partly reducing a magnitude of a swing of a power supply voltage caused by a variation in load of the transmit/receive switching system that occurs upon initiation of a transmission by the transmit/receive switching system. The power supply voltage is supplied to the power amplifier. The circuitry further comprises a first switch, coupled in series with the load circuit, operable to switch on to couple the power supply voltage to a ground voltage via the load circuit. The circuitry further comprises a control circuit configured to switch on the first switch at a first timing, and to switch off the first switch and turn on the power amplifier at a second timing. The first timing is a time interval ahead of the second timing.

    [0012] According to an embodiment, the time interval may be equal to or greater than a duration of the swing of the power supply voltage caused by a variation in load of the transmit/receive switching system that occurs upon initiation of a transmission by the transmit/receive switching system in absence of the circuitry.

    [0013] According to an embodiment, the duration of the swing of the power supply voltage may be determined from a system configuration. The system configuration may comprise at least one of: capacity of a power source supplying the power supply voltage; and a power consumption level of the power amplifier.

    [0014] According to an embodiment, the load circuit may be equivalent to the power amplifier in terms of power consumption. The load circuit may comprise a passive circuit, an active circuit, or combination thereof.

    [0015] According to an embodiment, the control circuit may comprise a control device and a second switch comprising a first terminal for being supplied with a disable voltage for turning off the power amplifier, a second terminal for being supplied with an enable voltage for turning on the power amplifier, and a common terminal for coupling to an enable terminal of the power amplifier. In this example, the control device may be configured to switch on the first switch at the first timing and to switch off the first switch and turn on the power amplifier by causing the second switch to couple the common terminal to the second terminal instead of to the first terminal at the second timing.

    [0016] According to an embodiment, the control circuit may comprise a control device and a third switch comprising a first terminal for being supplied with the enable voltage and a second terminal for coupling to the enable terminal of the power amplifier. In this example, the control device may be configured to switch on the first switch at the first timing and to switch off the first switch and turn on the power amplifier by switching on the third switch at the second timing.

    [0017] According to an embodiment, the control circuit may comprise a control device and a voltage generator configured to supply with the enable terminal of the power amplifier either the enable voltage or the disable voltage. In this example, the control device may be configured to switch on the first switch at the first timing and to switch off the first switch and turn on the power amplifier by causing the voltage generator to generate the enable voltage instead of the disable voltage at the second timing. Specifically, the voltage generator may comprise a digital-to-analog converter.

    [0018] According to another aspect of the present disclosure, there is provided a transmitter for use in a transmit/receive switching system. The transmitter comprises a power amplifier. The transmitter further comprises circuitry as described above.

    [0019] According to still another aspect of the present disclosure, there is provided a transmit/receive switching system comprising a transmitter as described above.

    [0020] According to still another aspect of the present disclosure, there is provided a base station comprising a transmit/receive switching system as described above.

    [0021] According to yet another aspect of the present disclosure, there is provided a method for controlling a power amplifier in a transmit/receive switching system. The method comprises providing a load circuit for at least partly reducing a magnitude of a swing of a power supply voltage caused by a variation in load of the transmit/receive switching system that occurs upon initiation of a transmission by the transmit/receive switching system, the power supply voltage being supplied to the power amplifier; providing a first switch, coupled in series with the load circuit, operable to switch on to couple the power supply voltage to a ground voltage via the load circuit; switching on the first switch at a first timing; and switching off the first switch and turning on the power amplifier at a second timing, wherein the first timing is a time interval ahead of the second timing.

    [0022] According to an embodiment, the time interval may be equal to or greater than a duration of the swing of the power supply voltage caused by a variation in load of the transmit/receive switching system that occurs upon initiation of a transmission by the transmit/receive switching system without applying the method.

    [0023] Advantageously, embodiments of the present disclosure enable enhancement of a linear performance of the power amplifier that is used in the transmit/receive switching system (e.g. a LAA-LTE system) to amplify the signal to be transmitted.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0024] Embodiments of the present disclosure will now be described by way of example only with reference to the accompanying drawings, in which:

    Fig. 1 illustrates a conventional circuit for controlling a power amplifier in a TX/RX switching system;

    Fig. 2 is a sequence diagram schematically illustrating operation states of the power amplifier circuit as shown in Fig. 1 during switching of the TX/RX switching system from a RX mode to a TX mode;

    Fig. 3 schematically illustrates a power amplifier control scheme in the prior art;

    Fig. 4 illustrates a power amplifier circuit comprising circuitry for controlling a power amplifier in a TX/RX switching system according to an embodiment of the present disclosure;

    Fig. 5 is a sequence diagram schematically illustrating operation states of the power amplifier circuit as shown in Fig. 4 during switching of the TX/RX switching system from a RX mode to a TX mode;

    Fig. 6A illustrates an implementation of circuitry for controlling a power amplifier in a TX/RX switching system according to an embodiment of the present disclosure;

    Fig. 6B illustrates another implementation of circuitry for controlling a power amplifier in a TX/RX switching system according to an embodiment of the present disclosure;

    Fig. 6C illustrates yet another implementation of circuitry for controlling a power amplifier in a TX/RX switching system according to an embodiment of the present disclosure;

    Fig. 7 is a block diagram illustrating a TX/RX switching system according to an embodiment of the present disclosure; and

    Fig. 8 is a flow chart of a method for controlling a power amplifier in a TX/RX switching system according to an embodiment of the present disclosure.


    DETAILED DESCRIPTION



    [0025] Embodiments of the present disclosure will now be described more fully hereinafter with reference to the accompanying drawings.

    [0026] Like reference characters refer to like elements throughout.

    [0027] Fig. 4 illustrates a power amplifier circuit comprising circuitry 400 for controlling a power amplifier 10 in a TX/RX switching system according to an embodiment of the present disclosure. The TX/RX switching system may be a TDD system, such as TDD-LTE or LAA-LTE. The power amplifier 10 comprises a power terminal for coupling to a power supply voltage Vdd and an enable terminal for coupling to an enable voltage Ven. The enable terminal of the power amplifier 10 is typically a gate bias terminal, and thus the enable voltage is a gate bias voltage. However, it should be appreciated that the type of the enable terminal and the value of the enable voltage may vary from one PA model to another.

    [0028] In this example, the circuitry 400 comprises a load circuit 420. The load circuit 420 functions to suffer/absorb a Vdd swing, in advance and in place of the power amplifier 10, so as to at least partly reduce a magnitude of the Vdd swing that occurs upon initiation of a transmission by the TX/RX switching system. The circuitry 400 further comprises a first switch 410, which is coupled in series with the load circuit 420 and operable to switch on to couple the power supply voltage Vdd to a ground voltage via the load circuit 420. It should be understood that while the first switch 410 is illustrated as being coupled between the power supply voltage Vdd and the load circuit 420, it may alternatively be coupled between the load circuit 420 and the ground voltage. The circuitry 400 further comprises a control circuit 430 for controlling switching ON/OFF of the first switch 410 and turning ON/OFF of the power amplifier 10.

    [0029] Fig. 5 is a sequence diagram schematically illustrating operation states of the power amplifier circuit as shown in Fig. 4 during switching of the TX/RX switching system from a RX mode to a TX mode. Operations of the circuitry 400 are now described in more detail with reference to Figs. 4 and 5.

    [0030] In this example, the control circuit 430 of the circuitry 400 is configured to switch on the first switch 410 at a first timing t1. The first timing t1 may be during switching of the TX/RX switching system from a RX mode to a TX mode. The control circuit 430 is further configured to switch off the first switch 410 and to turn on the power amplifier 10 at a second timing t2. Turning on of the power amplifier may be done by causing the enable voltage Ven to be supplied to the enable terminal of the power amplifier 10. In particular, the first timing t1 is a time interval tL ahead of the second timing t2.

    [0031] The second timing t2 may correspond to a time when the transmission is initiated by the TX/RX switching system. For example, in a TDD system, the second timing t2 may be a scheduled time when a TX signal should be transmitted according to the communication protocol. By way of example, and not limitation, the second timing t2 may be resolved from information contained in a special subframe of a baseband signal. The special subframe contains TDD synchronization information, such as time reference information, from which the time lengths of the RX time slot, the GP, and the TX time slot can be determined. The TDD synchronization information may be extracted from the special subframe by for example a baseband signal processor. The baseband signal processor may then determine the beginning of the TX time slot (i.e., the second timing t2) based on the time lengths of the RX time slot, the GP, and the TX time slot and other time reference information. In an implementation, the baseband signal processor may be implemented as part of the control circuit 430. Alternatively, the baseband signal processor may be a stand-alone processor provided in the TX/RX switching system, in which case a timing signal indicating the second timing t2 may be transmitted from the baseband signal processor to the control circuit 430.

    [0032] The first timing t1 may also be determined and transmitted to the control circuit 430 by the baseband signal processor. In this example, the first timing t1 may fall within an interval [t0, t2-tL], where t0 denotes the beginning of the switching of the TX/RX switching system from the RX mode to the TX mode, and tL denotes the time interval between the first timing t1 and the second timing t2. Generally, the time interval tL may be of any appropriate value to the extent that it allows the load circuit 420 time to "absorb" the Vdd swing such that the magnitude of the subsequent swing suffered by the power amplifier 10 will at least partly be reduced upon initiation of the transmission.

    [0033] In an embodiment, the time interval tL may be equal to or greater than a duration of the Vdd swing caused by a variation in load of the TX/RX switching system that occurs upon initiation of the transmission in absence of the circuitry 400. In absence of the circuitry 400, the variation in the load of the TX/RX switching system, occurring upon initiation of the transmission, may be considered as primarily due to actuation of the power amplifier 10. The actuation of the power amplifier 10 then causes a surge current, thereby resulting in the Vdd swing. In turn, the resultant Vdd swing generally reflects a limited capacity of the power source which supplies the Vdd voltage in the TX/RX switching system. Thus, the duration of the Vdd swing may be determined from a system configuration. Specifically, the system configuration may comprise at least one of: the capacity of the power source supplying the power supply voltage Vdd; and a power consumption level of the power amplifier 10.

    [0034] With such a time interval tL, the load circuit 420, after being switched on, has a period of time to "absorb" the resultant Vdd swing. Thus, a reduced swing of the Vdd voltage may be suffered by the power amplifier 10 when subsequently the scheduled time for transmission (i.e., the second timing t2) is coming.

    [0035] In this example, the load circuit 420 may advantageously be equivalent to the power amplifier 10 in terms of the power consumption. In this case, switching ON of the load circuit 420 causes the same Vdd swing in magnitude as in the case where the power amplifier 10 is turned on in absence of the circuitry 400. However, since the load circuit 420 is switched on ahead of the initiation of the transmission, the load circuit 420 may have sufficient time (i.e., the time interval tL) to absorb the resultant Vdd swing, such that when the power amplifier 10 is turned on at the second timing t2, the Vdd voltage may have become sufficiently stable. Further, since the load circuit 420 is switched off at the same time (i.e., the second timing t2) when the power amplifier 10 is turned on, even no variation in the load will be present due to the equivalence of the load circuit 420 and the power amplifier 10. As illustrated in Fig. 5, the Vdd swing thus is almost invisible to the power amplifier 10, and the TX signal being amplified by the power amplifier 10 will simply not subject to an undesired modulation resulting from the Vdd swing.

    [0036] In other examples, however, the load circuit 420 may consume more or less power than the power amplifier 10 under the same condition, as long as it reduces the magnitude of the Vdd swing caused by the variation in the load of the TX/RX switching system that occurs upon initiation of the transmission. For example, the load circuit 420 may consume 50% more power than the power amplifier 10. For another example, the load circuit 420 may consume 50% less power than the power amplifier 10. In either case, when the load circuit 420 is disconnected (by switching off the first switch 410) and the power amplifier 10 is simultaneously turned on upon initiation of the transmission, the variation in the load of the TX/RX switching system will be half of that in the case where the load circuit 420 is absent and the power amplifier 10 alone is turned on upon initiation of the transmission. That is, the variation in the load of the TX/RX switching system is still reduced, and thus the impact of the Vdd swing to the power amplifier 10 is partially suppressed.

    [0037] Additionally, it should be understood that while the load circuit 420 is represented by a resistor symbol in Fig. 4, it may comprise a passive circuit (such as a simple resistor), an active circuit, or combination thereof. Implementations of the load circuit are known in the art and thus are not discussed here in detail.

    [0038] Fig. 6A illustrates an implementation of circuitry 600 for controlling a power amplifier 10 in a TX/RX switching system according to an embodiment of the present disclosure. The circuitry 600 may be regarded as an implementation of the circuitry 400 as show in Fig. 4.

    [0039] In this example, the control circuit 630 comprises a control device 632 and a second switch 634. The second switch 634 comprises a first terminal for coupling to a disable voltage Voff for turning off the power amplifier 10, a second terminal for coupling to the enable voltage Ven, and a common terminal for coupling to the enable terminal (e.g., the gate bias terminal) of the power amplifier 10. The control device 632 is configured to switch on the first switch 610 at the first timing t1. The control device 632 is further configured to switch off the first switch 610 and to turn on the power amplifier 10 by causing the second switch 634 to couple the common terminal to the second terminal instead of to the first terminal at the second timing t2.

    [0040] Fig. 6B illustrates another implementation of circuitry 600 for controlling a power amplifier 10 in a TX/RX switching system according to an embodiment of the present disclosure. The circuitry 600 may be regarded as another implementation of the circuitry 400 as show in Fig. 4.

    [0041] In this example, the control circuit 630 comprises a control device 632 and a third switch 636. The third switch 636 comprises a first terminal for coupling to the enable voltage Ven and a second terminal for coupling to the enable terminal of the power amplifier 10. The control device 632 is configured to switch on the first switch at the first timing t1. The control device 632 is further configured to switch off the first switch 610 and turn on the power amplifier 10 by switching on the third switch 636 at the second timing t2.

    [0042] Fig. 6C illustrates yet another implementation of circuitry 600 for controlling a power amplifier 10 in a TX/RX switching system according to an embodiment of the present disclosure. The circuitry 600 may be regarded as yet another implementation of the circuitry 400 as show in Fig. 4.

    [0043] In this example, the control circuit 630 comprises a control device 632 and a voltage generator 638. The voltage generator 638 is configured to supply with the enable terminal of the power amplifier 10 either the enable voltage Ven or a disable voltage Voff. The control device 632 is configured to switch on the first switch 610 at the first timing t1. The control device 632 is further configured to switch off the first switch 610 and to turn on the power amplifier 10 by causing the voltage generator 638 to generate the enable voltage Ven instead of the disable voltage Voff at the second timing t2.

    [0044] The control device 632 as shown in Figs. 6A, 6B and 6C may be implemented as any control logic, including a microcontroller, a field programmable gate array (FPGA), a complex programmable logic device (CPLD), and the like. As illustrated, the second switch 634 may be a controlled single-pole-double-throw (SPDT) switch, and the third switch 636 may be a controlled single-pole-single-throw (SPST) switch. In an implementation, the voltage generator 638 of Fig. 6C may comprise a commonly used digital-to-analog converter (not shown). The digital-to-analog converter may be configured to output the required voltage under the control of the control device 632. In either case, the circuitry 600 can be implemented in an easy and cost-effective way.

    [0045] Fig. 7 is a block diagram illustrating a TX/RX switching system 700 according to an embodiment of the present disclosure. As illustrated, the TX/RX switching system 700 comprises a transmitter 710 for transmission of signals In particular, the transmitter 710 comprises the circuitry 400 as described above. Details of the circuitry 400 have been described with respect to Figs. 4 to 6C, and thus are not discussed here for simplicity. The TX/RX switching system 700 may further comprise a receiver 720 for reception of signals. In operation, the TX/RX switching system 700, such as a TDD system, may switch between a TX mode and a RX mode. In an implementation, the TX/RX switching system 700 may form or be part of a base station (not shown).

    [0046] Fig. 8 is a flow chart of a method 800 for controlling a power amplifier in a TX/RX switching system according to an embodiment of the present disclosure. The power amplifier comprises a power terminal for being supplied with a power supply voltage and an enable terminal for being supplied with an enable voltage.

    [0047] At step 810, a load circuit is provided for at least partly reducing a magnitude of a swing of the power supply voltage caused by a variation in load of the TX/RX switching system that occurs upon initiation of a transmission by the TX/RX switching system.

    [0048] At step 820, a first switch is provided for being coupled in series with the load circuit and being operable to switch on to couple the power supply voltage to a ground voltage via the load circuit.

    [0049] At step 830, the first switch is switched on at a first timing. The first timing may be during switching of the TX/RX switching system from a receive mode to a transmit mode.

    [0050] At step 840, the first switch is switched off and the power amplifier is turned on at a second timing. Turning on of the power amplifier may be done by causing the enable voltage to be supplied to the enable terminal of the power amplifier. In particular, the first timing is a time interval ahead of the second timing.

    [0051] It should be understood that details of the method 800 are substantially similar to the operations as described above with respect to circuitry 400, 600, and thus are not discussed here in detail for simplicity. It however should also be understood that step 830 and step 840 may be performed recursively as indicated by the dashed arrow in Fig. 8, as the switching of the TX/RX switching system continues. In this case, the power amplifier is turned off at the end of each transmission, which is not reflected in Fig. 8 although.

    [0052] Advantageously, embodiments of the present disclosure enable enhancement of a linear performance of the power amplifier used in the TX/RX switching system to amplify the signal to be transmitted. In some embodiments, the Vdd swing may even be almost invisible to the power amplifier. Moreover, the circuitry according to embodiments of the present disclosure can be implemented in an easy and cost-effective way.

    [0053] Another advantage is that since the linear performance of the power amplifier is enhanced, the valid time for transmission of a TX signal is increased. In other words, the available time for downlink transmission could be increased.


    Claims

    1. Circuitry (400, 600) for controlling a power amplifier (10) in a transmit/receive switching system, the circuitry (400, 600) comprising:

    - a load circuit (420, 620) for at least partly reducing a magnitude of a swing of a power supply voltage caused by a variation in load of the transmit/receive switching system that occurs upon initiation of a transmission by the transmit/receive switching system, the power supply voltage being supplied to the power amplifier (10);

    - a first switch (410, 610), coupled in series with the load circuit (420, 620), operable to switch on to couple the power supply voltage to a ground voltage via the load circuit (420, 620); and

    - a control circuit (430, 630) configured to switch on the first switch (410, 610) at a first timing, and to switch off the first switch (410, 610) and turn on the power amplifier (10) at a second timing, wherein the first timing is a time interval ahead of the second timing.


     
    2. The circuitry (400, 600) according to claim 1, wherein the time interval is equal to or greater than a duration of the swing of the power supply voltage caused by a variation in load of the transmit/receive switching system that occurs upon initiation of a transmission by the transmit/receive switching system in absence of the circuitry (400, 600).
     
    3. The circuitry (400, 600) according to claim 2, wherein the duration of the swing of the power supply voltage is determined from a system configuration.
     
    4. The circuitry (400, 600) according to claim 3, wherein the system configuration comprises at least one of: capacity of a power source supplying the power supply voltage; and a power consumption level of the power amplifier (10).
     
    5. The circuitry (400, 600) according to any of claims 1-4, wherein the load circuit (420, 620) is equivalent to the power amplifier (10) in terms of power consumption.
     
    6. The circuitry (400, 600) according to any of claims 1-5, wherein the load circuit (420, 620) comprises a passive circuit, an active circuit, or combination thereof.
     
    7. The circuitry (400, 600) according to any of claims 1-6, wherein the control circuit (630) comprises a control device (632) and a second switch (634) comprising a first terminal for being supplied with a disable voltage for turning off the power amplifier (10), a second terminal for being supplied with an enable voltage for turning on the power amplifier (10), and a common terminal for coupling to an enable terminal of the power amplifier (10), and wherein the control device (632) is configured to switch on the first switch (610) at the first timing and to switch off the first switch (610) and turn on the power amplifier (10) by causing the second switch (634) to couple the common terminal to the second terminal instead of to the first terminal at the second timing.
     
    8. The circuitry (400, 600) according to claim 7, wherein the control circuit (630) comprises a control device (632) and a third switch (636) comprising a first terminal for being supplied with the enable voltage and a second terminal for coupling to the enable terminal of the power amplifier (10), and wherein the control device (632) is configured to switch on the first switch (610) at the first timing and to switch off the first switch (610) and turn on the power amplifier (10) by switching on the third switch (636) at the second timing.
     
    9. The circuitry (400, 600) according to claim 7, wherein the control circuit (630) comprises a control device (632) and a voltage generator (638) configured to supply with the enable terminal of the power amplifier (10) either the enable voltage or the disable voltage, and wherein the control device (632) is configured to switch on the first switch (610) at the first timing and to switch off the first switch (610) and turn on the power amplifier (10) by causing the voltage generator (638) to generate the enable voltage instead of the disable voltage at the second timing.
     
    10. The circuitry (400, 600) according to claim 9, wherein the voltage generator (638) comprises a digital-to-analog converter.
     
    11. A transmitter (710) for use in a transmit/receive switching system (700), comprising:

    - a power amplifier (10); and

    - circuitry (400, 600) according to any of claims 1-10.


     
    12. A transmit/receive switching system (700) comprising a transmitter (710) according to claim 11.
     
    13. A base station comprising a transmit/receive switching system (700) according to claim 12.
     
    14. A method (800) for controlling a power amplifier in a transmit/receive switching system, the method (800) comprising:

    - providing (810) a load circuit for at least partly reducing a magnitude of a swing of a power supply voltage caused by a variation in load of the transmit/receive switching system that occurs upon initiation of a transmission by the transmit/receive switching system, the power supply voltage being supplied to the power amplifier (10);

    - providing (820) a first switch, coupled in series with the load circuit, operable to switch on to couple the power supply voltage to a ground voltage via the load circuit;

    - switching (830) on the first switch at a first timing; and

    - switching off the first switch and turning on (840) the power amplifier at a second timing, wherein the first timing is a time interval ahead of the second timing.


     
    15. The method (800) according to claim 14, wherein the time interval is equal to or greater than a duration of the swing of the power supply voltage caused by a variation in load of the transmit/receive switching system that occurs upon initiation of a transmission by the transmit/receive switching system without applying the method.
     


    Ansprüche

    1. Schaltungsanordnung (400, 600) zum Steuern eines Leistungsverstärkers (10) in einem Sende-/Empfangsschaltsystem, wobei die Schaltungsanordnung (400, 600) umfasst:

    - eine Lastschaltung (420, 620) zum mindestens teilweisen Reduzieren einer Größe eines Hubs einer Versorgungsspannung, der durch eine Lastveränderung des Sende-/Empfangsschaltsystems verursacht wird, die bei Einleitung einer Übertragung durch das Sende-/Empfangsschaltsystem auftritt, wobei die Versorgungsspannung dem Leistungsverstärker zugeführt wird (10);

    - einen ersten Schalter (410, 610), der in Reihe mit der Lastschaltung (420, 620) geschaltet ist, der betreibbar ist, um eingeschaltet zu werden, um die Versorgungsspannung über die Lastschaltung (420, 620) mit einer Massespannung zu koppeln; und

    - eine Steuerschaltung (430, 630), die dazu konfiguriert ist, zu einem ersten Zeitpunkt den ersten Schalter (410, 610) einzuschalten und zu einem zweiten Zeitpunkt den ersten Schalter (410, 610) auszuschalten und den Leistungsverstärker (10) einzuschalten, wobei der erste Zeitpunkt um ein Zeitintervall vor dem zweiten Zeitpunkt liegt.


     
    2. Schaltungsanordnung (400, 600) nach Anspruch 1, wobei das Zeitintervall gleich oder größer als eine Dauer des Hubs der Versorgungsspannung ist, der durch eine Lastveränderung des Sende-/Empfangsschaltsystems verursacht wird, die bei Einleitung einer Übertragung durch das Sende-/Empfangsschaltsystem in Abwesenheit der Schaltungsanordnung (400, 600) auftritt.
     
    3. Schaltungsanordnung (400, 600) nach Anspruch 2, wobei die Dauer des Hubs der Versorgungsspannung von einer Systemkonfiguration bestimmt wird.
     
    4. Schaltungsanordnung (400, 600) nach Anspruch 3, wobei die Systemkonfiguration mindestens eines umfasst von: einer Kapazität einer Stromquelle, die die Versorgungsspannung bereitstellt; und einer Leistungsaufnahme des Leistungsverstärkers (10).
     
    5. Schaltungsanordnung (400, 600) nach einem der Ansprüche 1 bis 4, wobei die Lastschaltung (420, 620) hinsichtlich der Leistungsaufnahme dem Leistungsverstärker (10) entspricht.
     
    6. Schaltungsanordnung (400, 600) nach einem der Ansprüche 1 bis 5, wobei die Lastschaltung (420, 620) eine passive Schaltung, eine aktive Schaltung oder eine Kombination davon umfasst.
     
    7. Schaltungsanordnung (400, 600) nach einem der Ansprüche 1 bis 6, wobei die Steuerschaltung (630) eine Steuervorrichtung (632) und einen zweiten Schalter (634) umfasst, der einen ersten Anschluss zur Versorgung mit einer Sperrspannung zum Ausschalten des Leistungsverstärkers (10), einen zweiten Anschluss zur Versorgung mit einer Freigabespannung zum Einschalten des Leistungsverstärkers (10) und einen gemeinsamen Anschluss zum Koppeln mit einem Freigabeanschluss des Leistungsverstärkers (10) umfasst und wobei die Steuervorrichtung (632) dazu konfiguriert ist, zu dem ersten Zeitpunkt den ersten Schalter (610) einzuschalten und zu dem zweiten Zeitpunkt den ersten Schalter (610) auszuschalten und den Leistungsverstärker (10) einzuschalten, indem sie den zweiten Schalter (634) veranlasst, den gemeinsamen Anschluss mit dem zweiten Anschluss statt mit dem ersten Anschluss zu koppeln.
     
    8. Schaltungsanordnung (400, 600) nach Anspruch 7, wobei die Steuerschaltung (630) eine Steuervorrichtung (632) und einen dritten Schalter (636) umfasst, der einen ersten Anschluss zur Versorgung mit der Freigabespannung und einen zweiten Anschluss zum Koppeln mit dem Freigabeanschluss des Leistungsverstärkers (10) umfasst und wobei die Steuervorrichtung (632) dazu konfiguriert ist, zu dem ersten Zeitpunkt den ersten Schalter (610) einzuschalten und zu dem zweiten Zeitpunkt den ersten Schalter (610) auszuschalten und den Leistungsverstärker (10) einzuschalten, indem sie den dritten Schalter (636) einschaltet.
     
    9. Schaltungsanordnung (400, 600) nach Anspruch 7, wobei die Steuerschaltung (630) eine Steuervorrichtung (632) und einen Spannungsgenerator (638) umfasst, der dazu konfiguriert ist, den Freigabeanschluss des Leistungsverstärkers (10) entweder mit der Freigabespannung oder der Sperrspannung zu versorgen, und wobei die Steuervorrichtung (632) dazu konfiguriert ist, zu dem ersten Zeitpunkt den ersten Schalter (610) einzuschalten und zu dem zweiten Zeitpunkt den ersten Schalter (610) auszuschalten und den Leistungsverstärker (10) einzuschalten, indem sie den Spannungsgenerator (638) veranlasst, die Freigabespannung statt der Sperrspannung zu erzeugen.
     
    10. Schaltungsanordnung (400, 600) nach Anspruch 9, wobei der Spannungsgenerator (638) einen Digital-Analog-Wandler umfasst.
     
    11. Sender (710) zur Verwendung in einem Sende-/Empfangsschaltsystem (700), umfassend:

    - einen Leistungsverstärker (10); und

    - eine Schaltungsanordnung (400, 600) nach einem der Ansprüche 1 bis 10.


     
    12. Sende-/Empfangsschaltsystem (700), umfassend einen Sender (710) nach Anspruch 11.
     
    13. Basisstation, umfassend ein Sende-/Empfangsschaltsystem (700) nach Anspruch 12.
     
    14. Verfahren (800) zum Steuern eines Leistungsverstärkers in einem Sende-/Empfangsschaltsystem, das Verfahren (800) umfassend:

    - Bereitstellen (810) einer Lastschaltung zum mindestens teilweisen Reduzieren einer Größe eines Hubs einer Versorgungsspannung, der durch eine Lastveränderung des Sende-/Empfangsschaltsystems verursacht wird, die bei Einleitung einer Übertragung durch das Sende-/Empfangsschaltsystem auftritt, wobei die Versorgungsspannung dem Leistungsverstärker (10) zugeführt wird;

    - Bereitstellen (820) eines ersten Schalters, der in Reihe mit der Lastschaltung geschaltet ist, der betreibbar ist, um eingeschaltet zu werden, um die Versorgungsspannung über die Lastschaltung mit einer Massespannung zu koppeln;

    - Einschalten (830) des ersten Schalters zu einem ersten Zeitpunkt; und

    - Ausschalten des ersten Schalters und Einschalten (840) des Leistungsverstärkers zu einem zweiten Zeitpunkt, wobei der erste Zeitpunkt um ein Zeitintervall vor dem zweiten Zeitpunkt liegt.


     
    15. Verfahren (800) nach Anspruch 14, wobei das Zeitintervall gleich oder größer als eine Dauer des Hubs der Versorgungsspannung ist, der durch eine Lastveränderung des Sende-/Empfangsschaltsystems verursacht wird, die bei Einleitung einer Übertragung durch das Sende-/Empfangsschaltsystem ohne Anwenden des Verfahrens auftritt.
     


    Revendications

    1. Ensemble de circuits (400, 600) pour commander un amplificateur de puissance (10) dans un système de commutation de transmission/réception, l'ensemble de circuits (400, 600) comprenant :

    - un circuit de charge (420, 620) pour réduire au moins partiellement une importance d'une excursion d'une tension d'alimentation électrique causée par une variation de charge du système de commutation de transmission/réception qui se produit lors du lancement d'une transmission par le système de commutation de transmission/réception, la tension d'alimentation électrique étant alimentée à l'amplificateur de puissance (10) ;

    - un premier commutateur (410, 610), couplé en série avec le circuit de charge (420, 620), en mesure de s'allumer pour coupler la tension d'alimentation électrique à une tension de masse via le circuit de charge (420, 620) ; et

    - un circuit de commande (430, 630) configuré pour allumer le premier commutateur (410, 610) à un premier moment, et pour éteindre le premier commutateur (410, 610) et allumer l'amplificateur de puissance (10) à un deuxième moment, dans lequel le premier moment est un intervalle de temps antérieur au deuxième moment.


     
    2. Ensemble de circuits (400, 600) selon la revendication 1, dans lequel l'intervalle de temps est égal ou supérieur à une durée de l'excursion de la tension d'alimentation électrique causée par une variation de charge du système de commutation de transmission/réception qui se produit lors du lancement d'une transmission par le système de commutation de transmission/réception en l'absence de l'ensemble de circuits (400, 600).
     
    3. Ensemble de circuits (400, 600) selon la revendication 2, dans lequel la durée de l'excursion de la tension d'alimentation électrique est déterminée à partir d'une configuration système.
     
    4. Ensemble de circuits (400, 600) selon la revendication 3, dans lequel la configuration système comprend au moins l'un parmi : une capacité d'une source d'alimentation alimentant la tension d'alimentation électrique ; et un niveau de consommation d'énergie de l'amplificateur de puissance (10).
     
    5. Ensemble de circuits (400, 600) selon l'une quelconque des revendications 1 à 4, dans lequel le circuit de charge (420, 620) est équivalent à l'amplificateur de puissance (10) en termes de consommation d'énergie.
     
    6. Ensemble de circuits (400, 600) selon l'une quelconque des revendications 1 à 5, dans lequel le circuit de charge (420, 620) comprend un circuit passif, un circuit actif, ou une combinaison de ceux-ci.
     
    7. Ensemble de circuits (400, 600) selon l'une quelconque des revendications 1 à 6, dans lequel le circuit de commande (630) comprend un dispositif de commande (632) et un deuxième commutateur (634) comprenant une première borne destinée à être alimentée avec une tension de désactivation pour éteindre l'amplificateur de puissance (10), une deuxième borne destinée à être alimentée avec une tension d'activation pour allumer l'amplificateur de puissance (10), et une borne commune pour couplage à une borne d'activation de l'amplificateur de puissance (10), et dans lequel le dispositif de commande (632) est configuré pour allumer le premier commutateur (610) au premier moment et pour éteindre le premier commutateur (610) et allumer l'amplificateur de puissance (10) en amenant le deuxième commutateur (634) à coupler la borne commune à la deuxième borne plutôt qu'à la première borne au deuxième moment.
     
    8. Ensemble de circuits (400, 600) selon la revendication 7, dans lequel le circuit de commande (630) comprend un dispositif de commande (632) et un troisième commutateur (636) comprenant une première borne destinée à être alimentée avec la tension d'activation et une deuxième borne pour couplage à la borne d'activation de l'amplificateur de puissance (10), et dans lequel le dispositif de commande (632) est configuré pour allumer le premier commutateur (610) au premier moment et pour éteindre le premier commutateur (610) et allumer l'amplificateur de puissance (10) en allumant le troisième commutateur (636) au deuxième moment.
     
    9. Ensemble de circuits (400, 600) selon la revendication 7, dans lequel le circuit de commande (630) comprend un dispositif de commande (632) et un générateur de tension (638) configuré pour alimenter avec la borne d'activation de l'amplificateur de puissance (10) soit la tension d'activation soit la tension de désactivation, et dans lequel le dispositif de commande (632) est configuré pour allumer le premier commutateur (610) au premier moment et pour éteindre le premier commutateur (610) et allumer l'amplificateur de puissance (10) en amenant le générateur de tension (638) à générer la tension d'activation plutôt que la tension de désactivation au deuxième moment.
     
    10. Ensemble de circuits (400, 600) selon la revendication 9, dans lequel le générateur de tension (638) comprend un convertisseur numérique-vers-analogique.
     
    11. Émetteur (710) pour utilisation dans un système de commutation de transmission/réception (700), comprenant :

    - un amplificateur de puissance (10) ; et

    - un ensemble de circuits (400, 600) selon l'une quelconque des revendications 1 à 10.


     
    12. Système de commutation de transmission/réception (700) comprenant un émetteur (710) selon la revendication 11.
     
    13. Station de base comprenant un système de commutation de transmission/réception (700) selon la revendication 12.
     
    14. Procédé (800) pour commander un amplificateur de puissance dans un système de commutation de transmission/réception, le procédé (800) comprenant :

    - la fourniture (810) d'un circuit de charge pour réduire au moins partiellement une importance d'une excursion d'une tension d'alimentation électrique causée par une variation de charge du système de commutation de transmission/réception qui se produit lors du lancement d'une transmission par le système de commutation de transmission/réception, la tension d'alimentation électrique étant alimentée à l'amplificateur de puissance (10) ;

    - la fourniture (820) d'un premier commutateur, couplé en série avec le circuit de charge, en mesure de s'allumer pour coupler la tension d'alimentation électrique à une tension de masse via le circuit de charge ;

    - l'allumage (830) du premier commutateur à un premier moment ; et

    - l'extinction du premier commutateur et l'allumage (840) de l'amplificateur de puissance à un deuxième moment, dans lequel le premier moment est un intervalle de temps antérieur au deuxième moment.


     
    15. Procédé (800) selon la revendication 14, dans lequel l'intervalle de temps est égal ou supérieur à une durée de l'excursion de la tension d'alimentation électrique causée par une variation de charge du système de commutation de transmission/réception qui se produit lors du lancement d'une transmission par le système de commutation de transmission/réception sans appliquer le procédé.
     




    Drawing


























    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description